无线通信网络

无线通信网络
无线通信网络

第一章

1.感知层主要用于采集物理世界中发生的物理事件和数据,包括各类物理量、标识、音频、视频数据。

2.传输层的主要功能是直接通过现有互联网、移动通信网、卫星通信网等基础网络设施,对来自感知层的信息进行接入和传输。

3.三类损耗包括路径传播损耗、大尺度衰落损耗、小尺度衰落损耗;

四种效应包括阴影效应、远近效应、多径效应、多普勒效应;

多普勒效应:由于接收用户处于高速移动中,比如车载通信时传播频率的扩散二引起的,其扩散成都与用户运动速度成正比。

4.无线个域网是为了实现活动半径小、业务类型丰富、面向特定群体、无线无缝的连接而提出的新兴无线通信网络技术。WPAN能够有效地解决“最后的机密电缆”的问题,进而将无线联网进行到底。

5.短距离无线通信的主要特点通信距离短,覆盖范围一般在几十米或上百米之内;无线发射器的发射功率较低,一般小于100mW;工作频率多为免付费、免申请的全球通用的工业、科学、医学ISM频段。短距离无线通信的范围很广,一般意义上,只要通信收发双方通过无线电波传输信息,并且传输距离限制在较小范围内通常是几十米以内,就可以称为短距无线通信。

6.低成本、低功耗和对等通信,是短距离无线通信技术的三个重要特征和优势。

7.传感器网络通常包括传感器节点、汇聚节点和管理节点。大量传感器节点随机部署在检测区域内部或附近,能够通过自组织方式构成网络。用户通过管理节点对传感器网络进行配置和管理,发布检测任务并收集检测数据。

8.IrDA也有其不尽如人意的地方。首先,IrDA是一种视距传输技术,也就是说两个具有IrDA端口的设备之间如果传输数据,中间就不能有阻挡物,这在两个设备之间是容易实现的,但在多个电子设备间就必须彼此调整位置和角度等。

第二章

1.蓝牙定义了两种链路类型:异步无连接链路ACL和面向同步链接链路SCO。ACL链路支持对称或非对称、分组交换不和多点链接,它上要用来传输数据;SCO链路支持对称、电路交换和点到点的链接,主要用来传输语音。

2.蓝牙为了抵消来自一些无线设备的干扰,采取了跳频方式来扩展频谱2.402-2.48GHz的频段分成79个频点,每两个相邻频点间隔1MHz。

3.蓝牙设备在通信连接状态下,有4种工作模式:激活模式、呼吸模式、保持模式和休眠模式。呼吸模式的功耗最高,但对于主设备的响应最快休眠模式功耗最低,单对于主设备的响应最慢。

4.具有重叠覆盖区域的多个微微网构成一个散射网络结构。每个微微网只能用偶一个主单元,从单元可基于时分复用参加不同的微微网。

5.服务发现协议:发现服务在蓝牙技术框架中起到至关重要的作用,它是所有使用模式的基础。使用SDP,可以查询到设备信息、服务和服务类型,从而在蓝牙设备间建立相信的连接。

6.通信过程:

7.蓝牙路由机制包括3个主要的功能模块:①信息交换中心②固定蓝牙主设备③移动终端。信息交换中心(MSC)负责跟踪系统内各蓝牙设备的漫游,并在数据包路由过程中充当中继器,它通过光缆或双绞线直接与固定蓝牙主设备连接。

信息交换中心的3个主要功能:通过路由表,跟踪和定位本系统内所有蓝牙设备。在两个属于不同微微网的蓝牙设备之间建立路由连接,并在设备之间交流路由信息,在需要的情

况下帮助完成系统的切换功能。此外如果MSC连接到一个hitmeet端口,则对于BRS系统,MSC起一个网关的作用。

路由的建立:蓝设备回向MSC发出路由连接请求,该请求信息包含被请求连接蓝牙设备的地址,发出连接请求的蓝牙设备可能是固定蓝牙主设备FM或蓝牙移动终端MT。在路由连接中,发出连接请求的蓝牙设备是源端,被请求连接的蓝牙设备是目的端。当MSC接到该路由连接请求时,它将会通知目的端。

