人教B版(文科数学)离散型随机变量的分布列及期望(超几何分布类)名师精编单元测试
第07讲 离散型随机变量及其分布列和数字特征 (精练)(含答案解析)

第07讲离散型随机变量及其分布列和数字特征(精练)第07讲离散型随机变量及其分布列和数字特征(精练)A 夯实基础B 能力提升C 综合素养A 夯实基础一、单选题(2022·江苏·常州市第一中学高二期中)1.下表是离散型随机变量X 的概率分布,则常数a 的值是()X 3456P2a 16a +1216A .16B .112C .19D .12(2022·内蒙古·阿拉善盟第一中学高二期末(理))2.已知随机变量X 的分布列为()24kP X k ==,2,4,5,6,7k =,则()15P X <≤等于()A .1124B .712C .23D .1324(2022·江苏淮安·高二期末)3.已知随机变量X 满足()224E X -=,()224D X -=,下列说法正确的是()A .()()1,1E X D X =-=-B .()()1,1E X D X ==C .()()1,4E X D X =-=D .()()1,1E X D X =-=(2022·辽宁·东北育才学校高二阶段练习)4.某实验测试的规则如下:每位学生最多可做3次实验,一旦实验成功,则停止实验,否则做完3次为止.设某学生每次实验成功的概率为()01p p <<,实验次数为随机变量X ,若X 的数学期望() 1.39E X >,则p 的取值范围是()A .()0,0.6B .()0,0.7C .()0.6,1D .()0.7,1(2022·安徽滁州·高二期末)5.已知随机变量X 的分布列为:X12Pab则随机变量X 的方差()D X 的最大值为()A .14B .12C .1D .2(2022·陕西·西北农林科技大学附中高二期末(理))6.某次国际象棋比赛规定,胜一局得3分,平一局得1分,负一局得0分,某参赛队员比赛一局胜的概率为a ,平局的概率为b ,负的概率为c ([,,0,1)a b c ∈),已知他比赛一局得分的数学期望为1,则ab 的最大值为()A .13B .112C .12D .16(2022·山东东营·高二期末)7.设01m <<,随机变量的分布列为:ξ0m1P3a 13213a -则当m 在()0,1上增大时()A .()D ξ单调递增,最大值为12B .()D ξ先增后减,最大值为13C .()D ξ单调递减,最小值为29D .()D ξ先减后增,最小值为16(2022·全国·高二课时练习)8.设0a >,若随机变量ζ的分布列如下表:ζ-102Pa2a3a则下列方差中最大的是()A .()D ζB .()D ζC .()21D ζ-D .()21D ζ-二、多选题(2022·全国·高二课时练习)9.设离散型随机变量X 的概率分布列为X1-0123P110151101525则下列各式正确的是()A .()1.50P X ==B .()11P X >-=C .()2245P X <<=D .()3010P X <=(2022·全国·高二课时练习)10.2022年冬奥会在北京举办,为了弘扬奥林匹克精神,某市多所中小学开展了冬奥会项目科普活动.为了调查学生对冰壶这个项目的了解情况,在该市中小学中随机抽取了10所学校,10所学校中了解这个项目的人数如图所示:若从这10所学校中随机选取2所学校进行这个项目的科普活动,记X 为被选中的学校中了解冰壶的人数在30以上的学校所数,则()A .X 的可能取值为0,1,2,3B .()103P X ==C .()35E X =D .()3275D X =三、填空题(2022·安徽·歙县教研室高二期末)11.随机变量ξ的分布列如下表,则()5()D X E X +=___________.X012p0.40.2a(2022·广东佛山·二模)12.冬季两项起源于挪威,与冬季狩猎活动有关,是一种滑雪加射击的比赛,北京冬奥会上,冬季两项比赛场地设在张家口赛区的国家冬季两项中心,其中男女混合46⨯公里接力赛项目非常具有观赏性,最终挪威队惊险逆转夺冠,中国队获得第15名.该项目每队由4人组成(2男2女),每人随身携带枪支和16发子弹(其中6发是备用弹),如果备用弹用完后仍有未打中的残存目标,就按残存目标个数加罚滑行圈数(每圈150米),以接力队的最后一名队员到达终点的时间为该队接力的总成绩.根据赛前成绩统计分析某参赛队在一次比赛中,射击结束后,残存目标个数X的分布列如下:X0123456>6P0.150.10.250.20.150.10.050则在一次比赛中,该队射击环节的加罚距离平均为___________米.四、解答题(2022·山东·青岛二中高二阶段练习)13.某校为缓解学生压力,举办了一场趣味运动会,其中有一个项目为篮球定点投篮,比赛分为初赛和复赛.初赛规则为:每人最多投3次,每次投篮的结果相互独立.在A处每投进一球得3分,在B处每投进一球得2分,否则得0分.将学生得分逐次累加并用X表示,如果X的值不低于3分就判定为通过初赛,立即停止投篮,否则应继续投篮,直到投完三次为止.现甲先在A处投一球,以后都在B处投,已知甲同学在A处投篮的命中率为14,在B处投篮的命中率为45,求他初赛结束后所得总分X的分布列.(2022·福建省福州第二中学高二期末)14.甲、乙两名同学与同一台智能机器人进行象棋比赛,计分规则如下:在一轮比赛中,如果甲赢而乙输,则甲得1分;如果甲输而乙赢,则甲得1 分;如果甲和乙同时赢或同时输,则甲得0分.设甲赢机器人的概率为0.6,乙赢机器人的概率为0.5.求:(1)在一轮比赛中,甲的得分X的分布列;(2)在两轮比赛中,甲的得分Y的分布列及期望.B能力提升(2022·重庆巴蜀中学高三阶段练习)15.某大型名胜度假区集旅游景点、酒店餐饮、休闲娱乐于一体,极大带动了当地的经济发展,为了完善度假区的服务工作,进一步提升景区品质,现从某天的游客中随机抽取了500人,按他们的消费金额(元)进行统计,得到如图所示的频率分布直方图.(1)求直方图中a的值;(2)估计该度假区2000名㵀客中,消费金额低于1000元的人数;(3)为了刺激消费,回馈游客,该度假区制定了两种抽奖赠送代金券(单位:元)的方案(如下表),方案A代金券金额50100概率1323方案B代金券金额0100概率1212抽奖规则如下:①消费金额低于1000元的游客按方案A抽奖一次;②消费金额不低于1000元的游客按方案B抽奖两次.记X为所有游客中的任意一人抽奖时获赠的代金券金额,用样本的频率代替概率,求X的分布列和数学期望()E X.(2022·甘肃酒泉·高二期末(理))16.2022年3月,全国大部分省份出现了新冠疫情,对于出现确诊病例的社区,受到了全社会的关注.为了把被感染的人筛查出来,防疫部门决定对全体社区人员筛查核酸检测,为了减少检验的工作量,我们把受检验者分组,假设每组有k个人,把这k个人的血液混合在一起检验,若检验结果为阴性,这k个人的血液全为阴性,因而这k个人只要检验一次就够了;如果为阳性,为了明确这k个人中究竟是哪几个人为阳性,就要对这k个人再逐个进行检验.假设在接受检验的人群中,随机抽一人核酸检测呈阳性概率为0.003P =,每个人的检验结果是阳性还是阴性是相互独立的.核酸检测通常有两种分组方式可以选择:方案一:10人一组;方案二:8人一组.(1)分别求出采用方案一和方案二中每组的化验次数的分布列和数学期望;(2)若该社区约有2000人,请你为防疫部门选择一种方案,并说明理由.(参考数据:80.9970.976=,100.9970.970=)(参考数据:80.9970.976=,100.9970.970=)C 综合素养(2022·江苏·常熟市尚湖高级中学高二期中)17.第24届冬季奥林匹克运动会,即2022年北京冬奥会,于2022年2月4日星期五开幕,2月20日星期日闭幕,北京冬季奥运会设7个大项,15个分项,109个小项.北京赛区承办所有的冰上项目;延庆赛区承办雪车、雪橇及高山滑雪项目;张家口赛区的崇礼区承办除雪车、雪橇及高山滑雪之外的所有雪上项目.某国运动队拟派出甲、乙、丙三人去参加自由式滑雪.比赛分为初赛和决赛,其中初赛有两轮,只有两轮都获胜才能进入决赛.已知甲在每轮比赛中获胜的概率均为34;乙在第一轮和第二轮比赛中获胜的概率分别为45和58,丙在第一轮和第二轮获胜的概率分别是p 和32p -,其中304p <<.(1)甲、乙、丙三人中,谁进入决赛的可能性最大;(2)若甲、乙、三人中恰有两人进入决赛的概率为2972,求p 的值,在此基础上,设进入决赛的人数为ξ,求ξ的分布列及数学期望.参考答案:1.C【分析】由随机变量分布列中概率之和为1列出方程即可求出a .【详解】由11112626a a ++++=,解得19a =.故选:C.2.A【分析】根据分布列的概率求解方式即可得出答案.【详解】解:由题意得:()()()()24511152452424P X P X P X P X ++<≤==+=+===.故选:A 3.D【分析】根据方差和期望的性质即可求解.【详解】根据方差和期望的性质可得:()()()222241E X E X E X -=-+=⇒=-,()()()22441D X D X D X -==⇒=,故选:D 4.B【分析】先得到X 的所有可能取值为1,2,3,再求出相应概率,计算得到X 的数学期望,得到不等式后求解即可.【详解】由题意得,X 的所有可能取值为1,2,3,()()()()()()221,3111,1P p X p P P X p p p X p p ====---==-=-,所以()()()221213133E X p p p p p p =⨯+⨯-+⨯-=-+,令()233 1.39E X p p =-+>,解得0.7p <或 2.3p >,又因为01p <<,所以00.7p <<,即p 的取值范围是()0,0.7.故选:B 5.A【分析】由随机变量X 的分布列,求出()D X 的值,并根据二次函数的性质求出最大值.【详解】解:由题意可得1a b +=,()21E X a b b =+=+,则()()()22211]21]D X b a b b b b ⎡⎡=-+⨯+-+⨯=-+⎣⎣,当12b =,()D X 有最大值为14.故选:A .6.B【分析】根据期望公式可得31a b +=,利用基本不等式求乘积的最大值即可.【详解】解:由题意,比赛一局得分的数学期望为3101a b c ⨯+⨯+⨯=,故31a b +=,又[,,0,1)a b c ∈,故3a b +≥,解得112ab ≤,当且仅当3a b =,即11,62a b ==时等号成立.故选:B.7.D【分析】根据方差公式,结合二次函数性质可得.【详解】由题知1211333a a -++=,解得1a =,所以11()0333m m E ξ+=++=所以()222111111()()(1)333333m m m D m ξ+++=⨯+-⨯+-⨯222213(1)[()]9924m m m =-+=-+由二次函数性质可知,()D ξ在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,12⎛⎫⎪⎝⎭上单调递增,所以当12m =时,()D ξ有最小值16.故选:D 8.C【分析】利用期望和方差的计算公式及其方差的性质分别求解即可.