串补

合集下载

串补装置平台施工方法在500kV伊敏—冯屯可控串补工程中的应用探讨

串补装置平台施工方法在500kV伊敏—冯屯可控串补工程中的应用探讨

装 工作 在两 平 台基础 间进行 , 先 进 行 主 梁 、 首 次梁 、 斜 拉 绝缘 子 、 球 节 点 等 部 分 的组 装 , 证 吊 装 质 上 保 量控 制在 1 以 内 , 3t 同时 用一 台 2 吊车进行 平 台 5t
支柱 绝缘子 的安 装 调整 工 作 。上 述 工作 完 成 后 , 继
敏一冯屯可控 串补工 程中 , 为了节约施工成本 、 保护 电缆 沟 、 备和平 台基础 , 短串补装置平 台安装的施工周 期 , 设 缩 结合现场实际状况 , 出了有效可行的平台施工方法 。 提
关键词 :串补站 ;串补装置平台 ; 施工方法 ;5 0k 0 V输 电线路
中 图 分 类 号 :T 5 M7 文献 标 识 码 :A 文章 编 号 :0 2—16 ( 09 0 0 1 0 10 6 3 20 )6— 4 8— 3
了满 足伊 敏电厂 全部 电力 的稳 定送 出 , 抑 制 电厂 并 发生 次 同步 谐 振 而 建 设 的 国家 科 技 示 范 工 程 。该 工程 同时 还 可 以 提 高 系 统 暂态 稳 定 及 电 网整 体 技 术水 平 , 善东 北 电 网的 动态 特性 。此工 程 的 关 键 改
c n tu t n o e i sc mpe s t n sa in. Th s p p r t r fr o sr ci fs re o o n a i tt o o i a e , he eo e, p o o e h fiin n e sb e c n tu to r p s s t e e f e ta d fa i l o sr cin c
V 13 . o 6 o. 1 N .
H i n j n lcr o e el gi gEe tcP w r o a i

浅谈串补工程在电气二次设计中的应用

浅谈串补工程在电气二次设计中的应用
迁。
2 常规 设备 的 电气二 次设计 2 . 用直 流系统 的设 计 1站 为提 高 可靠 性 , 某变 串补工 程 设 置专 用 10 1V直 流 系统 , 2组共 计 14只 20 h 由 0 0A 密 封 免维 护 铅 酸 蓄 电 池 、 套 高频 开 关 充 电装 3 置和 直流 馈线 屏等 组成 。直流 系统 采用 2 段 单母 线 接 线 ,段 直 流母 线 之 间设 联 络 刀 闸 。 2 直流 负荷 原则 上采 用辐射 型供 电。 2 . 他辅 助系 统的设 计 2其 利 用某 变 电 站 原 有 的 G S时 间 同步 系 P 统, 在新 建 的 串补 就地 控 制 室设 置 1 G S 面 P 对 时扩 展屏 。G S对 时信 号 可采 用 II — B P RG (CX 时方式 。 D)  ̄ 对某 变 电站 已有火 灾 自动报 警 系统 进行 扩容 。在 串补 就地控 制 室等 设备 间 加装 火灾 报警 控制 点, 人某 站原 有火 灾报警 控制 器 。 接 对某变电站已有图像监视及安全警卫 系 统进 行扩 容 。在串 补就 地控 制 室及 串补 户外 场 地加 装 图像 监视 摄 像头 , 在新 建 围 墙处 并 设 置 红外 对 射 装置 , 入 某变 电站原 有 的 图 接 像监 视及 安全 警卫 系统 。 3成 套设备 的 电气二 次设 计 31设 备布 置 . 某变 串补 工程 设置 独立 的 串补 就地 控制 室 , 置 串 补控 制 保 护 设 备 、 用 直 流 屏柜 、 放 站 G S扩 展屏 、接 口屏 、P P U S屏 和 二次 交 流 屏 等 。 照设 计规 范要 求设 置独 立 的蓄 电池室 。 按 3 串补保 护系 统 . 2 针 对 串补 装置 的 主要 一 次元 件 , 电容 对 器组 、 O 、 M V 间隙、 旁路断路器及平 台均配置 相应 的保 护功 能, 主要包 括 以下几 点 : 3. . 1电容器不平衡保护: 电容器的 2 测量 不平 衡 电流 , 当不平 衡 电流 超过 最小 定值 时, 发报警信号, 电容器可继续运行; 当不平衡 电