切换:信息交换中心MSC可以帮助并加速完成蓝牙移动端MT从一个FM微微网切换到另一个FM微微网,当一个蓝牙移动终端MT需要信息交换中心MSC来帮帮主完成切换时,它会通过当前的主设备FM箱MSC发送切换请求信息,切换请求信息包含发出请求的MTT蓝牙地址,新的主设备FM的地址,及MT与新的主设备FM之间的时钟偏移量。

8.世界蓝牙组织SIG已经确定了一些应用模型,每个应用模型都有一个协议子集。它定义了支持特定应用模型的协议和功能。

通用协议子集GAP构成了所有蓝牙协议子集的一个公共基础,因此也为蓝牙传送协议组的通用互操作应用提供了基础。

GAP主要包含三项内容:词典、连接和个性化。

通信策略分为发现模式、连接模式、匹配模式。

完全可发现模式:在这个可发现的等级中,,一个设备使用通用查询接入码进入查询扫描,二通用查询接入码是用48比特蓝牙的种种特别保留的LAP产生的查询接入码。在这种模式中一个设别相应所有的查询,这样它总能被所有的其他正在查询的设备发现。

9.在保证一定误码率的及冲突限度的前提下,一个说那是我可由至多10个微微网构成。

第三章

1.ZigBee协议栈由高层应用规范、应用汇聚层、网络层、数据链路层和物理层组成。

2.不同的数据传输率适用于不同的场合,如866/915MZ物理层的低速率换取了较好的灵敏度和较大的覆盖面积,从而减少了覆盖给定物理区域所需要的节点数;而2.4GHZ物理层较高速率适用于较高的数据吞吐量、低时延或低作业周期的场合。

3.IEEE802系列标准吧数据链路层分成LLC和MAC两个子层。

4.在ZigBee网络中传输的数据可分为3类:

周期性数据:如传感器中传递的数据,数据速率是根据不同的应用定义的。

间断性数据:如控制点灯开关时传输的数据,数据速率是由应用或外部激励定义的。

反复性和低反应时间的数据:如无线鼠标传输的数据,数据SUV是分配的时隙定义的。5.IEEE802.15.4子层定义了广播帧、数据帧、确认帧和MAC命令帧四种类型。

广播帧和数据帧包含了高层控制命令或者数据,确认帧和MAC命令帧则用于ZigBee设备间MAC子层功能实体间控制信息的收发。

6.ZigBee定义了3种角色:①网络协调器,负责网络的建立以及网络位置的分配。②路由器,主要负责找寻建立以及修复信息包的路由路径,负责转送信息包。③末端装置,只能选择加入他人已经形成的网络,可以收发信息,但不能转发信息,不具备路由功能。

7.应用支持子层负责维护绑定表,根据服务和戏曲在两个绑定实体间传递信息、ZDO负责定义设备节点在网络中的角色,并负责网络设备的发现,决定提供何种应用服务,还负责初始化或绑定相应请求及监理网络设备间的安全关系。

8.ZigBee三种组网方式:星状网、簇状网、网状网。

9.ZigBee采用3中基本密钥,分别是网络密钥、链接密钥、和主密钥。其中网络密钥可以在数据链路层、网络层和应用层中应用。主密钥和链接密钥则使用在应用层及其子层。

网络密钥可以再设备制造时安装,也可以在密钥传输中得到,它可以应用于多层,主密钥可以在信任中心设置或者在制造时安装,还可以是基于用户访问的数据。

连接密钥和网络密钥要不断进行更新。

10.ZigBee网络中采用IEEE802.15.4协议定义了两种无线设备:全功能设备FFD和精简功能设备RFD。

ZigBee网络中的节点可以分为3个类型:

ZigBee协调点:是整个网络的主要控制者,它通常具有相对于网络中其他类型节点更强大的功能。主要负责发起建立新的网络,设定网络参数、管理网络中的节点等。

ZigBee路由点:可以参与路由发现、消息转发、允许其他节点通过它关联网络等。

ZigBee终端节点:通过协调点或者路由节点伏案立案到网络,但不允许任何节点通过它加入网络。

11.ZigBee网络常见的两种拓扑结构:即星状拓扑和点对点拓扑结构。

12.加入ZigBee网络的节点通过MAC层提供关联过程组成一颗逻辑树。

13.ZigBee路由ZBR分为两类:RN+(具有足够的存储空间和能力执行AODVj的路由协议的节点。)和RN-。

14.无线传感器节点的特点:小吃坤、低功耗、适应性强。

15.汇节点:分布在传感器网络中的汇节点主要用于接收传感器节点上报的数据,并将其进行数据融合处理,通过公共网络或转用线路传递给中央信息处理控制中心。

中央信息处理控制中心由监控模块、配置模块、数据库三个部分组成。

16.ZigBee无线传感器网络的工作模式:

17.ZigBee网络中传输的数据通常分为:周期性数据、剪短性数据、反复性的低反应时间的数据。

ZigBee网络应用:适合于农业、工业、医学、军事等需要数据自动采集并要求网络传输的各个领域。如锅炉炉温监测、高速旋转机器的转速监控、火灾的检测和预报。

第四章

1.80

2.11系列协议是由IEEE制定的,目前居于主导地位的无线局域网标准。

2.WLAN是利用电磁波在空气中发送和接收数据,而无需线缆介质。

WLAN的特点:①安装便捷②使用灵活③经济节约④易于扩展⑤安全性。

3.简述WLAN技术特点:①传输方式,设计无线局域网采用的传输媒体、选择的频段及调制方式。目前局域网采用的传输媒体主要有两种微波和红外线。

②扩展频谱方式,在扩展频谱方式中,数据基带信号的频谱被扩至几倍~几十倍再被搬移至射频发射出去。

4.WLAN的拓扑结构:

5.扩频:即扩展频谱通信,指用来传输信息的射频带宽远大于信息本身带宽的一种通信方式。其保密性、抗干扰能力强。

6.WLAN的MAC层技术:IEEE802.11使用MAC技术为载波探听多路访问/冲突避免,3种访问策略及应用:分布式协调功能DCF、点协调功能PCF、混合协调功能HCF。

DCF特点:传送异步数据,对业务尽力传送,所有要发送的数据的用户具有同等的机会接入信道。

DCF提供了共享竞争式的截止访问方法,虽然保证公平性,但也增加了冲突,对于那些对传输速率、时延、抖动要求高的站点,DCF不能满足要求。

PCF:送可选机制,面向连接提供非常竞争的发送。PCF依靠协调点实现轮询,保证轮询站点不通过竞争信道发送帧。

PCF把对截止的访问分成周期性的时隙,又分为竞争期和非竞争期。

7.避免冲突802.11规定:

帧间隔:所有的站在完成发送后,必须在等待一段很短的时间才能发送下一帧。

帧类型:①短帧间隔(提供最高优先级)②电协调功能帧间隔③分布式协调功能帧间隔

④扩展帧间隔

8.WEP:是IEEE802.11最初提出的基于RC4流算法的安全协议。

TKIP:临时密钥完整性协议,是为了克服WEP的问题而提出的。

TKIP较WEP改进的地方在于加密和一致性算法使用不同的密钥。

9.密钥管理:WPA/RSN通过思路密钥交换和二路密钥交换来完成密钥的动态管理。前者主要完成单播KEY的生成模式下(WPA2,RSN模式下也可以完成组播KEY的分发),后者则只完成组播KEY的分发。

WPA/RSN定义了两种身份验证机制:预共享密钥PSK和扩展认证协议EAP。

PSK:整个网络中的STA和AP需要预先配置相同的密码信息。PSK认证是通过预先配置的密码信息,然后通过正确完成四路密钥交换和二路密钥交换来验证STA和AP身份。

EAP:认证方式在WLAN环境中需要第三方---认证服务器存在。

10.WLAN和无线Mesh网络

WLAN:并不是真正意义上的“无线”,每个客户端均通过一条与AP相连的无线链路网络访问,如果要相互通信的话,则必须访问一个固定的接入点,网络可靠性低,覆盖能力有限,且多数具有“盲区”。(单跳网络)

无线Mesh网络:任何无线设备节点都可以通知作为AP和路由器,网络中的每个节点都可以发送和接收信号,每个节点都可以与一个或多个对等节点进行直接通信。(多跳网络)第五章

