恒流恒压充电原理

恒流恒压充电原理
恒流恒压充电原理

1 .主电路

采用220V电网直接供电,经KZ1 -KZ4 全控桥式整流,再经极性切换开关输出接负载(蓄电池)。当蓄电池在充电工作方式时,切换开关K1

倒向上端。全控桥与半控桥工作原理完全相同,只是应用两套触发电路,每套输出脉冲分别控制两个对角位置的可控硅。当蓄电池工作于放电状态时,K1

倒向下端,即蓄电池电压与整流输出反极性相接,同时触发电路的同步变压器的电源也经:K2 倒向右侧。当电源电压为正半周时,输入电源 1

端为正,这时触发KZ2 、KZ3

两管使之导通,只要蓄电池电压高于电源电压。便有电流流回电源;当电源电压高于蓄电池电压时可控硅就自行关断。同理,当电源 2 端为正时,触发KZ1 、

K24 两管使之导通。C5 ~C8 、R9 -R12 为阻容吸收保护电路,作用是吸收外部电源瞬间高电压,以保护可控硅。

2 .触发电路

同步电源由降压变压器Bl 供电,D1 、D2 ,2CW1 、2CW2 组成的两个半波整流工作的触发电路,它们共用一个稳压电阻

R5 及一个中线。给定电压Ug 是从电位器W3 、R4 、D3 、D4 分压取得,根据蓄电池工作方式的不同,反馈信号U

,可来自蓄电池电压,经电阻R2 、电位器W1 分压后供给,也可由直流互感器B2

取得正比于直流电流的一个电压供给电流信号,前者为恒压充电用;后者为恒流充电用,两种反馈工作方式由开关K3 切换。移相电路由V1 、R6 、

C2 、C3 、C4 、D5 、D6 组成。单晶管触发电路由V2 、、V3 、R7 、R8 、BMI 、BM2 组成,单结晶体管

b1 发出脉冲,经脉冲变压器输出两路脉冲分别触发KZl-KZ4 两个对角位置的可控硅。

直流互感器B2 就是两个线圈反相串联的饱和电抗器,由同步变压器的另一组线圈供电,经D7 ~D10 桥式整流、电容C1 滤波加在电位器

W2 上(当穿过铁芯的直流电流较大时铁芯因饱和而阻抗减小,回路电流增大,将它经桥式整流后输出加在电位器W2 上),W2

上的电压大小就可以反映直流电流的大小。从W2 取得反馈信号与给定电压比较后控制三极管的基极就可以实现恒流充电、放电。

●恒流充电稳流过程是:某种原因使充电电流I ↑→B2 铁芯导磁率μ↓→阻抗Z ↓→W2 上电压U ,↑→Ug ↓→Vlab ↓→

V1 的IC ↓→C2(充电速度放慢)↓→Bm(输出尖脉冲后移)↓→可控硅导通角减小↓→输出电流I ↓;反之上升,达到恒流充电。

●恒压充电给定电压由三极管Vl 的射一基极与反馈电压进行串联比较(Ug-U ,)后的信号来控制Vl

对电容充电,充电的快慢也就是移相角的大小;比如当某种原因使电网电压U ↓→Uf ↓→U 殳↑→Vl 的Ueb ↑→Vl 的Ic ↑→

C2(充电速度加快)f →Bm(输出尖脉冲前移)↑→可控硅(导通角增大)t →U1 t(即输出电压上升)

.反之下降,达到恒压充电。

●放电状态切换开关K2 倒向右侧,电阻R3 、电容C5

是起阻容移相作用,使同步电源相位角移后于主电源一个角度,因电容上的电压落后于电源电压,故可使触发脉冲的发出时间移至对应“l ”端为正时触发KZ2

、KZ3 管;当电源“2 ”端为正时,触发KZ1 、KZ4 两管使之导通进行放电。

注:逆变状态时的触发电路移相范围是90 °,如果超过了90 °可控硅导通后就不能关断;同时,触发脉冲也不能错位(即不可在电源“ 1 ”

端为正时触发KZ1 、KZ4)

,否则将形成很大的短路电流。在这种逆变方式中依靠电源电压大于蓄电池电压时,使可控硅承受反向电压而关断,故蓄电池电压不能大于电源电压峰值,否则可控硅就关不断并将形成很大的短路电流。另外。恒流放电原理与恒流充电原理相同,就不再叙述了。

通过以上电路原理分析可知。导致保险RDl 熔断的原因有:可控硅击穿;同步变压器匝间短路;移相电容C5 漏电。前两项经笔者测量没有问题:把电容

C5 取下来用电容表测量几乎没有容量,换一只新的通电试机,一切恢复正常(电容C5 、R3 的作用就是移相使同步电源相位角移后于主电源一个角度。因为C5 没有容量了,使触发脉冲的发出时间错位而形成短路电流而导致熔断保险)。

锂电池充电过程的四个阶段

锂电池充电过程的四个阶段 充电或放电速率通常根据电池容量来表示。这一速度称为C速率。C速率等于特定条件下的充电或放电电流,定义如下: I=M×Cn 其中: I = 充电或放电电流,A M = C的倍数或分数 C = 额定容量的数值,Ah N = 小时数(对应于C)。 以1倍C速率放电的电池将在一个小时内释放标称的额定容量。例如,如果标称容量是1000mAhr,那么1C的放电速率对应于1000mA的放电电流,C/10的速率对应100mA的放电电流。 通常生产商标定的电池容量都是指n=5时,即5小时放电的容量。例如,上述电池在200mA恒流放电时能够提供5小时的工作时间。理论上该电池在1000mA 恒流放电时能够提供1小时的工作时间。然而实际上由于大电池放电时效能降低,此时的工作时间将小于1小时。 那么怎样才能正确地为锂离子电池充电呢?锂离子电池最适合的充电过程可以分为四个阶段:涓流充电、恒流充电、恒压充电以及充电终止。

