力学基础1

力学基础1
力学基础1

第一篇力学基础

第1章结构力学发展简史

§1.1 溯源古代工程实践

结构力学是随着人类文明和生产的发展、在工程实践基础上逐步形成,并不断开拓进展的一门力学分支。结构力学诞生至今已100多年,但人们的工程实践却经历了几千年[1]。

在建筑结构方面,根据浙江余姚河姆渡新石器时代遗址考古发现,早在六千年前,我们祖先就已经建造了木框架结构房屋(木构件分为桩、柱、梁、板,采用榫卯联接),逐渐告别利用天然结构巢居和穴居的原始状态。三千年前《周礼》中的《考工记》就已经记载了各种建筑的形式和制式。在汉代王延寿的《鲁灵光殿赋》中曾出现“结构”这一专有名词[2]。

在水工结构方面,公元前256-251年秦朝修建的岷江水利枢纽工程都江堰创造了用竹笼装卵石堆砌的堤坝结构,使用至今。其结构之简单,规模之宏伟,堪称世界之最。

在桥梁结构方面,我国三大名桥、三大发明:公元605-617年隋朝修建的河北赵县安济桥(也称赵州桥)为敞肩石拱桥,造型优美、结构合理。此外,宋代的广东潮州广济桥(开关活动式)和福建泉州万安桥(即洛阳桥,筏形基础,砺房胶固),其独特结构型式在世界上都绝无仅有。

图1.1.1 都江堰水利枢纽工程图1.1.2 隋朝河北赵州桥

当然,古代工程结构是根据经验和粗略计算建造的,历尽失败,留存至今的只是少数的成功典范。我国虽然也留下许多宝贵文献,如东周时的《考工记》、北宋时的《营造法式》、明代的《鲁班经》,但当时还没有系统的结构分析理论。古埃及人的金字塔和古希腊人的女神庙著称于世,他们在将建筑技术向前推进时发展了静力学法则。有伟大建筑师美誉的古罗马人在建筑物中广泛采用半圆拱形。可惜希腊人和罗马人在建筑工程中所积累的许多知识大部分在中古时代失传。

图1.1.3 雅典神庙图1.1.4古罗马半圆拱建筑

随着人类文明的发展,结构种类趋于多样化和复杂化,结构的概念也在扩展,不仅把人造的能够承受荷载的固体构件及其体系称之为结构,而且广义地把能够承载的自然物,如动植物骨骼、血管、根茎叶,地球的地壳、岩体都视为结构。但结构的发展却离不开组成结构的材料和结构力学原理。

§1.2 从“萌芽”到“独立”

15至16世纪,欧洲文艺复兴时期,科学事业有了转机,力学在欧洲萌芽[3]。

文艺复兴时代的杰出代表画家里奥纳多·达·芬奇对力学的贡献鲜为人知。他应用虚位移原理的概念分析各种用在起重机具上的滑轮和杠杆系统,而且已经有了拱产生横向推力的正确概念。他在笔记中画出了结构材料强度实验草图。他研究梁的强度时提出一个“距支点最远处,弯曲最大”的普遍原理。他在手稿中研究讨论了柱所能承受的荷载。达·芬奇的成就表明他是最先用实验来决定结构材料强度的人,或许还是最先试图用静力学来求作用于构件上的力的人。在他诞辰550周年时,中国隆重纪念这位伟人,当然还因他在其它领域的许多成就。可惜他的成就和倡导一直被埋没在它的笔记手稿里,这时期的工程师们仍和古罗马时代一样,继续凭经验和武断来决定构件的尺寸。

17世纪,人们才开始研究材料强度,尝试用解析法来求构件的安全尺寸。伽利略1638年出版的名著《两种新的科学》正式宣布作为弹性变形体力学的材料力学诞生。最早研究的结构元件是梁。伽利略考查了固定端悬臂梁的承载能力的问题,雅可比·伯努利关于梁的研究结果就是现今人们常用的伯努利梁理论。18世纪的工业革命更促进了单根构件强度和稳定性研究。

进入19世纪后,随着资本主义经济发展和大型厂房、船舶、堤坝、铁路桥梁的兴建,提出更为复杂的结构计算问题,促进了板壳理论形成,以及桁架、连续梁、拱、吊桥、弹性地基梁、挡土墙等计算理论的诞生,奠定了结构分析的理论基础。

1850年克希霍夫(G. R. Kirchhoff)采用虚位移原理推导板的边界条件,纠正了以往的错误,并正确求解了圆板的振动问题,他提出的“直法线假设”一直沿用至今。1888年拉甫(A. E. H. Love)利用克希霍夫对平板问题的假设导出了弹性薄壳的平衡方程。

随着近代工业的发展,已不满足于单个构件的精确计算,而转向研究复杂结构系统内力与变形的分析问题。纳维叶(Navier)在1825年就给出连续梁三弯矩方程的雏形,但现用的三弯矩方程却是克拉贝隆(B. P. E. Clapeyron)1949年在巴黎附近建桥时发展的,八年后才以论文形式发表。1864年麦克斯韦(J. C. Maxwell)总结了对桁架的研究,他用简化的图解法求静定桁架的内力;对于超静定桁架,他则从能量法导出解超静定结构的一般方法。十年之后,这个方法被后来者莫尔(O. Mohr)整理成目前通用的“力法”。1868年文克尔(E. Winkler)将影响线概念应用在拱里,并利用最小功原理研究了拱内压力线。莫尔对拱的理论的贡献是他在1870年的论文中提供了一个分析拱的图解法。意大利人卡斯提安诺(A. Castigliano,1847~1884)1873年在他的工程师学位论文中包含了不朽的卡氏定理和单位荷载法等理论成果,提出广义力和广义位移的新概念,构成了经典结构力学的重要内容。他虽然英年早逝,但对于应变能方面的透彻研究,令人赞叹。

19世纪中叶,结构力学(也称结构理论)实际上已从力学中独立出来成为一门学科。

§1.3 近代的发展与飞跃

19世纪末,随着钢结构广泛应用,进一步推动结构分析理论的发展,建立了利用能量原理计算结构位移和应用力法计算超静定结构的一般理论,但主要的发展是桁架分析。假定各结点均为理想铰结,从而使所有构件只承受轴力,得出满意的解析式。

20世纪初,随钢筋混凝土框架结构型式的出现,又诞生了与高次超静定结构相适应的

新的计算理论和方法,如位移法和力矩分配法。系统地使用刚性结点转角作为未知量来分析框(刚)架结构应归功于本笛克森(A. Bendixen)1914年给出的角变位法。在刚架结构的结点线位移可以忽略时,利用端部力矩方程式求得系统所有各杆的杆端弯矩。30年代初,公认由克劳斯(H. Cross)提出逐次渐近法(即力矩分配法),首先在美国得到广泛应用。预应力大师、美籍华人林同炎教授对该法的改进也功不可没。

由于建筑工程使用钢筋混凝土,拱的结构形式又被广泛采用,特别是在桥梁工程上采用无铰拱。对于三次超静定体系,库尔曼(K. Culmann)发展了弹性中心法,使力法方程解耦。在具有连结梁的拱中,笛兴格尔(F. Dischinger)建议使用钢缆将它们拉紧,大大减低了由恒载和混凝土收缩所产生的弯矩,这就是目前已在结构物中普遍采用的预应力法。