1.IrDA的技术特点:小角度,段距离,点对点直线数据传输,保密性强。

2.红外线通信还有抗干扰性强、系统安装简单、易于管理等优点。

3.脉冲调制的必要性:红外发光二极管不能在100%时间段内全功率工作,所以发送端采用了脉宽为3/16或1/4比特的脉冲调制,这样,发光二极管持续发光功率可提高到最大功率的4~5倍,另外传输路径中不含直流成分,接收装置总在调整适应外界环境照明,接收到的知识变化的部分,即有用信号,所以脉冲调制是必要的。

4.UART与编解码电路之间的信号时UART数据帧,它包含一个起始位,8个数据位,一个停止位。

5.4PPM调制解调:每两个比特即“比特对”被遗弃变异呈一个500ns宽的“数据符号位”,每个符号位分为4等份,只有一份包含光脉冲,信息靠数据符号麦种的位置来传达。其中逻辑1表示这段数据符号位内LED发送红外光,逻辑0表示在这段数据符号位内LED处于关断状态。

6.连接建立协议层IrLAP对不同的数据传输速率定义了三种帧结构:①异步帧②同步HDLC 帧③同步4PPM帧。

7.红外链路建立协议在自动协商好的参数基础上提供可靠的、无故障的数据交换。

8.主站控制通信,管理和保持各个人物的独立性,它发送命令帧,初始化链路和传输,阻值发送数据和进行数据流控制,并处理不可校正的数据链路错误;从路发送响应帧来响应主站请求。但是设备的协议栈可以既作主站又作从站,一旦链路建立,双方轮流发问。

9.微型传输协议层:分组与重新拼合,将数据分段传送,然后在接收方重新拼合。

第六章

1.完整的自动识别计算机管理系统包括:自动识别系统、应用程序接口(中间件)和应用系统软件。

2.条码技术:由宽度不同、反射率不同的条和空,按照一定的编码规则(码制)编制成的,用于表达一组数字或字母符号信息的图形标识符,即条形码以一组粗细不同,按照一定的规则安排间距的平行线条图形。

3.视频识别技术:视频识别RFID是一种非接触的自动识别技术,它是利用无线射频技术对物体对象进行非接触式和即时自动识别的无线通信信息系统。

4.RFID原理(停车系统):标签进入磁场后,会接收到读写器发出的射频信号,凭借感应电流所获得的能量发送出存储在芯片中的产品信息,或者主动发送某一频率的信号;读写器读取信息并解码后,送至中央信息系统进行有关数据处理。

5.在射频识别系统中,射频标签与读写器之间通过两者的天线假期空间电磁波传输的通道,通过电感耦合或电磁耦合的方式。

6.最基本的RFID系统由标签、读写器、天线三部分组成。

7.RFID标签分为被动标签和主动标签。按可否被改写可分为:只读式标签和可读写标签。

8.只读式标签:标签内的信息在集成电路生产时即将信息写入,以后不能修改,只能被专门设备读取。

可读写标签:将保存的信息写入其内部存储区,需要改写时也可以采用专门的编程或写入设备擦写。

9.通常读写器发送时所使用的频率被称为RFID系统的工作频率。

10.RFID的技术特点:①读写方便快捷②识别速度快,能实现批量处理③数据容量大④使用寿命长⑤标签数据可动态更改⑥更好的安全性⑦动态实时通信。

11.由于RFID标签放置方向不可控,读写器天线的极化方式必须采用圆极化。

12.RFID攻击类型与隐私威胁①物理层:标签永久失活②网络传输层:网络协议攻击③应用层:非授权读取标签。

13解决安全与隐私保护问题主要由三种方式:物理保护机制、基于密码技术的软件安全机制以及两种安全机制的结合。

14.主动干扰:使用一个电子设备持续不断地发送信号,以干扰任何靠近标签的读写器所发出的信号。

第七章

1.NFC工作原理分为主动和被动两种通信方式。

主动模式下:每台设备要想另一台设备发送数据时,都必须产生自己的射频场。

被动模式下:启动NFC通信设备,也称NFC发起设备,在整个通信过程中提供射频场。

2.NFC技术支持三种不同的应用模式:卡模式、读写模式、NFC模式。

3.106kbps的速率下存在三种帧结构:短帧、标准帧、检测帧。

4.NFC设备的默认状态均为目标状态。目标设备不产生射频场,保持静默以等待来自于发起者的命令。应用程序能够控制设备主动从目标状态转换为发起状态。

5.NFC3种工作模式:卡模拟模式、点对点模式、读卡器模式。

第八章

1.超宽带无线通信UWB:为任何相对带宽大于20%或-10dB绝对带宽大于500MHz,并满足FCC功率谱密度限制要求的信号。UWB系统的最高辐射谱密度为-41.3dBm/MHz。