不同运行方式下串补保护装置工作状况的研究

不同运行方式下串补保护装置工作状况的研究

主要 特 征之 一 。 电 网互 联带 来 了多种 好 处 , 能源 为
S A ig h a WA G K n WA G L , H O Y S A i H O Qn - u , N u , N i S A u, H 0 Q。
(. h n zo o e u pyC m a y Z e ghu4 0 0 , hn ; . c ol f lc i l n ier g Wu a 1 Z e gh uP w r p l o p n , h n zo 5 0 0 C ia 2 S h o o et c g ei , h n S E raE n n
串联补 偿装 置 与线 路 串联 。 可 以是 1 可变 它 个
0 引 言
随 着现 代 电 网 的发展 。机 组容 量 的不 断增 大 ,

阻抗 , 过 晶 闸管 的投 切 改 变 对 外 参 数 , 际 电力 通 实
系统 中使 用 的 串联 补 偿装 置是 将 一 电容 器 串入 输
U ie s y W u a 3 0 2 C i a 3 S h o fC mmu ia in a d I f r t n En i e r g S a g a n v ri , t h n 4 0 7 , hn ; . c o l o o n c t n n o mai gn e i , h n h i o o n
电线 路 以改 善 线 路 参 数 。从 而 提 高 系统 的工 作 状
态。
次 能源 和 电力 负荷 不 处 于 同一 区域 。 为提 高 资源
的利用 效 率 与输 电可靠 性 , 采用 超 高 压输 电线路 将
区域 电 网进 行互 联 , 联 电 网成 为现 代 电力 系 统 的 互

贺州500kV串补站关键技术分析

贺州500kV串补站关键技术分析

广 东省 电力设 计研 究院
周敏
Gu n d n e t cP we sg si t Z o i a g o gElc r o rDe in I t u e h u M n i n t
一 一 一

要 :通过 对贺卅1o V串补站 的关键技术的阐述 ,并与内熔 丝电容 器技术和平台上测量、供 电分散式布置方式比 5 ok
损耗 低 。
补的基本 参数见表 1 ,串补装 置的 主接线 见 图2 。 该 串补 的 主设 备 和 国 内的其 它 串补站 类似 , 都 是 由电容 器组 、MO V、保护 间 隙 、限 流 阻尼 回
由于 配置 原理 不 同 ,无 熔 丝 电容 器在 单 元接 线 以及 保 护方 式和 内熔 丝 的也 不相 同。 内熔 丝 电
● 研 究与 专 论


, 怖 贺州
0 0
串 千

r ,
r,
贺 ̄1 ok 5 V串补 站 关 键 技 术分 析 o
An l sso y T c ni u so z o 0 V e e - a a io mpe s to tto ay i nKe e h q e f He h u 5 0 k S r sc p ct rCo i n a i n S a in
贺 卅1o V串补 站 是 南方 电 网西 电东 送 网络 5ok
完善项 目工程之一,用以提高了柳东一 贺州线路 的输 电能 力 、安稳 水 ቤተ መጻሕፍቲ ባይዱ 和 降低 线 损 ,优化 了 电网 运行的技术经济指标 。
50k 州 串补 站 的关 键 技 术 与 国内 其 它 串 0 V贺
符 号说 明 : C 串联 电容 器组 ; m MOV 金 属 氧 化物 避 雷 器 一 D一 限流 阻尼 设 备 ; S —保 护 火 花 间 隙 ; QF 旁路 断路 器 ; 一

串补控制系统OLC

串补控制系统OLC

Closed Loop Control
25.Sep.2004
讲课时间 30分钟
现场设备图
用于LTT控制的CLC系统
• CLC- Close Loop Control把输出信号作 为馈入信号
阀触发及点火角示意图
触发
电流关断和 反向建压点
CLC控制模式
• FSC • Z-CONTROL • WAITING • TSR
• HMI • DFR(HUB) • 协议转换器、接口、光电模块 • 通讯相关卡件及通讯设备
GPS接 收
GPS天
OLC系
线 模块现场图 统
远方HMI 同期
就地 HMI
就地HMI 同期
远方 HMI
录波后 台平果 主控
OLM
RAS MODEM
FSC DFR
FSC DFR
SU200
SU200简介
线路电流监视
• 为保证精确点火,最小电流限制345A, 此时闭锁阀点火,电流达到375A重新开 放。
• 启动TSR模式最小电流限制2100A, TSR在低电流下仍可运行,但最小 1410A,当小于此值,闭锁阀点火。
电容电压监视
• TVM工作需要阀组最小电压1100V
• 监视电容电压,当电压低于1100V,闭锁
• SU200的任务是:在一个基于微处理器 的站控和检测系统中作为一个分布的现 场控制设备。
• SU200用于中高压变电站以及工厂的现 场控制级中的数据采集、数据预处理、 数据传输和命令输出。
• SU200作为从站与主站的通信通过 PROFIBUS现场总线实现。
SU200硬件结构
DS&MBS操作相关
更换通道、检查OPTODYN、LM3、 IO3的工作情况,如果都正常,则

