相遇及追及问题(含答案)

合集下载

一般行程问题(相遇与追击问题)-含答案

一般行程问题(相遇与追击问题)-含答案

一.一般行程问题(相遇与追击问题)1.行程问题中的三个基本量及其关系:路程=速度×时间 时间=路程÷速度 速度=路程÷时间2.行程问题基本类型(1)相遇问题: 快行距+慢行距=原距(2)追及问题: 快行距-慢行距=原距1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x 千米,则列方程为 。

解:等量关系 步行时间-乘公交车的时间=3.6小时 列出方程是:6.3408=-x x 2、某人从家里骑自行车到学校。

若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?解:等量关系 ⑴ 速度15千米行的总路程=速度9千米行的总路程⑵ 速度15千米行的时间+15分钟=速度9千米行的时间-15分钟 提醒:速度已知时,设时间列路程等式的方程,设路程列时间等式的方程。

方法一:设预定时间为x 小/时,则列出方程是:15(x -0.25)=9(x +0.25)方法二:设从家里到学校有x 千米,则列出方程是:60159601515-=+x x 3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?提醒:将两车车尾视为两人,并且以两车车长和为总路程的相遇问题。

等量关系:快车行的路程+慢车行的路程=两列火车的车长之和设客车的速度为3x 米/秒,货车的速度为2x 米/秒,则 16×3x +16×2x =200+2804、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。

行人的速度是每小时3.6km ,骑自行车的人的速度是每小时10.8km 。

如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。

【精品】小学数学 基本的相遇与追及问题 非常完整版题型训练+详细答案

【精品】小学数学 基本的相遇与追及问题 非常完整版题型训练+详细答案

基本的相遇与追及问题(1)根据学习的“路程和=速度和 时间”继续学习简单的直线上的相遇与追及问题(2)研究行程中复杂的相遇与追及问题(3)通过画图使较复杂的问题具体化、形象化,融合多种方法达到正确理解题目的目的一、相遇和追及(1)相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间.(2)追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间=速度差×追及时间.⨯⎧⎪÷⎨⎪÷⎩÷⎧⎪⨯⎨⎪÷⎩总路程=速度和相遇时间相遇问题速度和=总路程相遇时间相遇时间=总路程速度和追及时间=追及路程速度差追及问题追及路程=速度差追及时间速度差=追及路程追及时间二、在研究追及和相遇问题时,一般都隐含以下两种条件:(1)在整个被研究的运动过程中,2个物体所运行的时间相同(2)在整个运行过程中,2个物体所走的是同一路径。

例题讲解: 教学目标:相遇与追及问题例题讲解:例题1、一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。

3.5小时两车相遇。

甲、乙两个城市的路程是多少千米?解答:相遇路程等于速度和乘以相遇时间得到甲乙两地路程为:(46+48)×3.5=94×3.5=329(千米).举一反三:两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时行40千米。