2.UWB的技术特点:①传输速率高,空间容量大

②适合短距离通信

③具有良好的共存性和保密性

④多径分辨能力强,定位精度高

⑤体积小、功耗低

⑥系统结构的实现比较简单。

3.传统的UWB技术无须正弦载波,数据被调制在纳秒级或亚秒级基带窄脉冲上传输,接收机利用相关器直接完成信号检测。

4.对于UWB通信系统,成形信号g(t)必须大于500MHz,且信号能量应集中于 3.1~

10.6GHz频段。

5.跳时多址:利用UWB信号占空比较小的特点,将脉冲重复周期划分成Nh个持续时间为Tc的互不重叠的码片时序,每个用户利用一个独特的随机跳时序列在Nh个码片时隙中随机选择一个座位脉冲发射位置。

6.UWB接收机的关键技术:定时同步一般分为捕捉和跟踪两个阶段。目前提出的UWB系统定时同步方法可分为:数据辅助的定时同步和盲定时同步。UWB信道是典型的频率选择性衰落信道。

第九章

1.60GHz属于毫米波通信技术。中国目前开放了59~64GHx的频段。在各国开放的频段中大约有5GHz的重合。

2.60GHz无线通信技术的特点:

(1)信号传播特性:①路径损耗极大②氧气吸收损耗高③绕射能力差,穿透性差

(2)技术特点:①定向发射和接收②多跳中继③空间复用④单载波调制与OFDM。

3.在60GHz无线通信系统物理层通信技术方案选择上,目前有单载波调制和OFDM两大备选技术。

4.三种物理层模式:①单载波模式②高速率接口模式③音/视频模式。

5.超帧是微微网中时间划分的基本单位,主要包括3个部分:信标、竞争接入期和信道时间分配期。

第十章

1.Ad hoc网络特点①自组织和无中心特性

②网络拓扑动态变化

③多跳组网方式

④分布式控制方式

⑤无线通信带宽受限

⑥安全性受限

⑦终端设备受限

2.Ad hoc网络节点按功能分为:

①主机:完成移动终端的功能,包括人机接口、数据处理等。

②路由器:主要负责维护网络的拓扑结构和路由信息,完成报文转发功能。

③电台:提供无线信息传输功能。

物理结构上分为:

单主机单电台:手持设备一般为单主机单电台的简单结构。

单主机多电台:复杂的车载台,一个节点可能包括通信车内的多个主机。

多主机多电台:可用来叠加网络,还可用于网关节点来互联多个Ad hoc 网络。

3.数据链路层:数据流的复用、数据帧的检测、分组的转发/确认、优先级排队、差错控制和流量控制。

网络层:主要功能包括邻居发现、分组路由、拥塞控制和网络互连功能。

传输层:主要功能是向应用层提供可靠的端到端的服务,使上层与通信子网相隔离。

应用层:主要功能是提供面向用户的各种服务,包括具有严格延时和丢失率限制的实时应用。

4.隐藏终端:是指位于接收点的通信范围之内,而在发送节点的通信范围之外的终端。

5.按需路由协议(反应式路由协议):是一种当需要时才查找路由的路由选择方式。节点不需要维护及时准确的路由信息,当需要发送数据时才发起路由查找过程。

6.DSDV单播协议:是一种基于传统Bellman-Ford算法的主动路由协议,其主要特点是采用

序列号来避免可能产生的路由环路。

7.QoS服务的服务等级及能力:

①可保证服务:应用于需要固定时延的业务,对端到端数据报延迟有严格的界定,并

具有不丢失包的保证。

②可控负载服务:应用于可能产生时延的业务,在网络中符合较大的情况下能够提供

近似于没有过载时的服务。

③尽力而为服务:应用于无时延限制的业务。网络对其负载的业务不提供任何QoS的

保证。

常用无线通信协议

常用无线通信协议 目前使用较广泛的近距无线通信技术有蓝牙(Bluetooth),无线局域网802.11(Wi-Fi)和红外线数据传输(IrDA).此外,还有一些具有发展潜力的近距无线技术标准,分别是ZigBee,超宽频,短距通信,WiMedia,GPS,DECT,无线1394和专用无线系统等。 蓝牙(Bluetooth)技术 蓝牙是一种支持设备短距离通信的无线电技术。它是一种无线数据与语音通信的开放性全球规范,它以低成本的短距离无线连接为基础,可为固定的或移动的终端设备提供廉价的接入服务。蓝牙技术的实质内容是为固定设备或移动设备之间的通信环境建立通用的近距无线接口,将通信技术与计算机技术进一步结合起来,使各种设备在没有电线或电缆相互连接的情况下,能在近距离范围内实现相互通信或操作。其传输频段为全球公众通用的2.4GHzISM频段,提供1Mbps的传输速率和10m 的传输距离。 优势:⑴全性高。蓝牙设备在通信时,工作的频率是不停地同步变化的,也就是跳频通信。双方的信息很难被抓获,防止被破解或恶意插入欺骗信息。⑵于使用。蓝牙技术是一项即时技术,不要求固定的基础设施,且易于安装和设置。 不足:⑴通信速度不高。蓝牙设备的通信速度较慢,有很多的应用需求不能得到满足。⑵传输距离短。蓝牙规范最初为近距离通信而设计,所以他的通信距离比较短,一般不超过10m。 Wi-Fi(无线高保真)技术 无线宽带是Wi-Fi的俗称。所谓Wi-Fi就是IEEE 802.11b的别称,它是一种短程无线传输技术,能够在数百英尺范围内支持互联网接入的无线电信号。Wi-Fi速率最高可达11Mb/s,电波的覆盖范围可达200m左右。 优势:⑴覆盖广。其无线电波的覆盖范围广,穿透力强。可以方便地为整栋大楼提供无线的宽带互联网的接入。⑵速度高。Wi-Fi技术的传输速度非常快,通信速度可达300Mb/s,能满足用户接入互联网,浏览和下载各类信息的要求。 不足:安全性不好。由于Wi-Fi设备在通信中没有使用跳频等技术,虽然使用了加密协议,但还是存在被破解的隐患。 IrDA(红外线数据协会)技术 IrDA是一种利用红外线进行点对点通信的技术,是第一个实现无线个人局域网(PAN)的技术。 IrDA 的主要优点是无需申请频率的使用权,因而红外通信成本低廉。并且还具有移动通信所需的体积小、功耗低、连接方便、简单易用的特点。此外,红外线发射角度较小,传输上安全性高。IrDA的不足在于它是一种视距传输,两个相互通信的设备之间必须对准,中间不能被其它物体阻隔,因而该技术只能用于 2 台(非多台)设备之间的连接。 优势:⑴无需申请频率的使用权,因此红外线通信成本低廉。⑵移动通信所需的体积小、功耗低、连接方便、简单易用。⑶外线发射角度较小,传输上安全性高。 不足:IrDA是一种视距传输,两个相互通信的设备之间必须对准,中间不能被其它物体阻隔,因而只用于两台设备之间连接。ZigBee(紫蜂)技术 ZigBee使用2.4 GHz 波段,采用跳频技术。它的基本速率是250kb/s,当降低到28kb/s 时,传输范围可扩大到134m,并获得更高的可靠性。另外,它可与254个节点联网。 优势:⑴功耗低。在低耗电待机模式下,两节普通5号干电池可使用6个月以上。⑵成本低。因ZigBee数据传输速率低,协议简单,所以成本很低。⑶网络容量大。每个ZigBee网络最多可支持255个设备。⑷作频段灵活。使用的频段分别为2.4GHz、868MHz(欧)及915MHz(美),均为免执照频段。 不足:⑴数据传输速率低。只有10kb/s~250kb/s,专注于低传输应用。⑵有效范围小。有效覆盖范围为10~75m之间,具体依据实际发射功率的大小和各种不同的应用模式而定,基本上能够覆盖普通的家庭或办公室环境。 UWB(超宽带)技术 UWB(Ultra Wideband)是一种无线载波通信技术,利用纳秒级的非正弦波窄脉冲传输数据,因此其所占的频谱范围很宽。UWB 有可能在10 m 范围内,支持高达110 Mb/s的数据传输率,不需要压缩数据,可以快速、简单、经济地完成视频数据处理。 特点:⑴系统复杂度低,发射信号功率谱密度低,对信道衰落不敏感,载货能力低。⑵定位精度高,相容性好,速度高。⑶成本低,功耗低,可穿透障碍物。近距离无线传输 NFC(近距离无线传输)技术 NFC采用了双向的识别和连接。在20cm 距离内工作于13.56MHz 频率范围。NFC现已发展成无线连接技术。它能快速自动地建立无线网络,为蜂窝设备、蓝牙设备、Wi-Fi 设备提供一个“虚拟连接”,使电子设备可以在短距离范围进行通讯。 特点:NFC的短距离交互大大简化了整个认证识别过程,使电子设备间互相访问更直接、更安全和更清楚,不用再听到各种电子杂音。NFC 通过在单一设备上组合所有的身份识别应用和服务,帮助解决记忆多个密码的麻烦,同时也保证了数据的安全保护。此外NFC 还可以将其它类型无线通讯(如Wi-Fi 和蓝牙)“加速”,实现更快和更远距离的数据传输。