南昆线潞城乡区间串补的改造及效果

南昆线潞城乡区间串补的改造及效果

电 负荷 的急 剧上 升也加 剧 了潞城 乡 区间串补通 过 大
电 流 的频 次 。 特 别 是 2 0 年 扩 能 改 造 以来 , 设 计 05 原
的容 量 已远 远不 能满 足南 昆线运输 的要 求而 多次发 生故 障 。仅 2 0 年潞 城 乡 区问串补 就有 3 07 次放 电间 隙击 穿 烧 损 和 1 电容 器 喷油 。 自2 0 年 l 月 1 次 07 0 4
12 原 区 间 串补 的设 计 不 合理 .
根据 串补 的补 偿
图 1 原潞 城 乡 区间 串 补 主接 线 图
原理 , 随着 区间线路 负荷 的增 加 , 在潞 城 乡 区间 串补
上 叠 加 产 生 的 电压 也 比 原 来 有 较 大 的 增 长 。 当 机 车
44
南 昆 线 潞 城 乡 区 间 串 补 的 改 造 及 效 果
尼 电 阻并 联 而成 , 作 用是 旁 通 电容 时迅 速 衰减 电 其
并 无 接 触 网 末 端 馈 线 短 路 的 报 告 ; 明 了 区 间 串 补 说
在 当时的运行 情况 确实 易使 串补 电容 回路 产生 操作
过 电 压 。 通 过 操 作 过 电 压 机 理 分 析 认 为 , 繁 操 作 频
为此 , 如何 确保潞 城 乡区间 串补 的运行稳 定 , 已成 为 急需解 决 的问题 。
1 区 间 串 补 故 障 的 原 因
11 区 间 串 补 运 行 环 境 恶 劣 . 2 0 年 南 昆 线 扩 能 05
改 造 后 , 机 牵 引 的 重 载 大 列 频 繁 在 区 间 运 行 , 加 双 增 了 接 触 网 的 载 流 量 , 加 在 潞 城 乡 区 间 串 补 电 容 两 叠

可控串补(TCSC)的特性分析与应用建模仿真

可控串补(TCSC)的特性分析与应用建模仿真
可控串补(TCSC)的特性分析与应用建模仿真
电气3班刘丽娜
指导老师:刘莫尘
论文研究背景及意义
背景: 现代电网互联,稳定性问
题突出,柔性输电技术 (FACTS)广泛应用,远 距离输电对电网输电能力的 要求提高。
意义: 分析TCSC的特性,并进行
应用仿真,有利于下一步考 察应用TCSC装置对现有继 电保护系统的影响。
alpha I rm s
控制系统
I abc
TC R _Puls es
Alpha
I rm s
CB
触发单元
A
B
N
C
V2
Pt c s c zt c s c alpha Scopes
功率
仿真电路接线方案 阻 抗 ztcsc [Ohms] α角 [deg]
主变量mai n vari abl es
TCSC的应用模型搭建图
1、绪论 2、TCSC的运行原理与工作模式
3、TCSC的特性分析 4、TCSC的应用建模仿真
5、小结与展望





特 性
补 (
TCSC


与)
应的



仿

TCSC装置
晶闸管截止模式 晶闸管旁路模式 容性微调模式 感性微调模式
TCSC的特性分析
TCSC的阻抗特性与α的关系图
Uc I
IL
Ic
容性微调模式下各分量稳态图
触发角α越大,TCSC置暂态过 程越短;
触发角α越小,TCSC装置暂态 过程越长。
谐波电压的幅值随着w增加 而减小,高次谐波所占的 比例很少
TCSC应用建模仿真
A