【详解】由题意,得231a a a ++=,则16a =,所以1115()1026326E ζ=-⨯+⨯+⨯=,()11171026326E ζ=⨯+⨯+⨯=,所以22215151553()10266362636D ζ⎛⎫⎛⎫⎛⎫=⨯--+⨯-+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()2221717172910266362636D ζ⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以()5353214()4369D D ζζ-==⨯=,()()292149D D ζζ-==,即()21D ζ-最大,故选:C.9.AC【分析】由分布列中的概率逐一判断即可.【详解】由概率分布列可得()1.50P X ==,故A 正确;()19111010P X >-=-=,故B 错误;()()22435P X P X <<===,故C 正确;()()110P X P X <0==-1=,故D 错误.故选:AC 10.BD【分析】由题知X 的可能取值为0,1,2,且服从超几何分布,进而求分布列,计算期望方差即可判断.【详解】解:根据题意,X 的可能取值为0,1,2,其中了解冰壶的人数在30以上的学校有4所,了解冰壶的人数在30以下的学校有6所,所以,()0246210C C 10C 3P X ===,()1146210C C 2481C 4515P X ====,()2046210C C 622C 4515P X ====所以,X 的概率分布列为:X12P13815215所以,()8412415155E X +===,()222414842320125351551575D X ⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以,BD 选项正确,AC 选项错误.故选:BD .11.20【分析】由概率和为1求出a ,先求出()E X 和()D X ,进而求出()51D X +.【详解】由0.40.21,0.4a a ++==得,所以()10.220.41E X =⨯+⨯=,()210.240.4 1.8E X =⨯+⨯=,()22()()(())0.8,5125()250.820D XE X E X D X D X =-=+==⨯=故答案为:2012.390【分析】先求出()E X ,再用2.6150⨯,即可求出答案.【详解】()0.10.50.60.60.50.3 2.6E X =+++++=,则2.6150390⨯=故答案为:390.13.分布列见解析.【分析】判断随机变量的可能取值,根据题意求出分布列即可.【详解】设甲同学在A 处投中的事件为A ,投不中的事件为A ,在B 处投中为事件B ,投不中为事件B ,由已知得()14P A =,()45P B =,则()34P A =,()15P B =,X 的可能取值为:0,2,3,4.所以()31130455100P X ==⨯⨯=,()3413146245545525P X ==⨯⨯+⨯⨯=,()134P X ==,()34412445525P X ==⨯⨯=,所以X 的分布列为:X234P310062514122514.(1)分布列见解析(2)分布列见解析,()0.2E Y =【分析】(1)依题意可得X 的可能取值为1-,0,1,利用相互独立事件的概率公式求出所对应的概率,即可得到分布列;(2)依题意可得Y 的可能取值为2-,1-,0,1,2,利用相互独立事件的概率公式求出所对应的概率,即可得到分布列及数学期望;【详解】(1)解:依题意可得X 的可能取值为1-,0,1,所以(1)(10.6)0.50.2P X =-=-⨯=,(0)0.60.5(10.6)(10.5)0.5P X ==⨯+-⨯-=,(1)0.6(10.5)0.3P X ==⨯-=,所以X 的分布列为X1-01P0.20.50.3(2)解:依题意可得Y 的可能取值为2-,1-,0,1,2,所以2(2)(1)(1)0.20.04P Y P X P X =-==-⨯=-==,(1)(1)(0)220.20.50.2P Y P X P X =-==-⨯=⨯=⨯⨯=,2(0)(1)(1)2(0)(0)20.30.20.50.37P Y P X P X P X P X ===-⨯=⨯+=⨯==⨯⨯+=,(1)(0)(1)20.30.520.3P Y P X P X ===⨯=⨯=⨯⨯=,2(2)(1)(1)0.30.09P Y P X P X ===⨯===,所以Y 的分布列为Y2-1-012P0.040.20.370.30.09所以()20.0410.200.3710.320.090.2E Y =-⨯-⨯+⨯+⨯+⨯=.15.(1)0.00075a =(2)1200人(3)分布列答案见解析,()90E X =【分析】(1)利用频率分布直方图中所有矩形的面积之和为1可求得a 的值;(2)利用频率分布直方图计算出消费金额低于1000元的频率,再乘以2000可得结果;(3)分析可知随机变量X 的可能取值为0、50、100、200,计算出X 在不同取值下的概率,可得出随机变量X 的分布列,进一步可求得()E X 的值.【详解】(1)解:由题意可得()2000.0002520.00050.00120.001251a ⨯⨯++⨯++=,解得0.00075a =.(2)解:由频率分布直方图可知,消费金额低于1000元的频率为()2000.000250.00050.0010.001250.3⨯+++=,于是估计该度假区2000名游客中消费金额低于1000元的人数为20000.61200⨯=人.(3)解:由(2)可知,对于该度假区的任意一位游客,消费金额低于1000元的概率为35,不低于1000元的概率为25,获赠的代金券金额X 的可能取值为0、50、100、200,则()221105210P X ⎛⎫==⨯= ⎪⎝⎭,()31150535P X ==⨯=,()21232213100C =53525P X ⎛⎫==⨯+⋅ ⎪⎝⎭,()22112005210P X ⎛⎫=== ⎪⎝⎭,所以,随机变量X 的分布列如下表所示:X50100200P1101535110所以,()113105010020090105510E X =⨯+⨯+⨯+⨯=.16.(1)方案一:分布列见解析,数学期望为1.300;方案二:分布列见解析,数学期望为1.192;(2)选择方案一,理由见解析【分析】(1)方案一中每组的化验次数为1、11,则概率为100.997、1010.997-;方案二中每组的化验次数为1、9,则概率为80.997、810.997-.根据定义列分布列,求期望即可.(2)先求对应方案的组数,用“总化验次数=组数⨯期望”评估即可(1)设方案一中每组的化验次数为ξ,则ξ的取值为1,11,∴10(1)0.9970.970P ξ===,10(11)10.9970.030P ξ==-=,∴ξ的分布列为:ξ111P0.9700.030()10.970110.030 1.300E ξ=⨯+⨯=.设方案二中每组的化验次数为η,则η的取值为1,9,8(1)0.9970.976P η===,8(9)10.9970.024P η==-=,∴η的分布列为:η19P0.9760.024∴()10.97690.024 1.192E η=⨯+⨯=.(2)根据方案一,该社区化验分组数为200,方案一的化验总次数的期望值为:200()200 1.3260E X =⨯=次.根据方案二,该社区化验分组数为250,方案二的化验总次数的期望为250()250 1.192298E η=⨯=次.∵260298<,∴方案一工作量更少.故选择方案一.17.(1)甲;(2)23p =,ξ的分布列见解析,()233144E ξ=.【分析】(1)分别求出甲、乙、丙三人初赛的两轮均获胜的概率,然后比较概率的大小即可;(2)利用相互独立事件的概率的求法分别求出甲和乙进入决赛的概率、乙和丙进入决赛的概率、甲和丙进入决赛的概率,即可通过甲、乙、三人中恰有两人进入决赛的概率为2972,列方程求解;先确定进入决赛的人数ξ的取值,依次求出每个ξ值所对应的概率,列出分布列,进而利用数学期望公式求解.(1)甲在初赛的两轮中均获胜的概率为:13394416P =⨯=,乙在初赛的两轮中均获胜的概率为:2451582P =⨯=,丙在初赛的两轮中均获胜的概率为:233322P p p p p ⎛⎫=⨯-=-+ ⎪⎝⎭,3043012p p ⎧<<⎪⎪⎨⎪<-<⎪⎩,1324p ∴<<,23139941616P p P ⎛⎫∴=--+<= ⎪⎝⎭,12P P >,∴甲进入决赛的可能性最大;(2)由(1)知,1916P =,212P =,2332P p p =-+,若甲、乙、三人中恰有两人进入决赛,则甲和乙、甲和丙、乙和丙进入决赛,()()()1231231232911172P P P P P P P P P P ∴=⨯⨯-+⨯-⨯+-⨯⨯=,2229139139132911116221622162272p p p p p p ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴⨯⨯--++⨯-⨯-++-⨯⨯-+= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,整理得21827100p p -+=,解得23p =或56p =,又1324p << ,∴23p =;则丙在初赛的两轮中均获胜的概率为2323253239P ⎛⎫=-+⨯= ⎪⎝⎭,设进入决赛的人数为ξ,则ξ可能的取值为0,1,2,3,()91570111162972P ξ⎛⎫⎛⎫⎛⎫∴==-⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()91591591511111111116291629162932P ξ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⨯-⨯-+-⨯⨯-+-⨯-⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,()29272P ξ==,()91553162932P ξ==⨯⨯=,∴ξ的分布列如下:ξ123P77211322972532()711295233012372327232144E ξ∴=⨯+⨯+⨯+⨯=.。
【人教B版高中数学选择性必修第二册】二项分布与超几何分布(2)-课件

− )时取0,否则取减乙类物品件数之差(即
= − − ).
课堂小结
而且
−
C C−
= =
, = , + 1, … , .
C
这里的称为服从参数为, , 的超几何分布,记
作~(, , ).
功”的概率为,记 = 1 − ,且次独立重复试
验中出现“成功”的次数为,则的取值范围是
{0,1,2, … , , … , },而且
= = C − , = 0,1, … , ,
复习旧知
因此的分布列如下表所示.
0
1
…
…
0 0 1 1 −1
(即 = − − ).
而且
= =
−
C C−
C
, = , + 1, … , .
这里的称为服从参数为, , 的超几何分布,记
作~ , , .
例如,尝试与发现中(10名同学,6男,4女,
随机抽取3人, 为女生人数) = 10, = 4,
5
0
4
×
5
3
64
=
,
125
1
1
= 1 = C3 ×
5
1
4
×
5
2
48
=
,
125
1
×
5
2
4
×
5
1
12
=
,
125
1
×
5
3
4
×
5
0
1
=
.