甲、乙两车相遇时,各行了多少千米?解答:相遇时间是:255÷(45+40)=255÷85=3(小时),所以甲走的路程为:45×3=135(千米),乙走的路程为:40×3=120(千米).例题2、大头儿子的家距离学校3000米,小头爸爸从家去学校接大头儿子放学,大头儿子从学校回家,他们同时出发,小头爸爸每分钟比大头儿子多走24米,50分钟后两人相遇,那么大头儿子的速度是每分钟走多少米?解答:大头儿子和小头爸爸的速度和:3000÷50=60(米/分钟),小头爸爸的速度:(60+24)÷2=42(米/分钟),大头儿子的速度:60-42=18(米/分钟).举一反三:聪聪和明明同时从各自的家相对出发,明明每分钟走20米,聪聪骑着脚踏车每分钟比明明快42米,经过20分钟后两人相遇,你知道聪聪家和明明家的距离吗?解答:直接利用公式:(20+62)×20=1640(米).例题3、A、B两地相距90米,包子从A地到B地需要30秒,菠萝从B地到A地需要15秒,现在包子和菠萝从A、B两地同时相对而行,相遇时包子与B地的距离是多少米?解答:包子的速度90÷30=3(米/秒),菠萝的速度:90÷15=6(米/秒),相遇的时间:90÷(3+6)=10(秒),包子距B地的距离:90-3×10=60(米).举一反三:甲、乙两车分别从相距360千米的A、B两城同时出发,相对而行,已知甲车到达B城需4小时,乙车到达A城需12小时,问:两车出发后多长时间相遇?解答:要求两车的相遇时间,则必须知道它们各自的速度,甲车的速度是360÷4=90(千米/时),乙车的速度是360÷12=30(千米/时),则相遇时间是360÷(90+30)=3(小时).例题4、甲、乙两辆汽车分别从A、B两地出发相对而行,甲车先行1小时,甲车每小时行48千米,乙车每小时行50千米,5小时相遇,求A、B两地间的距离.解答:这题不同的是两车不“同时”.求A、B两地间的路程就是求甲、乙两车所行的路程和.这样可以充分别求出甲车、乙车所行的路程,再把两部分合起来.48×(1+5)=288(千米),50×5=250(千米),288+250=538(千米).举一反三:(1)甲、乙两列火车从相距770千米的两地相向而行,甲车每小时行45千米,乙车每小时行41千米,乙车先出发2小时后,甲车才出发.甲车行几小时后与乙车相遇?解答:甲、乙两车出发时间有先有后,乙车先出发2小时,这段时间甲车没有行驶,那么乙车这2小时所行的路程不是甲、乙两车同时相对而行的路程,所以要先求出甲、乙两车同时相对而行的路程,再除以速度和,才是甲、乙两车同时相对而行的时间.乙车先行驶路程:41×2=82(千米),甲、乙两车同时相对而行路程:770-82=688(千米),甲、乙两车速度和:45+41=86(千米/时),甲车行的时间:688÷86=8(小时).(2)甲、乙两列火车从相距144千米的两地相向而行,甲车每小时行28千米,乙车每小时行22千米,乙车先出发2小时后,甲车才出发.甲车行几小时后与乙车相遇?解答:甲、乙两车出发时间有先有后,乙车先出发2小时,这段时间甲车没有行驶,那么乙车这2小时所行的路程不是甲、乙两车同时相对而行的路程,所以要先求出甲、乙两车同时相对而行的路程,再除以速度和,才是甲、乙两车同时相对而行的时间.乙车先行驶路程:22×2=44(千米),甲、乙两车同时相对而行路:144-44=100(千米),甲、乙两车速度和:28+22=50(千米),与乙车相遇时甲车行的时间为:100÷50=2(小时).(3)妈妈从家出发到学校去接小红,妈妈每分钟走75米.妈妈走了3分钟后,小红从学校出发,小红每分钟走60米.再经过20分钟妈妈和小红相遇.从小红家到学校有多少米?解答:妈妈先走了3分钟,就是先走了75×3=225(米).20分钟后妈妈和小红相遇,也就是说妈妈和小红共同走了20分钟,这一段的路程为:(75+60)×20=2700(米),这样妈妈先走的那一段路程,加上后来妈妈和小红走的这一段路程,就是小红家到学校的距离.即(75×3)+(75+60)×20=2925(米).(4)甲乙两座城市相距530千米,货车和客车从两城同时出发,相向而行.货车每小时行50千米,客车每小时行70千米.客车在行驶中因故耽误1小时,然后继续向前行驶与货车相遇.问相遇时客车、货车各行驶多少千米?解答:因为客车在行驶中耽误1小时,而货车没有停止继续前行,也就是说,货车比客车多走1小时.如果从总路程中把货车单独行驶1小时的路程减去,然后根据余下的就是客车和货车共同走过的.再求出货车和客车每小时所走的速度和,就可以求出相遇时间.然后根据路程=速度×时间,可以分别求出客车和货车在相遇时各自行驶的路程.相遇时间:(530-50)÷(50+70)=4(小时)相遇时客车行驶的路程:70×4=280(千米)相遇时货车行驶的路程:50×(5+1)=250(千米).(5)甲、乙两列火车从相距366千米的两个城市对面开来,甲列火车每小时行37千米,乙列火车每小时行36千米,甲列火车先开出2小时后,乙列火车才开出,问乙列火车行几小时后与甲列火车相遇?解答:(366-37×2)÷(37+36)=4(小时).例题5、甲、乙两辆汽车分别从A B两地出发相向而行,甲车先行3小时后乙车从B地出发,乙车出发5小时后两车还相距15千米.甲车每小时行48千米,乙车每小时行50千米.求A B两地间相距多少千米?解答:题目中写的“还”相距15千米指的就是最简单的情况。