36.串补及可控串补全过程技术监督精益化管理实施细则

36.串补及可控串补全过程技术监督精益化管理实施细则

及是否满足要求
查看工程设计 MOV
III 外故障(包括单相接地故障、两相短路故障、两相接地故障和三 10.1.1.9 新建串补装置的 MOV 热备用容量应大于 10%且不少于 3 单元/平台。
2.记录是否进行了
部分资料
相接地故障)以及故障后线路摇摆电流流过 MOV 过程中积累的能 2.《防止电力生产事故的二十五项重点要求》(国能安全〔2014〕161 号)
序号 监督项目 关键项权重
监督要点
监督依据
监督要求监督结果21 电气设备性能 串补装置2.1.1 相对位置
故障顺序 2.1.2
性能要求 串联电容 2.1.3
器 金属氧化 2.1.4 物限压器
查看安装在线路首 记录安装在线路首
末端的串补装置设 末端的串补装置设
串补装置安装在线路首末端时应综合论述串补装置和线路高抗的 《串补站初步设计文件内容深度规定》(DL/T 5502-2015)
20.1.5.6 电容器组接线宜采用先串后并的接线方式。
串后并的接线方式
1.MOV 热备用容量应大于 10%且不少于 3 单元/平台。
1.《国家电网有限公司关于印发十八项电网重大反事故措施(修订版)的通知》
1.记录冗余数多少
2.金属氧化物避雷器(MOV)的能耗计算应考虑系统发生区内和区 (国家电网设备〔2018〕979 号)
MOV 能耗计算,记录
量,还应计及线路保护的动作时间与重合闸时间对 MOV 能量积累 20.1.6 金属氧化物避雷器(MOV)的能耗计算应考虑系统发生区内和区外故障(包
MOV 最大能耗数值
3
序号 监督项目 关键项权重
监督要点
监督依据
监督要求
监督结果
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与超高压输电线路加装串补装置有关的系统问题及其解决方案1 引言采用串联电容补偿技术可提高超高压远距离输电线路的输电能力和系统稳定性,且对输电通道上的潮流分布具有一定的调节作用。

采用可控串补还可抑制系统低频功率振荡及优化系统潮流分布;但在系统中增加的串联电容补偿设备改变了系统之间原有的电气距离,尤其是串补度较高时,可能引起一系列系统问题,因此在串补工程前期研究阶段应对这种可能性进行认真研究,并提出解决问题的相应方案及措施。

我国南方电网是以贵州、云南和天生桥电网为送端、通过天生桥至广东的三回500kV交流输电线路及一回500kV直流输电线路与受端广东电网相联的跨省(区)电网,2003年6月贵州—广东的双回500kV交流输电线路建成投运,南方电网形成了送端“五交一直”、受端“四交一直”的北、中、南三个西电东送大通道。

随着南方电网西电东送规模的进一步扩大,为提高这些输电通道的输送能力和全网的安全稳定水平及抑制系统低频振荡,经研究决定分别在平果与河池变电所装设可控串补(TCSC)及固定串补装置(FSC)。

通过对南方电网平果可控串补工程及河池固定串补工程进行的系统研究工作,作者对超高压远距离输电系统中,采用串联电容补偿技术可能引起的系统问题获得了比较全面的了解,并总结了解决这些问题的措施及方案。

研究结果表明,超高压输电线路加装串补后所引发的系统问题主要有过电压、潜供电流、断路器暂态恢复电压(TRV)及次同步谐振(SSR)等问题。

2 串补装置结构及其原理目前在电力系统中应用的串联电容补偿装置按其过电压保护方式可分为单间隙保护、双间隙保护、金属氧化物限压器(MOV)保护和带并联间隙的MOV保护四种串补装置。

带并联间隙的MOV保护方式的串补装置具有串补再次接入时间快、减少MOV容量及提供后备保护等优势,相对而言更有利于提高系统暂态稳定水平,因此目前在电力系统的串补工程中得到了比较广泛的应用。

其结构简图如图1所示[1]。

图中各元件的配合关系及其工作原理如下:(1)MOV是串联补偿电容器的主保护。

串补所在线路上出现较大故障电流时,串联补偿电容器上将出现较高的过电压,MOV可利用其自身电压–电流的强非线性特性将电容器电压限制在设计值以下,从而确保电容器的安全运行。

(2)火花间隙是MOV和串联补偿电容器的后备保护,当MOV分担的电流超过其启动电流整定值或MOV 吸收的能量超过其启动能耗时,控制系统会触发间隙,旁路掉MOV及串联补偿电容器。