阶段1:涓流充电——涓流充电用来先对完全放电的电池单元进行预充(恢复性充电)。在电池电压低于3V左右时,先采用最大0.1C的恒定电流对电池进行充电。 阶段2:恒流充电——当电池电压上升到涓流充电阈值以上时,提高充电电流进行恒流充电。恒流充电的电流在0.2C至 1.0C之间。恒流充电时的电流并不要求十分精确,准恒定电流也可以。在线性充电器设计中,电流经常随着电池电压的上升而上升,以尽量减轻传输晶体管上的散热问题。 大于1C的恒流充电并不会缩短整个充电周期时间,因此这种做法不可取。当以更高电流充电时,由于电极反应的过压以及电池内部阻抗上的电压上升,电池电压会更快速地上升。恒流充电阶段会变短,但由于下面恒压充电阶段的时间会相应增加,因此总的充电周期时间并不会缩短。 阶段3:恒压充电——当电池电压上升到4.2V时,恒流充电结束,开始恒压充电阶段。为使性能达到最佳,稳压容差应当优于+1%。 阶段4:充电终止——与镍电池不同,并不建议对锂离子电池连续涓流充电。连续涓流充电会导致金属锂出现极板电镀效应。这会使电池不稳定,并且有可能导致突然的自动快速解体。 有两种典型的充电终止方法:采用最小充电电流判断或采用定时器(或者两者的结合)。最小电流法监视恒压充电阶段的充电电流,并在充电电流减小到0.02C至0.07C范围时终止充电。第二种方法从恒压充电阶段开始时计时,持续充电两个小时后终止充电过程。 上述四阶段的充电法完成对完全放电电池的充电约需要2.5至3小时。高级充电器还采用了更多安全措施。例如如果电池温度超出指定窗口(通常为0℃至45℃),那么充电会暂停。

电压控制恒流充电电路设计讲解

《电子技术》课程设计报告 课题:电压控制恒流充电电路设计 班级学号 学生姓名 专业 系别 指导教师 淮阴工学院 电子信息工程系 2013年12月

一、设计目的 电子技术课程设计是模拟电子技术、数字电子技术课程结束后进行的教学环节。其目的是: 1、培养理论联系实际的正确设计思想,训练综合运用已经学过的理论和生产实际知识去分析和解决工程实际问题的能力。 2、学习较复杂的电子系统设计的一般方法,提高基于模拟、数字电路等知识解决电子信息方面常见实际问题的能力,由学生自行设计、自行制作和自行调试。 3、进行基本技能训练,如基本仪器仪表的使用,常用元器件的识别、测量、熟练运用的能力,掌握设计资料、手册、标准和规范以及使用仿真软件、实验设备进行调试和数据处理等。 4、培养学生的创新能力。 二、设计要求 1、充电电流为100mA; 2、控制电压为4.5V和6.5V,当充电电压上升到6.5V时自动断电,当用电电 压下降到4.5V时自动通电; 3、由交流220V市电供电; 4、主要单元电路和元器件参数计算、选择; 5、画出总体电路图; 6、安装自己设计的电路图,按照自己设计的电路图,在通用版上焊接。焊 接完毕后,应对照电路仔细检查,看是否有错接、漏接、虚焊的现象; 7、调试电路; 8、电路性能指标测试; 提交格式上符合要求,内容完整的设计报告。 三、总体设计

(1)在恒流源部分,我们通过利用9012NP硅管其发射级-基极导通电压0.7V 和6,8Ω电阻输出100mA电流。 (2)在充电电路的控制电压部分,接入12V电压,调节Rw1,大约调到4K 左右,经过10k电阻的分压以后,在上部电路中的电位比较器的正向输入端的电压为 4.5V。同理,调节Rw2的大小,使下部电位比较器的反向输入端电压为6.5V。当电压在0-6.5V之间时,上部电路中的电位比较器输出为高电平,下部电路中的电位比较器输出为低电平,电源电压为U0=12V>>1.4V,晶闸管导通,继电器的线圈J1中有电流流过,由电磁感应,常断开关触点导通电源开始给电池充电。当电压增加到超过6.5V时,上面的电压比较器输出低电平,三极管导通,所以J2中有电流流过,常闭开关触点断开,导致晶闸管下端断开,截止工作,J1的常断触点打开,电源停止给电池充电。用电容和电阻组成的充放电回路消耗电压,使电压低于6.5V,但在电压低于4.5V时,上部电路的电位比较器输出为低电平,继电器的触点接在J1-2和J2-2上,电路又处在充电状态,如此循环,这样就实现了电压控制恒流充电了。

恒流+恒压+浮充的PC电源充电器

恒流+恒压+浮充PC电源充电器 PC电源有AT、ATX两种,结构大同小异。它都是基于PWM开关电源的原理,标称功率都在200W以上,都有12V8A的稳压输出。所以,用它来改造12V电瓶的充电器,是比较容易的。ATX电源将输出排线(接电脑主板的那个插头)上的“蓝”线和“黑”线短接(使开关电源工作). 大部分的PC电源都是基于TL494+LM339芯片的。本文就以此结构为例。 下面先认识一下TL494,下图就是它的内部结构图。 (此图内部有几个小差错,但基本不影响对TL494的认识。) TL494是一种定频PWM电路,它包含了开关电源所需的全部功能,广泛应用于各式开关电源之中。 主要特征: 集成了全部的脉宽调制电路。 内置锯齿波振荡器,外置振荡元件仅阻容各一。 内置两组误差放大器。 内置5V基准电压源。 可调整死区时间。 内置双功率晶体管可提供双500mA的驱动能力。 推挽或单端两种输出方式。

下面开始改造。 改造时,改动越少,越容易成功。下面是“改动最少”的方案。 首先,旧PC电源应当是无故障的。一般风扇转动正常,电源就基本正常。如果能以12V的汽车灯泡(常见的是21W)测试,就更加准确。 TL494的12#(表示12脚,以下同)是电源端,7-40V都是正常的。7#是“地”端。14#是5V基准电压端。5#、6#是外接振荡阻容端。8#、9#、10#、11#、13#是输出部分。 所以,5#-14#各司其职,功能明确,接法相对固定,一般不用改动。 2#、3#一般也不用改动。 4#一般是接“保护电路”的。保护电路一旦工作,电源就会处于“故障”状态。所以,最简单的方法就是“除去保护电路”,将4#直接“接地”。如果调整输出电压至13V6-13V8时保护电路不动作,或如果你能确认4#没有与“保护电路”相“勾结”,就可以不动4#。 15#、16#一般是分别接14#、地,此时就不用改动。 15#、16#也有接“保护电路”的,一般也不用改动。为防止“保护电路捣乱”,“分别接14#、地”就可“去掉保护电路”。 1#是取样输入端,原电路一般是比较复杂的。改造时,保留1#接地的“下取样电阻”R35.。1#与12V输出之间连接“上取样电阻”R68,1#上的与5V的电阻断开。 “上取样电阻”增大时,输出电压应当增高。一般情况下,“上取样电阻”的初始值以“原1#与12V输出之间连接“上取样电阻””的2倍为宜。可用原取样电阻R68串可