125
2017-2018学年高中数学人教B版选修2-3教学案:2.3.1 离散型随机变量的数学期望 Word版含答案

2.3随机变量的数字特征2.3.1 离散型随机变量的数学期望[对应学生用书P34]设有12个西瓜,其中重5 kg 的有4个,重6 kg 的有3个,重7 kg 的有5个.问题1:任取一个西瓜,用X 表示这个西瓜的重量,试想X 可以取哪些值? 提示:X =5,6,7.问题2:X 取上述值时对应的概率分别是多少? 提示:13,14,512.问题3:试想每个西瓜的平均重量该如何求? 提示:5×4+6×3+7×512=5×13+6×14+7×512.1.离散型随机变量的均值或数学期望设一个离散型随机变量X 所有可能取的值是x 1,x 2,…,x n ,这些值对应的概率是p 1,p 2,…,p n 则E (X )=x 1p 1+x 2p 2+…+x n p n 叫做这个离散型随机变量X 的均值或数学期望(简称期望),它刻画了这个离散型随机变量的平均取值水平.2.超几何分布与二项分布的均值若离散型随机变量X ~B (n ,p ),则E (X )=np ;若离散型随机变量X 服从参数为N ,M ,n 的超几何分布,则E (X )=nMN.1.对离散型随机变量均值的理解:(1)离散型随机变量的均值E (X )是一个数值,是随机变量X 本身固有的一个数字特征,它不具有随机性,反映的是随机变量取值的平均水平.(2)随机变量的分布相同,则它们的均值一定相同;有相同均值的两个分布未必相同;两个不同的分布也可以有相同的均值.2.离散型随机变量的均值和样本均值之间的区别随机变量的均值是一个常数,它不依赖于样本的抽取,而样本平均数是一个随机变量,它随样本的不同而变化.[对应学生用书P34][例1] 一节电池检验,直到取到好电池为止,求抽取次数X 的分布列及期望.[思路点拨] 明确X 的取值,并计算出相应的概率,列出分布列后再计算期望. [精解详析] X 可取的值为1,2,3, 则P (X =1)=35,P (X =2)=25×34=310,P (X =3)=25×14×1=110.抽取次数X 的分布列为E (X )=1×35+2×310+3×110=1.5.[一点通]求离散型随机变量的均值的步骤:(1)根据随机变量X 的意义,写出X 可能取得的全部值; (2)求X 取每个值的概率; (3)写出X 的分布列; (4)由期望的定义求出E (X ).1.从1,2,3,4,5这5个数字中任取不同的两个,则这两个数乘积的数学期望是________. 解析:从1,2,3,4,5中任取不同的两个数,其乘积X 的值为2,3,4,5,6,8,10,12,15,20,取每个值的概率都是110,∴E (X )=110×(2+3+4+5+6+8+10+12+15+20)=8.5.答案:8.52.(江西高考)小波以游戏方式决定是参加学校合唱团还是参加学校排球队.游戏规则为:以O 为起点,再从A 1,A 2,A 3,A 4,A 5,A 6,A 7,A 8(如图)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X .若X =0就参加学校合唱团,否则就参加学校排球队.(1)求小波参加学校合唱团的概率; (2)求X 的分布列和数学期望.解:(1)从8个点中任取两点为向量终点的不同取法共有C 28=28种,X =0时,两向量夹角为直角共有8种情形,所以小波参加学校合唱团的概率为P (X =0)=828=27.(2)两向量数量积X 的所有可能取值为-2,-1,0,1,X =-2时,有2种情形;X =1时,有8种情形;X =-1时,有10种情形.所以X 的分布列为:E (X )=(-2)×114+(-1)×514+0×27+1×27=-314.[例2] A 和系统B 在任意时刻发生故障的概率分别为110和p .(1)若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;(2)设系统A 在3次相互独立的检测中不发生故障的次数为随机变量X ,求X 的概率分布列及数学期望E (X ).[思路点拨] (1)利用对立事件发生的概率去求;(2)X 服从二项分布,列出X 的值并求其概率,列出概率分布列,并求其数学期望. [精解详析] (1)设“至少有一个系统不发生故障”为事件C , 那么P (C )=1-P (C )=1-110·p =4950.解得p =15.(2)由题意,随机变量X 的可能取值为0,1,2,3. 故P (X =0)=C 03⎝⎛⎭⎫1103=11 000, P (X =1)=C 13⎝⎛⎭⎫1102×⎝⎛⎭⎫1-110=271 000, P (X =2)=C 23110×⎝⎛⎭⎫1-1102=2431 000, P (X =3)=C 33⎝⎛⎭⎫1-1103=7291 000. 所以随机变量X 的概率分布列为故随机变量X 的数学期望:E (X )=0×11 000+1×271 000+2×2431 000+3×7291 000=2710.[一点通]1.若题中离散型随机变量符合两点分布、二项分布、超几何分布,可直接代入公式求得期望.2.常见的三种分布的均值 设p 为一次试验中成功的概率,则 (1)两点分布E (X )=p ; (2)二项分布E (X )=np ;(3)超几何分布,即X ~H (n ,M ,N ),则E (X )=nMN.3.有10件产品,其中3件是次品,从中任取2件,用X 表示取到次品的个数,则E (X )等于( )A.35 B.815C.1415D .1解析:法一:P (X =0)=C 27C 210=715,P (X =1)=C 17C 13C 210=715,P (X =2)=C 23C 210=115.∴E (X )=1×715+2×115=35.法二:由题意知X 服从N =10,M =3,n =2的超几何分布,则E (X )=nM N =35.答案:A4.若将例1中的无放回改为有放回,并去掉条件“直到取到好电池为止”,求检验5次取到好电池次数X 的数学期望.解:每次检验取到好电池的概率均为35,故X ~B (5,35),则E (X )=5×35=3.5.某运动员投篮命中率为p =0.6. (1)求投篮1次时命中次数X 的数学期望; (2)求重复5次投篮时,命中次数Y 的数学期望. 解:(1)投篮1次,命中次数X 的分布列如下表:则E (X )=p =0.6.(2)由题意,重复5次投篮,命中的次数Y 服从二项分布,即Y ~B (5,0.6).则E (Y )=np =5×0.6=3.[例车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下:(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率;(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的分布列;(3)该厂预计今后这两种品牌轿车的销量相当,由于资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.[思路点拨]对(1)、(2)根据表中的数据利用古典概型概率公式求概率和分布列.对(3)分别求出X1、X2的期望,比较大小作出判断.[精解详析](1)设“甲品牌轿车首次出现故障发生在保修期内”为事件A,则P(A)=2+3 50=110.(2分)(2)依题意得,X1的分布列为(4分) X2的分布列为(6分) (3)由(2)得,E(X1)=1×125+2×350+3×910=14350=2.86(万元),E(X2)=1.8×110+2.9×910=2.79(万元).(8分)因为E(X1)>E(X2),所以应生产甲品牌轿车.(12分)[一点通]解答此类题目时,首先应把实际问题概率模型化,然后利用有关概率的知识去分析相应各事件可能性的大小,并列出分布列,最后利用公式求出相应的数学期望,并根据期望的大小作出判断.6.某游戏射击场规定:①每次游戏射击5发子弹;②5发全部命中奖励40元,命中4发不奖励,也不必付款,命中3发或3发以下,应付款2元.现有一游客,其命中率为0.5.(1)求该游客在一次游戏中5发全部命中的概率;(2)求该游客在一次游戏中获得奖金的均值.解:(1)设5发子弹命中X (X =0,1,2,3,4,5)发,则由题意有P (X =5)=C 550.55=132. (2)X 的分布列为设游客在一次游戏中获得奖金为Y 元, 于是Y 的分布列为故该游客在一次游戏中获得奖金的均值为 E (Y )=(-2)×2632+0×532+40×132=-0.375(元).7.两名战士在一次射击比赛中,战士甲得1分、2分、3分的概率分别为0.4、0.1、0.5;战士乙得1分、2分、3分的概率分别为0.1、0.6、0.3,那么两名战士获胜希望较大的是谁?解:设这次射击比赛战士甲得X 1分,战士乙得X 2分,则分布列分别如下:根据均值公式,得E (X 1)=1×0.4+2×0.1+3×0.5=2.1; E (X 2)=1×0.1+2×0.6+3×0.3=2.2. E (X 2)>E (X 1),故这次射击比赛战士乙得分的均值较大,所以乙获胜希望大.1.随机变量的期望反映的是离散型随机变量取值的平均水平.在实际问题的决策中,往往把期望最大的方案作为最佳方案进行选择.2.二项分布的数学期望是求期望的一种常见形式,在理解的基础上应熟练记住.对于二项分布的解答,如果采用E (X )=np ,会大大减少运算量.[对应课时跟踪训练(十五)]1.篮球运动员在比赛中每次罚球命中得1分,罚不中得0分.已知他命中的概率为0.8,则罚球一次得分X 的期望是( )A .0.2B .0.8C .1D .0解析:因为P (X =1)=0.8,P (X =0)=0.2, 所以E (X )=1×0.8+0×0.2=0.8. 答案:B2.已知X ~B ⎝⎛⎭⎫n ,12,Y ~B ⎝⎛⎭⎫n ,13,且E (X )=15,则E (Y )=( ) A .15 B .20 C .5D .10解析:因为X ~B ⎝⎛⎭⎫n ,12,所以E (X )=n2,又E (X )=15,则n =30.由于Y ~B ⎝⎛⎭⎫n ,13,可得Y ~B ⎝⎛⎭⎫30,13,故E (Y )=30×13=10. 答案:D3.现有10张奖券,8张2元的、2张5元的,某人从中随机抽取3张,则此人得奖金额的数学期望是( )A .6B .7.8C .9D .12解析:设此人的得奖金额为X ,则X 的所有可能取值为12,9,6.P (X =12)=C 18C 22C 310=115,P (X=9)=C 28C 12C 310=715,P (X =6)=C 38C 310=715,故E (X )=7.8.答案:B4.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目X 的期望为( )A .2.44B .3.376C .2.376D .2.4解析:X 的可能取值为3,2,1,0,P (X =3)=0.6;P (X =2)=0.4×0.6=0.24;P (X =1)=0.42×0.6=0.096;P (X =0)=0.43=0.064.所以E (X )=3×0.6+2×0.24+1×0.096=2.376.答案:C5.设随机变量X 等可能地取1,2,3,…,n ,若P (X <4)=0.3,则E (X )等于________. 