初一视图到立体几何课件
合集下载
七年级数学立体图形的视图PPT优秀课件

15.一个物体的三视图如图所示,则该物体是____三__棱__锥________.
16.一个几何体是由一些大小相同的小正方体摆成的,其主视图与左视图 如图所示,则组成这个几何体的小正方体最少有______5__个.
17.(9分)画出下列物体的三视图. 18.(9分)如图所示是一个几何体的三视图,试画出该几何体的形状.
THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件
11.下面右图是小强用八块相同的小正方体搭建的一个积木,它的左视图 是( D )
12.长方体的主视图与俯视图如图所示,则这个长方体的体积是( C ) A.52 B.32 C.24 D.9
13.下列三个图形分别是右图的三视图,请标上名称. 14.下列几何体中,俯视图相同的是______②__③___.(填序号)
2.(5分)如图是由4个相同的小正方体组成的几何体.其主视图为( D )
3.(5分)如图所示几何体的主视图是( A ) 4.(5分)如图所示的圆柱的左视图是( C )
5.(5分)球体的三视图是( C ) A.两个圆,一个长方体 B.两个圆和一个半圆 C.三个圆 D.以上都不对 6.(5分)某几何体的三视图如图所示,则这个几何体是( D ) A.圆柱 B.正方体 C.球 D.圆锥
4.2 立体图形的视图
1.三视图就是从三个不同的方向看一个___物__体_____,然后描____看到的图形,称为主视图; 从____上__面_____看到的图形,称为俯视图; 从____左__面_____看到的图形,称为左视图.
1.(5分)如图是几个小正方体组成的一个几何体,这个几何体的俯视图是 (C)
7.(5分)一个几何体的三视图如图所示,则这个几何体是( A.四棱锥 B.四棱柱 C.三棱锥 D.三棱柱 8.(5分)如图是某物体的三视图,则这个物体的形状是( A.四面体 B.直三棱柱 C.直四棱柱 D.直五棱柱
《立体几何三视图》ppt课件

左
圆柱
19
棱锥的三视图
俯
左
正三棱锥
2021/6/7
20
棱锥的三视图
俯
左
正四棱锥
2021/6/7
21
圆锥的三视图
俯
2021/6/7
左 圆锥
22
棱台的三视图
俯
左
正四棱台
2021/6/7
23
圆台的三视图
俯
左
2021/6/7
圆台
24
球的三视图
俯
左
球体
2021/6/7
25
练习2:画出下面几何体的三视图
②正视图、侧视图和俯视图的长方形的长宽高分 别为多少厘米?
③正视图和侧视图中有没有相同的线段?正
视图和俯视图呢?侧视图和俯视图呢?
2021/6/7
12
主 俯 长 3cm 对 正
俯 左 宽 4cm 相 等
2021/6/7
5cm 主左高平齐 4cm 3cm
正视图
5cm
侧视图
俯视图
3cm
13
5cm
4cm
2021/6/7
(1)
(2)
29
口答:一个几何体某一方向的视图是圆, 则它不可能是( D )
A球 C 圆柱
B 圆锥 D 长方体
2021/6/7
30
组合体的三视图 从上面看
俯视图
从左面看 左视图
从正面看 主视图
2021/6/7
31
练习.画出下面物体的三视图
主视图
2021/6/7
左视图
32
俯视图
知识结构
主视图
左视图
将空间图形向这三个平面作正投影,
初一数学 七年级三视图课件18页PPT

45、自己的饭量自己知道。——苏联
答: 从不同方向看立体图形得 到的结果是不一样的.
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
60、人民的幸福是至高无个的法。— —西塞 罗
答
11
个
. 三视图 从上面看
从左面看
从正面看
主视图
左视图
俯视图
正视图
左视图
俯视图
利用骰子,摆成下面的图形,分别从 正面、左面、上面观察这个图形,各 能得到什么平面图形?
从正面看
从上面看
从左面看
练习1 . 从你所在的位置看这组 几何体,看到的是什么样子?能 否把你所看到的样子画下来?
A
正面
B 上面
C 左面
观察该图形,则它的俯视图是( )
如图是由几个小立方体所搭几何体的俯 视图(从上面看),其中数字表示从上 面看一列有几个小立方体,请画出从正 面看和从左面看这个几何体的平面图。
从正面看:
从左边看:
4. ‘ 横看成岭侧成峰,远近高低 各不同’ 这句诗蕴含了怎 样 的数学道理?
初一数学 七年级三视图课件
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克
答: 从不同方向看立体图形得 到的结果是不一样的.
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
60、人民的幸福是至高无个的法。— —西塞 罗
答
11
个
. 三视图 从上面看
从左面看
从正面看
主视图
左视图
俯视图
正视图
左视图
俯视图
利用骰子,摆成下面的图形,分别从 正面、左面、上面观察这个图形,各 能得到什么平面图形?
从正面看
从上面看
从左面看
练习1 . 从你所在的位置看这组 几何体,看到的是什么样子?能 否把你所看到的样子画下来?
A
正面
B 上面
C 左面
观察该图形,则它的俯视图是( )
如图是由几个小立方体所搭几何体的俯 视图(从上面看),其中数字表示从上 面看一列有几个小立方体,请画出从正 面看和从左面看这个几何体的平面图。
从正面看:
从左边看:
4. ‘ 横看成岭侧成峰,远近高低 各不同’ 这句诗蕴含了怎 样 的数学道理?
初一数学 七年级三视图课件
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克
.2 由视图到立体图形 ppt(共26张PPT)学案