拱坝的大量使用使工程师们遇到了求解变厚度壳的极复杂的应力分析问题。美国1929年提出一种称为“拱贯梁”的近似法,用一个水平拱系和一个竖立悬臂梁系迭加起来代替拱坝,用试算法分配荷载,使各点挠度的径向分量在拱上和在悬臂梁上数值相等,便得到近似解。该法如同弹性力学中楔形体的李维解答用于重力坝,都曾在历史上起过重要作用,但步入计算机时代后,已被有限元法所取代。

20世纪中叶还发展了考虑塑性的结构计算理论、结构稳定计算和结构动力学计算理论。

吊桥理论的发展使美国出现跨千米的巨大吊桥,其中“重力刚度”的发现是一大进步。动荷载下铁路钢轨应力分析的弹性基础梁方法,船舰加劲板的压屈以及船舰在波浪中振动的理论研究都是结构力学进入20世纪以来的标志性发展。

1945年电子计算机的问世和广泛应用使结构分析如虎添翼,计算能力跃上一个新的台阶,出现以计算机为工具的结构矩阵分析法(即杆件系统的有限单元法)。为适应计算机的特点也发展了新的计算方法,形成力学、数学、工程学、计算机科学的交叉学科计算结构力学。借助计算机还发现了奇怪吸引子与混沌现象。

在适应计算机求解力学等问题方面,最成功的莫过于有限元方法的产生与发展。尽管有限元法的思想可以追溯得更早,甚至与我国东汉刘徽的割圆术相提并论,但不争的事实是,50年代中期世界各国都有一批学者在思考用电子计算机求解结构力学与连续介质力学问题,除了明确由克劳夫(R. W. Clough)1960年命名外,很难说有限元法是哪一个人的发明。1963年威尔逊(E. L. Wilson)完成了世界上第一个解决平面弹性力学问题的通用程序。之后,结构分析的有限元软件迅速发展,新单元和新求解方法的不断出现,以及网格自动剖分等前后处理的研究,大大加强了有限元法的解题能力,使有限(单)元法逐渐趋于成熟。

§1.4 现代的广义结构力学

目前结构力学已进入有史以来发展最快的时期,其应用范围之广、应用水平之高已达到前所未有的程度。近年来,结构日趋复杂化,以新技术、新材料为主要特征的大跨度的薄壳结构、折板结构、悬索结构、张力结构、悬挂结构纷纷问世,网架结构、复合材料结构、充气结构层出不穷,大批超高层结构相继建成,大型水利工程和地下工程结构等复杂结构计算和非线性分析硕果累累。近年来,一种能在电信号刺激下迅速作出应变反应的智能材料出现,并开始用于结构,而对于智能结构的研究正方兴未艾。总之,结构力学充满着生机和活力,已不再囿于经典的杆系结构力学的研究范畴,正向着现代的广义的结构力学方向发展[4]。

计算机登上历史舞台后,现代结构力学的研究层次已从被动分析发展到主动优化设计,从而进入结构状态控制,即进行结构特征识别、设计方案优化、施工使用中工作状态与结构参数的调整控制。通常这类问题是非线性的,而且计算量非常大,还可能遇到分叉的问题,只有借助于计算机和更新的解法才能解决。近年来,还发展了考虑荷载和结构本身所具有的各种不确定因素(如随机性、模糊性和未确定性)的分析,出现了不确定有限元分析、不确

定性振动理论和广义可靠度理论。总之,结构力学从狭义到广义,从被动到主动,从确定到不确定,并与结构工程渗透融合为软科学的发展趋势已不容忽视[5]。

现代广义结构力学包括的范围很广,其发展的重点之一是工程各个阶段的规划、决策和设计问题。将工程项目从论证到设计,从施工到使用期维护的整个过程作为大系统,研究其中的各种力学问题,并与工程理论相结合,有可能成为未来工程科学的核心。

§1.5 结构力学与结构工程

目前,我国的结构力学正在迅速赶超世界先进水平。结构力学与其它力学学科不同,它与结构工程联系更为紧密,其基本概念、基本理论和基本方法也是预应力结构、钢筋混凝土结构、钢结构、地基基础和结构抗风抗震设计等工程结构理论的基础。当前涌现的各种计算机辅助设计软件,其核心计算部分的基本理论和方法也都以结构力学为基础;结构分析成果作为各类结构的设计依据,正发挥其巨大作用。

我国近年来的结构工程成就举世瞩目。在桥梁结构工程方面,1975年中国开始的斜拉桥工程,从跨径76m的四川云阳桥到跨径602m跃居世界第一的上海杨浦斜拉桥(图1.5.1),经过18年的追赶,终于达到国际领先水平,靠的就是结构理论与工程实践的相结合。虽然法国的诺曼底大桥两年后将跨度推进至865m,紧接着日本的多多罗大桥又将跨度推进至890m,但正在苏州兴建的跨度为1088m的苏通斜拉桥将再次刷新世界纪录,显示中国工程界的实力与水平。悬索桥建设更是突飞猛进,江阴长江公路悬索桥以1385m跨径,跻身世界第四,而且更大的扬州润扬悬索桥正在建设中。浦江上正建造的世界第一钢结构拱桥卢浦大桥(跨径550m)已成功合龙(图1.5.2),它将打破由澳大利亚悉尼桥和美国新河谷桥相继保持几十年的世界纪录。

图1.5.1上海杨浦斜拉桥图1.5.2世界第一拱——卢浦大桥

在建筑结构方面,88层高达420m的上海金茂大厦(图1.5.3)在世界摩天大楼中曾名列亚洲第一、世界第三;广东国际大厦主楼采用筒中筒钢筋混凝土结构,突破材料局限,建成63层,高度达197m的超高层建筑;东方明珠上海电视塔由巨型空间框架串连复杂网壳球体组成,高462m,是亚洲第一、世界第三的高塔;天津体育中心赛馆采用双层球型网壳结构,直径135m,覆盖面积1.43万㎡,创亚洲最大穹顶。在水工结构方面,继葛洲坝和小浪底水利枢纽工程之后,举世闻名的三峡水利工程进入紧张的施工阶段(图1.5.4),圆了中国几代人的梦。

20世纪70年代,控制理论和控制技术的提出和进展,已在结构工程防灾减灾方面往智能化结构方向迈出了可喜的一步,这是结构工程领域的高科技课题,也是现代广义结构力学研究的新范畴。它在广大学者和工程技术人员的关注和参与下,必将得到迅速发展。