锂电池充电电压与充电电流设定

锂电池的充电电压和电流应该是多少 锂电池充电电流和电压关系图的原理图 有上图可以看出,锂电池充电电流和电压是动态变化的,这是由锂电池本身的化学物质决定的。所以需要根据锂电池本身的充电特性来配置充电IC 的性能,以达到正确,安全,高效 的使用锂电池。日常表述中的“锂电池充电电流”是针对锂电池在充电过程中所处快速充电阶 段的充电电流而言的,作为一个动态的过程,锂电池最理想充电电流实际上是分为三个阶段的。常用锂电池充电IC 如TP4012A 、TP8052 、TP8056 ,本文最后处有部分介绍。 几种不同充电状态的性能描述 1、待机状态: 在如下几种情况下会处理待机状态: a. 输入电压低于电路最低工作电压。 b. 电池电压充饱后。 c. 利用外置开关强行关断IC,停止IC 充电。 待机状态的电压电流特性:充电IC 无充电电压输出,IC 输入电流在uA 级,可以减小电路损耗。 2、预充状态:如上图所示。预充电时的最佳电流:即当锂电池的初始/空载电压低于预充电阈值时,首先要经过一个预充电阶段,就单个锂离子电池而言,这个阈值一般为 3.0V ,在此阶段,预充电电流大约为下一个阶段——恒流充电阶段电流的10% 左右。 3、恒流充电状态:如上图所示最大充电电流部分,在电池电压已经大于预设电压阀值而小 于最高电压 4.2V 时,此时IC 将以外挂电阻设定的最大充电电流来给电池充电。将电池电

压充到等于最大充电电压( 4.2V 附近)时为止。 。恒流充电时的最佳电流:所谓恒流就是电流恒定,电压逐渐升高,此时进入快速充电阶段。大多数的恒流充电电流设定为0.5~0.8C 之间,可以理解为0.7C ,也就是在不考虑其他因素的情况下,大约两个小时可以充满。之所以选择0.7C ,是因为这个电流很好地做到了充电 时间与充电安全性的平衡。 恒流充电状态时需要注意的几个问题: 1. 在此状态下,IC 处于最大充电电流状态,此时的损耗也是也是最大的。线性降压的损 耗计算=(VIN-VOUT)×IOUT 。此时需要注意IC 的最高工作温度。 2. 因为最高充电电流的造成温升的提高,IC 会自动降低最大充电流。这就是在过热时充 电电流下降的原因。 4、恒压充电状态:如上图所示最大充电电压部分,当检测到电池电压等于或者接近电池充 电电压时。此时将会以恒定 4.2V 充电电压,而逐步降压充电电流的充电方式。当检测到充 电电流小于最大设定电流的1/10 时,将会停止充电。恒压充电时的充电电流:就单节锂离 子电池而言,当电池达到一定电压值时,即进入恒定电压充电,这个电压值一般为 4.2V ,在此阶段,电压不变,电流减小;这种电流减小是个依次递减过程,大多数的锂电池保护选 择0.1C 为终止电流,这也就意味着充电过程进入结束状态。一旦充电结束,则充电电流降 为零。在此状态下需要注意的问题就是:当电池充大最高设定电压时可以自动关断,同时, 当IC 的过压保护点在非正常电池状态下,可以自动锁定。 锂电池最佳充电电流的核心是恒流充电时的电流设计,这里要强调的是,大多数便捷式 锂电池较宜设计为0.5C~0.8C 充电,如:iPhone 的1400mAh 容量(容量mAh =电流mA×时间h)的电池为例,苹果选择了0.7C ,即苹果充电电流多为1A 左右,大部分的电池在0.5C--0.8C 之间你们可以选择了! 锂电池最大充电电流严格说是由电池结构决定的,因而,各个锂电池生产厂家对此规定 并不一致,有的设定为0.6C ,便携式锂电池最高的规定为1C。 当然也不能忽视预充电和恒压充电的电流设计,这两个过程中,如果初始电压不低于预 充电阈值 3.0V ,则不存在预充电过程。总的来说,在恒流充电过程前后有一个事前酝酿和 运动休整的过程有利于锂电池的长期使用。 锂电池充电管理IC 分类及应用 电池充电管理IC 分类: 按照充电电路结构可以分为: 1. 线性降压充电管理IC: 主要型号: TP4010,TP4011,TP4012,TP4013,TP4014,TP4015,TP4016 。 线性降压部份基本功能类似于LDO 的线性降压电路。 最大可充电电流设定:一般是通过恒流源外挂电阻的方式来设定,而且一般是内部集成功率器件。 主要应用领域:MP3 ,MP4 ,GPS ,PMP ,PDP

恒流恒压充电器的原理与设计

恒流恒压充电器的原理与设计

本电路实际上是一个恒流源。核器件是集成三端可调稳压器LM317T。 LM317T在电源电压足够的情况下可以保持其+Vout端比其ADJ端电压高 1。25V。请看图中的接法,ADJ端直接与待充电池相连。但ADJ端的内阻很 大(正常情况下ADJ端的电流不会超过50μA),可近似看作开路,但它可以对电 压进行取样。LM317T将+Vout端的电压提高到比ADJ端高1.25V,那么跨 接在+Vout端与ADJ端的电阻上将有1.25V/25.5Ω=0。05A=50mA 的电流流过(25.5Ω为开关打开时,R1与R2并联后的总阻值)。这个电流便流 过电池,对电池进行了恒流充电。 公式与计算、 普通充电电池充电时间计算 一、充电常识 在这里,首先要说明的是,充电是使用充电电池的重要步骤。适当合理的充电对延长电池寿命很有好处,而野蛮胡乱充电将会对电池寿命有很大影响。上一篇曾说过,目前的锂电池基本都是根据各个产品单独封装,互不通用的,因此各个产品也提供各自的充电设备,互不通用,在使用时只要遵循各自的说明书使用即可。所以本篇对电池充电的介绍主要是指镍镉电池和镍氢电池。 对镍隔电池和镍氢电池充电有两种方式,就是我们大家所熟知的“快充”和“慢充”。快充和慢充是充电的一个重要概念,只有了解了快充和慢充才能正确掌握充电。 首先,快充和慢充是个相对的概念。有人曾问,我的充电器充电电流有200mA,是不是快充?这个答案并不绝对,应该回答对于某些电池来说,它是快充,而对于某些电池来说,它只是慢充。那我们究竟怎样来判别快充还是慢充呢? 例如一节5号镍氢电池的电容量为1200mAH,而另一节则为1600mAH。我们把一节电池的电容量称为1C,可见1C只是一个逻辑概念,同样的1C,并不相等。 在充电时,充电电流小于0.1C时,我们称为涓流充电。顾名思义,是指电流很小。一般而言,涓流充电能够把电池充的很足,而不伤害电池寿命,但用涓流充电所花的时间实在太长,因此很少单独使用,而是和其它充电方式结合使用。 充电电流在0.1C-0.2C之间时,我们称为慢速充电。充电电流大于0.2C,小于0.8C则是快速充电。而当充电电流大于0.8C时,我们称之为超高速充电。 正因为1C是个逻辑概念而非绝对值,因此根据1C折算的快充慢充也是一个相对值。前面例子中提到的200mA充电电流对于1200mAH的电池来说是慢充,而对于700mAH的电池来说就是快充。

