碳化硅导电陶瓷制备
溶胶凝胶法制备碳化硅陶瓷材料及其性能的研究

文 章 编 号 :0 19 3 (0 0 0 — 0 90 1 0 - 7 1 2 1 ) 10 6 -4
isF I 司) x at p—E 公 和 —c 能谱 仪 ( 国牛 津 I A 公 司) 英 NC 观察 竹炭 与制 备 的 SC陶 瓷材 料 的 表 面微 观 结 构 , i 及 进行 能谱 分析 ; 利用 岛津 S 7 0 一0 0型 x 射线衍 射 仪分 析 竹炭 和制 备 的 SC陶瓷材 料 的物 相变 化 ; 用 S 1 3 i 利 X 94 型数字 式 四探针 测试 仪测 试竹 炭和 不 同温 度下 制 备 的 SC陶瓷材 料 的导 电性 能 。 i
原 料 , 加少 量 的盐 酸和氨 水 , 在 一定 的条 件 下 制备 滴 并 二 氧化硅 溶胶 , 与竹 炭粉 、 粉按 照一 定 的 比例充 分 再 硅
混合 均匀 , 压成 型 , 1 0  ̄ 1 0 ℃ 、 气 氛下 经常 预 在 5 0 8 0 Ar 压 高温烧 结 反 应 0 5 , 后 制 得 竹 炭 基 SC 陶 瓷 材 .h最 i 料。 2 2 分 析与 检测 .
物理化 学结 构 变化 、 显微 结构 和 物相 变化 进行 了表征 , 并对 其吸 附性能 和导 电性 能进行 了试 验 。试验 结果表
明 , 竹炭 转 变为 SC的 高温 处理过 程 中, 学键 S— 在 i 化 i
碳化硅mosfet工艺制备过程

碳化硅MOSFET工艺制备过程1. 碳化硅简介碳化硅(Silicon Carbide,SiC)是一种半导体材料,具有优异的物理和化学性质,被广泛应用于各种高温、高电压和高频率的电子器件中。
碳化硅MOSFET是一种基于碳化硅材料制备的金属-氧化物-半导体场效应晶体管。
2. 制备过程概述碳化硅MOSFET的制备过程可以概括为以下几个步骤:1.硅衬底制备:选择高质量的硅衬底(Substrate),通常采用氮化硅或者氮化铝作衬底材料。
2.基底表面处理:对硅衬底进行化学处理,去除表面的氧化物和杂质,使基底表面变得干净平整。
3.硅衬底清洗:采用酸碱处理方法对硅衬底进行清洗,去除表面的有机和无机杂质,并提高衬底的电学性能。
4.硅衬底极柱制备:在硅衬底表面通过光刻和化学腐蚀等工艺步骤制备出硅衬底极柱(epi layer),用于形成MOSFET的源极和漏极。
5.氧化层形成:在硅衬底表面形成一层氧化层(Oxide Layer),通常采用湿法或干法氧化方法。
6.金属栅极制备:在氧化层表面通过物理气相沉积(PECVD)或热蒸发等方法,沉积金属薄膜,形成金属栅极(Gate Electrode)。
7.掩膜形成:通过光刻和蒸发等技术,制备出用于定义源极和漏极等结构的金属掩膜。
8.掺杂处理:采用离子注入或物理气相沉积等方法,向硅衬底中引入杂质,形成源极、漏极和通道区域,从而改变材料的导电性质。
9.金属电极制备:沉积金属薄膜并通过光刻和蒸发等工艺步骤制备源极和漏极等电极结构。
10.金属化层制备:通过蒸发和光刻等工艺,制备出金属化层,用于连接MOSFET的各个电极。
3. 制备过程详解3.1 硅衬底制备碳化硅MOSFET的制备过程通常从硅衬底的选择开始。
硅衬底材料应具有良好的晶体质量和电学性能,以确保器件的稳定性和性能。
目前常用的硅衬底材料有氮化硅和氮化铝。
选择合适的硅衬底材料是确保碳化硅MOSFET制备成功的关键。
3.2 基底表面处理硅衬底经过切割和打磨等工艺后,表面可能存在一些氧化物和杂质。
导电陶瓷