(3)旁路断路器是系统检修和调度的必要装置,串补站控制系统在触发火花间隙的同时命令旁路断路器合闸,为间隙灭弧及去游离提供必要条件。

(4)阻尼装置可限制电容器放电电流,防止串联补偿电容器、间隙、旁路断路器在放电过程中被损坏。

3 串补装置引起的过电压问题串补装置虽可提高线路的输送能力,但也影响了系统及装设串补装置的输电线路沿线的电压特性。

如线路电流的无功分量为感性,该电流将在线路电感上产生一定的电压降,而在电容器上产生一定的电压升;如线路电流的无功分量为容性,该电流将在线路电感上产生一定的电压升,而在电容器上产生一定的电压降。

电容器在一般情况下可以改善系统的电压分布特性;但串补度较高、线路负荷较重时,可能使沿线电压超过额定的允许值。

河池及平果串补工程的线路高抗与串补的相对位置不同时,输电线路某些地点的运行电压可能超过运行要求。

例如,惠河线或天平线一回线故障时,如将高抗安装在串补的线路侧,则串补线路侧电压可达到561kV或560kV以上[2],均超过高抗允许的长期运行电压,因此在两工程中均建议将线路高抗安装在串补的母线侧以避免系统运行电压超标的问题。

在输电线路装设了串联电容补偿装置后,线路断路器出现非全相操作时,带电相电压将通过相间电容耦合到断开相。

河池FSC及平果TCSC工程中的惠(水)—河(池)及天(生桥)—平(果)线路上均已装设并联电抗器,如新增加的电容器容抗与已安装的高压并联电抗器的感抗之间参数配合不当,则可能引发电气谐振,从而在断开相上出现较高的工频谐振过电压[3]。

因此在这两个工程的系统研究工作中对串联电容器参数进行了多方案比选以避免工频谐振过电压的产生。

对这两个串补工程进行的过电压研究表明,由于惠河线及天平线两侧均接有大系统,无论惠河线或天平线有无串补,在线路发生甩负荷故障时,河池及平果母线侧工频过电压基本相同;仅在发生单相接地甩负荷故障时,串联电容补偿的加入使得单相接地系数增大,从而使线路侧工频过电压略有提高,但均未超过规程的允许值,不会影响电网的安全稳定运行。

4 串补装置对潜供电流的影响线路发生单相接地故障时,线路两端故障相的断路器相继跳开后,由于健全相的静电耦合和电磁耦合,弧道中仍将流过一定的感应电流(即潜供电流)[4],该电流如过大,将难以自熄,从而影响断路器的自动重合闸。

在超高压输电线路上装设串联电容补偿装置后,单相接地故障过程中,如串补装置中的旁路断路器和火花间隙均未动作,电容器上的残余电荷可能通过短路点及高抗组成的回路放电,从而在稳态的潜供电流上叠加一个相当大的暂态分量。

该暂态分量衰减较慢,可能影响潜供电流自灭,对单相重合闸不利;单相瞬时故障消失后,恢复电压上也将叠加电容器的残压,恢复电压有所升高,影响单相重合闸的成功。

根据对河池串补工程进行的研究:惠河线的惠水侧单相接地时,潜供电流波形是一个低频(f≈7Hz)、衰减的放电电流,电流幅值高达250-390A[5](见图2)。

断路器分闸0.5s后,该电流幅值仍可达200-300A,它将导致潜供电弧难以熄灭;如单相接地后旁路开关动作短接串联电容,潜供电流中将无此低频放电暂态分量[5](见图3)。

5 串补装置引起的次同步谐振问题在超高压远距离输电系统中采用串联电容补偿技术后,尤其是大型汽轮发电机组经串补(特别是补偿度较高时)线路接入系统时,在某种运行方式或补偿度的情况下,很可能在机械与电气系统之间发生谐振,其振荡频率低于电网的额定频率,称为次同步谐振,可通过含有串联电容补偿装置的单机对无限大线的输电系统[6](见图4)简述其原因。

图中,Ra为发电机定子电阻;XG为发电机等值电抗,XG=2πfLG,LG为发电机电感;RT为变压器电阻;XT为变压器电抗,XT=2πfLT,LT为变压器电感;R1为线路电阻;Xl为线路电抗,Xl=2πfLl,Ll为线路电感;Xc为串联电容电抗,Xc=1/2πfC,C为串联电容器电容。