恒压电源与恒流电源的定义与区别

恒压电源与恒流电源的定义与区别 大家可能偶尔会听到,我的电源是恒压的,我的电源是恒流的,电源适配器不都一样吗,这两个到底是什么区别?为什么会有这样的区分?联运达为大家介绍一下。 一、恒压电源是指在允许负载的情况下,输出电压是恒定的,不会随着负载的变化而变化。比较常见的是为小功率LED光条就是用的恒压电源,也是大家常说的稳压电源。蓄电池、干电池都可以看做是恒压电源,只不过因为转化的原因,稳压性能比较差一些。 举个例子说明一下:如果一个恒压电源的空载输出为12V,电阻为12Ω,将电阻接到电源正负极,根据欧姆定律计算,电流为1A。这个时候我们将电路中的电阻增加一个,电阻变成了24Ω,如果不是电源不是恒压的,那么正常情况电路中的电流应该是0.5A,那么是恒压电源呢,根据电阻的增加,电压一直保持不变,始终是12V,电流会相应增加,这个时候电流变为了2A。 大家平时的家庭用电也是差不多的一个情况,恒压电源相当于家里的市电220V。家用电器的使用情况来说明,比如看着电视、开着灯、用着电暖炉,它们的电流可能不一样,但是外接的电压都是220V。大家每增加一个用电器就相当于增加了电流,电压不变,功率也会相应增高,用电度数自然不会少,所以大家在家用电的时候可以尽量少开一些电器,节约电力资源。 二、恒流电源是指在允许负载的情况下,输出电流是恒定的,不会随着负载变化而变化。相对来说恒流电源应用没有恒压那么广,咱们平时广场或者酒店采用的那种大功率LED泛光灯就是恒流电源驱动的。恒流电源主要用于保护电子产品不会因为电压变化而损坏。 举个例子:一个恒定电流1A,最高输出达到12V的一个恒流电源,电路中的电阻可以从0~12Ω变化,但是它的电流始终会保持不变,为1A。当电阻超过12Ω时,进入限压保护,恒流电源会认为是非工作保护区而拒绝工作。 大家平时可能恒流电源情况比较少不好理解,联运达给大家做个简单的比喻,方便大家理解。台式电脑大家都见过,恒流的情况就是在大家使用台式电脑的时候用USB连接手机、MP3等电子产品的时候,电脑主机的电流和大家电子产品的电流是一样大小的。如果台式电脑的电流是1A,那么此时和台式电脑连接的电子产品的电流也是1A。会出现一些情况,比如大家玩游戏、听音乐同时进行的时候,电流会稍微大一些,平时不要把电子产品和电脑连接充电,而用配套的电源适配器会对电子产品好很多。 平时大家在选购的时候可以通过观察电源适配器的参数知道它是恒压的还是恒流的。电源适配器的输出电压都会写在参数里面,拿LED电源做参考,如果这个标称电压是恒定值,比如12V,那么可以知道它是恒压电源,如果这个标称

手机充电器电路设计[1]

手机充电器电路设计 摘要:通过对课程的学习设计。了解手机充电器的工作原理及设计流程,确定相关参数和电路图。 关键字:隔离变压器频率绝缘电阻绝缘强度可燃性自由跌落湿热试验工作原理工作流程 1 前言(李洋) 1 电路设计思想 从手机锂离子二次电池的恒流/恒压充电控制出发,用220V 交流电通过配置的内置储能锂电池对手机锂离子电池充电。电路的具体工作流程如图1所示。 图1 工作流程图 2 电路设计方案 充电芯片选用美信半导体公司的锂电池充电芯片,这款充电芯片具

有很强的充电控制特性,可外接限流型充电电源和P沟道场效应管,能对单节锂电池进行安全有效的快充。其最大特点是在不使用电感的情况下仍能做到很低的功率耗散,且充电控制精度达0.75%;可以实现预充电;具有过压保护和温度保护功能,其浮充方式能够充至最大电池容量。当充电电源和电池在正常的工作温度范围内时,接通电源将启动一次充电过程。充电结束的条件是平均的脉冲充电电流达到快充电流的1%,或时间超出片上预置的充电时间。所选用的充电芯片能够自动检测充电电源,在没有电源时自动关断以减少电池的漏电。启动快充后打开外接的P型场效应管,当检测到电池电压达到设定的门限时进入脉冲充电方式,充电结束时,外接LED指示灯将会进行闪烁提示。 电路工作原理 内置储能电池的充电及其保护电路其中包括:LED显示、热敏电阻,电流反向保护。ADJ引脚通过10kΩ的电阻与内部1.4V的精密基准源相连接,当ADJ对地没有连接电阻时,电池充电电压阈值为缺省值:VBR =4.2V;当需要自行设置充电阈值时,可在ADJ引脚与GND间接一精度为1%的电阻RADJ,阻值由式(1)确定:RADJ=10kΩ/(VBR/VBRC-1) (1) 由图3可知,充电阈值为4.1V,可得RADJ=410k 做手机充电器电路设计,需先对其工作环境进行分析,了解其工作原理。