图1.5.3 上海金茂大厦 图1.5.4 施工中的三峡水利工程

力学基础知识点

一.力的基本概念 (一)二力平衡 定义:物体在两个力的作用下能保持静止或匀速直线运动状态,则称这两个力是一对平衡力,或叫作二力平衡。 1)两力平衡的条件:①作用在一个物体上;②大小相等;③方向相反;④作用在同一直线上。 2)两个平衡的力的合力为零。 3)二力平衡的结果:物体保持静止状态或做匀速直线运动状态。 4)注意:物体在不受力或受到平衡力作用下都会保持静止状态或匀速直线运动状态。(二)惯性 惯性:物体保持运动状态不变的性质叫惯性。牛顿第一定律也叫做惯性定律。 ①惯性是物体的固有属性,一切物体在任何情况下都具有惯性。 ②惯性的大小只与物体的质量有关,而与物体是否运动、运动的快慢、是否受外力等都没有关系。 ③注意:惯性不是“力”,叙述时,不要说成“物体在惯性的作用下”或“受到惯性的作用”等说法。 (三)牛顿第一定律 牛顿第一定律:一切物体在没有受到外力作用的时候,总保持静止状态或匀速直线运动状态。 1)它包含两层含义①静止的物体在不受外力作用时总保持静止状态; ②运动的物体在不受外力作用时总保持匀速直线运动状态。 2)牛顿第一定律是理想定律。 3)物体不受力,一定处于静止或匀速直线运动状态,但处于静止或匀速直线运动状态的物体不一定不受力。 另:牛顿第一定律是在经验事实的基础上,通过进一步的推理而概括出来的,因而不能用实验来证明这一定律。 (四)力的合成 力的合成:已知几个力的大小和方向,求合力的大小和方向叫做力的合成。 1)当二力方向相同时,其合力的大小等于这两个力之和;方向与两力的方向相同; 数学表述:F合=F1+F2。 2)当二力方向相反时,其合力的大小等于这两个力之差,方向为较大力的方向; 数学表述:F合=F1-F2(其中:F1>F2)。 (五)合力 合力:如果一个力产生的效果跟两个力共同作用产生的效果相同,这个力就叫做那两个力的合力。 理解:①合力的概念是建立在“等效”的基础上,也就是合力“取代了分力,因此合力不是作用在物体上的另外一个力,它只不过是替了原来作用的两个力,不要误认为物体同时还受到合力的作用。②两个力合成的条件是这两个力须同时作用在一个物体上,否则求合力无意义。(六)摩擦力 1)摩擦力定义:两个互相接触的物体,当它们要发生或已经发生相对运动时,就会在接触面是产生一种阻碍相对运动的力,这种力就叫摩擦力。 2)摩擦的种类:滑动摩擦、滚动摩擦、静摩擦。滚动摩擦力远小于滑动摩擦力。 3)滑动摩擦力的影响因素:①与物体间的压力有关;②与接触面的粗糙程度有关; ③与物体的运行速度、接触面的大小等无关。压力越大、接触面越粗糙,滑动摩擦力越大。

工程力学基础知识

工程力学基础知识 第1篇 静力学 1、平面汇交力系平衡的充要条件是该力系的合力等于零。即: ∑∑==0,0y x F F 2、平面汇交力系简化的依据是平行四边形法则。 3、平面汇交力系可列2个独立方程,求解2个未知量。 4、在平面问题中力对点之矩不仅与力的大小有关而且与矩心位置有关。(方向:绕矩心逆正顺负) 5、合力矩定理:平面汇交力系的合力对于平面内任一点之矩等于所有分力对于该点之矩的代数和。 6、力和力偶是静力学的两个基本要素。 7、平面力偶系的合成结果是一个力偶,汇交力系的合成结果是一个力。(注:力只能与力平衡;力偶只能与力偶平衡) 8、平面力偶系平衡的充要条件是:力偶系中各力偶矩的代数和为零。即 :∑=0i M 9、平面任意力系简化的依据是力线平移定理。 10、力线平移定理揭示了力与力偶的关系。 11、平面任意力系可列3个独立方程,求解3个未知量。 第2篇 材料力学 1、杆件的四种基本变形:轴向拉伸或压缩、剪切、扭转、弯曲 2、为使杆件能正常工作应满足(三个考虑因素):强度要求、刚度要求、稳定性要求。

3、材料力学对变形固体所做的四个基本假设:连续性假设、均匀性假设、各向同性假设、小变形假设。 4、求内力的方法为截面法。 轴向拉压部分 5、轴向拉压的受力特点:外力合力的作用线与杆的轴线重合。 轴向拉压的变形特点:杆件产生沿轴线方向的拉伸或压缩。 6、轴向拉压杆横截面上的内力为轴力(符号N F ),该力产生正应 力σ,公式为:A F N =σ,其中A 为横截面面积。 7、圣维南原理:应力分布只在力系作用区域附近有明显差别,在离开力系作用区域较远处,应力分布几乎均匀。 8、低碳钢拉伸的四个阶段:弹性阶段、屈服阶段、强化阶段、局部变形(颈缩)阶段。 9、衡量材料塑性的指标:伸长率和断面收缩率。 10、拉压杆强度计算的三类问题: (1)校核: []σσ≤??? ??=max max A F N (2)设计截面尺寸:A F A N ≥ (3)确定许可荷载:[]A F ?≤σ 11、拉压杆变形:EA Fl l =? 扭转部分 12、扭转时外力偶矩的计算公式:n P M k e 9549 =,其中k P 单位为kw ,n 单位为min r 。 13、扭矩正负号判断:右手定则(具体见教材145页)。

“力学基础实验”学前诊断

“力学基础实验”学前诊断 1.[ 如图1是用游标卡尺测量时的刻度图,为20分度游标尺,读数为:__________cm。图2中螺旋测微器的读数为:________mm。 解析:20分度的游标卡尺,精确度是0.05 mm,游标卡尺的主尺读数为13 mm,游标尺上第15个刻度和主尺上某一刻度对齐,所以游标尺读数为15×0.05 mm=0.75 mm,所以最终读数为: 13 mm+0.75 mm=13.75 mm=1.375 cm。 螺旋测微器的固定刻度为0.5 mm, 可动刻度为20.0×0.01 mm=0.200 mm, 所以最终读数为0.5 mm+0.200 mm=0.700 mm。 答案:1.3750.700 2.[考查游标卡尺和螺旋测微器的使用和读数] (1)根据单摆周期公式T=2πl g,可以通过实验测量当地的重力加速度。如图甲所示, 将细线的上端固定在铁架台上,下端系一小钢球,就做成了单摆。 用游标卡尺测量小钢球直径,示数如图乙所示,读数为________ mm。 (2)在测定一根粗细均匀合金丝电阻率的实验中,利用螺旋测微器测定合金丝直径的过程如图所示,校零时的读数为________ mm,合金丝的直径为________ mm。

解析:(1)该游标尺为十分度的,根据读数规则可读出小钢球直径大小。 (2)由于螺旋测微器开始起点有误差,估读为0.007 mm,测量后要去掉开始误差。 答案:(1)18.6(2)0.0070.639(0.638~0.640) 3.[ 某同学利用如图所示装置研究小车的匀变速直线运动。 (1)实验中,必须的措施是________。 A.细线必须与长木板平行 B.先接通电源再释放小车 C.小车的质量远大于钩码的质量 D.平衡小车与长木板间的摩擦力 (2)他实验时将打点计时器接到频率为50 Hz的交流电源上,得到一条纸带,打出的部分计数点如图所示(每相邻两个计数点间还有4个点,图中未画出)。s1=3.59 cm,s2=4.41 cm,s3=5.19 cm,s4=5.97 cm,s5=6.78 cm,s6=7.64 cm。则小车的加速度a=________ m/s2(要求充分利用测量的数据),打点计时器在打B点时小车的速度v B=________ m/s。(结果均保留两位有效数字) 解析:(1)利用打点计时器研究小车的匀变速直线运动时,为顺利完成实验,保证实验效果,细线与长木板要平行,否则小车受力会发生变化,选项A正确;为打的点尽量多些,需先接通电源,再释放小车,选项B正确;本题中只要保证小车做匀变速运动即可,无须保证小车质量远大于钩码的质量,选项C错误;同理,小车与长木板间可以有不变的摩擦力,无须平衡摩擦力,选项D错误。故必须的措施是A、B选项。