六年级下册数学小升初专题-相遇追及(多次)、电车问题 全国通用(含答案)

六年级下册数学小升初专题-相遇追及(多次)、电车问题  全国通用(含答案)

小升初数学专题第4讲行程(一)相遇追及(多次)、电车问题一、知识地图简单相遇追及匀速直线行程多次相遇追及(包括火车过桥)发车间隔问题多次相遇追及环形线路行程(包括钟表问题)⎧⎨⎩⎧⎪⎨⎪⎩变速直线行程(求平均速度)流水行船不同参照系的行程自动扶梯行程中的比例关系其他类型(正、反比例运用)相遇点变化问题二、基础知识在历年“小升初”考试和各类小学奥数竞赛试题中,“行程问题”都占有很大的比重。

同时也是小学专题中的难点,“行程问题”经常作为一份试卷中的压轴难题出现,提高解决“行程问题”的能力不仅能帮助在小升初考试和各类数学竞赛中取得优异成绩,还能为今后初中阶段数学、物理学科的学习打下良好的基础。

(一) 典型的相遇和追及所有行程问题是围绕“⨯路程=速度时间”这一条基本关系式的展开,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系,在这里: =⨯路程和速度和相遇时间; =⨯路程差速度差追及时间;这两组关系式中“路程和”或“路程差”实际上对应的是相遇或追及问题中的原始(初始)距离,我们可以通过图示来理解。

(二)多次相遇追及通过图示介绍直线上的相遇和追及的规律 这部分内容涉及以下几个方面:1 求相遇次数2 求相遇地点3 由相遇地点求全程“线段示意图”和“折线示意图”是解行程问题特别是多次相遇问题的重要方法。

追及问题相遇问题举个例子:假设A 、B 两地相距6000米,甲从A 地出发在AB 间往返运动,速度为6千米/小时,乙从B 出发,在AB 间往返运动,速度为4千米/小时。

我们可以依次求出甲、乙每次到达A 点或B 点的时间。

为了说明甲、乙在AB 间相遇的规律,我们可以用“折线示意图”来表示。

折线示意图能将整个行程过程比较清晰的呈现出来:例如AD 表示的是,甲从A 地出发运动到B 地的过程,其中D 点对应的时间为1小时,表示甲第一次到达B 点的时间为1小时,BF 表示乙从B 地出发到达A 地的过程,F 点对应的时间为1.5小时,表示乙第一次到达A 地的时间为1.5小时,AD 与BF 相交于C 点,对应甲、乙的第一次相遇事件,同样的G 点对应是甲、乙的第二次相遇事件。

高中物理相遇和追及问题(完整版)

高中物理相遇和追及问题(完整版)

高中物理相遇和追及问题(完整版)相遇追及问题一、考点、热点回顾追及问题分为速度小者追速度大者和速度大者追速度小者两种情况。

1.速度小者追速度大者类型:匀加速追匀速图象说明:① t=t 以前,后面物体与前面物体间距离增大② t=t 时,两物体相距最远为x+Δx匀速追匀减速③ t=t 以后,后面物体与前面物体间距离减小④能追及且只能相遇一次匀加速追匀减速2.速度大者追速度小者类型:匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即 t=t0 时刻:①若Δx=x0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件②若Δx<x0,则不能追及,此时两物体最小距离为 x0-Δx③若Δx>x0,则相遇两次,设 t1 时刻Δx1=x0,两物体第一次相遇,则 t2 时刻两物体第二次相遇匀减速追匀加速注意:① Δx 是开始追及以后,后面物体因速度大而比前面物体多运动的位移;② x 是开始追及以前两物体之间的距离;③ t2-t1=t-t2;④ v1 是前面物体的速度,v2 是后面物体的速度。

二、相遇问题相遇问题分为同向运动的两物体的相遇问题和相向运动的物体的相遇问题。

解此类问题的思路:1.根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系。

2.通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式。

追及的主要条件是两个物体在追上时位置坐标相同。

3.寻找问题中隐含的临界条件。

例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等。

利用这些临界条件常能简化解题过程。

4.求解此类问题的方法,除了根据追及的主要条件和临界条件解联立方程外,还可以利用二次函数求极值,应用图象法和相对运动知识求解。

相遇问题的分析思路:相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同。

五年级数学时钟相遇与追及问题(含答案)

五年级数学时钟相遇与追及问题(含答案)