解析:根据题意,X 取1,2,3,…,n 的概率都是1n ,则P (X <4)=3n =0.3,解得n =10,则E (X )=1×110+2×110+…+10×110=5.5.答案:5.56.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数,若P (X =0)=112,则随机变量X 的数学期望E (X )=________.解析:因为P (X =0)=112=(1-p )2×13,所以p =12.随机变量X 的可能值为0,1,2,3,因此P (X =0)=112,P (X =1)=23×(12)2+23×(12)2=13,P (X =2)=23×(12)2×2+13×(12)2=512,P (X =3)=23×(12)2=16,所以E (X )=1×13+2×512+3×16=53.答案:537.(浙江高考)已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出此3球所得分数之和.(1)求X 的分布列; (2)求X 的数学期望E (X ). 解:(1)由题意得X 取3,4,5,6,且P (X =3)=C 35C 39=542,P (X =4)=C 14·C 25C 39=1021,P (X =5)=C 24·C 15C 39=514,P (X =6)=C 34C 39=121.所以X 的分布列为(2)由(1)知E (X )=3·P (X =3)+4·P (X =4)+5·P (X =5)+6·P (X =6)=133. 8.小明家住C 区,他的学校在D 区,从家骑自行车到学校的路有L 1,L 2两条路线(如图),L 1路线上有A 1,A 2,A 3三个路口,各路口遇到红灯的概率均为23;L 2路线上有B 1,B 2两个路口,各路口遇到红灯的概率依次为34,35.(1)若走L 1路线,求至少遇到1次红灯的概率; (2)若走L 2路线,求遇到红灯次数X 的数学期望;(3)按照“平均遇到红灯次数最少”的要求,请你帮助小明从上述两条路线中选择一条最好的上学路线,并说明理由.解:(1)法一:设“走L 1路线至少遇到一次红灯”为事件A , 则P (A )=C 13×23×(13)2+C 23×(23)2×13+C 33×(23)3×(13)0=2627,所以走L 1路线,至少遇到一次红灯的概率为2627.法二:设“走L 1路线没有遇到一次红灯”为事件A ,则“走L 1路线至少遇到一次红灯”为事件A -,故P (A )=(1-23)(1-23)(1-23)=13×13×13=127,11 所以P (A -)=1-P (A )=1-127=2627, 所以走L 1路线,至少遇到一次红灯的概率为2627. (2)依题意,X 的可能取值为0,1,2.P (X =0)=(1-34)×(1-35)=110, P (X =1)=34×(1-35)+(1-34)×35=920, P (X =2)=34×35=920. 随机变量X 的分布列为所以E (X )=110×0+920×1+920×2=2720. (3)设选择L 1路线遇到红灯次数为Y ,随机变量Y 服从二项分布,Y ~B (3,23),所以E (Y )=3×23=2>E (X ),所以应选择L 2路线.。
高中数学必修2-3第二章2.1 2.1.2离散型随机变量的分布列

2.1.2 离散型随机变量的分布列1.问题导航(1)离散型随机变量的分布列的定义是什么?两点分布和超几何分布的定义是什么? (2)离散型随机变量分布列的性质有什么作用?两点分布与超几何分布的联系和区别是什么?2.例题导读(1)例1是求两点分布列,请试做教材P 49练习1题.(2)例2、例3是求超几何分布,请试做教材P 49练习3、4题.1.离散型随机变量的分布列(1)一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n ,以表格的形式表示如下:这个表格称为离散型随机变量X 的________概率分布列,简称为X 的________分布列. (2)离散型随机变量的分布列的性质: ①________p i ≥0,i =1,2,…,n ; ② i =1np i =1.2.两个特殊分布 (1)两点分布若随机变量X p =P (X =1)为成功概率.(2)超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -k N -M C n N,k =0,1,2,…,m ,即其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N .如果随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布.1.判断(对的打“√”,错的打“×”)(1)在离散型随机变量分布列中每一个可能值对应的概率可以为任意的实数.()(2)在离散型随机变量分布列中,在某一范围内取值的概率等于它取这个范围内各值的概率之积.()(3)在离散型随机变量分布列中,所有概率之和为1.()答案:(1)×(2)×(3)√2.下列表中能成为随机变量ξ的分布列的是()A.B.C.D.答案:C3A.0.28 B.0.88C.0.79 D.0.51答案:C4.若随机变量X服从两点分布,且P(X=0)=0.8,P(X=1)=0.2.令Y=3X-2,则P(Y =-2)=________.答案:0.8离散型随机变量分布列的三点说明(1)离散型随机变量的分布列不仅能清楚地反映其所取的一切可能的值,而且也能看出取每一个值的概率的大小,从而反映出随机变量在随机试验中取值的分布情况,是进一步研究随机试验数量特征的基础.(2)离散型随机变量在某一范围内取值的概率等于它取这个范围内各值的概率之和.(3)离散型随机变量可以用分布列、解析式、图象表示.离散型随机变量的分布列 [学生用书P 32]从装有6个白球、4个黑球和2个黄球的箱中随机取出两个球,规定每取出一个黑球赢2元,而每取出一个白球输1元,取出黄球无输赢,以X 表示赢得的钱数,随机变量X 可以取哪些值呢?求X 的分布列.[解] 从箱中取两个球的情形有以下6种:{2白球},{1白球1黄球},{1白球1黑球},{2黄球},{1黑球1黄球},{2黑球}. 当取到2白球时,随机变量X =-2;当取到1白球1黄球时,随机变量X =-1; 当取到1白球1黑球时,随机变量X =1; 当取到2黄球时,随机变量X =0;当取到1黑球1黄球时,随机变量X =2; 当取到2黑球时,随机变量X =4.所以随机变量X 的可能取值为-2,-1,0,1,2,4.P (X =-2)=C 26C 212=522,P (X =-1)=C 16C 12C 212=211,P (X =0)=C 22C 212=166,P (X =1)=C 16C 14C 212=411,P (X =2)=C 14C 12C 212=433,P (X =4)=C 24C 212=111.所以X 的分布列如下:[解:P (X >0)=P (X =1)+P (X =2)+P (X =4)=411+433+111=1933.∴赢钱的概率为1933.求分布列的一般步骤为:(1)找出随机变量X 的所有可能取值x i (i =1,2,3,…,n );(2)P (X =x i )的确定;(3)列出X 的分布列或概率分布表;(4)检验X 的分布列或概率分布表(用随机变量的分布列的两条性质验算).1求随机变量η=12ξ的分布列.解:由η=12ξ,对于ξ取不同的值-2,-1,0,1,2,3时,η的值分别为-1,-12,0,12,1,32.所以η的分布列为:离散型随机变量的分布列的性质 [学生用书P 32]设随机变量X 的分布列P (X =k5)=ak (k =1,2,3,4,5).(1)求常数a 的值; (2)求P (X ≥35);(3)求P (110<X <710).[解] (1)由P (X =k5)=ak ,k =1,2,3,4,5可知,∑k =15P (X =k5)=∑k =15ak =a +2a +3a +4a +5a =1, 解得a =115.(2)由(1)可知P (X =k 5)=k15(k =1,2,3,4,5),∴P (X ≥35)=P (X =35)+P (X =45)+P (X =1)=315+415+515=45.(3)P (110<X <710)=P (X =15)+P (X =25)+P (X =35)=115+215+315=25.离散型随机变量的分布列的两个性质主要解决以下两类问题:①通过性质建立关系,求得参数的取值或范围,进一步求出概率,得出分布列.②求对立事件的概率或判断某概率是否成立.2.已知离散型随机变量则q 的值为________. 解析:∵14+1-q +q 2=1,∴q 2-q +14=0.∴q =12.答案:12两点分布与超几何分布在一次购物抽奖活动中,假设10张奖券中有一等奖奖券1张,可获价值50元的奖品,有二等奖奖券3张,每张可获价值10元的奖品,其余6张没有奖品.(1)顾客甲从10张奖券中任意抽取1张,求中奖次数X 的分布列; (2)顾客乙从10张奖券中任意抽取2张, ①求顾客乙中奖的概率;②设顾客乙获得的奖品总价值为Y 元,求Y 的分布列.[解] (1)抽奖一次,只有中奖和不中奖两种情况,故X 的取值只有0和1两种情况.P (X =1)=C 14C 110=410=25,则P (X =0)=1-P (X =1)=1-25=35.因此X 的分布列为(2)①顾客乙中奖可分为互斥的两类事件:所抽取的2张奖券中有1张中奖或2张都中奖.故所求概率P =C 14C 16+C 24C 06C 210=3045=23. ②Y 的所有可能取值为0,10,20,50,60,且P (Y =0)=C 04C 26C 210=1545=13,P (Y =10)=C 13C 16C 210=1845=25,P (Y =20)=C 23C 06C 210=345=115,P (Y =50)=C 11C 16C 210=645=215,P (Y =60)=C 11C 13C 210=345=115.因此随机变量Y 的分布列为1.两点分布的几个特点:(1)两点分布中只有两个对应结果,且两个结果是对立的.(2)由对立事件的概率求法可知,已知P (X =0)(或P (X =1)),便可求出P (X =1)(或P (X =0)).2.解决超几何分布问题的两个关键点:(1)超几何分布是概率分布的一种形式,一定要注意公式中字母的范围及其意义,解决问题时可以直接利用公式求解,但不能机械地记忆.(2)超几何分布中,只要知道M ,N ,n ,就可以利用公式求出X 取不同k 的概率P (X =k ),从而求出X 的分布列.3.(1)篮球运动员在比赛中每次罚球命中得1分,不中得0分.已知某运动员罚球命中的概率为0.7,则他罚球一次得分的分布列为________.解析:用随机变量X 表示“每次罚球所得分值”,根据题意,X 可能的取值为0,1,且取这两个值的概率分别为0.3,0.7,因此所求的分布列为答案:(2)某高二数学兴趣小组有7位同学,其中有4位同学参加过高一数学“南方杯”竞赛.若从该小组中任选3位同学参加高二数学“南方杯”竞赛,求这3位同学中参加过高一数学“南方杯”竞赛的同学数ξ的分布列及P (ξ<2).解:由题意可知,ξ的可能取值为0,1,2,3.则P (ξ=0)=C 04C 33C 37=135,P (ξ=1)=C 14C 23C 37=1235,P (ξ=2)=C 24C 13C 37=1835,P (ξ=3)=C 34C 03C 37=435.