固相烧结法是一种制备陶瓷材料的传统方法,将陶瓷原料粉末混 合均匀后压制成形,在高温下无压(或有压)烧结,随炉冷却后便得 到所需的陶瓷材料。
王春华等人[6]采用常压法获得致密的碳化硅烧结体,体积密度为 3.12g/cm3, 电阻率为0.165Ω·m;该陶瓷在300~600℃温度范围内 表现出明显的负电阻率温度系数。为提高导电陶瓷的导电能力,常对 陶瓷进行掺杂。刘汉忠研究了Ce 掺杂La0.5-xCexBa0.5CoO3陶瓷时, 发现该陶瓷材料是一种电子、空穴和氧离子混合导电的陶瓷材料; La0.5-xCexBa0.5CoO3的x 在0.1~0.5 变化时,电阻率ρ随Ce的掺杂 量增加而单调上升。图2 给出了烧结温度为1080℃和1100℃时,样品 的室温电阻率ρ(mΩ/cm)与Ce的加入量x的关系。
吴敏艳等人[2]采用溶胶- 凝胶法制备了粒径为30~60nm 的超细 粉,采用速控烧结制度在较短的烧结时间里获得相对密度为98%、平 均晶粒度小于1μm 的致密陶瓷。王歆等人[3]用溶胶-凝胶法,在Al2O3 衬底上制备了导电性能优良的BaPbO3(BPO)导电薄膜。研究发现,升 高热处理温度和增加热处理次数使薄膜中Pb/Ba摩尔比降低和膜厚减
2.3 化学气相扩渗法
为改善陶瓷的导电性能,通常在制备前躯体时掺入其它元素,如 郝素娥等人[8]采用气相化学热扩渗的方法,使稀土元素有效地渗入到 钛酸铅陶瓷中,在陶瓷结构中形成了均匀、细小、弥散的形貌结构特 征;稀土扩渗使钛酸铅基陶瓷的导电性显著增强,其室温电阻率下降 为0.2Ω·m。
2.4 微波烧结法
3 SnO2 基导电陶瓷靶材的制备及应用性能表征 3.1 Sb∶SnO2(ATO)陶瓷靶材的制备
选用纯度为 99.99%氧化锡粉体(国药集团化学试剂有限公司 99.99%氧化锑粉体(国药集团化学试剂有限公司)为原料,采用Sb2O5 的掺杂量为6%(wt) 进行配样,选用无水乙醇作粘结剂,将得到的 SnO2混合粉末在无水乙醇充分球磨6小时(球磨机型号:XQM 型变频 行星式球磨机),接着在干燥箱80℃下烘干,保持一定的湿度,具有 好的流动性,然后采用型号为769YP-40C 粉末压片机进行成型,压成 φ56mm×6.5mm 的坯体,所得坯体再次采用冷等静压法压成靶材素 坯。最后采用常压、空气烧结方式,德国NaberTherm 公司的HTRV 系 列高温炉烧结。采用的是图5烧结方案进行烧结。此方案在200℃保温 30min,600℃保温60min,1000℃保温60min,然后升温到最终烧结温 度的1250℃保温300min,然后随炉冷却。采用此烧结程序符合物质的 烧结规律,在进入烧结初期时,在200℃保温半个小时,物料自由水 分更有利于挥发;在600℃保温一个小时,各种杂质例如有机物已经 完全挥发,更能让物质进入烧结期做充分准备;在进入烧结中期时, 在1000℃时进行保温一个小时,物质有完全充分的时间进入烧结中 期,缓慢进入烧结终点温度,最后在烧结终点温度1250℃时保温五个 小时,物质充分反应,这种烧结曲线更加符合物质的烧结模型,与文 献的报道是相似的。
sic陶瓷常压烧结

sic陶瓷常压烧结以"SIC陶瓷常压烧结"为题,本文将介绍SIC陶瓷的常压烧结工艺和特点。
1. 引言SIC(碳化硅)陶瓷是一种具有优异性能的工程陶瓷材料,其主要特点包括高硬度、高强度、耐高温、耐腐蚀等。
而常压烧结是一种常用的SIC陶瓷制备工艺,本文将从工艺流程、工艺条件以及材料特性等方面介绍SIC陶瓷常压烧结的相关内容。
2. 工艺流程SIC陶瓷常压烧结的工艺流程主要包括原料制备、成型、烧结和表面处理等步骤。