五年级数学时钟相遇与追及问题(含答案)时钟问题是关于时针和分针的追及或相遇问题,可以看作是一个特殊的圆形轨道问题。

时钟问题包括时钟的快慢、周期和时针与分针所成的角度等。

不同于其他行程问题,时钟问题的速度和总路程的度量方式是指针“每分钟走多少角度”或“每分钟走多少小格”,其中分针速度为每分钟走1小格或6度,时针速度为每分钟走1/12小格或0.5度。

但是对于一些“怪钟”或“坏了的钟”,它们的速度可能与常规时钟不同,需要进行独立分析。

时钟问题可以视为行程问题,其中分针快,时针慢,因此分针与时针的问题就是追及问题。

解决时钟的快慢问题时,可以使用十字交叉法。

例如,在标准时钟中,时针与分针从一次重合到下一次重合所需时间为65.5分。

例1中,当时钟表示1点45分时,时针和分针所成的钝角为142.5度。

例2中,时针、分钟和秒针转动的圈数之和为1466圈,求这段时间有多少秒。

解答中,它们的速度比为1:12:720,因此秒针转了1440圈,即秒。

在一段时间里,时针、分钟、秒针正好走了3665小格,那么这段时间有多少秒?解析:它们的速度比为1:12:720,所以秒针转了3665÷(720+12+1)×720=3600小格,即3600秒。

答案:3600秒。

有一座时钟现在显示10时整。

那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?解析:在10点时,时针所在位置为刻度10,分针所在位置为刻度12;当两针重合时,分针必须追上50个小刻度,设分针速度为“l”,有时针速度为“l/12”,再过54/11分钟,时针与分针将第一次重合。

第二次重合时显然为12点整,所以再经过65分钟,时针与分针第二次重合。

标准的时钟,每隔65分钟,时针与分针重合一次。

答案:54分钟。

钟表的时针与分针在4点多少分第一次重合?解析:此题属于追及问题,追及路程是20格,速度差是1/11.如果设分针的速度为单位“l”,那么时针的速度为“l/12”。

六年级数学多次相遇和追及问题含答案

六年级数学多次相遇和追及问题含答案

多次相遇与追及问题知识框架一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N米,以后每次都走2N 米。

2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

例题精讲【例 1】甲、乙两车同时从A 地出发,不停的往返行驶于A ,B 两地之间。

已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C 地。

问:甲车的速度是乙车的多少倍?【考点】行程问题 【难度】☆☆☆ 【题型】解答【解析】 2倍。

解:如下图所示,因为每次相遇都共行一个来回,所用时间相等,所以乙车两次相遇走的路程相等,即2AC CB =,推知23AC AB =.第一次相遇时,甲走了43AB BC AB +=,乙走了23AC AB =,所以甲车速度是乙车的2倍。

【答案】2倍【巩固】 甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。

高一物理相遇和追及问题(含详解)

高一物理相遇和追及问题(含详解)

相遇和追及问题【要点梳理】要点一、机动车的行驶安全问题:1、反应时间:人从发现情况到采取相应措施经过的时间为反应时间。

2、反应距离:在反应时间内机动车仍然以原来的速度v匀速行驶的距离。

3、刹车距离:从刹车开始,到机动车完全停下来,做匀减速运动所通过的距离。

4、停车距离与安全距离:反应距离和刹车距离之和为停车距离。

停车距离的长短由反应距离和刹车距离共同决定。

安全距离大于一定情况下的停车距离。

`要点二、追及与相遇问题的概述1、追及问题的两类情况(1)速度小者追速度大者|¥(2)速度大者追速度小者说明:①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移;②x0是开始追及以前两物体之间的距离;…③t2-t0=t0-t1;④v1是前面物体的速度,v2是后面物体的速度.,特点归类:(1)若后者能追上前者,则追上时,两者处于同一位置,后者的速度一定不小于前者的速度. (2)若后者追不上前者,则当后者的速度与前者相等时,两者相距最近. 2、 相遇问题的常见情况(1) 同向运动的两物体的相遇问题,即追及问题.(2) 相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇.解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了.(【典型例题】类型一、机动车的行驶安全问题例1、为了安全,在高速公路上行驶的汽车之间应保持必要的距离。