弹塑性力学总结汇编

弹塑性力学总结 弹塑性力学的任务是分析各种结构物或其构件在弹性阶段和塑性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。并且弹塑性力学是以后有限元分析、解决具体工程问题的理论基础,这就要求我们掌握其必要的基础知识和具有一定的计算能力。通过一学期的弹塑性力学的学习,对其内容总结如下: 一、弹性力学 1、弹性力学的基本假定 求解一个弹性力学问题,通常是已知物体的几何形状(即已知物体的边界),弹性常数,物体所受的外力,物体边界上所受的面力,以及边界上所受的约束;需要求解的是物体内部的应力分量、应变分量与位移分量。求解问题的方法是通过研究物体内部各点的应力与外力所满足的静力平衡关系,位移与应变的几何学关系以及应力与应变的物理学关系,建立一系列的方程组;再建立物体表面上给定面力的边界以及给定位移约束的边界上所给定的边界条件;最后化为求解一组偏分方程的边值问题。

在导出方程时,如果考虑所有各方面的因素,则导出的方程非常复杂,实际上不可能求解。因此,通常必须按照研究对象的性质,联系求解问题的范围,做出若干基本假定,从而略去一些暂不考虑的因素,使得方程的求解成为可能。 (1)假设物体是连续的。就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示。 (2)假设物体是线弹性的。就是说当使物体产生变形的外力被除去以后,物体能够完全恢复原来形状,不留任何残余变形。而且,材料服从虎克定律,应力与应变成正比。 (3)假设物体是均匀的。就是说整个物体是由同一种质地均匀的材料组成的。这样,整个物体的所有部分才具有相同的物理性质,因而物体的弹性模量和泊松比才不随位置坐标而变。 (4)假设物体是各向同性的。也就是物体内每一点各个不同方向的物理性质和机械性质都是相同的。 (5)假设物体的变形是微小的。即物体受力以后,整个物体所有各点的位移都小于物体的原有尺寸,因而应变和转角都远小于1。这样,在考虑物体变形以后的平衡状态时,可以用变

力学基础知识总结

第二章 质点运动学 基础知识总结 ⒈基本概念 2 2)(dt r d dt v d a dt r d v t r r === = )()()(t a t v t r ?? (向右箭头表示求导运算,向左箭头表示积分运算,积分运算需初始条件: 000,,v v r r t t ===) ⒉直角坐标系 ,,???222z y x r k z j y i x r ++=++= r 与x,y,z 轴夹角的余弦分别为 r z r y r x /,/, /. v v v v v k v j v i v v z y x z y x ,,???222++=++=与x,y,z 轴夹角的余弦分别为 v v v v v v z y x /,/,/. a a a a a k a j a i a a z y x z y x ,,???222++=++=与x,y,z 轴夹角的余弦分别为 ./,/,/a a a a a a z y x 2 22222,,,,dt z d dt dv a dt y d dt dv a dt x d dt dv a dt dz v dt dy v dt dx v z z y y x x z y x ========= ),,(),,(),,(z y x z y x a a a v v v z y x ?? ⒊自然坐标系 ||,,?);(ττττ v v dt ds v v v s r r == == ρτττττ2222 2,,,??v a dt s d dt dv a a a a n a a a n n n = ==+=+= )()()(t a t v t s ττ?? ⒋极坐标系 22,??,?θ θθv v v v r v v r r r r r +=+== dt d r v dt dr v r θ θ== , ⒌相对运动 对于两个相对平动的参考系

江苏省2019版高考物理二轮复习专题六第一讲力学基础实验课前自测诊断卷(含解析)

力学基础实验 1.[ 如图1是用游标卡尺测量时的刻度图,为20分度游标尺,读数为:__________cm。图2中螺旋测微器的读数为:________mm。 解析:20分度的游标卡尺,精确度是0.05 mm,游标卡尺的主尺读数为13 mm,游标尺上第15个刻度和主尺上某一刻度对齐,所以游标尺读数为15×0.05 mm=0.75 mm,所以最终读数为: 13 mm+0.75 mm=13.75 mm=1.375 cm。 螺旋测微器的固定刻度为0.5 mm, 可动刻度为20.0×0.01 mm=0.200 mm, 所以最终读数为0.5 mm+0.200 mm=0.700 mm。 答案:1.375 0.700 2.[考查游标卡尺和螺旋测微器的使用和读数] (1)某实验中需要测量一根金属丝的直径(约0.5 mm),为了得到尽可能精确的测量数据,应从实验室提供的米尺、螺旋测微器和游标卡尺(游标尺上有10个等分刻度)中,选择______________进行测量。 (2)用游标卡尺(游标尺上有50个等分刻度)测定某工件的宽度时,示数如图所示,此工件的宽度为________mm。 解析:(1)金属丝的直径约0.5 mm,而游标卡尺精确度才0.1 mm,螺旋测微器精确度可达0.01 mm,故应选择螺旋测微器进行测量。 (2)由于50分度的游标卡尺精确度为0.02 mm,主尺上读数为23 mm,游标尺上第11格与主尺刻度对齐,故游标尺的读数为0.22 mm,所以工件宽度为23.22 mm。 答案:(1)螺旋测微器(2)23.22 3.[

某同学利用如图所示装置研究小车的匀变速直线运动。 (1)实验中,必需的措施是________。 A .细线必须与长木板平行 B .先接通电源再释放小车 C .小车的质量远大于钩码的质量 D .平衡小车与长木板间的摩擦力 (2)他实验时将打点计时器接到频率为50 Hz 的交流电源上,得到一条纸带,打出的部分计数点如图所示(每相邻两个计数点间还有4个点,图中未画出)。s 1=3.59 cm ,s 2=4.41 cm ,s 3=5.19 cm ,s 4=5.97 cm ,s 5=6.78 cm ,s 6=7.64 cm 。则小车的加速度a =________ m/s 2 (要求充分利用测量的数据),打点计时器在打B 点时小车的速度v B =________ m/s 。(结果均保留两位有效数字) 解析:(1)利用打点计时器研究小车的匀变速直线运动时,为顺利完成实验,保证实验效果,细线与长木板要平行,否则小车受力会发生变化,选项A 正确;为打的点尽量多些,需先接通电源,再释放小车,选项B 正确;本题中只要保证小车做匀变速运动即可,无须保证小车质量远大于钩码的质量,选项C 错误;同理,小车与长木板间可以有不变的摩擦力,无须平衡摩擦力,选项D 错误。故必需的措施是A 、B 选项。 (2)由s 4-s 1=3a 1T 2、s 5-s 2=3a 2T 2、s 6-s 3=3a 3T 2 知加速度a =a 1+a 2+a 33=s 4+s 5+s 6-s 1-s 2-s 39T 2=0.80 m/s 2 打B 点时小车的速度v B = s 1+s 22T =0.40 m/s 。 答案:(1)AB (2)0.80 0.40 4.[考查验证力的平行四边形定则] (2018·天津高考)某研究小组做“验证力的平行四边形定则”实验,所用器材有:方木板一块,白纸,量程为5 N 的弹簧测力计两个,橡皮条(带两个较长的细绳套),刻度尺,图钉(若干个)。 (1)具体操作前,同学们提出了如下关于实验操作的建议,其中正确的有________。 A .橡皮条应和两绳套夹角的角平分线在一条直线上 B .重复实验再次进行验证时,结点O 的位置可以与前一次不同