锂电池充电电路详解

锂电池充电电路图 锂电池是继镍镉、镍氢电池之后,可充电电池家族中的佼佼者.锂离子电池以其优良的特性,被广泛应用于: 手机、摄录像机、笔记本电脑、无绳电话、电动工具、遥控或电动玩具、照相机等便携式电子设备中。 一、锂电池与镍镉、镍氢可充电池: 锂离子电池的负极为石墨晶体,正极通常为二氧化锂。充电时锂离子由正极向负极运动而嵌入石墨层中。放电时,锂离子从石墨晶体内负极表面脱离移向正极。所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现。因而这种电池叫做锂离子电池,简称锂电池。 锂电池具有:体积小、容量大、重量轻、无污染、单节电压高、自放电率低、电池循环次数多等优点,但价格较贵。镍镉电池因容量低,自放电严重,且对环境有污染,正逐步被淘汰。镍氢电池具有较高的性能价格比,且不污染环境,但单体电压只有1.2V,因而在使用范围上受到限制。 二、锂电池的特点: 1、具有更高的重量能量比、体积能量比; 2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压; 3、自放电小可长时间存放,这是该电池最突出的优越性; 4、无记忆效应。锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电; 5、寿命长。正常工作条件下,锂电池充/放电循环次数远大于500次; 6、可以快速充电。锂电池通常可以采用0.5~1倍容量的电流充电,使充电时间缩短至1~2小时; 7、可以随意并联使用; 8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池; 9、成本高。与其它可充电池相比,锂电池价格较贵。 三、锂电池的内部结构: 锂电池通常有两种外型:圆柱型和长方型。 电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。正极包括由锂和二氧化钴组成的锂离子收集极及由铝薄膜组成的电流收集极。负极由片状碳材料组成的锂离子收集极和铜薄膜组成的电流收集极组成。电池内充有有机电解质溶液。另外还装有安全阀和PTC元件,以便电池在不正常状态及输出短路时保护电池不受损坏。 单节锂电池的电压为3.6V,容量也不可能无限大,因此,常常将单节锂电池进行串、并联处理,以满足不同场合的要求。字串5 四、锂电池的充放电要求; 1、锂电池的充电:根据锂电池的结构特性,最高充电终止电压应为4.2V,不能过充,否则会因正极的锂离子拿走太多,而使电池报废。其充放电要求较高,可采用专用的恒流、恒压充电器进行充电。通常恒流充电至4.2V/节后转入恒压充电,当恒压充电电流降至100mA 以内时,应停止充电。 充电电流(mA)=0.1~1.5倍电池容量(如1350mAh的电池,其充电电流可控制在135~2025mA之间)。常规充电电流可选择在0.5倍电池容量左右,充电时间约为2~3小时。 2、锂电池的放电:因锂电池的内部结构所致,放电时锂离子不能全部移向正极,必须保留一部分锂离子在负极,以保证在下次充电时锂离子能够畅通地嵌入通道。否则,电池寿命就相应缩短。为了保证石墨层中放电后留有部分锂离子,就要严格限制放电终止最低电压,也就是说锂电池不能过放电。放电终止电压通常为3.0V/节,最低不能低于2.5V/节。电池放

恒流恒压充电器的原理与设计

恒流恒压充电器的原理与设计 2009-09-22 09:26 随着高新电子技术的发展各类充电电子产品不断上升,为此云峰电子为朋友们提供些相关恒流充电器的制作与原理分析,请仔细阅读!详情咨询https://www.360docs.net/doc/d110317060.html, 第一类、lm317恒流源电路图 图1、图2分别是用78××和LM317构成的恒流充电电路,两种电路构成形式一致。对于图1的电路,输出电流Io=Vxx/R+IQ,式中Vxx是标称输出电压,IQ是从GND端流出的电流,通常IQ≤5mA。当VI、Vxx及环境温度变化时,IQ的变化较大,被充电电池电压变化也会引起IQ的变化。IQ是Io的一部分,要流过电池,IQ的值与Io相比不可忽略,因而这种电路的恒流效果比较差。对于图2的电路,输出电流Io=VREF/R+IADJ,式中VREF是基准电压,为1.25V,IADJ是从调整端ADJ流出的电流,通常IADJ≤50μA。虽然IADJ也随VI及环境条件的变化而变化,且也是Io的一部分,但由于IADJ仅为78××的IQ的1%,与Io相比,IQ可以忽略。可见LM317的恒流效果较好。 对可充电电池进行恒流充电,用三端稳压集成电路构成恒流充电电路具有元件易购、电路简单的特点。有些读者在设计电路时采用78××稳压块,如《电子报》2001年第2期第十一版刊登的《简单可靠的恒流充电器》及今年第6期第十版的《恒流充电器的改进》一文,均采用7805。78××虽然可接成恒流电路,但恒流效果不如LM317,前者是固定输出稳压IC,后者是可调输出稳压IC,两种芯片的售价又相近,采用LM317才是更为合理的改进。 LM317采用T0-3金属气密封装的耗散功率为20W,采用TO-220塑封结构的耗散功率为15W,负载电流均可达1.5A,使用时需配适当面积的散热器。由于LM317的VREF=1.25V,其最小压差为3V,因此输入电压VI达4.25V就能正常工作。但应注意输出电流Io调得较大时,输入电压VI的范围将减小,超出范围会进入安全保护区工作状态,使用时可从图3的安全工作区保护曲线上查明输入—输出压差(VI-Vo)的范围。 78××与LM317内部均有限流、过热保护功能,后者还有安全工作区保护功能。78××不允许GND端悬空,否则器件极易损坏。LM317即使ADJ端悬空,各种保护功能仍然

基于LM317的恒流恒压充电电路

基于LM317的恒流恒压充电电路 本组认为LM317比MC34063A芯片更常用更简易。固权衡后,以为设计本身服务为原则,采用LM317芯片搭建模块一的恒流恒压主电路。 模块一: 用恒流充电以时间来控制通、断电,易造成充不足或过充电;而用恒压充电,当开始充电时,由于电池电压比较低,充电电流过大会对电池有害。此恒流-恒压充电器对两者取长补短,开始时恒流充电,当电池电压升到某一值时变为恒压充电。 如图电路,开始充电时电池电压较低,不能使VS导通,LM317接成恒流充电形式,充电电流I=1.25/R。充电一段时间后,电池电压上升到某一值时,VS导通,LM317 1脚通过RP1和VS接地,此时变成恒压充电,充电电压U=1.25[1+(R2/R1)-0.7],式中R2--RP1取值,R1—(R+R1)取值。充电电流若很大,可在VD2上并联二极管。R 承受功率W》1.6/R。VS尽量选用导通电阻小的单向晶闸管。 使用时选择R阻值,从而确定恒流充电电流,然后调RP1得恒压充电电压,最后调RP2,使VS导通时电池电压应比充电电压低0.2V 左右。