已知某高速公路的最高限速为v=120km/h 。

假设前方车辆突然停止运动,后面汽车的司机从眼睛发现这一情况,经过大脑反应,指挥手、脚操纵汽车刹车,到汽车真正开始减速,所经历的时间需要(即反应时间),刹车时汽车所受阻力是车重的倍,为了避免发生追尾事故,在该高速公路上行驶的汽车之间至少应保留多大的距离【答案】156m【解析】v 120km /h 33.3m /s ==匀减速过程的加速度大小为2a kmg /m 4m /s ==。

小学数学 行程问题之相遇与追及问题(一 )完整版题型训练 带答案

小学数学 行程问题之相遇与追及问题(一 )完整版题型训练 带答案

相遇与追及问题例题讲解:【例题1】一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。

3.5小时两车相遇。

甲、乙两个城市的路程是多少千米?【解析】本题是简单的相遇问题,根据相遇路程等于速度和乘以相遇时间得到甲乙两地路程为:(46+48)×3.5=94×3.5=329(千米).【巩固1】两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时行40千米。

甲、乙两车相遇时,各行了多少千米?【解析】根据相遇公式知道相遇时间是:255÷(45+40)=255÷85=3(小时),所以甲走的路程为:45×3=135(千米),乙走的路程为:40×3=120(千米).【例题2】大头儿子的家距离学校3000米,小头爸爸从家去学校接大头儿子放学,大头儿子从学校回家,他们同时出发,小头爸爸每分钟比大头儿子多走24米,50分钟后两人相遇,那么大头儿子的速度是每分钟走多少米?【解析】大头儿子和小头爸爸的速度和:3000÷50=60(米/分钟),小头爸爸的速度:(60+24)÷2=42(米/分钟),大头儿子的速度:60-42=18(米/分钟).【巩固2】聪聪和明明同时从各自的家相对出发,明明每分钟走20米,聪聪骑着脚踏车每分钟比明明快42米,经过20分钟后两人相遇,你知道聪聪家和明明家的距离吗?【解析】由题意知聪聪的速度是:20+42=60(米/分),两家的距离=明明走过的路程+聪聪走过的路程=20×20+62×20=400+1240=1640(米),聪聪【例题3】A、B两地相距90米,包子从A地到B地需要30秒,菠萝从B地到A地需要15秒,现在包子和菠萝从A、B两地同时相对而行,相遇时包子与B地的距离是多少米?【解析】包子的速度:90÷30=3(米/秒),菠萝的速度:90÷15=6(米/秒),相遇的时间:90÷(3+6)=10(秒),包子距B地的距离:90-3×10=60(米).【巩固3】甲、乙两车分别从相距360千米的A、B两城同时出发,相对而行,已知甲车到达B城需4小时,乙车到达A城需12小时,问:两车出发后多长时间相遇?【解析】要求两车的相遇时间,则必须知道它们各自的速度,甲车的速度是360÷4=90(千米/时),乙车的速度是360÷12=30(千米/时),则相遇时间是360÷(90+30)=3(小时).【例题4】甲、乙两辆汽车分别从A、B两地出发相对而行,甲车先行1小时,甲车每小时行48千米,乙车每小时行50千米,5小时相遇,求A、B两地间的距离.【解析】这题不同的是两车不“同时”.求A、B两地间的路程就是求甲、乙两车所行的路程和.这样可以充分别求出甲车、乙车所行的路程,再把两部分合起来.48×(1+5)=288(千米),50×5=250(千米),288+250=538(千米).【巩固4】甲、乙两列火车从相距770千米的两地相向而行,甲车每小时行45千米,乙车每小时行41千米,乙车先出发2小时后,甲车才出发.甲车行几小时后与乙车相遇?【解析】甲、乙两车出发时间有先有后,乙车先出发2小时,这段时间甲车没有行驶,那么乙车这2小时所行的路程不是甲、乙两车同时相对而行的路程,所以要先求出甲、乙两车同时相对而行的路程,再除以速度和,才是甲、乙两车同时相对而行的时间.