所以随机变量ξ的分布列为P (ξ<2)=P (ξ=0)+P (ξ=1)=135+1235=1335.(本题满分12分)(2014·高考天津卷节选)某大学志愿者协会有6名男同学,4名女同学. 在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院. 现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(1)求选出的3名同学是来自互不相同学院的概率;(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列.[解] (1)设“选出的3名同学是来自互不相同的学院”为事件A ,则P (A )=C 13·C 27+C 03·C 37C 310=4960. 所以,选出的3名同学是来自互不相同学院的概率为4960.6分 (2)随机变量X 的所有可能值为0,1,2,3.P (X =k )=C k 4·C 3-k6C 310(k =0,1,2,3).9分 所以,随机变量X12分[规范与警示] (1)解答本例的3个关键步骤:①首先确定随机变量X 的取值,是正确作答的关键.②要明确X 取不同值的意义,才能正确求X 所对应值的概率.③解答本题时易文字叙述严重缺失,如第(1)问只写出P (A )=C 13C 27+C 03C 37C 310=4960. (2)解答本类问题一是要正确理解题意,将实际问题转化为数学问题,二是在明确随机变量取每一个值所对应的随机事件外,还必须准确求出每个随机事件的概率.1.设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次试验的成功次数,则P (ξ=0)等于( )A .0 B.13 C.12D.23解析:选B.设P (ξ=1)=p ,则P (ξ=0)=1-p . 依题意知,p =2(1-p ),解得p =23.故P (ξ=0)=1-p =13.2.设随机变量XA.P (X =1.5)=0 B .P (X >-1)=1 C .P (X <3)=0.5 D .P (X <0)=0解析:选A.由分布列知X =1.5不能取到,故P (X =1.5)=0,正确;而P (X >-1)=0.9,P (X <3)=0.6,P (X <0)=0.1.故A 正确.3.随机变量η则x =________,P (η≤3)=________. 解析:由分布列的性质得0.2+x +0.35+0.1+0.15+0.2=1,解得x =0.故P (η≤3)=P (η=1)+P (η=2)+P (η=3)=0.2+0.35=0.55. 答案:0 0.554.一个口袋里有5个同样大小的球,编号为1,2,3,4,5,从中同时取出3个球,以X 表示取出的球的最小编号,求随机变量X 的概率分布.解:X 所有可能的取值为1,2,3.当X =1时,其余两球可在余下的4个球中任意选取.∴P (X =1)=C 24C 35=35.当X =2时,其余两球在编号为3,4,5的球中任意选取, ∴P (X =1)=C 23C 35=310.当X =3时,取出的球只能是编号为3,4,5的球. ∴P (X =3)=1C 35=110.∴随机变量X 的概率分布为:[A.基础达标]1.(2015·东营高二检测)已知随机变量ξ的分布列为P (ξ=k )=12k ,k =1,2,…,则P (2<ξ≤4)等于( )A.316B.14C.116D.15解析:选A.2<ξ≤4时,ξ=3,4, ∴P (2<ξ≤4)=P (ξ=3)+P (ξ=4)=123+124=316.2.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球的个数X 是一个随机变量,则P (X =4)的值为( )A.27220B.27110C.111D.211解析:选A.由题意取出的3个球必为2个旧球,1个新球.故P (X =4)=C 23C 19C 312=27220.3.抛掷2颗骰子,所得点数之和X 是一个随机变量,则P (X ≤4)等于( ) A.16 B.13 C.12D.23解析:选A.根据题意,有P (X ≤4)=P (X =2)+P (X =3)+P (X =4).抛掷两颗骰子,按所得的点数共36个基本事件,而X =2对应(1,1),X =3对应(1,2),(2,1),X =4对应(1,3),(3,1),(2,2),故P (X =2)=136,P (X =3)=236=118,P (X =4)=336=112,所以P (X ≤4)=136+118+112=16.4.某一随机变量X则mn 的最大值为( A .0.8 B .0.2 C .0.08 D .0.6解析:选C.由分布列的性质知m ∈(0,1),2n ∈(0,1),且0.1+m +2n +0.1=1, 即m +2n =0.8.mn =(0.8-2n )×n =0.8n -2n 2=-2(n -0.2)2+0.08, ∴当n =0.2时,mn 有最大值为0.08.5.在5件产品中,有3件一等品和2件二等品,从中任取2件,那么以710为概率的事件是( )A .都不是一等品B .恰有一件一等品C .至少有一件一等品D .至多有一件一等品解析:选D.P (都不是一等品)=C 22C 25=110,P (恰有一件一等品)=C 13·C 12C 25=610, P (至少有一件一等品)=1-110=910, P (至多有一件一等品)=1-C 23C 25=710.6.则ξ为奇数的概率为________.解析:P (ξ=1)+P (ξ=3)+P (ξ=5)=215+845+29=815.答案:8157则(1)x =(3)P (1<Y ≤4)=________.解析:(1)由∑6i =1p i =1,得x =0.1. (2)P (Y >3)=P (Y =4)+P (Y =5)+P (Y =6)=0.1+0.15+0.2=0.45. (3)P (1<Y ≤4)=P (Y =2)+P (Y =3)+P (Y =4)=0.1+0.35+0.1=0.55. 答案:(1)0.1 (2)0.45 (3)0.558.某学校从4名男生和2名女生中任选3人作为参加两会的志愿者,设随机变量ξ表示所选3人中男生的人数,则P (ξ≤2)=________.解析:由题意可知ξ的可能取值为1,2,3,且ξ服从超几何分布,即P (ξ=k )=C 3-k 2C k 4C 36,k =1,2,3,故P (ξ≤2)=P (ξ=1)+P (ξ=2)=C 14C 22C 36+C 24C 12C 36=15+35=45. 答案:459试求:(1)2X +1的分布列; (2)|X -1|的分布列.解:由分布列的性质知0.2+0.1+0.1+0.3+m =1, ∴m =0.3.列表为:(1)2X +1(2)|X -1|10.,从中任取1个,观察号码是“小于5”“等于5”“大于5”三类情况之一,求其概率分布列.解:分别用x 1,x 2,x 3表示“小于5”的情况,“等于5”的情况,“大于5”的情况. 设ξ是随机变量,其可能取值分别为x 1、x 2、x 3,则P (ξ=x 1)=510=12,P (ξ=x 2)=110,P (ξ=x 3)=410=25.故ξ的分布列为1.一个盒子里装有相同大小的黑球10个,红球12个,白球4个,从中任取两个,其中白球的个数记为ξ,则下列概率中等于C 122C 14+C 222C 226的是( )A .P (0<ξ≤2)B .P (ξ≤1)C .P (ξ=2)D .P (ξ=1)解析:选B.由已知得ξ的可能取值为0,1,2.P (ξ=0)=C 222C 226,P (ξ=1)=C 122C 14C 226,P (ξ=2)=C 24C 226,故P (ξ≤1)=P (ξ=0)+P (ξ=1)=C 122C 14+C 222C 226.2.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列公差的取值范围是( )A.⎣⎡⎦⎤0,13B.⎣⎡⎤-13,13 C .[-3,3] D .[0,1]解析:选B.设随机变量ξ取x 1,x 2,x 3的概率分别为a -d ,a ,a +d ,则由分布列的性质得(a -d )+a +(a +d )=1,故a =13,由⎩⎨⎧13-d ≥013+d ≥0,解得-13≤d ≤13.3.设随机变量ξ的分布列为P (ξ=k )=c k (k +1),k =1,2,3,c 为常数,则P (0.5<ξ<2.5)=________.解析:由概率和为1,得1=c (11×2+12×3+13×4)=34c ,∴c =43,∴P (ξ=1)=23,P (ξ=2)=29,∴P (0.5<ξ<2.5)=P (ξ=1)+P (ξ=2)=89.答案:894.一批产品分为一、二、三级,其中一级品是二级品的两倍,三级品为二级品的一半,从这批产品中随机取一个检验,其级别为随机变量ξ,则P (13≤ξ≤53)=________.解析:设二级品有k 个,∴一级品有2k 个,三级品有k 2个,总数为7k2个.∴分布列为P (13≤ξ≤53)=P (ξ=1)=47. 答案:475.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数.(1)求ξ的分布列;(2)求“所选3人中女生人数ξ≤1”的概率. 解:(1)ξ可能取的值为0,1,2.P (ξ=k )=C k 2·C 3-k4C 36,k =0,1,2. 所以,ξ的分布列为(2)由(1)知“所选3P (ξ≤1)=P (ξ=0)+P (ξ=1)=45.6.设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量X 表示方程x 2+bx +c =0实根的个数(重根按一个计).(1)求方程x 2+bx +c =0有实根的概率;(2)求X 的分布列.解:(1)由题意知,设基本事件空间为Ω,记“方程x 2+bx +c =0没有实根”为事件A ,“方程x 2+bx +c =0有且仅有一个实根”为事件B ,“方程x 2+bx +c =0有两个相异实根”为事件C ,则Ω={(b ,c )|b ,c =1,2,…,6},A ={(b ,c )|b 2-4c <0,b ,c =1,2,…,6},B ={(b ,c )|b 2-4c =0,b ,c =1,2,…,6},C ={(b ,c )|b 2-4c >0,b ,c =1,2,…,6},∴Ω中的基本事件总数为36,A 中的基本事件总数为17,B 中的基本事件总数为2,C 中的基本事件总数为17.又∵B ,C 是互斥事件,故所求概率P =P (B )+P (C )=236+1736=1936.(2)由题意,X 可能的取值为0,1,2,则 P (X =0)=1736,P (X =1)=118,P (X =2)=1736,故X 的分布列为。
人教B版(文科数学)二联表与独立性检验名师精编单元测试