土木工程力学基础

土木工程力学基础(120) 一、填空题(共30分,每空1分)) 1.约束力的方向总是与约束所能阻止的物体的运动趋势的方向。 2.柔体约束的约束特点是只能承受,不能承受。 3.当力与坐标轴垂直时,则力在该坐标轴上的投影为。 4.通常规定转向的力矩为正值;转向的力矩为负值。 5.力的作用线通过矩心时,力矩为。 6.作用在刚体上的力可沿其作用线任意移动,而力对刚体的运动效果。 7.力的________、_________、_________称为力的三要素,所以说力是________量。 8.固定端既限制物体的__________,又限制物体的________。 9.画受力图时,必须根据_______________画约束力。 10.力是物体间________,力使物体的________发生变化,或者使物体产生__________。11.均布线载荷是指沿构件___________方向且在各处大小__________的分布载荷。 12.物体的平衡状态,是指物体相对于地球____________或做____________的状态。 13.水平地面上放着一桶重量为260N的水,某同学用140N的力竖直向上提水桶,这时水桶受到的合力是_________,地面受到的压力为__________。 14.常见的约束有:、、、链杆、、 、七种。 二、判断题(共15分,每题1分) ()1. 物体的平衡是绝对的平衡。 ()2. 用扳手拧紧螺母时,用力越大,螺母就越容易拧紧。 ()3. 力的合成、分解都可用平行四边形法则。 ()4. 当矩心的位置改变时,会使一个力的力矩大小和正负都可能发生变化。 ()5. 光滑接触面的约束力方向是沿接触面法线方向而指向物体。 ()6. 作用于一点上的两个或两个以上的力可以合成作用于一点的一个力。 ()7. 固定铰链支座的约束力方向一般是固定的。 ()8. 力的平衡条件是:大小相等,方向相反,作用在同一物体上。 ()9. 加减平衡力系公理和力的可传性原理适用于任何物体。 ()10. 力在轴上的投影等于零,则该力一定与该轴平行。 ()11. 力对物体的作用只能使物体移动,不能使物体转动。 ()12. 对于二力杆,因为作用的两个力位于同一直线上,所以必须是直杆。 ()13.主动力撤消后约束力也就消失。 ()14.合力一定大于分力。 ()15.链杆必定是二力杆。 三、选择题(共30分,每小题3分)1.力和物体的关系是()。 A、力不能脱离物体而独立存在 B、一般情况下力不能脱离物体而独立存在 C、力可以脱离物体而独立存在 2.静止在水平地面上的物体受到重力G和支持力F N的作用,物体对地面的压力为F,则以下说法中正确的是()。 A、F和F N是一对平衡力 B、G和F N是一对作用力和反作用力 C、F N和F的性质相同,都是弹力 D、G和F N是一对平衡力 3.一个力矩的矩心位置发生改变,一定会使()。 A、力矩的大小改变,正负不变 B、力矩的大小和正负都可能改变 C、力矩的大小不变,正负改变 D、力矩的大小和正负都不改变 4.一力对某点的力矩不为零的条件是()。 A、作用力不等于零 B、力的作用线不通过矩心 C、作用力和力臂均不为零 5.作用在同一物体上的两个力,若其大小相等,方向相反,则它们()。 A 只能是一对平衡力 B 只能是一个力偶 C 可能是一对平衡力或一个力偶 D 可能是一对作用力和反作用力 6.属于力矩作用的是()。 A 用丝锥攻螺纹 B 双手握方向盘 C 用起子扭螺钉 D 用扳手拧螺母 7.将一个己知力分解成两个分力时,下列说法正确的是() A 至少有一个分力小于己知力 B 分力不可能与己知力垂直 C 若己知两个分力的方向,则这两个分力的大小就唯一确定了 D 若己知一个分力的方向和另一个分力的大小,则这两个分力的大小一定有两组值 8.作用在刚体上的平衡力系,如果作用在变形体上,则变形体() A.一定平衡 B.一定不平衡 C.不一定平衡 D.一定有合力 9.下列约束力的作用线可以确定的是() A.圆柱铰链 B.链杆约束 C.固定端支座 D.固定铰支座 10.作用于同一点的两个力,大小分别为14KN和25KN,则其合力大小可能是() A. 8KN B. 10Kn C. 18KN D. 40KN 四、简答题(每题5分,共15分) 1.作用力与反作用力也是等值反向的,而二力平衡条件中的两个力也是等值反向的,试问二者有何区别?(5分)

初中物理力学实验专题训练

初中物理力学实验专题训练 1.天平:某同学用托盘天平测量物体质量时 (1)他把已经调节好的托盘天平搬到另一实验桌上,则使用前应() A.只要将天平放在水平台上B.只要调节横梁平衡 C.不需要再调节D.先将天平放在水平台上,再调节横梁平衡 (2)当他把天平重新调好后,就把药品放在天平的右盘中,用手向左盘中加减砝码,并移动游码,直到指针指到分度盘的中央,记下盘中砝码的质量就等于物体的质量。他的操作中的错误是。 (3)当他改用正确的操作方法后,盘中砝码和游码的位置如图3所示,则物体的质量是。 2.量筒:用量筒测液体的体积时,筒中的液面是凹形的,测量者的视线应与凹面的____相平(填“顶部”、“底部”)。如图4所示,其中同学读数正确,量筒中液体的体积为 cm3。测量形状不规则的固体体积,由图5可知,液体的体积为_____cm3,固体的体积为____cm3。 3.弹簧测力计:使用弹簧测力计应注意的是:使用前要观察量程和分度值,指针要___________。使用过程中,指针、弹簧不得与外壳有摩擦.使用过程中,拉力不能超过弹簧测力计的_________。如图6所示,弹簧测力计测量范围是_______,指针所示被测物重是______N。 4.压强计:研究液体压强所用的仪器是_______,它是根据U形管两边液面出现的_________来测定液体内部压强的。 (1)在做“液体内部的压强”实验时,如图7所示,该实验的现象说明。 图7