乙车先行驶路程:41×2=82(千米),甲、乙两车同时相对而行路程:770-82=688(千米),甲、乙两车速度和45+41=86(千米/时),甲车行的时间:688÷86=8(小时).【例题5】甲、乙两列火车从相距144千米的两地相向而行,甲车每小时行28千米,乙车每小时行22千米,乙车先出发2小时后,甲车才出发.甲车行几小时后与乙车相遇?【解析】甲、乙两车出发时间有先有后,乙车先出发2小时,这段时间甲车没有行驶,那么乙车这2小时所行的路程不是甲、乙两车同时相对而行的路程,所以要先求出甲、乙两车同时相对而行的路程,再除以速度和,才是甲、乙两车同时相对而行的时间.乙车先行驶路程:22×2=44(千米),甲、乙两车同时相对而行路:144-44=100(千米),甲、乙两车速度和:28+22=50(千米),与乙车相遇时甲车行的时间为:100÷50=2(小时).【巩固5】妈妈从家出发到学校去接小红,妈妈每分钟走75米.妈妈走了3分钟后,小红从学校出发,小红每分钟走60米.再经过20分钟妈妈和小红相遇.从小红家到学校有多少米?【解析】妈妈先走了3分钟,就是先走了75×3=225(米).20分钟后妈妈和小红相遇,也就是说妈妈和小红共同走了20分钟,这一段的路程为:(75+60)×20=2700(米),这样妈妈先走的那一段路程,加上后来妈妈和小红走的这一段路程,就是小红家到学校的距离.即(75×3)+(75+60)×20=2925(米).【例题6】甲乙两座城市相距530千米,货车和客车从两城同时出发,相向而行.货车每小时行50千米,客车每小时行70千米.客车在行驶中因故耽误1小时,然后继续向前行驶与货车相遇.问相遇时客车、货车各行驶多少千米?【解析】因为客车在行驶中耽误1小时,而货车没有停止继续前行,也就是说,货车比客车多走1小时.如果从总路程中把货车单独行驶1小时的路程减去,然后根据余下的就是客车和货车共同走过的.再求出货车和客车每小时所走的速度和,就可以求出相遇时间.然后根据路程=速度×时间,可以分别求出客车和货车在相遇时各自行驶的路程.相遇时间:(530-50)÷(50+70)=4(小时)相遇时客车行驶的路程:70×4=280(千米)相遇时货车行驶的路程:50×(4+1)=250(千米).【巩固6】甲、乙两列火车从相距366千米的两个城市对面开来,甲列火车每小时行37千米,乙列火车每小时行36千米,甲列火车先开出2小时后,乙列火车才开出,问乙列火车行几小时后与甲列火车相遇?【解析】(366-37×2)÷(37+36)=4(小时)【例题7】甲、乙两辆汽车分别从A、B两地出发相向而行,甲车先行3小时后乙车从B地出发,乙车出发5小时后两车还相距15千米.甲车每小时行48千米,乙车每小时行50千米.求A、B两地间相距多少千米?【解析】题目中写的“还”相距15千米指的就是最简单的情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相遇及追击问题(一)之迟辟智美创作 一.填空题(共12小题) 1.五羊公共汽车公司的555路车在A,B两个总站间往返行驶,来回均为每隔x分钟发车一次.小宏在年夜街上骑自行车前行,发现从面前每隔6分钟开过来一辆555路车,而每隔3分钟则迎面开来一辆555路车.假设公共汽车与小宏骑车速度均匀,忽略停站耗费时间,则x= _________ 分钟. 2.在一条街AB上,甲由A向B步行,乙骑车由B向A行驶,乙的速度是甲的速度的3倍,此时公共汽车由始发站A开出向B行进,且每隔x分发一辆车,过了一段时间,甲发现每隔10分有一辆公共汽车追上他,而乙感到每隔5分就碰到一辆公共汽车,那么在始发站公共汽车发车的间隔时间x= _________ 分钟. 3.