复习导入
图中三视图对应的立体图形是( )
A
B
C
D
复习导入
解:从主视图推出这两个柱体的宽度相同, 从俯视图推出上面是圆柱体,直径等于下面柱 体的宽. 由此可以判断对应的立体图形是C. 故选C.
新知讲解
请同学们画出它的原Βιβλιοθήκη 体图形主视图左视图
俯视图
原立体图形
新知讲解
主视图
左视图
俯视图
原立体图形
新知讲解
课堂总结
由三视图到正方体组合的方法: 以俯视图为基准操作: 俯视图定有几行几列, 主视图定每列的正方体最大层数, 左视图定每行的正方体最大层数.
板书设计
课题:4.2.2.2 由视图到立体图形
一、由视图到立体图形 二、例题
教师板演区 学生展示区
作业布置
基础作业: 课本P129练习第1题 练习册基础 能力作业: 课本P129练习第2、3题
解: (1)由主视图可知,第二列小正方体的个数均为1,第3列小正方 体的个数为3,那么b= 1,c=1, a=3; (2第一列小正方体的个数最少为2+1+1,最多为2+2 +2,那么加 上其它两列小正方体的个数即可;最少9个,最够11个; (3)左视图有3列,每列小正方形数目分别为3,1,2.左视图如图:
主视图 左视图
新知讲解
解:由主视图和左视图可确定所需小正方体个数最少时俯视图为:
则搭成这个立体图形的小正方体最少有5个. 故选:B.
新知讲解
由三视图到正方体组合的方法 (以俯视图为基准操作) 俯视图定有几行几列, 主视图定每列的正方体最大层数, 左视图定每行的正方体最大层数.
课堂练习
1、如图是由若干小正方体组成的立体图形的俯视图,小正方形中的 数字表示该位置小正方体的个数,这个立体图形的主视图是( )
初中七年级(初一)数学课件 立体图形

俯视图
探究
圆 柱
正视图 侧视图 俯视图
圆
正视图
台
侧视图
俯视图
正视图
圆
锥
侧视图
俯视图
.
球
正视图、侧视图
体
俯视图
几何体 正方体 长方体
圆柱 圆锥 圆台 球体
小结
正视图
正方形 矩形 矩形
等腰三角形 等腰梯形
圆
侧视图
正方形 矩形 矩形
等腰三角形 等腰梯形
圆
俯视图
正方形 矩形
圆
圆 圆 圆
正视图
练一练
第二列的方块有 个,2
21 12
正视图:
侧视图:
【反思】
1、你能画出一个几何体的三视图吗? 2、你能由三视图得到该几何体吗? 3、你会由“给出数字的俯视图”画 出几何体的主视图、左视图吗?
, . , .
只不 远 缘识 近 身庐 高 在山 低 此真 各 山面 不 中目 同
横 看题 成 苏西 岭 轼林 侧壁 成 峰
在生活中我们应从不同 角度,多方面地去看待一 件事物,分析一件事情。
数学中我们只从三个不 同方向看同一物体,所以, 每一个物体都有三视图。
三
俯视图
视
图
的
正 视
概
图
念
侧视图
三视图的概念
从三个不同方向 看同一物体
从前向后看到的图叫正视图, 从左向右看到的图叫侧视图, 从上向下看到的图叫俯视图。
探究
正方体
从不同方向看以下立 体图形得到的平面图 形是什么图形?
正方形
长 方 体
侧视图Байду номын сангаас
长方形
正视图
探究
圆 柱
正视图 侧视图 俯视图
圆
正视图
台
侧视图
俯视图
正视图
圆
锥
侧视图
俯视图
.
球
正视图、侧视图
体
俯视图
几何体 正方体 长方体
圆柱 圆锥 圆台 球体
小结
正视图
正方形 矩形 矩形
等腰三角形 等腰梯形
圆
侧视图
正方形 矩形 矩形
等腰三角形 等腰梯形
圆
俯视图
正方形 矩形
圆
圆 圆 圆
正视图
练一练
第二列的方块有 个,2
21 12
正视图:
侧视图:
【反思】
1、你能画出一个几何体的三视图吗? 2、你能由三视图得到该几何体吗? 3、你会由“给出数字的俯视图”画 出几何体的主视图、左视图吗?
, . , .
只不 远 缘识 近 身庐 高 在山 低 此真 各 山面 不 中目 同
横 看题 成 苏西 岭 轼林 侧壁 成 峰
在生活中我们应从不同 角度,多方面地去看待一 件事物,分析一件事情。
数学中我们只从三个不 同方向看同一物体,所以, 每一个物体都有三视图。
三
俯视图
视
图
的
正 视
概
图
念
侧视图
三视图的概念
从三个不同方向 看同一物体
从前向后看到的图叫正视图, 从左向右看到的图叫侧视图, 从上向下看到的图叫俯视图。
探究
正方体
从不同方向看以下立 体图形得到的平面图 形是什么图形?
正方形
长 方 体
侧视图Байду номын сангаас
长方形
正视图
《立体几何》PPT课件