(2 序号液体深度 (cm) 橡皮膜 方向 压强计 左液面 (mm) 右液面 (mm) 液面高度差 (mm) 1 水 3朝上18621428 23朝下18621428 33朝侧面18621428 46朝侧面17122958 59朝侧面15824284 6盐水9朝侧面15424692 根据上表中的数据,比较序号为___________的三组数据可得出结论:液体的压强随深度增加而增大;比较序号为__________的三组数据可提出结论:在同一深度,液体向各个方向的压强相等;比较序号为______________的两组数据可得出结论:不同液体的压强还跟密度有关。 5.如图12所示,是一个小球运动时的频闪照片,频闪时间间隔为0.02s,闪亮时间千分之一秒可忽略不计。根据照片记录的小球位置,分析解决下列问题: (1)小球从位置a 运动到位置d所用的时间是多少? (2)小球所作的运动是不是匀速运动?判断的依据是什么? (3)小球从位置a 运动到位置d 的平均速度有多大? 图12 6.小明同学通过实验来研究影响浮力大小的因素,做了如图18所示的一系列实验。 图18

(完整版)弹塑性力学公式

应力应变关系: 弹性模量 || 广义虎克定律 1.弹性模量 a 弹性模量 单向拉伸或压缩时正应力与线应变之比,即 E σε = b 切变模量 切应力与相应的切应变 之比,即 G τγ= c 体积弹性模量 三向平均应力 0() 3 x y z σσσσ++= 与体积应变θ(=εx +εy +εz )之比, 即 K σθ= d 泊松比 单向正应力引起的横向线应变ε1的绝对值与轴向线应变ε的绝对值之比,即 1 ε νε= 2.广义虎克定律 a.弹性力学基本方程 在弹性力学一般问题中,需要确定15个未知量,即6个应力分量,6个应变分量和3个位移分量。这15个未知量可由15个线性方程确定,即 (1)3个平衡方程(或用脚标形式简)写 为: 22()0 j ij i i x u f t σρ??++-=?? (,,,)i j x y z = (2)6个变形几何方程,或简写为: 1()2j i ij j i u u E x x ??= +?? (,,,)i j x y z = (3)6个物性方程简写为: 0132ij ij E G E ν σσδ= - 2ij ij ij G σελθδ=+ (,,,)i j x y z = { 1() 0() () i j ij i j δ=≠= 2.边界条件 x x xx xy xy xz xz F l l l σττ=++ y yz xx y xy yz xz F l l l τσσ=++ z zz xx xy xy z xz F l l l ττσ=++ 式中,l nj =cos(n,j)为边界上一点的外 法线n 对j 轴的方向余弦 b 位移边界问题 在边界S x 上给定的几何边界条件为 *x x u u = * y y u u = *z z u u = 式中,u i 为表面上给定的位移分量 Cauchy 公式: T x = σ x l + τ xy m +τ zx n T y = τ xy l+σ y m +τ zy n T y =τ xz l+τ y z m +σ z n (n z n T n T στ= 边界条件: ()()()x xy xz s x xy y yz s y xz yz z s z l m n T l m n T l m n T στττστττσ++=++=++= 平衡微分方程: 000yx x zx x xy y zy y yz xz z z F x y z F x y z F x y z τσττστττσ???+++=??????+++=??????+++=??? 主应力、不变量,偏应力不变量 321231230 x y z x xy y z zx yz yx y zy xz x z x xy xz yx y yz zx zy z I I I I I I σσσσσσστσστττσττσσστττστττσ-+-==++=++ = 1231 ();3 m i i m s σσσσσσ=++=- ()()()1123222222230 16()6x y y z z x xy yz zx J s s s J J σσσσσστττ=++=??=-+-+-+++????=偏应力张量行列式的秩 八面体 812381 () 3σσσστ=++ 等效应力σ=体积应变x y z θεεε=++ 12312()E v v εσσσ-= ++ 几何方程: ;;;x xy y yz z xy u u v x y x v v w y z y w u w z z x εγεγεγ???= =+??????==+ ??????==+ ??? 1 2 ij ij εγ= 变形协调方程22 222y xy x xy y x ετε???+=??? 物理方程 ()()()12(1) ;12(1) ;12(1) ;x x y z xy xy y y x z yz yz z z y x zx zx v v E E v v E E v v E E εσσσγτεσσσγτεσσσγτ+??=-+=??+??=-+=??+??=-+=??

飞行力学基础

第二章飞行力学基础 2.1 飞行器空间运动的表示、飞行器操纵机构、稳定性和操纵性的概念2.1.1常用坐标系 1)地面坐标系(地轴系)(Earth-surface reference frame)Sg-o g x g y g z g 原点o g 取自地面上某一点(例如飞机起飞点)。o g x g 轴处于地平面内并指向 某方向(如指向飞行航线);o g y g 轴也在地平面内并指向右方;o g z g 轴垂直地面 指向地心。坐标按右手定则规定,拇指代表o g x g 轴,食指代表o g y g 轴,中指代表 o g z g 轴,如图2.1-1所示。 2)机体坐标系(体轴系)(Aircraft-body coordinate frame)Sb-oxyz 原点o取在飞机质心处,坐标与飞机固连。Ox与飞机机身的设计轴线平行,且处于飞机对称平面内;oy轴垂直于飞机对称平面指向右方;oz轴在飞机对称平面内;且垂直于ox轴指向下方(参看图2.1-1)。发动机推力一般按机体坐标系给出。 3)速度坐标系(Wind coordinate frame)Sa-ox a y a z a 速度坐标系也称气流坐标系。原点取在飞机质心处,ox a 轴与飞行速度V的 方向一致。一般情况下,V不一定在飞机对称平面内。oz a 轴在飞机对称面内垂 x 图2.1-1 机体坐标系与地面坐标系

直于ox a 轴指向机腹。oy a 轴垂直于x a oz a 轴平面指向右方,如图2.1-2所示。作用在飞机上的气动力一般按速度坐标系给出。 4)航迹坐标系(Path coordinate frame)Sk-ox k y k z k 原点取在飞机质心处,ox k 轴与飞机速度V 的方向一致。oz k 轴在包含ox k 轴的铅垂面内,向下为正;oy k 轴垂直于x k oz k 轴平面指向右方。研究飞行器的飞行轨迹时,采用航迹坐标系可使运动方程形式较简单。 2.1.2 飞机的运动参数 1)飞机的姿态角 1.俯仰角θ(Pitch angle) 机体轴ox 与地平面间的夹角。以抬头为正。 2.偏航角ψ(Yaw angle) 机体轴ox 在地平面上的投影与地轴o g x g 间的夹角。以机头右偏航为正。 3.滚转角φ(Roll angle) 又称倾斜角,指机体轴oz 与通过ox 轴的铅垂面间的夹角。飞机向右倾斜时 图2.1-2 速度坐标系与地面坐标系

清华大学研究生弹塑性力学讲义 8弹塑性_塑性力学基本方程和解法

弹塑性力学 第七章塑性力学的基本方程与解法 一、非弹性本构关系的实验基础 拿一根工程上最常用的低碳钢的试件,在拉伸试验机上就可得到如图7.1所示的应力应变曲线。图中A为比例极限,当变形状态未超过A点时材料处于线弹性状态;B为弹性极限,AB段的变形虽然还是弹性的,即卸载时能按原来的加载曲线返回,但应力应变之间不再是线性关系。C,D分别为上、下屈服极限,超过C点后材料进入塑性变形状态,卸载时不再按原来的加载曲线返回,而且当载荷完全卸除后还有残余变形。由C到D是突然发生的,由于材料屈服引起应力突然下降,而应变继续增加。由D到H是一接近水平的线段,称为塑性流动段。对同一种材料D点的测量值比较稳定,而C点受试件截面尺寸、加载速率等影响较大。如果载荷在使材料屈服之后还继续增加,则进入图中曲线右部的强化段。即虽然材料已经屈服,但只有当应力继续增加时,应变才能继续增大。在图中b点之后,试件产生颈缩现象,最后试件被拉断。如果在塑性流动段的D′点,或强化段的H′点卸载,将能观测到沿着与OA平行的直线返回,当载荷为零是到达O′点或O′′点,即产生残余变形。 图7.1 低碳钢单向拉伸应力应变曲线 有些高强度的合金钢并没有象低碳钢那样的屈服段,其单向拉伸的应力应变曲线如图7.2所示。这种情况下屈服极限规定用产生0.2%塑性应变所对应的应力来表示,σ。 记为 0.2 图7.2 高强度合金钢单向拉伸应力应变曲线