模块二: 利用指示灯显示充电电量多少,即利用多谐振荡器将直流电压转换成一定频率的交流电压使得发光二极管有相同频率的闪烁。经过筛选我们选择了时精确度高、温度稳定度佳,且价格便宜的NE555来搭建振荡电路,而且由于其只需简单的电阻器、电容器,即可完成特定的振荡延时作用以及它的操作电源范围极大,可与TTL,CMOS等逻辑电路配合,其输出端的供给电流大,可直接推动多种自动控制的负载,使得其相对于其他振荡电路更具有优势。 NE555多谐振荡电路如下: 多谐振荡器的放电时间常数分别为

一种简易锂电池恒流充电电路的设计

一种简易锂电池恒流充电电路的设计 手机电脑中的锂电池的充电需要恒流电流,而日常生活中我们所使用的是220V的正弦交流电。为了给锂电池充电,我们需要将220V的正弦交流电转换成特定电压的恒流电。我设计的一种转换电路如下,它包括变压器整流电路、恒流产生电路、自动断电电路、显示电路和电源电路5个部分。 变压器整流电路的功能是将220V 正弦交流电转换为合适的电流和电压信号,从而为后续电路提供信号。晶体管电流源为电路产生恒定的充电电流。利用三极管饱和导通时的电压特性实现自动断电电路的功能,从而实现当电池充满电时电路能够自动断开。显示电路的功能是利用发光二极管将电路开始充电和结束充电的状态显示出来。稳压电源电路的功能是为上述所有电路提供直流电压。 变压器整流电路和稳压电源电路(如图虚线左边所示) ,其主要由变压器、二极管桥式电路、电容构成。其中变压器采用常规的铁心变压器,并将普通的220V正弦交流电变为12V 正弦交流电,再通过二极管桥式电路进行整流和电容C1滤波。整流信号由VC1引出。在此基础上再接三端稳压器CW7812 及电容C3、C4 (如图虚线右边所示) ,这样整个电路就构成稳压电源电路。由B点提供+ 12 V的直流电压。 如图二所示,由稳压管VZ1、晶体管VT1、电阻R1、电容C2构成的晶体管电流源提供恒定电流, I C≈I E = UV Z1 - UB E1 R1。 取稳压管电压为5V ,R1为51Ω,此时I C≈100 mA ,作为电路的充电电流。 如图三所示,自动断电电路是由三极管VT2、电压跟随器A1、电压比较器A2电阻R4、R5、R6、R7、R8、R11和可变电阻R P1构成。当充电开始时,电压比较器输出高电平, V T2导通,V T1也导通,指示灯发光二极管亮,给电池充电。可以先设定转换开关为1时给一节电池充电,转换开关为2时给二节电池充电,依次类推,实现对1至4节电池充电。当电池充满时,电压比较器输出低电平,V T2截止,V T1不导通,发光二极管熄灭,充电完毕。

某恒压恒流电源的电路图及解释

图解电源(转贴,讲得非常好) 电源是最常用的电器,作用是把220V交流转变成需要的直流电,供各种电器使用。除了商品上各种独立的电源外,我们常见的各种适配器、充电器、机箱里用的模块化的(比如计算机用的),都可以认为是电源。对于动手一族(DIY族),电源不仅是最常用的工具,往往也是DIY的对象。也就是说,电源本身构造相对简单,往往可以DIY。 按照类别,电源可以分成线性电源和开关电源两类。线性电源是先采用工频变压器降压,然后整流滤波,再用线性调整管进行稳压的方式,性能可以做得比较好。开关电源是先整流滤波,然后高频振荡,再变压,再整流滤波。由于初始滤波电容电压比较高,因此比能量比较大所以体积比较小,更因为高频振荡频率比工频高得多,因此变压器的体积和重量大大减少,再加上可以采用PWM反馈调节的方式,使得开关电源的效率很高,因此也不需要大体积的散热片,这样,开关电源的体积、重量与同功率的线性电源比大大减少。但是,由于采用高频振荡,其谐波很可能向外发射或通过输出电源和输出电源传 到外部,对通讯设备造成干扰。 值得注意的是,这种干扰并非是全频段的,而是在一些频率上(主要是谐波)有干扰。同时,由于开关电源频率的不确定性,因此干扰频率也是不确定的,大多是变化的。因此,不能简单的用收音机或者电台检查几个频点没有发现有干扰,就能确定某开关电源对通讯设备没有干扰。正规的检查方法是要用频谱仪。 另外,有些电源是固定输出的,有些电源的电压可以在一定范围内可调,还有一些电源可以从0V起调。可调的线性电源要解决好低压输出效率低下的问题,而可调的开关电源 要解决大范围占宽比变化的问题。 大部分电源具备输出显示。一般至少有一个电压表,也有的具备电流表,也有的是电压电流可以转换。根据电压、电流表的类型,可以分成模拟显示电源和数字显示电源,前者用模拟表头显示,而后者用数字表显示。数字显示电源有的是3位显示,也有高精度一些用4位表头显示,甚至更高的位数。高分辨的数字显示电源可以很方便的测量各种电器在不同电压下和不同状态下的耗电,或者可以很方便的测量各种元器件的V-I特性曲线,比如二极管、稳压管的正反向特性,FET、VMOS管的转移特性等。 现在有很多数字电源,即不仅电流和电压表是数字的,而且输入也是数字的。当然,并非数字电源一定是开关的,二者是不相干的,因为数字电源也可以是线性的。数字电源的优势是可以精确的设置电压电流值,多组设置值可以存储起来,甚至可以程序控制(程控电源),完成自动时序输出或者自动测量功能。 还有一类电源,本身带有充电功能,而且在交流电停电后,可以自动转为电池输出,这