2019届人教B版(文科数学)二联表与独立性检验单元测试一、解答题1.学校对甲、乙两个班级的同学进行了体能测验,成绩统计如下(每班50人):(1)成绩不低于80分记为“优秀”.请填写下面的列联表,并判断是否有的把握认为“成绩优秀”与所在教学班级有关?(2)从两个班级的成绩在的所有学生中任选2人,其中,甲班被选出的学生数记为,求的分布列与数学期望.赋:.【答案】(1)列联表见解析,有的把握认为:“成绩优秀”与所在教学班级有关.(2)的分布列见解析,.【详解】(1)列联表如下:所以有的把握认为:“成绩优秀”与所在教学班级有关.【点睛】求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布),则此随机变量的期望可直接利用这种典型分布的期望公式()求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度. 2.中国大学先修课程,是在高中开设的具有大学水平的课程,旨在让学有余力的高中生早接受大学思维方式、学习方法的训练,为大学学习乃至未来的职业生涯做好准备,某高中每年招收学生1000人,开设大学先修课程已有两年,共有300人参与学习先修课程,两年全校共有优等生200人,学习先修课程的优等生有50人,这两年学习先修课程的学生都参加了考试,并且都参加了某高校的自主招生考试(满分100分),结果如(1)填写列联表,并画出列联表的等高条形图,并通过图形判断学习先修课程与优等生是否有关系,根据列联表的独立性体验,能否在犯错误的概率不超过0.01的前提下认为学习先修课程与优等生有关系?(2)已知今年有150名学生报名学习大学先修课程,以前两年参加大学先修课程学习成绩的频率作为今年参加大学先修课程学习成绩的概率.①在今年参与大学先修课程的学生中任取一人,求他获得某高校自主招生通过的概率;②某班有4名学生参加了大学先修课程的学习,设获得某高校自主招生通过的人数为,求的分布列,并求今年全校参加大学先修课程的学生获得大学自主招生通过的人数.参考数据:参考公式:,期中,【答案】(1) 在犯错误的概率不超过的前提下认为学习先修课程与优等生有关系(2) ①,②见解析【解析】【分析】(1)由题意可得列联表和等高条形图,并可作出判断,然后求出后与临界值表对照可得结论.(2)①根据题中的统计数据可得所求概率为;②设获得某高校自主招生通过的人数为,则,由此可得的分布列.结合可得通过的人数为人.(1)列联表如下:等高条形图如下图,(2)①由题意得所求概率为.②设获得某高校自主招生通过的人数为,则,,∴的分布列为今年全校参加大学生先修课程的学生获得大学自主招生通过的人数为.【点睛】(1)独立性检验的一般步骤:①根据样本数据制成2×2列联表;②根据公式计算的值;③比较与临界值的大小关系作出统计推断.(2)的值可以确定在多大程度上认为“两个分类变量有关系”;的值越大,认为“两个分类变量有关系”的把握越大.3.近年来随着我国在教育研上的投入不断加大, 学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升.伴随着国内市场增速放缓,国内有实力企业纷纷进行海外布局,第二轮企业出海潮到来.如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外共设多个分支机构,需要国内公司外派大量后、后中青年员工.该企业为了解这两个年龄层员工是否愿意被外派工作的态度,按分层抽样的方式从后和后的员工中随机调查了位,得到数据如下表:(1)根据调查的数据,是否有以上的把握认为“是否愿意被外派与年龄有关”,并说明理由;(2)该公司举行参观驻海外分支机构的交流体验活动,拟安排名参与调查的后、后员工参加.后员工中有愿意被外派的人和不愿意被外派的人报名参加,从中随机选出人,记选到愿意被外派的人数为;后员工中有愿意被外派的人和不愿意被外派的人报名参加,从中随机选出人,记选到愿意被外派的人数为,求的概率.参考数据:(参考公式:,其中).【答案】(1)有90 以上的把握认为“是否愿意外派与年龄有关”(2)【解析】【分析】(1)先计算的值,再判断是否有90 以上的把握认为“是否愿意外派与年龄有关”.(2)先计算出“”、“”、“”、“”、“”、“”六个互斥事件的概率,再把它们相加即得的概率.(2)“”包含:“”、“”、“”、“”、“”、“”六个互斥事件.且,,,所以,.【点睛】(1)本题主要考查独立性检验,考查互斥事件的概率,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2) 如果事件互斥,那么.如果事件中的任何两个都是互斥的,那么就说事件彼此互斥.则=4.通过随机询问名不同性别的大学生在购买食物时是否看营养说明,得到如下列联表:附:(1)由以上列联表判断,能否在犯错误的概率不超过的前提下认为性别和是否看营养说明有关系呢?(2)从被询问的名不读营养说明的大学生中随机选取名学生,求抽到女生人数的分布列及数学期望.【答案】(1) 在犯错误的概率不超过的前提下认为“性别与读营养说明之间有关系”.(2)分布列见解析;.(2)的取值为,,,的分布列为的数学期望点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布),则此随机变量的期望可直接利用这种典型分布的期望公式()求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度.5.共享单车已成为一种时髦的新型环保交通工具,某共享单车公司为了拓展市场,对两个品牌的共享单车在编号分别为的五个城市的用户人数(单位:十万)进行统计,得到数据如下:(Ⅰ)若共享单车用户人数超过50万的城市称为“优城”,否则称为“非优城”,据此判断能否有85 的把握认为“优城”和共享单车品牌有关?(Ⅱ)若不考虑其它因素,为了拓展市场,对A品牌要从这五个城市选择三个城市进行宣传,(ⅰ)求城市2被选中的概率;(ⅱ)求在城市2被选中的条件下城市3也被选中的概率.【答案】(1)没有(2)(ⅰ)0.6(ⅱ)【解析】分析: (Ⅰ)根据题意列出2×2列联表,求出K2=0.4<2.072,从而没有85 的理由认为“优质潜力城市”与“共享单车”品牌有关;(Ⅱ)从这五个城市选择三个城市的情形为10种,(ⅰ)城市2被选中的有6种,所求概率为;(ⅱ)在城市2被选中的有6种情形中,城市3被选中的有3种,所求概率为.详解:(Ⅰ)根据题意列出列联表如下:,所以没有85 的把握认为“优城”与共享单车品牌有关.点睛:本题主要考查古典概型概率公式、独立性检验,属于中档题.独立性检验的一般步骤:(1)根据样本数据制成列联表;(2)根据公式计算的值;(3) 查表比较与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)6.为推动实施健康中国战略,树立国家大卫生、大健康概念,手机APP也推出了多款健康运动软件,如“微信运动”,杨老师的微信朋友圈内有600位好友参与了“微信运动”,他随机选取了40位微信好友(女20人,男20人),统计其在某一天的走路步数,其中,女性好友的走路步数数据记录如下:男性好友走路的步数情况可分为五个类别:(说明:“”表示大于等于0,小于等于2000,下同),,,,,且,,三种类别人数比例为,将统计结果绘制如图所示的条形图,若某人一天的走路步数超过8000步被系统认定为“卫健型”,否则被系统认定为“进步型”.若以杨老师选取的好友当天行走步数的频率分布来估计所有微信好友每日走路步数的概率分布,请估计杨老师的微信好友圈里参与“微信运动”的600名好友中,每天走路步数在5001 10000步的人数;请根据选取的样本数据完成下面的列联表并据此判断能否有以上的把握认定“认定类型”与“性别”有关?若按系统认定类型从选取的样本数据中在男性好友中按比例选取10人,再从中任意选取3人,记选到“卫健型”的人数为,女性好友中按比例选取5人,再从中任意选取2人,记选到“卫健型”的人数为,求事件“”的概率.【答案】(1)375(2)没有(3)【解析】试题分析:(1)根据频率的计算公式得到女性好友走路步数在5001 10001步共有16人,男性好友走路步数在5001 10000步的包括,两类别共计9人,用样本数据估计所有微信好友每日走路频数的概率分布,则:人;(2)根据公式计算得到,从而得到结论;(3)在男性好友中“卫健型”与“进步型”的比例为,恰好选取“卫健型”7人,“进步型”3人,在女性好友中“卫健型”与“进步型”的比例为,恰好选取“卫健型”2人,“进步型”3人,“”包含“,”,“,”,“,”,“,”,按公式计算即可.(2)根据题意选取的40个样本数据的列联表为:得:,故没有95 以上的把握认为“认定类型”与“性别”有关.(3)在男性好友中“卫健型”与“进步型”的比例为,则选取10人,恰好选取“卫健型”7人,“进步型”3人;在女性好友中“卫健型”与“进步型”的比例为,选取5人,恰好选取“卫健型”2人,“进步型”3人;“”包含“,”,“,”,“,”,“,”,,,,,故.点睛:本题考查独立检验,考查离散型随机变量的分布列和数学期望的求法,考查推理论证能力、运算求解能力,考查化归转化思想、是中档题,解答概率题目关键是理解清楚题意,分清楚二项分布和超几何分布.。
高中数学第二章概率课时训练离散型随机变量的分布列新人教B版选修2_1

C.P(X=1) D.P(X=2)
解析:本题相当于最多取出1个白球的概率,也就是取到1个白球或没有取到白球.
答案:B
5.在15个村庄中,有7个村庄交通不太方便,现从中任意选10个村庄,用ξ表示10个村庄中交通不太方便的村庄数,下列概率中等于 的是()
A.P(ξ=2) B.P(ξ≤2)
所以ξ的分布列为
ξ
0
1
2
P
0.22
则此射手“射击一次命中环数X≥7”的概率为__________.
解析:根据射手射击一次命中环数X的分布列,有
P(X=7)=0.09,P(X=8)=0.28,
P(X=9)=0.29,P(X=10)=0.22,
P(X≥7)=P(X=7)+P(X=8)+P(X=9)+P(X=10)=0.88.
答案:0.88
C.P(ξ=4) D.P(ξ≤4)
解析:A项,P(ξ=2)= ;
B项,P(ξ≤2)=P(ξ=2)≠ ;
C项,P(ξ=4)= ;
D项,P(ξ≤4)=P(ξ=2)+P(ξ=3)+P(ξ=4)> .
答案:C
二、填空题
6.某小组有男生6人,女生4人,现要选3个人当班干部,则当选的3人中至少有1个女生的概率为__________.
同理可得P(Y=18)= ;P(Y=19)= ;
P(Y=20)= ;P(Y=21)= .
所以随机变量Y的分布列为
Y
17
18
19
20
21
P
11.为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中微量元素x,y的含量(单位:毫克).下表是乙厂的5件产品的测量数据:
高中数学第二章概率2.1离散型随机变量及其分布列课件新人教B版选修2308292102

答案:B
第四页,共26页。
1
2
3
4
2.分布列
(1)将离散型随机变量X所有可能取的不同值x1,x2,…,xn和X取每
一个值xi(i=1,2,…,n)的概率p1,p2,…,pn列成下面的表:
X
P
x1
p1
x2
p2
…
…
xi
pi
…
…
xn
pn
称这个表为离散型随机变量X的概率分布,或称为离散型随机变
量X的分布列.
解析:X=0表示取到一个合格品,其概率为0.95,这是一个二点分布问题.
答案:0.95 0.05
第二十五页,共26页。
1
2
3
4
5
5.一个袋子里装有大小相同(xiānɡ tónɡ)的3个红球和2个黄球,从中同时取
出2个,则其中含红球个数X的可能取值
为
,P(X=2)=
.
C23 ·C02
解析:P(X=2)=
X
0
1
P
4a-1
3a2+a
则 a 等于(
1
A. 2
)
1
B. 3
2
3
C. 3
D. 4
解析:由二点分布的性质,得(4a-1)+(3a2+a)=1,即 3a2+5a-2=0,
解得
1
a1= ,a2=-2,又由概率值非负得
3
1
a= .