第七章 塑性力学的基本方程与解法 如果以超过屈服极限的载荷循环加载,所得试验结果则象图7.3所示。在实验中还发现,对于某些材料(图7.4),如果在加载(拉伸)屈服后完全卸载到O ′′点,然后接着反向加载(压缩),则其反向屈服点对应的应力绝对值s σ′′不仅小于s σ′,而且小于初始屈服应力的绝对值σ′。这是德国的包辛格(Bauschinger, J.)最早发现的,称为包辛格效应。 图7.3 循环加载曲线示意图 图7.4 包辛格效应 当材料进入塑性状态后,如果不是单调加载,则应力和应变之间不仅不是单值函数的关系,而且当时的应变不仅和当时的应力有关,还和整个加载的历史有关。同样,当时的应力不仅和当时的应变有关,而且也和整个变形的历史有关。这就增加了问题的复杂性。材料的特性不能简单的用应力应变关系来描述,而要用比较复杂的本构关系,即应力和整个变形历史的关系来描述。 此外,在实际工程问题中经常遇到的材料非线性问题往往不是单向应力状态,即不是一维问题。要对三维问题单靠实验来确定应力张量和应变张量之间的关系几乎是不可能的。因此,在建立非线性本构关系时,除去不能脱离实验基础之外,还必须有基本理论的指导。 二、刚塑性与弹塑性本构模型 z 简化模型 对于低碳钢一类材料,如果承载后产生的变形状态一直达到塑性流动段,为了简化起见,略去应力应变曲线中的上、下屈服极限等细节,可得到由线弹性段和塑性流动水平线段组成的简化模型,称为理想弹塑性模型(图7.5a ): s s s s E E σεεεσεσεε=≤??==>?当当 (1) 在金属成型等问题中,由于塑性流动引起的塑性应变较大,而弹性应变因相比较小而将其忽略,则又可进一步简化为只有水平线段的刚塑性模型(图7.5b ):

弹塑性力学1

二、计算题 1.某点的应力分量为a x 50=σ,0=y σ,a z 11=σ,a xy 3=τ,a yz 3-=τ,a zx 8-=τ。试求与各坐标轴有相等倾角的斜平面上的全应力、正应力、和切应力。 2.已知4101323542410 -???????? ???----=ij ε,求主应变的大小及方向。 3.悬臂梁的弯曲问题。如图所示,梁的两侧无外力作用,左端面受集中力F 作用,右端固定。其余尺寸如图,且h c <<,l h << 4.某一平面问题的应力表达式如下: ?? ? ????--=-=+-=y cx By Bxy Ax xy xy y x 2323223τσσ (体力0==y x f f ),求A 、B 、C 的值。 5.已知应变状态 ()()() ???????+++=++++=++++=222104422104423210C y x xy C C y x y x B B y x y x A A xy y x γε ε 求各系数之间应该满足的关系。 6.矩形截面的简支梁,受均布载荷q 作用,设矩形梁长、宽、高分别为l 2、b 2和h 2,材料的拉压屈服点为S σ,求: (1)弹性极限弯矩e M ,塑性极限弯矩p M ; (2)当p e M M M ≤≤时,弹塑性区交界面方程

二、设结构的某突出部分具有三角形截面,其底部受均布载荷q ,如图。该部分的应力表达式已求出如下 ??? ?? ???? ? ?? ? ===+-==???? ??+++-=???? ??++--=0 arctan arctan 2222222z yz xz yx xy y x y x y A B y x xy x y A C y x xy x y A σττττσσ 由边界条件确定A 、B 、C 的表达式。 三、矩形截面柱的一侧受均匀分布的剪力q 作用,不计体力,试求应力分量。 四、验证下列应变状态是否满足相容方程。 ????? ? ?===-===0 23zy zx z xy y x Dy C By Axy γγεγ εε 五、已知某点应力分量为a x 100=σ ,a y 200=σ,a z 300=σ,a xy 500-=τ,0=yz τ,0=zx τ,求主应力的大小和方向。 六、不计体力,验证下列应力分量是否能满足平衡方程。

塑性力学基本理论

弹性力学 对于均匀、各向同性材料,可以证明只有两个独立弹性常数,3各常数之间存在关系:2(1) E G μ= +。 广义胡克定律的体积式:体积应变:x y z θεεε=++;体积应力: x y z σσσΘ=++,则:12E ν θ-= Θ。 各向同性体的体积改变定律:3(12) m E K σθθν= =-.其中体积模量: 3(12) E K ν= - 弹性力学解的唯一性定理:弹性体在给定体力、面力和约束条件的情况下而 处于平衡时,体内各点的应力分量、应变分量的解是唯一的。 塑性力学 从物理上看,塑性变形过程属于不可逆过程,并且必然伴随机械能的耗散。研究塑性力学问题主要采用宏观的方法,即联系介质力学的方法,它不去探究材料塑性变形的内在机理,而是从材料的宏观塑性行为中抽象出力学模型,并建立相应的数学物理方程来予以描述,应力平衡方程和应变位移间的几何关系是与材料性质无关的,因此对弹性力学与塑性力学都一样,弹性力学与塑性力学的差别主要表现在应力与应变的物理关系的不同。屈服条件以及塑性的本构关系是塑性力学物理方程的具体内容,具有: (1)应力与应变关系(本构关系)呈非线性,其非线性性质与具体材料有关; (2)应力与应变之间没有一一对应的关系,它与加载历史有关; (3)变形体中存在弹性区和塑性区,分析问题时需要找出其分界限。在弹性区, 加载与卸载均服从广义胡克定律;在塑性区,加载过程要使用塑性阶段的应力应变关系,而卸载过程中,则使用广义胡克定律。 这些特点带来了研究、处理问题方法上的不同,塑性力学首先要解决的问题是在实验资料的基础上确立塑性本构关系,进而与平衡和几何关系一起去建立塑