关于LED驱动电源恒压与恒流区别的解析

关于LED驱动电源恒压与恒流区别的解析 1.恒流电源是电源电压发生变化,而流过负载的电流不变。 恒压电源是流过负载的电流变化时,电源电压不发生变化 不要简单的用欧姆定律来理解,电源不是直接接负载,中间都有个电路。 2.所谓恒流/恒压就是在一定范围内输出电流/电压保持恒定。“恒定”的前提是在一定范围内。对于“恒流”就是输出电压要在一定范围内,对于“恒压”就是输出电流要在一定范围内。超出这个范围“恒定”就无法保持。因此恒压源会设定输出电流档(最大可输出)的参数。其实电子世界里根本没有“恒定”这个东西,所有电源都有负载调整率(load regulation)这个指标。以恒压(电压)源为例:随着你负载的加大,输出电压一定是下降的。 3.恒压源和恒流源在定义上的区别: 1)恒压源在允许的负载情况下,输出的电压是恒定的,不会随负载的变化而变化。通常应用于小功率LED模块,小功率LED灯条用的比较多。恒压源就是我们常说的稳压电源,能保证负载(输出电流)变化的情况下,保持电压不变。2)恒流源在允许的负载情况下,输出的电流是恒定的,不会随着负载的变化而变化,通常应用在大功率LED和高档小功率产品上。 *如果从寿命上考良的话,恒流源LED驱动比较好一点。 恒流源是在负载变化的情况下,能相应的调整自己的输出电压,使输出电流保持不变。 我们见到的开关电源基本上都是恒压源,而所谓的“恒流型开关电源”则是在恒压源的基础之上,在输出上加一个小阻值的采样电阻,通过反馈到前级去控制来进行恒流控制。 4.如何从电源参数上识别是恒压源还是恒流源呢? 可以从电源的label上看:如果他标识的输出电压是一个恒定的值(如Vo=48V),就是恒压源;如果标识的是一个电压范围(如Vo为45~90V),可以确定这是个恒流源了。 5.恒压源与恒流源的优缺点:恒压源能够为负载提供恒定的电压,理想的恒压源内阻为零,不能短路:恒流源可以为负载提供恒定的电流,理想的恒流源内阻为无穷大,不能开路。 6.LED作为恒流工作的电子元器件(工作电压比较固定,其稍加偏移,就会使电流有很大的变化),只有采用恒流方式,才能真正保证亮度的一致和长寿命。恒压式驱动电源在工作时,需要在灯具上加恒流模块或限流电阻,而恒流式驱动电源只是把恒压源的的恒流模块内置了。

关于可调恒压恒流电源的原理、特性及使用

关于可调恒压恒流电源的原理、特性及使用: 恒压恒流的原理: 根据U=IR,R=U/I: 如果R>(U/I),则电源正常工作。 如果R<(U/I),I是恒定不变的,则电源恒流部分保护,输出电压下降,直到满足条件R=(U/I)。 特性: 所谓的恒压,即电压可以恒定到一个值上,可调恒压,即这个恒定的电压值是可调的。 所谓的恒流,即电流可以恒定到一个值上,可调恒流,即这个恒定的电流值是可调的。 使用: 可调恒压恒流电源在使用前需要先设置恒流保护值,再设置输出电压,然后开始工作。 首先将电源输出电压调到5V左右,短路输出,调整电流输出旋钮设置保护电流到你需要的值,撤消短路,调整电压到需要值,接上实验设备开始工作。 例如:一个电路的工作电压是12V所需电流约0.3A,操作如下。

将电源输出电压调到5V左右,短路输出,调整电流输出旋钮设置保护电流0.5A(要比工作电流略大),撤消短路,调整电压到12V,接上电路开始实验。 如果试验过程中电路板放到金属上部分电路短路了,使电流剧增,当电流上升到0.5A时,电源恒流保护部分工作随即使输出电压下降以保护试验设备。 常识了解: 交流电压经过全波整流电容滤波后直流电压约是交流电压的1.414倍。 例如10V的交流电压经过全波整流电容滤波后直流电压约等于14V。 继电器切换点的选择: 交流输入电压减去5V等于切换电压。 例如变压器抽头0-15V-25V-35 那么第一级的切换电压是15V-5V=10V,即在10V 时切换到25V的抽头上。 第二级的切换电压是25V-5V=20V,即在20V时切换到35V的抽头上。 关于继电器切换与否可以测R17两端的电压来判断,R17电压(直流)除以1.414约等于当前的抽头电压(交流)。

LM317制作简易恒压恒流充电器

LM317制作简易恒压恒流充电器 上传者:mmcqd2010浏览次数:188888分享到:开心网人人网新浪微博EEPW微博 一直想做一台高级而复杂的全功能智能充电器,最后发现简单可靠实用才是真理,怎样实现简单可靠?串联充电比并联充电简单,缺点是电池要求容量比较一致,线性降压比开关降压简单,缺点是效率比较低发热大,大电流充电节约时间但是发热大电池寿命影响也不小,负斜率或者零增量侦测电池是否充满的缺点是电路复杂并且因为电池性能的关系并不可靠,目前电池的充电方式大多数推荐是恒流。 所以一台简单可靠的充电器要完成的功能特点应该有:能充多节电池,有恒流充电功能,有防止过充功能。实现方法其实很简单:串联,恒压,恒流。如果用稳压电源来充电的话,初期电流太大,若串入限流电阻的话,当电池电压升高后电阻就限制了充 电电流使充电时间过长。恒流恒压只是相对的,具体来说应该是前期恒流后期恒压,顺便说一下,这种方式非常适合给锂电池充电。 在网上找了很久,都没有找到满意的线路,猛的发现在LM317规格书内就有这个充电线路,原名叫做恒压限流充电器,真是踏破铁鞋无觅处,稍作修改就是自己需要的东西,并且可以做成万能充电器。 按照上图,我做的是一台一次充4节镍氢或者镍镉电池的充电器,经测试发现很理想,并且前期限流基本是恒流,后期恒压。调试很简单,只要调整R2设置输出电压在你需要的电压上,比如镍氢电池充满是1.45v一节,4节就是5.8v,R2建议用那种精密可调电位器,多圈小型那种既稳定又能微调,R3的选择你需要的充电电流,现在充电电池容量都不小,不想充电速度太慢或太快,充电电流可以取适中,比如我取的2.2欧姆根据三极管导通电压约0.6v计算电流在270ma。为了减少LM317的损耗,输入电压设置在比输出电压高3V,如1.45×4+3 约9v,如果你觉得LM317上3v损耗还是太大,可以把LM317换成1117这种1v的低压降IC(没试过), 如果你觉得串联充电不够好,可以只充一节电池,多做几组就可以了,其实对于一直成组使用的电池串联充电没有什么不好,充放电电流都是一致的。前面也说了,这电路用来充单节锂电池,单节磷酸铁锂电池很合适。只需要把输出电压设置在电池的截止电压。