精选课件ppt
3
知识点
考纲下载
考情上线
1.理解空间直线、平面位
1.点、线、面的位
置 关系的定义.
置关系是立体几何
2.了解可以作为推理依据
点、线、
推理、证明、计算
的公理和定理.
面的位置
的基础,多融合平
3.能运用公理、定理和已
关系
行、垂直进行考查.
获得的结论证明一些空
2.对于异面直线的定
间图形的位置关系的简
精选课件ppt
5
知识点
考纲下载
考情上线
以立体几何的定 线、面 义、公理和定理 垂直的 为出发点,认识 判定与 和理解空间中线 性质 面垂直的判定定
理与有关性质.
1.在客观题中,多考查与垂 直有关的命题真假的判断.
2.在解答题中考查线线、线 面、面面垂直的证明.
精选课件ppt
6
知识点
考纲下载
考情上线
精选课件ppt
11
(1)圆柱可以由 矩形绕其任一边旋转得到.
(2)圆锥可以由直角三角形绕其 直角边 旋转得到.
(3)圆台可以由直角梯形绕 直角腰或等腰梯形绕 旋转体
上下底中点连线 旋转得到,也可由
平行于棱椎底面 的平面截圆锥得到.
(4)球可以由半圆或圆绕 直径旋转得到.
精选课件ppt
12
二、三视图与直观图
义是考查的重点.
单命题.
精选课件ppt
4
知识点 考纲下载
考情上线
1.在客观题中,多以符号语言
线、面 以立体几何的定义、与
公理和定理为出发 平行的
点,认识和理解空
判定与 间中线面平行的判
逻辑推理的形式考查命题的真 假判断,往往结合垂直关系.
华东师大版数学七年级上册由立体图形到视图PPT教学课件3
自学一:阅读课本 P123~124,要求:
1.了解中心投影、平行投影、主视 图、左视图、俯视图的概念;
2.完成学案“练习一”。
苏-27实物及视图
T26M坦克实物及视图
摩托车视图
华东师大版数学七年级上册-4.2.1 由立体图形到视图 课件 _5
自学二:自学课本 P125~126 例1、例2,要求:
俯、左视图宽相等.
华东师大版数学七年级上册-4.2.1 由立体图形到视图 课件 _5
横看成林侧成峰,远近高低各不同。 不识庐山真面目,只缘身在此山中。
----苏东坡《题西林壁》
华东师大版数学七年级上册-4.2.1 由立体图形到视图 课件 _5
华东师大版数学七年级上册-4.2.1 由立体图形到视图 课件 _5 华东师大版数学七年级上册-4.2.1 由立体图形到视图 课件 _5
华东师大版数学七年级上册-4.2.1 由立体图形到视图 课件 _5 华东师大版数学七年级上册-4.2.1 由立体图形到视图 课件 _5
学习目标:
1、了解中心投影、平行投影、主视图、左视图、 俯视图的概念;
2、会画简单立体图形的三视图; 3、通过学习提高我们的空间想象力。
重点难点:
重点:由给出的立体图形画出三视图。 难点:画简单组合体的三视图。
华东师大版数学七年级上册-4.2.1 由立体图形到视图 课件 _5 华东师大版数学七年级上册-4.2.1 由立体图形到视图 课件 _5
1.体会立体图形三视图的画法; 2.完成学案“练习二”。
华东师大版数学七年级上册-4.2.1 由立体图形到视图 课件 _5
华东师大版数学七年级上册-4.2.1 由立体图形到视图 课件 _5
1.画出如图所示正方体的三视图 解:正方体的三视图都是正方形.