小王沿街匀速行走,发现每隔6分钟从面前驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固按时间发一辆车,那么发车间隔的时间是 _________ 分钟. 4.小锋骑车在环城路上匀速行驶,每隔5分钟有一辆公共汽车从对面向后开过,每隔20分钟又有一辆公共汽车从后向前开过,若公共汽车也匀速行驶,不计中途迟误时间,则公交车车站每隔 _________ 分钟开出一辆公共汽车. 5.某人在公共汽车上发现一个小偷向反方向步行,10秒钟后他下车去追小偷,如其速度比小偷快一倍,比汽车慢,则追上小偷要( _________ )秒. 6.某人沿电车路线行走,每12分钟有一辆电车从后面赶上,每4分钟有一辆电车迎面开来,若行人与电车都是匀速前进的,则电车每隔 _________ 分钟从起点开出一辆. 7.某公交公司停车场内有15辆车,从上午6时开始发车(6时整第一辆车开出),以后每隔6分钟再开出一辆.第一辆车开出3分钟后有一辆车进场,以后每隔8分钟有一辆车进场,进场的车在原有的15辆车后依次再出车.问到 _________ 点时,停车场内第一次呈现无车辆? 8.通讯员从步队末尾追赶至步队前头时用全速进行,其速度为步队的3倍,当他从步队前面返回步队末尾时每分钟减少100米.在步队前进过程中,通讯员连续三次往返执行任务,途中花费时间共1小时,其中三次往返步队末尾时间比三次追赶步队前头时间共少用12分钟,则步队的长为 _________ . 9.男女运带动各一名,在环行跑道上练习长跑,男运带动比女运带动速度快,如果他们从同一起跑点沿相反方向同时动身,那么每隔25秒相遇一次,现在他们从同一起跑点沿相同方向同时动身,男运带动经过15分钟追上女运带动,而且比女运带动多跑了16圈,女运带动跑了 _________ 圈. 10.有甲、乙两辆小汽车模型,在一个环形轨道上匀速行驶,甲的速度年夜于乙.如果它们从同一点同时动身沿相反方向行驶,那么每隔1分钟相遇一次.现在,它们从同一点同时动身,沿相同方向行驶,当甲第一次追上乙时,乙已经行驶了4圈,此时它们行驶了 _________ 分钟. 11.一路电车的起点和终点分别是甲站和乙站,每隔5分钟有一辆电车从甲站发车开往乙站,全程要走15分钟,有一个人从乙站动身沿电车路线骑车前往甲站,他动身的时候,恰好有一辆电车达到乙站,在路上他又遇到了10辆迎面开来的电车,才达到甲站,到甲站时恰好又有一辆电车从甲站开出,问他从乙站到甲站用了 _________ 分钟. 12.如图,在矩形ABCD中,AB=4cm,AD=12cm,点P从点A向点D以每秒1cm的速度运动,Q以每秒4cm的速度从点C动身,在B、C两点之间做往返运动,两点同时动身,点P达到点D为止,这段时间内线段PQ有 _________ 次与线段AB平行. 13.(巴蜀初2012级第一次月考16题)某人从甲地走往乙地,甲、乙两地之间有按时的公共汽车往返,且两地发车的时间间隔都相等.他发现每隔6分钟开过来一辆去甲地的公共汽车,每隔12分钟开过来一辆去乙地的公共汽车,则公共汽车每隔几分钟从各自的始发站发车(假设每辆公共汽车的速度相同)? 相遇及追击问题(一)谜底与评分标准 一.填空题(共12小题) 1.五羊公共汽车公司的555路车在A,B两个总站间往返行驶,来回均为每隔x分钟发车一次.小宏在年夜街上骑自行车前行,发现从面前每隔6分钟开过来一辆555路车,而每隔3分钟则迎面开来一辆555路车.假设公共汽车与小宏骑车速度均匀,忽略停站耗费时间,则x= 4 分钟. 考点:三元一次方程组的应用. 专题:行程问题. 分析:可设路车和小宏的速度为未知数,等量关系为:6×(路车的速度﹣小宏的速度)=x×路车的速度;3×(路车的速度+小宏的速度)=x×路车的速度,消去x后获得路程速度和小宏速度的关系式,代入任意一个等式可得x的值. 解答:解:设路车的速度为a,小宏的速度为b.