3
答案(dáàn):B
第九页,共26页。
1
2
3
4
【做一做3-2】 一个盒子中装有3个红球和2个绿球,从中随机(suí jī)摸出
高三数学概率专题复习:二项分布、几何分布、超几何分布、正态分布、离散型随机变量的期望与方差等五大专题

2011年高考数学正态分布几何分布超几何分布离散型随机变量专项突破精选真题汇编与讲解分析答案第一部分第五节离散型随机变量的分布列一、选择题1.抛掷两颗骰子,所得点数之和为ξ,那么ξ=4表示的随机试验结果是()A.两颗都是2点B 一颗是3点,一颗是1点C.两颗都是4点D.一颗是3点,一颗是1点或两颗都是2点解析:对A、B中表示的随机试验的结果,随机变量均取值4,而D是ξ=4代表的所有试验结果.掌握随机变量的取值与它刻画的随机试验的结果的对应关系是理解随机变量概念的关键.答案:D2.下列分布列中,是离散型随机变量分布列的是()A.B.C.D.解析:只有选项C中的概率之和等于1,选C.答案:C3.设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次该项试验的成功次数,则P (ξ=0)等于( )A .0 B.13 C.12 D.23解析:1-P (ξ=0)=2P (ξ=0),即P (ξ=0)=13.答案:B4.在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,下列概率中等于C47C68C1015的是( )A .P (X =2)B .P (X ≤2)C .P (X =4)D .P (X ≤4)解析:由分子C47C68可知是从7个不方便的村庄中选4个,从8个方便的村庄中选6个,∴X =4,∴是P (X =4)的概率.答案:C5.若离散型随机变量X 的分布列为:则常数q 的值为( )A .1 B. 1±22 C. 1+22 D. 1-22解析:由12+(1-2q )+q 2=1,解得q =1-22或q =1+22,又∵q 2∈[0,1],∴q =1+22舍去.∴q =1-22. 答案:D 二、填空题6.随机变量X 等可能取值为1,2,3,……,n ,如果P (X <4)=0.3,那么n =________. 解析:∵P (X <4)= P (X =1)+P (X =2)+P (X =3)=3n =0.3,∴n =10. 答案:107.随机变量ξ的分布列为若a +c =2b ,则P (|ξ|=1)=________.解析:∵a +c =2b ,又∵a +b +c =1,∴b =13,a +c =23,于是P (|ξ|=1)=P (ξ=1)+P (ξ=-1)=a +c =23.答案:238.若离散型随机变量X 的分布列为P (X =k )=c2k ,k =1,2,3,4,5,6.其中c 为常数,则P (X ≤2)的值是________.解析:由c 2+c 4+c 8+c 16+c 32+c 64=1,可得c =6463.∴P (X ≤2)=P (X =1)+P (X =2)=3263+1663=4863=1621.答案:1621三、解答题9.(2009年广州调研)一厂家向用户提供的一箱产品共10件,其中有2件次品,用户先对产品进行抽检以决定是否接收.抽检规则是这样的:一次取一件产品检查(取出的产品不放回箱子),若前三次没有抽查到次品,则用户接收这箱产品;若前三次中一抽查到次品就立即停止抽检,并且用户拒绝接收这箱产品.(1)求这箱产品被用户接收的概率; (2)记抽检的产品件数为ξ,求ξ的分布列.解析:(1)设“这箱产品被用户接收”为事件A ,P (A )=8×7×610×9×8=715,即这箱产品被用户接收的概率为715. (2)ξ的可能取值为1,2,3.P (ξ=1)=210=15,P (ξ=2)=810×29=845,P (ξ=3)=810×79=2845,∴ξ的分布列为10.(2009年广州模拟)50名一线教师参加,使用不同版本教材的教师人数如下表所示:(1)从这50(2)若随机选出2名使用人教版的教师发言,设使用人教A 版的教师人数为ξ,求随机变量ξ的分布列. 解析:(1)从50名教师中随机选出2名的方法数为C250=1225. 选出2人使用版本相同的方法数为C 220+C 215+C 25+C 210=350, 故2人使用版本相同的概率为:P =3501225=27.(2)∵P (ξ=0)=C215C235=317,P (ξ=1)=C120C115C235=60119,P (ξ=2)=C220C235=38119,∴ξ的分布列为第二部分第六节 二项分布、超几何分布、正态分布一、选择题1.设随机变量ξ~B ⎝⎛⎭⎫6,12,则P (ξ=3)的值为( ) A.516 B.316 C.58 D.716 解析:P (ξ=3)=C36⎝⎛⎭⎫123⎝⎛⎭⎫1-123=516. 答案:A2.设随机变量ξ ~ B (2,p ),随机变量η ~ B (3,p ),若P (ξ ≥1) =59,则P (η≥1) =( )A.13B.59C.827D.1927解析:∵P (ξ≥1) =2p (1-p )+p 2=59, ∴p =13,∴P (η≥1) =C 13⎝⎛⎭⎫13⎝⎛⎭⎫232+C 23⎝⎛⎭⎫132⎝⎛⎭⎫23+C 33⎝⎛⎭⎫133=1927,故选D. 答案:D3.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则P (ξ=12)=( )A .C 1012⎝⎛⎭⎫3810·⎝⎛⎭⎫582B .C 911⎝⎛⎭⎫389⎝⎛⎭⎫582·38C .C 911⎝⎛⎭⎫589·⎝⎛⎭⎫382D .C 911⎝⎛⎭⎫389·⎝⎛⎭⎫582 解析:P (ξ=12)表示第12次为红球,前11次中有9次为红球,从而P (ξ=12)=C 911·⎝⎛⎭⎫389⎝⎛⎭⎫582×38. 答案:B4.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生2次的概率,则事件A 在一次试验中发生的概率p 的取值范围是( )A .[0.4,1)B .(0,0.6]C .(0,0.4]D .[0.6,1)解析:C14p (1-p )3≤C24p 2(1-p )2,即2(1-p )≤3p , ∴p ≥0.4.又∵p <1,∴0.4≤p <1. 答案:A5.(2009年湖南四市联考)已知随机变量ξ服从正态分布N (2,σ2),P (ξ≤4)=0.84,则P (ξ<0)=( ) A .0.16 B .0.32 C .0.68 D .0.84 解析:∵P (ξ≤4)=0.84,μ=2,∴P (ξ<0) =P (ξ>4)=1-0.84=0.16.故选A. 答案:A 二、填空题6.某篮运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率________.(用数值作答)解析:由题意知所求概率P =C 310⎝⎛⎭⎫123⎝⎛⎭⎫127=15128. 答案:151287.从装有3个红球,2个白球的袋中随机取出两个球,设其中有X 个红球,则X 的分布列为________.解析:这是超几何分布,P (X =0)=C 03C 22C 25=0.1;P (X =1)=C 13C 12C 25=0.6; P (X =2)=C 23C 02C 25=0.3,分布列如下表:答案:8.某厂生产的圆柱形零件的外径ε1000件零件中随机抽查一件,测得它的外径为5.7 cm.则该厂生产的这批零件是否合格________.解析:根据3σ原则,在4-3×0.5=2.5——4+3×0.5=5.5之外为异常,所以这批零件不合格. 答案:不合格 三、解答题9.(2008年四川延考)一条生产线上生产的产品按质量情况分为三类:A 类、B 类、C 类.检验员定时从该生产线上任取2件产品进行一次抽检,若发现其中含有C 类产品或2件都是B 类产品,就需要调整设备,否则不需要调整.已知该生产线上生产的每件产品为A 类品,B 类品和C 类品的概率分别为0.9,0.05和0.05,且各件产品的质量情况互不影响.(1)求在一次抽检后,设备不需要调整的概率;(2)若检验员一天抽检3次,以ξ表示一天中需要调整设备的次数,求ξ的分布列. 解析:(1)设A i 表示事件“在一次抽检中抽到的第i 件产品为A 类品”, i =1,2.B i 表示事件“在一次抽检中抽到的第i 件产品为B 类品”, i =1,2.C 表示事件“一次抽检后,设备不需要调整”. 则C =A 1·A 2+A 1·B 2+B 1·A 2.由已知P (A i )=0.9,P (B i )=0.05 i =1,2. 所以,所求的概率为P (C )=P (A 1·A 2)+P (A 1·B 2)+P (B 1·A 2) =0.92+2×0.9×0.05=0.9.(2)由(1)知一次抽检后,设备需要调整的概率为p =P (C )=1-0.9=0.1,依题意知ξ~B (3,0.1),ξ的分布列为10.(2009年南海一中月考的方式来进行,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才能入选.(1)求甲答对试题数ξ的概率分布; (2)求甲、乙两人至少有一人入选的概率.解析:(1)依题意,甲答对试题数ξ的可能取值为0、1、2、3,则 P (ξ=0)=C 34C 310=130,P (ξ=1)=C 16·C 24C 310=310,P (ξ=2)=C 26·C 14C 310=12,P (ξ=3)=C 36C 310=16,其分布列如下:(2)法一:设甲、乙两人考试合格的事件分别为A 、B ,则P (A )=C 26C 14+C 36C 310=60+20120=23, P (B )=C 28C 12+C 38C 310=56+56120=1415.因为事件A 、B 相互独立,∴甲、乙两人考试均不合格的概率为 P()A ·B =P ()A ·P ()B =⎝⎛⎭⎫1-23⎝⎛⎭⎫1-1415=145, ∴甲、乙两人至少有一人考试合格的概率为 P =1-P()A ·B =1-145=4445. 答:甲、乙两人至少有一人考试合格的概率为4445.法二:甲、乙两人至少有一个考试合格的概率为 P =P ()A ·B+P ()A ·B +P ()A ·B =23×115+13×1415+23×1415=4445. 答:甲、乙两人至少有一人考试合格的概率为4445第三部分第七节 离散型随机变量的期望与方差一、选择题1.下列是4个关于离散型随机变量ξ的期望和方差的描述①Eξ与Dξ是一个数值,它们是ξ本身所固有的特征数,它们不具有随机性 ②若离散型随机变量一切可能取值位于区间[]a ,b 内,则a ≤Eξ≤b③离散型随机变量的期望反映了随机变量取值的平均水平,而方差反映的是随机变量取值的稳定与波动,集中与离散的程度④离散型随机变量的期望值可以是任何实数,而方差的值一定是非负实数 以上4个描述正确的个数是( )A .1B .2C .3D .4 答案:D2.设Eξ=10,Eη=3,则E (3ξ+5η)=( ) A .45 B .40 C .35 D .15 解析:E (3ξ+5η)=3Eξ+5Eη=3×10+5×3=45. 答案:A3.已知随机变量X 的分布列是:且EX =7.5,则a 的值为( A .5 B .6 C .7 D .8 解析:b =1-0.3-0.1-0.2=0.4EX =4×0.3+a ×0.1+9×0.4+10×0.2=7.5. ∴a =7. 答案:C4.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目ξ的期望为( )A .2.44B .3.376C .2.376D .2.4 解析:ξ=0,1,2,3,此时P (ξ=0)=0.43,P (ξ=1)=0.6×0.42,P (ξ=2)=0.6×0.4,P (ξ=3)=0.6,Eξ=2.376. 答案:C5.口袋中有5只相同的球,编号为1、2、3、4、5,从中任取3球,用ξ表示取出的球的最大号码,则Eξ=( )A .4B .4.75C .4.5D .5 解析:P (ξ=3)=1C 35=110, P (ξ=4)=C 23C 35=310,P (ξ=5)=C 24C 35=35Eξ=3×0.1+4×0.3+5×0.6=4.5. 