有线通信与无线通信的优劣对比

有线通信与无线通信的优劣对比 摘要改革开放以来我国社会经济不断发展,推动了有线通信技术和无线通信技术的创新进步,虽然有线通信与无线通信同是科学技术发展的杰出产物,但这两种技术所适用的领域并不完全相同,也各自存在优点与不足,我们既要充分运用这两种技术的优点,也要研究和改进它们的缺点。本文笔者结合实际经验,简要分析有线通信与无线通信的定义及特点,比较二者的优劣与异同,并提出一些改进技术缺陷的措施。 关键词有线通信;无线通信;技术;比较 0 引言 改革开放以来,我国坚决贯彻“科学技术是第一生产力”的指导思想,在这一思想的引导下,我国社会经济不断发展,科学技术日新月异。在众多科学领域中,通信技术的发展势头最为迅猛,在进入21世纪以来不断创新进步,取得了重大成果。目前,在人类社会的生产生活环节中,使用频率最高、普及范围最广的通信技术是有线通信与无线通信。 有线通信,顾名思义就是通过电网线路连接实现跨地域通讯的一种通信方式,简单来说,有线通信是通过电线将信号从一个通信发射端传输到另一通信点接受端上。与有线通信相对的,无线通信在实现信息传输时无须通过实体线路介质,而是通过信号发射塔与信号接受器来进行信息交换。通过以上对有线通信和无线通信的简要介绍可知,有线通信与无线通信之间既有相同点也有不同点,既有优点也有不足。 近年来随着社会经济发展,人们的生活水平日益提高,对通信设备的使用需求逐渐增长。人们的需求促进了通信设备市场的扩大发展,推动了通信技术创新。在日常生活中应用最广泛的手机,就是一种无线通信设备。由于手机内部安装着天线,可以通过天线可以将信号发送至信号塔,再由信号塔传送到接收点,实现信息沟通。 1 概述有线通信与无线通信 1.1 有线通信的定义及特点 有线通信通常是指有线电信,将金属电线和光纤作为传输介质,将声音、图像、文字信息等转化成微博信号进行传输。有线通信必须通过实体介质来实现信心传输,在信息传递过程中具有三个要素:发出点、接收点和相关协议。有线通信,顾名思义必须依托导线进行信号交换,通过实体介质实现信号传输,这种通信方法具有信号传送稳定、快速、安全、抗干扰、不受外界影响等优点。 由于有线通信技术受周围环境的影响很小,因此有线通信设备在实际使用中

无线通信的发展历程

无线通信系统的发展历程与趋势 现代无线通信系统中最重要的两项基础是多址接入(Multiple Access)和双工(Multiplexing)。从1G到4G的无线通信系统演进史基本上就是在这两项技术上进行不断改进。 多址接入技术为不同的用户同时接入无线通信网提供了可能性。给出了三种最典型的多址接入技术:FDMA、TDMA和CDMA的比较。 双工技术为用户同时接收和发送数据提供了可能性。两种最典型的双工技术:FDD模式和TDD模式。 中国无线通信科技发展史和未来走向范文 当今,全球无线通信产业的两个突出特点体现在:一是公众移动通信保持增长态势,一些国家和地区增势强劲,但存在发展不均衡的现象;二是宽带无线通信技术热点不断,研究和应用十分活跃。 1 无线通信技术的发展历程 随着国民经济和社会发展的信息化,人们要通信息化开创新的工作方式、管理方式、商贸方式、金融方式、思想交流方式、文化教育方式、医疗保健方式以及消费与生活方式。无线通信也从固定方式发展为移动方式,移动通信发展至今大约经历了五个阶段:第一阶段为20年代初至50年代初,主要用于舰船及军有,采用短