首先,将SIC粉末与其他添加剂按一定比例混合,并经过球磨等工艺进行均匀混合,以提高材料的致密性。
然后,将混合料进行成型,常见的成型方法有压制、注塑和挤出等。
成型后的坯体需要经过干燥处理,以去除水分和有机物。
接下来,将干燥后的坯体进行烧结,烧结温度一般在1900~2200摄氏度之间,烧结时间根据陶瓷的要求而定。
最后,通过机械加工和表面处理,得到符合要求的SIC陶瓷制品。
3. 工艺条件SIC陶瓷常压烧结的工艺条件对于制备高质量的陶瓷制品非常重要。
其中,烧结温度是影响陶瓷致密性和晶粒尺寸的关键因素,过低或过高的温度都会影响烧结效果。
此外,烧结时间也会对陶瓷的性能产生影响,过短的时间可能导致烧结不完全,而过长的时间则会导致晶粒长大。
此外,压制力和添加剂的选择也会对烧结效果产生影响。
4. 材料特性SIC陶瓷常压烧结后,具有许多优异的特性。
首先,SIC陶瓷的硬度非常高,仅次于金刚石和立方氮化硼。
其次,SIC陶瓷具有优异的耐高温性能,可在高达1600摄氏度的温度下长时间稳定工作。
此外,SIC陶瓷还具有良好的耐腐蚀性能,可在酸、碱等恶劣环境下使用。
而且,SIC陶瓷的导热性能也非常好,可用于高温传热领域。
此外,SIC陶瓷还具有良好的机械性能和尺寸稳定性,可用于制备精密零部件。
5. 应用领域SIC陶瓷常压烧结后,可以应用于众多领域。
在机械工程领域,SIC 陶瓷常用于制造轴承、密封件、喷嘴等零部件。
现代陶瓷材料7-碳化物陶瓷

对烧成的碳化物陶瓷进行切割、磨削等机械加工,以满足其使用要求。
04
碳化物陶瓷的性能优化
添加物对碳化物陶瓷性能的影响
01
02
03
增强剂
添加如碳化硅、氮化硅等 增强剂可以提高碳化物陶 瓷的强度和韧性,降低其 脆性。
稳定剂
添加适量的稳定剂如氧化 铝、氧化锆等可以改善碳 化物陶瓷的抗热震性能, 提高其使用温度。
碳化锆陶瓷的制备工艺主要包括反应烧结、热压烧结和溶胶-凝胶法等, 不同的制备工艺会影响碳化锆陶瓷的性能和应用。
03
碳化物陶瓷的生产工艺
原料选择与制备
原料选择
选择高纯度、高耐热性、高硬度的原材料,以确保碳化物陶 瓷的性能。
原料制备
将原材料进行精细研磨、混合、筛分等处理,以获得均匀的 原料粉末。
成型工艺
干压成型
通过干压成型技术将粉末制成所需形 状的生坯。
注射成型
利用注射成型技术将粉末与粘结剂混 合后注入模具中,形成生坯。
烧成工艺
烧成温度
根据不同的碳化物陶瓷材料,选择适当的烧成温度,以确保陶瓷的性能。
烧成气氛
在烧成过程中控制气氛,如氧化、还原、中性等,以获得所需的陶瓷性能。
后处理工艺
表面处理
对碳化物陶瓷表面进行涂层、抛光等处理,以提高其耐磨、耐腐蚀等性能。
碳化物陶瓷的特性
01
02
03
04
高硬度
碳化物陶瓷的硬度仅次于金刚 石,具有极高的耐磨性和耐划
痕性能。
高温稳定性
碳化物陶瓷具有出色的耐高温 性能,能够在高温环境下保持
稳定的物理和化学性质。
良好的化学稳定性
碳化物陶瓷对酸、碱、盐等化 学介质具有良好的抗腐蚀性,
钛碳化硅陶瓷制备方法综述

的 区域传 播 , 至反 应完 全 。 直 P rp c aa u h等 [ 以钛 、 和 碳 黑 为 原 料粉 , ¨ 硅 采
用化 学计 量法 配成 混合 粉 后 , 入 石 墨 坩埚 中进 行 装
冷压 球化 , 很 快 的 将样 品从 8 0 加 热 到 12 ~ 并 0℃ 00 18 ℃使 得 混 合 粉 能 够 点 燃 燃 烧 , 终 燃 烧 合 成 00 最