答案:C 二、填空题6.利用下列盈利表中的数据进行决策,应选择的方案是______.解析:EA 1=50×0.25+65×0.30+26×0.45=43.7, EA 2=70×0.25+26×0.30+16×0.45=32.5, EA 3=-20×0.25+52×0.30+78×0.45=45.7, EA 4=98×0.25+82×0.30+(-10)×0.45=44.6. 在四个均值中,EA 3最大,所以应选择的方案是A 3. 答案:A 37.(2009年上海卷)某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望Eξ=________(结果用最简分数表示).解析:首先ξ∈{0,1,2}.∴P (ξ=0)=C25C27=1021,P (ξ=1)=C12C15C27=1021,P (ξ=2)=C22C27=121.∴Eξ=0·1021+1·1021+2·121=1221=47.答案:478.一个均匀小正方体的六个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2,将这个小正方体抛掷2次,则向上的数之积的方差是________.解析:一个均匀小正方体的6个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2.将这个小正方体抛掷2次,向上的数之积可能为ξ=0,1,2,4,则P (ξ=0)=C 13C 13+C 13C 12+C 12C 13+C 13C 11+C 11C 13C 16C 16=34, P (ξ=1)=C 12C 12C 16C 16=19,P (ξ=2)=C 12C 11+C 11C 12C 16C 16=19,P (ξ=4)=C 11C 11C 16C 16=136, ∴ Eξ=19+29+436=49.∴Dξ=⎝⎛⎭⎫0-492×34+⎝⎛⎭⎫1-492×19+⎝⎛⎭⎫2-492×136=182729. 答案:182729三、解答题9.(2009年浙江卷)在1,2,3,…,9这9个自然数中,任取3个数. (1)求这3个数中恰有1个偶数的概率;(2)记ξ为这3个数中两数相邻的组数(例如:若取出的数为1,2,3,则有两组相邻的数1,2和2,3,此时ξ的值是2).求随机变量ξ的分布列数学期望Eξ及方差Dξ. 解析:(1)记“这3个数中恰有一个是偶数”为事件A , 则P (A )=C14C25C39=1021.(2)随机变量ξ的取值为0,1,2.ξ的分布列是所以ξ的数学期望Eξ=0×512+1×12+2×112=23. Dξ=⎝⎛⎭⎫0-232×512+⎝⎛⎭⎫1-232×12+⎝⎛⎭⎫2-232×112=2154. 10.(2009年山东卷)在某学校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A 处每投进一球得3分,在B 处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次.某同学在A 处的命中率q 1为0.25,在B 处的命率为q 2.该同学选择先在A 处投一球,以后都在B 处投,用ξ表示该同学投篮训练结束后所得的总分,其分布列为(1)求q 2的值;(2)求随机变量ξ的数学期望Eξ;(3)试比较该同学选择都在B 处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小. 解析:(1)由题设知,“ξ=0”对应的事件为“在三次投篮中没有一次投中”,由对立事件和相互独立事件性质可知P (ξ=0)=(1-q 1)(1-q 2)2=0.03,解得q 2=0.8.(2)根据题意P 1=P (ξ=2)=(1-q 1)C12(1-q 2)q 2=0.75×2×0.2×0.8=0.24.P 2=P (ξ=3).=q 1(1-q 2)2=0.25×(1-0.8)2=0.01.P 3=P (ξ=4)=(1-q 1)q 22=0.75×0.82=0.48.P 4=P (ξ=5)=q 1q 2+q 1(1-q 2)q 2=0.25×0.8+0.25×0.2×0.8=0.24.因此Eξ=0×0.03+2×0.24+3×0.01+4×0.48+5×0.24=3.63.(3)用C表示事件“该同学选择第一次在A处投,以后都在B处投,得分超过3分”,用D表示事件“该同学选择都在B处投,得分超过3分”,则P(C)=P(ξ=4)+P(ξ=5)=P3+P4=0.48+0.24=0.72.P(D)=q22+C12q2(1-q2)q2=0.82+2×0.8×0.2×0.8=0.896.故P(D)>P(C).即该同学选择都在B处投篮得分超过3分的概率大于该同学选择第一次在A处投以后都在B处投得分超过3分的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019届人教B版(文科数学)离散型随机变量的分布列及期望(超几何分布类)单元测试
一、解答题
1.从某校高三的学生中随机抽取了100名学生,统计了某次数学模考考试成绩如表:
(1)请在频率分布表中的①、②位置上填上相应的数据,并在给定的坐标系中作出这些数据的频率分布直方图,再根据频率分布直方图估计这100名学生的平均成绩;
(2)从这100名学生中,采用分层抽样的方法已抽取了 20名同学参加“希望杯数学竞赛”,现需要选取其中3名同学代表高三年级到外校交流,记这3名学生中“期中考试成绩低于120分”的人数为,求的分布列和数学期望.
【答案】(1)见解析;(2)见解析
详解:(1),.
频率分布表为:
频率分布直方图为:
平均成绩为分.
∴的分布列为:
∴.
点睛:根据频率分布表绘制频率分布直方图时,注意小矩形的高是频率除以组距,各小矩形的面积和为.计算随机变量的分布列时,注意利用常见模型计算概率,如二项分布、超几何分布等.
2.为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成下图,其中“”表示服药者,“+”表示未服药者.
(Ⅰ)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;
(Ⅱ)从图中A,B,C,D四人中随机学 .选出两人,记为选出的两人中指标x的值大于1.7的人数,求的分布列和数学期望E();
(Ⅲ)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)
【答案】(1)0.3(2)见解析(3)在这100名患者中,服药者指标数据的方差大于未服药者指标数据的方差.
试题解析:(Ⅰ)由图知,在服药的50名患者中,指标的值小于60的有15人,
所以从服药的50名患者中随机选出一人,此人指标的值小于60的概率为.
(Ⅱ)由图知,A,B,C,D四人中,指标的值大于1.7的有2人:A和C.
所以的所有可能取值为0,1,2.
.
所以的分布列为
故的期望.
(Ⅲ)在这100名患者中,服药者指标数据的方差大于未服药者指标数据的方差.
【名师点睛】求分布列的三种方法:
(1)由统计数据得到离散型随机变量的分布列;
(2)由古典概型求出离散型随机变量的分布列;
(3)由互斥事件的概率、相互独立事件同时发生的概率及n次独立重复试验有k次发生的概率求离散型随机变量的分布列.
3.中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们]对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从上年龄在15∽65岁的人群中随机调查100人,调査数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:
(1)由以上统计数据填列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;
(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人
①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率.
②记抽到45岁以上的人数为,求随机变量的分布列及数学期望.
参考数据:
,其中
【答案】(1)能(2)①②见解析
详解:(1)由频率分布直方图知45岁以下与45岁以上各50人,故填充列联表如下:
因为的观测值,
所以在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异.
故随机变量的分布列为:
所以.
点睛:本题考查了离散型随机变量的分布列与数学期望的计算问题,也考查了古典概型的概率计算问题,是中档题.
4.质检部门对某工厂甲、乙两个车间生产的个零件质量进行检测.甲、乙两个车间的零件质量(单位:克)分布的茎叶图如图所示.零件质量不超过克的为合格.
(1)质检部门从甲车间个零件中随机抽取件进行检测,若至少件合格,检测即可通过,若至少件合格,检测即为良好,求甲车间在这次检测通过的条件下,获得检测良好的概率;
(2)若从甲、乙两车间个零件中随机抽取个零件,用表示乙车间的零件个数,求的分布列与数学期望.
【答案】(1)(2)见解析
【解析】分析:(1)设事件表示“件合格,件不合格”;事件表示“件合格,件不合格”;事件表示“件全合格”;事件表示“检测通过”;事件表示“检测良好”.
通过,P(E)=P(B)+P(C),.求解概率即可.
(2)由题意知,的所有可能取值为0,1,2,求出概率得到分布列,然后求解期望即可.
分布列为
所以,.
点睛:本题考查条件概率的应用,离散型随机变量的分布列以及期望的求法,考查分析问题解决问题的能力.
5.随着学技术的飞速发展,手机的功能逐渐强大,很大程度上代替了电脑、电视.为了了解某高校学生平均每天使用手机的时间是否与性别有关,某调查小组随机抽取了30名男生、20名女生进行为期一周的跟踪调查,调查结果如下表所示:
(1)能否在犯错误的概率不超过0.01的前提下认为学生使用手机的时间长短与性别有关?
(2)在这20名女生中,调查小组发现共有15人使用国产手机,在这15人中,平均每天使用手机不超过3小时的共有9人.从平均每天使用手机超过3小时的女生中任意选取3人,求这3人中使用非国产手机的人
数X 的分布列和数学期望. 参考公式: ()
()()()()
()2
2n ad bc K n a b c d a c b d a b c d -=
=+++++++
【答案】(1)见解析;(2)()1E X =
所以X 的分布列为
E (X)=0×+1×+2×+3×=1.
6.“中国人均读书4.3本(包括 络文学和教 书),比韩国的11本、法国的20本、日本的40本、犹太人的64本少得多,是世界上人均读书最少的国家.”这个论断被各种媒体反复引用,出现这样的统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国是传统的文明古国、礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了一天40名读书者进行调查,将他们的年龄分成6段: [)20,30, [)30,40, [)40,50, [)50,60,
[)60,70, []70,80后得到如图所示的频率分布直方图.问:
(1)估计在40名读书者中年龄分布在[)40,70的人数; (2)求40名读书者年龄的平均数和中位数;
(3)若从年龄在[)20,40的读书者中任取2名,求这两名读书者年龄在[)30,40的人数X 的分布列及数学期望.
【答案】(1)30;(2)54,55;(3) X 的分布列如下:
数学期望43
EX =
试题解析:
(3)年龄在[)20,30的读书者有0.00510402⨯⨯=人, 年龄在[)30,40的读书者有0.0110404⨯⨯=人, 所以X 的所有可能取值是0,1,2,
()20242
41
015C C P X C ===, ()1124248
115C C P X C ===,
()02242
46
215
C C P X C ===, X 的分布列如下:
数学期望18640121515153
EX =⨯+⨯+⨯=.。