LED恒流、恒压供电的利与弊

LED恒流、恒压供电的利与弊 现在有关这个问题有很多各种不同似是而非的说法,有人说:在LED的伏安特性上,电压定了,电流也就定了。所以采用恒压和恒流效果是一样的。有人说LED并联时就应该采用恒压电源供电,而LED串联时就应该采用恒流电源供电;有人说,因为LED是恒流器件,所以要用恒流源供电;有人说,采用市电供电时就应该采用恒压电源供电,采用蓄电池供电时,就应该采用恒流电源供电。至于为什么这样要求,似乎谁也说不明白。 那么,到底是应该采用恒压电源,还是恒流电源供电呢? 首先来看一下LED到底是什么样的器件。因为LED的亮度是和它的正向电流成正比,而且一些LED的结构决定了它的散热也就是功耗。所以大多数LED会给出额定电流,例如Φ5为20mA,1W的为350mA…等,但这并不等于LED只能工作于这些额定电流,更不意味着LED就是一个恒流器件。例如Cree的1瓦LED和3瓦LED是同一型号,电流从350mA加大到700mA,功率就从1W加大成3W,所以这个LED可以工作在350-700mA之间的任意值。 要深入了解这个问题首先要知道LED的伏安特性。 1. LED的伏安特性 LED的中文名字就是发光二极管,所以它本身就是一个二极管。它的伏安特性和一般的二极管伏安特性非常相似。只不过通常曲线很陡。例如一个20mA的草帽LED的伏安特性如图1所示。 图1. 小功率LED的伏安特性 假如用干电池或蓄电池供电,那么因为LED伏安特性的非线性,很小的电压变化就会引起很大的电流变化,上图中电源电压在3.3V时正向电流为20mA的LED,如果用3节干电池供电,新的电池电压超过1.5V,3节就是4.5V,LED的

锂电池充电电路详解

锂电池充电电路详解 四、锂电池的充放电要求; 1、锂电池的充电:根据锂电池的结构特性,最高充电终止电压应为4.2V,不能过充,否则会因正极的锂离子拿走太多,而使电池报废。其充放电要求较高,可采用专用的恒流、恒压充电器进行充电。通常恒流充电至4.2V/节后转入恒压充电,当恒压充电电流降至100mA以内时,应停止充电。 充电电流(mA)=0.1,1.5倍电池容量(如1350mAh的电池,其充电电流可控制在135,2025mA之间)。常规充电电流可选择在0.5倍电池容量左右,充电时间约为2,3小时。 2、锂电池的放电:因锂电池的内部结构所致,放电时锂离子不能全部移向正极,必须保留一部分锂离子在负极,以保证在下次充电时锂离子能够畅通地嵌入通道。否则,电池寿命就相应缩短。为了保证石墨层中放电后留有部分锂离子,就要严格限制放电终止最低电压,也就是说锂电池不能过放电。放电终止电压通常为3.0V/节,最低不能低于2.5V/节。电池放电时间长短与电池容量、放电电流大小有关。电池放电时间(小时)=电池容量/放电电流。锂电池放电电流(mA)不应超过电池容量的3倍。(如1000mAH电池,则放电电流应严格控制在3A以内)否则会使电池损坏。 目前市场上所售锂电池组内部均封有配套的充放电保护板。只要控制好外部的充放电电流即可。 五、锂电池的保护电路: 两节锂电池的充放电保护电路如图一所示。由两个场效应管和专用保护集成块S--8232组成,过充电控制管FET2和过放电控制管FET1串联于电路,由保护IC 监视电池电压并进行控制,当电池电压上升至4.2V时,过充电保护管FET1截止,停止充电。为防止误动作,一般在外电路加有延时电容。当电池处于放电状态下,

恒压恒流充电器

模块性质:非隔离降压恒流、恒压模块(CC CV)充电模块 适用范围:大功率LED恒流驱动,锂电池充电(包括铁电),4V、6V、12V、14V、24V电瓶充电、镍镉镍氢电池(电池组)充电,太阳能电池板,风力发电机 输入电压:7-35V如需要更高电压请直接联系我 输出电压:(1)连续可调(1.25-30V) (2)固定输出(1.25-30V之间任意选择),购买时请告诉掌柜。(暂时只针对批量客户,样品全部发可调型) 输出电流:额定2A,最大4A (超过15W 请安装散热片) 恒流范围:0-3A(可调节) 转灯电流:恒流值*(1%—100%),转灯电流与恒流值联动,比如恒流值为3A,转灯电流设置为恒流的0.1倍(0.1*3A=0.3A),当把恒流值调节成2A时候,此时转灯电流为恒流的0.1倍(0.1*2A=0.2A). 默认出货时已经调节到 0.1倍 最低压差:2V 输出功率:自然冷却15W转换效率:92%(最高92%(输出电压越高,效率越高) 输出纹波: 20M带宽(仅供参考) 输入12V 输出5V 3A 60mV(MAX) 工作温度:工业级(-40℃到+85℃)(环境温度超过40度,请降低功率使用,或加强散热) 满载温升:45℃ 空载电流:典型10mA(12V转4.2V) 负载调整率:±1% 电压调整率:±0.5% 动态响应速度:5% 200uS 电位器调节方向:顺时针(增加),逆时针(减少) 指示灯:恒流指示灯红色,充电中指示灯红色,充电完毕指示灯蓝色

输出短路保护:有,恒流(当前设置恒流值) 输入反接保护:无,请在输入串联二极管。 接线方式:焊接,加引脚后可直接焊接在PCB上 电池充电使用方法: 1.确定您需要充电电池的浮充电压和充电电流,模块的输入电压; 2.调节恒压电位器使输出电压达到浮充电压; 3.用万用表10A电流挡测量输出短路电流,同时调节恒流电位器使输出电流达到预定的充电电流值; 4.充电转灯电流默认出货为 0.1倍充电电流(恒流值),如需调整请调节转灯电流电位器; 5.接上电池,试充。 (1、2、3、4步骤为模块输入接电源,输出空载不接电池。) LED恒流驱动使用方法: 1.确定您需要驱动LED的工作电流和最高工作电压; 2.调节恒压电位器使输出电压达到LED最高工作电压; 3.用万用表10A电流挡测量输出短路电流,同时调节恒流电位器使输出电流达到预定的LED 工作电流; 4接上LED,试机。

相关文档
最新文档