T 。 iz 有特殊 的复 合 性 能 : 金 属 , 优 越 i C具 S 像 有 的机 械性 能 , 良好 的导 电性和 导热性 , 有 对热 冲击不
敏感 ; 温下 有好 的塑 性 行 为 , B、 石 墨类性 质 高 像 N、
是一种 年轻 的陶 瓷材 料 , T —S —C三 元 系 中化 是 i i
维普资讯
第2卷 3
第1 O期
甘 肃科技
Ga u Sc e e a d Te h l gy ns inc n c no o
Z 23 N 0 0 . .1
20 0 7年 1 0月
Oc. 2 0 t 07
钛 碳 化 硅 陶瓷 制备 方法 综 述
来 获得 复合材 料 。Ni l c 等 3 Goo等…3 别 在 k 和 t 分 17 9 2年和 1 8 9 7年报 道 了利 用 SC Ti l、 l i l、 C CC 作
为 原料 , 用 C D法 制备 出 T 。 i:陶瓷 材料 。实 采 V iSC 验在 C VD炉 内进行 , 合气 氛 气 压 达 4 P , 积 混 0k a 沉 温 度为 17  ̄17 ℃ , 2 0mm/ 53 83 以 0 h速度 沉 积 , 长 在 4 mm, 1 0 宽 2 mm, 0 4 厚 . mm 的 小 片 上 沉 积 制 得 T3i2 i C 材料 。 S () 2 多步骤 合成工艺 法 多 步骤合 成工艺 是利用 物理 、 化学 的方 法 , 过 经 多步 的处理 , 除去材料 中 的杂质 相 , 最终 获得 纯态组
反应烧结碳化硅

反应烧结碳化硅引言反应烧结碳化硅(Reaction-Bonded Silicon Carbide,简称RBSC)是一种重要的陶瓷材料,具有优异的物理和化学性能,广泛应用于各个领域。
本文将详细介绍反应烧结碳化硅的制备方法、性能特点以及应用领域。
制备方法反应烧结碳化硅的制备方法主要包括以下几个步骤:1.原料准备:选用高纯度的硅粉和碳粉作为原料。
硅粉的粒径一般控制在1-100微米之间,碳粉的粒径一般控制在0.1-10微米之间。
2.混合:将硅粉和碳粉按照一定的比例混合均匀。
混合过程中可以添加一定的结合剂,以提高材料的成型性能。
3.成型:将混合均匀的粉末通过压制、注模等方式成型。
常用的成型方法包括压制成型、注浆成型、挤出成型等。
4.烧结:将成型后的坯体进行烧结处理。
烧结温度一般在1400-1600摄氏度之间,烧结时间一般在2-4小时。
5.反应:在烧结过程中,碳粉与硅粉发生反应生成碳化硅。
碳化硅填充了硅粉颗粒之间的空隙,从而形成了致密的陶瓷材料。
6.后处理:对烧结后的陶瓷材料进行后处理,包括研磨、抛光、清洗等步骤,以提高材料的表面质量和性能。
性能特点反应烧结碳化硅具有以下主要性能特点:1.高硬度:反应烧结碳化硅的硬度接近于金刚石,约为HRA90-95,是传统陶瓷的5-10倍。
2.优异的耐磨性:反应烧结碳化硅具有良好的耐磨性,可用于制作耐磨零件,如轴承、密封件等。
3.优异的耐高温性:反应烧结碳化硅的耐高温性能优异,可在高温下长时间稳定工作。
4.良好的化学稳定性:反应烧结碳化硅对酸、碱等化学物质具有较好的稳定性。
5.低密度:反应烧结碳化硅的密度较低,约为3.02g/cm³,比金属轻。
6.高热导率:反应烧结碳化硅具有较高的热导率,可用于制作散热器等热管理器件。
7.优异的绝缘性能:反应烧结碳化硅具有良好的绝缘性能,可用于制作绝缘部件。
应用领域反应烧结碳化硅具有广泛的应用领域,主要包括以下几个方面:1.机械工程领域:反应烧结碳化硅可用于制作耐磨零件,如轴承、密封件、刮板等,用于提高设备的耐磨性和使用寿命。
sic陶瓷电阻率