, 解得a=3b, 代入第2个方程得x=4, 故谜底为4. 点评:考查3元一次方程组的应用;消元是解决本题的难点;获得相遇问题和追及问题的等量关系是解决本题的关键. 2.在一条街AB上,甲由A向B步行,乙骑车由B向A行驶,乙的速度是甲的速度的3倍,此时公共汽车由始发站A开出向B行进,且每隔x分发一辆车,过了一段时间,甲发现每隔10分有一辆公共汽车追上他,而乙感到每隔5分就碰到一辆公共汽车,那么在始发站公共汽车发车的间隔时间x= 8 分钟. 考点:二元一次方程的应用. 专题:行程问题. 分析:设公共汽车的速度为V1,甲的速度为V2.因为两辆车间隔距

离相等,汽车与甲是追及问题,即甲与汽车之间距离为s=10(V1﹣

V2).汽车与乙是相遇问题,即乙与汽车之间的距离为s=5(V1+3V2).根据上面两式可获得V1=5V2.再代入①即可求得的

值.至此问题得解. 解答:解:设公共汽车的速度为V1,甲的速度为V2.

由题意得 由①﹣②得 0=5V1﹣25V2,即V1=5V2③

将③代入①得 s=10(V1﹣V1)

∴=8 故谜底为8. 点评:本题考查二元一次方程组的应用.解决本题的关键是将本题理解为追及与相遇问题,解得未知数的比例关系,即为本题的解. 3.小王沿街匀速行走,发现每隔6分钟从面前驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固按时间发一辆车,那么发车间隔的时间是 4 分钟. 考点:有理数的加减混合运算. 专题:应用题. 分析:根据路程=速度×时间,则此题中需要用到三个未知量:设车的速度是a,人的速度是b,每隔t分发一班车.然后根据追及问题和相遇问题分别获得关于a,b,t的方程,联立解方程组,利用约分的方法即可求得t. 解答:解:设车的速度是a,人的速度是b,每隔t分发一班车. 二辆车之间的距离是:at 车从面前超越是一个追及问题,人与车之间的距离也是:at 那么:at=6(a﹣b)① 车畴前面来是相遇问题,那么: at=3(a+b)② ①÷②,得:a=3b 所以:at=4a t=4 即车是每隔4分钟发一班. 点评:注意:此题中涉及了路程问题中的追及问题和相遇问题.解方程组的时候注意技巧. 4.小锋骑车在环城路上匀速行驶,每隔5分钟有一辆公共汽车从对面向后开过,每隔20分钟又有一辆公共汽车从后向前开过,若公共汽车也匀速行驶,不计中途迟误时间,则公交车车站每隔 8 分钟开出一辆公共汽车. 考点:三元一次方程组的应用. 专题:行程问题. 分析:设相邻汽车间距离为L,汽车速为V1,自行车为V2,间隔时

间为t.根据题意列出三元一次方程组、并解方程组即可. 解答:解:设相邻汽车间距离为L,汽车速为V1,自行车为V2,间

隔时间为t. 则根据题意,得 , 由,得 V1=V2,④ 将①、④代入②,解得 t=8. 故谜底是:8. 点评:本题考查了三元一次方程组的应用.解答此题的关键是列出方程组,用代入消元法或加减消元法求出方程组的解. 5.某人在公共汽车上发现一个小偷向反方向步行,10秒钟后他下车去追小偷,如其速度比小偷快一倍,比汽车慢,则追上小偷要( 110 )秒. 考点:一元一次方程的应用. 专题:行程问题. 分析:可以设车的速度为x,则某人的速度为x,小偷的速度为x,设t秒可以追上小偷,根据汽车10秒行驶的路程+(10+t)秒小偷的路程=某人的行程列出方程求解即可. 解答:解:设车的速度为x米/秒,则某人的速度为x米/秒,小偷的速度为x米/秒,设t秒可以追上小偷,根据题意得: 10x+x×(t+10)=xt, 解得:t=110(秒). 故谜底填:110. 点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解. 6.某人沿电车路线行走,每12分钟有一辆电车从后面赶上,每4分钟有一辆电车迎面开来,若行人与电车都是匀速前进的,则电车每隔 6 分钟从起点开出一辆. 考点:二元一次方程组的应用. 专题:方程思想. 分析:每12分钟有一辆电车从后面赶上属于追及问题,等量关系为:电车12分走的路程=行人12分走的路程+两辆电车相间隔的路程;每4分钟有一辆电车迎面开来,是相遇问题,等量关系为:电车4分走的路程+行人4分走的路程=两辆电车相间隔的路程,两辆电车间隔的路程为两辆电车相隔的时间×电车的速度. 解答:解:设电车的每分走x,行人每分走y,电车每隔a分钟从起点开出一辆. 则 两式相减得:x=2y 把x=2y代入方程组任何一个式子都可以获得a=6 点评:本题考查行程问题中的相遇问题和追及问题,那么就需要弄清相应的模式加以分析. 7.某公交公司停车场内有15辆车,从上午6时开始发车(6时整第一辆车开出),以后每隔6分钟再开出一辆.第一辆车开出3分钟后有一辆车进场,以后每隔8分钟有一辆车进场,进场的车在原有的

相关文档
最新文档