力学专题一:力学基础受力分析

力学专题一:力学基础及受力分析 一、力的概念及作用效果 1.概念:力是物体对物体的作用。 (1)力的产生必须同时有两个物理,施力物体和受力物体。 (2)施力物体:给力的那个物体;受力物体:受到力的那个物体 (3)物体间力的作用是相互的,某个物体对别的物体施加力的同时,也受到别的物体对它的力的作用.且物体间的相互作用力是同时间生,同时消失,没有先后之分. 2.力的作用效果 (1)使物体发生形变; (2)使物体的运动状态发生改变. 【重要提示】 1.物体运动状态的改变包括以下两种情况: (1)物体运动速度大小发生变化,如速度由小变大,由大变小等; (2)物体运动方向发生变化,如汽车转弯,做曲线运动等.以上两种情况之一或两种情况同时出现,均表示物体运动状态发生了改变. 2.物体间力的作用并不一定要相互接触;如磁铁吸引铁钉,带电的梳子吸引纸屑等.反之,相互接触的物体之间也不一定有力的作用. 【典型例题】 例1.关于力的概念,下列说法中正确的是() A、两个物体只要相互接触,就一定有力的作用 B、两个不互相接触的物体之间,就一定没有力的作用 C、有力的作用就一定有施力物体,但可以没有受力物体 D、力不能脱离物体而独立存在 例2.关于运动和力的关系,正确的是() A、物体受到力的作用,运动状态一定发生改变 B、物体不受力的作用,运动状态一定不会改变 C、物体运动状态不变,说明它不受力的作用 D、物体运动状态改变了,不一定受到力的作用例3.下列能说明物体间力的作用是相互的现象是( ) A.用力推车,车由静止变为运动 B.船工用撑杆推岸,船随之离岸而去 C.用力拉弓,弓发生形变 D.成熟的苹果从树上落下来 例4.用磁铁吸引大头针时( )。 A.大头针也吸引磁铁,因为力的作用是相互的 B.大头针不吸引磁铁 C.当大头针与磁铁接触时,大头针才吸引磁铁

基础力学实验考试题目

基础力学实验绪论 1.基础力学实验一般分为材料的力学性质测定,实验静态应力测试实验,振动和动应力测试实验,综合性测试实验。 2.在力学实验测量中,对于载荷不对称或试件几何性质不对称时,为提高测量精度,常采用对称测量法。 3.若载荷与其对应的响应值是线性关系,则载荷增量与其对应的响应值增量也是线性关系。(正确) 4.对于任何测量实验,加载方案均可采用增量法。(错误) 5.载荷与变形的关系为ΔL=FL/EA 简支梁各阶固有频率的测量实验 1.简支梁横向振动固有频率若为f1=20HZ,则f3=180HZ。(f1:f3=1:9) 2.共振相位判别法判断共振时,激振信号与振动体振动位移信号的李萨如图是正椭圆。 3.共振相位判别法判断共振时,激振信号与振动体速度信号的李萨如图是斜线。 4.共振相位判别法判断共振时,激振信号与振动体加速度信号的李萨如图是正椭圆。 5.物体的固有频率只有一个。(错误) 6.物体的共振频率就是物体的固有频率。(错误) 压杆稳定测试实验 1.关于长度因数μ,正确说法是:其它条件相同时约束越强,μ越小 2.关于柔度λ,正确的说法是:其它条件相同时压杆越长,λ越大 3.关于压杆稳定性,正确的说法是:要让欧拉理论可用,应使压杆的柔度进尽可能大 4.在以下所列的仪器设备中,压杆稳定实验所需要的是:压杆稳定试验台数字测力仪计算机 5.两端球形铰支的压杆,其横截面如下图所示,该压杆失稳时,横截面对中性轴的惯性半径i=0.577mm(i=h/sqrt(12)=2/sqrt(12)=0.577mm) 6.已知某理想中心压杆的长度为l,横截面的惯性矩为l,长度因数为μ,材料的弹性模量为 为E,则其欧拉临界力Fcr= 7.已知某理想中心压杆的长度为l,横截面的惯性半径为i,长度因数为μ,则该压杆的柔度λ=μl/i 8.两端铰支的细长压杆,若在其中点加一个铰支座,以约束该截面的水平位移,则增加该约束后压杆的欧拉临界力是原来的4倍。 弯扭组合变形实验 1.在弯扭组合实验中,圆轴下表面测点处包含横截 面和径向截面的应力状态为 2.在弯扭组合实验中,圆轴中性轴测点处包好横街面和径向截面的应力状态为

北京理工大学考研809力学基础

809力学基础 (1)考试要求 ①了解:点的运动学,刚体的基本运动(平移和定轴转动),刚体的平面运动,纯滚动圆盘的运动描述,点的复合运动,力系的特征量,二力构件的特点,静摩擦力应满足的物理条件,动力学的三个基本定理,达朗贝尔原理。 ②理解:点的速度、切向加速度和法向加速度,平面运动刚体的角速度和角加速度,平面运动刚体的速度瞬心、加速度瞬心和其上点的曲率中心,绝对运动、相对运动和牵连运动(尤其是相对速度和相对加速度,牵连速度和牵连加速度,科氏加速度),常见约束的约束力特点,力系的平衡方程,带摩擦单刚体的平衡,转动惯量的平行轴定理,刚体的平移、定轴转动、平面运动的动能、动量、动量矩及达朗贝尔惯性力系的简化结果的计算。 ③掌握:用速度瞬心法、两点速度关系的几何法或投影法对平面运动刚体系统进行速度分析,用两点加速度关系的投影法或特殊情况下加速度瞬心法对平面运动刚体系统进行加速度分析,用点的速度合成公式的几何法或投影法以及点的加速度合成公式的投影法对平面运动刚体系统进行运动学分析,力系的主矢和对某点的主矩的计算,最简力系的判定,物系平衡问题的求解(尤其要掌握通过巧妙选取研究对象和平衡方程对问题进行快速求解),带摩擦单刚体平衡问题的求解,物系动能、动量、动量矩的计算,动能定理积分形式的应用,动量守恒、质心运动守恒和质心运动定理的应用,对定点的动量矩定理、相对于质心的动量矩定理及其守恒定律的应用,用达朗贝尔原理(动静法)求解物系的动力学问题(包括动力学正问题:已知主动力求运动和约束力,以及动力学逆问题:已知运动求未知主动力和约束力)。 (2)考试内容 ①运动学:点的运动方程,点的速度和加速度在直角坐标轴上的投影,点的速度和加速度在自然轴上的投影,刚体的平移,刚体的定轴转动,刚体平面运动方程,平面运动刚体的速度瞬心,速度投影定理,刚体上两点的速度关系,平面运动刚体的加速度瞬心,刚体上两点的加速度关系,同一刚体上两点连线的中点的速度和加速度的计算,点的速度合成定理,点的加速度合成定理。 ②静力学:力对坐标轴的投影,力对点的矩和力对过该点的轴的矩的关系,力偶和力偶矩,力系的简化,物体的受力分析,平面力系的平衡条件及其应用,带摩擦单刚体平衡问题中主动力或主动力偶的取值范围或摩擦因数的取值范围或平衡位置的求解。 ③动力学:刚体的质心和均质细长直杆、圆盘、圆环对质心的主转动惯量,力的功(包括常力的功、弹簧力的功,力偶的功),质点系的动能,动能定理,重力势能和弹性势能,机械能守恒定律,质点系的动量,质心运动定理,质心运动的守恒定律,动量守恒定律,质点系对定点的动量矩定理和相对于质心的动量矩定理,动量矩守恒定律,刚体达朗贝尔惯性力系的简化,达朗贝尔原理(动静法)及其应用。

相关文档
最新文档