sic陶瓷电阻率在现代材料科学领域中,碳化硅(SiC)陶瓷以其独特的物理和化学性质,特别是在高温、高频和高功率环境下的卓越性能,成为了研究的热点。
其中,SiC陶瓷的电阻率作为其电学性能的关键指标,对于其在电子器件中的应用具有决定性的影响。
本文旨在深入探讨SiC陶瓷的电阻率特性,分析其影响因素,并展望其在未来科技领域中的应用前景。
一、SiC陶瓷及其电阻率概述SiC陶瓷是由碳和硅元素通过共价键结合而成的陶瓷材料。
其晶体结构中的强共价键使得SiC具有极高的硬度、优异的热稳定性和化学稳定性。
在电学性能方面,SiC 陶瓷的电阻率远高于传统陶瓷材料,且随着温度的升高,其电阻率的变化较小,这使得SiC陶瓷在高温电子器件中具有广阔的应用前景。
电阻率是衡量材料导电性能的重要参数,它表示单位体积或单位截面积的材料对电流的阻碍能力。
对于SiC陶瓷而言,其电阻率的大小不仅取决于材料的成分和微观结构,还受到温度、压力等外部条件的影响。
二、SiC陶瓷电阻率的影响因素1. 杂质与缺陷:SiC陶瓷的电阻率在很大程度上受到材料中杂质和缺陷的影响。
在生产过程中,杂质的引入或晶格缺陷的产生都会改变材料的电子结构,从而影响其导电性能。
例如,氮、铝等杂质的掺入可以有效地提高SiC陶瓷的电阻率。
2. 温度:温度是影响SiC陶瓷电阻率的另一个重要因素。
一般来说,随着温度的升高,材料的电阻率会降低。
然而,由于SiC陶瓷的强共价键结构,其电阻率随温度的变化相对较小,这使得SiC陶瓷在高温环境下仍能保持较好的导电性能。
3. 晶体结构:SiC陶瓷存在多种晶体结构,如立方晶系、六方晶系等。
不同晶体结构的SiC陶瓷在电阻率上表现出明显的差异。
这主要是由于不同晶体结构中的原子排列方式不同,导致电子在材料中的传输路径和散射机制不同。
4. 外界压力:外界压力的变化也会对SiC陶瓷的电阻率产生影响。
在高压环境下,材料的晶格常数和原子间距会发生变化,从而影响电子的传输性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
碳化硅导电陶瓷制备
碳化硅(SiC)导电陶瓷是一种高性能的陶瓷材料,具有优异的导热性和机械性能。
以下是一般碳化硅导电陶瓷的制备过程:
1. 原材料准备:制备碳化硅陶瓷的第一步是准备原材料。
通常使用的原料包括硅粉(SiO2)和碳源(通常是石墨)。
这些原料通过粉碎和混合的过程得到均匀的混合物。
2. 混合和研磨:将硅粉和碳源混合,确保均匀分布。
混合物然后经过机械研磨,以确保颗粒的均匀分散,形成均匀的混合粉末。
3. 成型:将混合粉末放入模具中,通过压制或注射成型,形成所需形状的坯体。
成型压力和温度是关键参数,影响着成型体的密度和机械性能。
4. 干燥:成型后的坯体需要进行干燥,以去除水分和挥发性成分。
这一步通常在较低的温度下进行,以防止坯体裂开或发生变形。
5. 硬化:干燥后,将坯体进行硬化处理。
这通常包括高温烧结或热处理,将混合物中的硅和碳进行反应,形成碳化硅结构。
6. 烧结:硬化后的坯体需要进一步烧结,以提高材料的致密度和机械性能。
这通常在高温下进行,使碳化硅晶体得到进一步的生长和结晶。
7. 加工和整形:经过烧结后,陶瓷坯体可能需要进行加工和整形,以获得所需的尺寸和表面质量。
这可能包括磨削、切割、抛光等工艺。
8. 涂层和导电性处理:根据应用要求,碳化硅陶瓷表面可能需要进行涂层或导电性处理,以提高其导电性能。
以上步骤中的参数如温度、压力和处理时间等,都需要根据具体材料和制备工艺进行调整,以确保最终碳化硅导电陶瓷具有优异的性能。