由图4可知,串联系统的总阻抗与频率有关,即式中 L 为发电机、变压器及线路的电感之和。

由于输电线路中串联补偿度一般小于1,因此回路的电气谐振频率fe小于系统的额定频率fn ,因此称之为次同步谐振。

装有串联电容补偿的输电线路发生电气谐振时,同步发电机在谐振条件下相当于一感应电动机。

如任何冲击或扰动引起的次谐波电流在同步发电机内建立起旋转磁场,以2π(fe-fn)的相对速度围绕转子旋转时,转子将受到一频率为(fn -fe)的交变力矩的作用。

(fn -fe)等于或十分接近发电机轴系的任一自振频率时,就可能发生电气–机械共振现象。

大型多级汽轮发电机组轴系在低于额定频率范围内一般有4-5个自振频率,因此容易发生次同步谐振。

次同步谐振的后果较严重,能在短时间内将发电机轴扭断,即使谐振较轻,也会显著消耗轴的机械寿命。

美国MOHAVE电厂在1970年12月和1971年10月先后发生过两次次同步谐振,使两台300MW发电机组严重受损[6]。

河池及平果串补站建成后,南方电网的500kV西电东送输电系统中是否存在SSR问题必须予以深入研究。

通过频率扫描法可分析距离河池及平果串补站较近的系统中的汽轮发电机组(安顺电厂的300MW机组和盘南电厂的600MW机组)是否潜藏着发生次同步谐振的可能性[7]。

在此两机的机端向电网注入三相对称单位电流,在次同步振荡频率域内改变电流频率,计算系统的阻抗频率特性Z(jw),所得的阻抗频率曲线[5]见图5-7。

图中曲线1为电阻频率特性曲线,曲线2为电抗频率特性曲线。

阻抗性质(正负)发生突变的频率即为电网的电气串联谐振频率。

若此频率与发电机某一机械共振频率之和等于工频,则可判断为在此系统结构下可能发生次同步谐振。

由图5-7可见,在100Hz以下没有电气串联谐振点。

据此可以判断为安顺300MW机组和盘南电厂600MW机组不会因河池和平果装设串补站而发生次同步谐振。

6 串补装置对断路器暂态恢复电压的影响加装串联电容补偿的超高压输电线路故障时,如流过串补装置的短路电流很大,串补站的火花间隙将很快动作,电容器被旁路,线路断路器的恢复电压与无串补时接近;如流过串补装置的短路电流很小,串补站的火花间隙有可能不动作,而电容器的残压会使线路断路器的恢复电压大幅度提高,可能造成线路开关的损坏。

从对河池FSC及平果TCSC工程进行的系统研究来看,串联电容补偿装置的使用普遍提高了其所在超高压输电线路的断路器暂态恢复电压水平。

通过对串补所在线路单相接地故障、三相短路、两相短路及两相短路接地故障后断路器TRV的研究,断路器恢复电压提高幅度可达15%-20%。

尽管某些情况下断路器的开断电流和恢复电压上升陡度不大,但仍可导致线路断路器的TRV超标。

建议采取以下措施限制TRV的超标:单相重合闸重合前先将故障相电容器旁路,再重合故障相,然后在判定为非永久性故障情况下再接入该相串补装置;发生区内故障时,采取线路断路器和串补装置的火花间隙及可控硅阀联动措施,即要求线路两侧保护系统在启动线路断路器跳闸的同时,将串补的火花间隙击穿,且使火花间隙在线路断路器跳闸前放电。

采取上述措施前后的线路断路器各相断口恢复电压如图8、图9所示[7]。

限制TRV超标的关键措施是成功旁路串联补偿电容器。

如在开断故障线路前旁路短接电容器,则该线路就成为无串补的普通线路,断路器上的恢复电压自然就降下来。

一般在线路潮流较重或距离串补较近处发生故障时,通过MOV的电流或其吸收的能耗超过电流和能量启动值可强制触发火花间隙,使电容器退出。

但在串补所在线路的某些地方发生短路故障时,如惠水—河池线路0-70km范围内发生三永故障时,由于串联电容器残余电荷的放电,河池侧线路断路器的TRV超标,但此时MOV电流及MOV能量均未达到启动值,不会触发火花间隙。

建议在判断为区内故障时,立即强制触发旁路间隙,退出串补电容器,这将是解决线路断路器暂态恢复电压超标的有效方法。

但需注意,强制触发旁路火花间隙要求间隙两端电压大于火花间隙的最小触发电压。

从确保区内故障时成功触发火花间隙的角度来讲,串补装置的间隙最小触发电压应低一些。

但此值还受到其他因素(如间隙的自放电电压)的牵制。

火花间隙的最小触发电压和间隙的自放电电压密切相关, 前者随后者的增减而增减。

相关文档
最新文档