波频及电子管技术,至该阶段末期才出现150MHZ VHF单工汽车公用移动电话系统MTS。 第二阶段为50年代到60年代,此时频段扩展至UHF450MHZ,器件技术已向半导体过渡,大都为移动环境中的专用系统,并解决了移动电话与公用电话网的接续问题。 第三阶段为70年代初至80年代初频段扩展至800MHZ,美国Bell研究所提出了蜂窝系统概念并于70年代末进行了AMPS试验。 第四阶段为80年代初至90年代中,为第二代数字移动通信兴起与大发展阶段,并逐步向个人通信业务方向迈进;此时出现了D-AMPS、TACS、ETACS、GSM/DCS、cdmaOne、PDC、PHS、DECT、PACS、PCS等各类系统与业务运行。 第五阶段为90年代中至今,随着数据通信与多媒体业务需求的发展,适应移动数据、移动计算及移动多媒体运作需要的第三代移动通信开始兴起,其全球标准化及相应融合工作与样机研制和现场试验工作在快速推进,包括从第二代至第三代移动通信的平滑过渡问题在内。 2 第一代无线通信系统 采用频分多址(Frequency Division Multiple Access)技术组建的模拟蜂窝网也被称为第一代(First Generation,下称1G)无线通信系统。这些系统中,话务是主要的通信方式。由于采用模拟调制,这些

常见无线通信组网方式

常见无线通信组网方式 采用何种无线组网方式,比较合适、比较经济。我公司根据两年多来的行业应用推广经验,针对不同的行业应用的要求不同,提供几种比较实用的应用方案 GPRS/CDMA无线通信的移动性、实时在线、按流量计费、通信速度快、网络覆盖范围广等诸多优点,越来越被行业应用所认识,逐步在行业内大量推广使用。在使用推广过程中,出现了一些困惑行业客户的问题:无线应用有哪些组网方式;采用何种组网方式,比较合适、比较经济。根据我们的行业应用推广经验,下面针对不同的行业应用的要求不同,提供几种比较实用的应用方案。 根据数据中心组网方式不同,无线组网方式可以有下面几种联网方式: 一、专线联网方式 联网拓扑图: 系统组成: A、业务处理系统:处理无线端末设备(无线终端、RTU+DTU、无线POS等)提交的各项业务数据 B、网关设备:桥接移动网络与业务处理系统间的通信通道,(可以是路由器、可以是路由器+防火墙、可以是路由器+银行网控器等设备) C、GPRS网关支持点GGSN(Gateway GPRS Supporting Node):桥接GPRS无线内部网络和客户间的网关设备。 D、GPRS网络:无线数据传输平台 E、基站:连接无线端末设备和GPRS无线内部网络的节点。 F、无线端末设备:可以是无线POS、无线终端以及嵌入式应用中的DTU设备 +各类嵌入式检测控制设备(RTU,比如环境监测设备、油田检测设备、污水监测设备等) 系统工程: 用户端: A、提供网关设备,并和无线运营商一道,调试网关设备和移动GGSN间的通信通路。 B、用户和无线运营商一道配置GGSN到用户网关设备间的VPN通道(可选项,主要是增加系统安全性) C、增加防火墙(可选项,主要是增加系统安全性,视实际情况而定) D、调试端末设备应用程序 E、调试业务主机设备 移动运营商: A、提供到用户端的专线(或由用户从电信声请获得) B、配置GGSN,调通GGSN和用户网关设备的通信通路。 C、和用户一道配置GGSN到用户网关设备间的VPN通道(可选项,主要是增加系统安全性) 系统处理流程: 无线端末设备先通过基站以无线方式登陆到无线网络,获得IP地址,然后与业务处理中心建立TCP连接,数据由移动运营商的GGSN经数据专线连接至用户的数据中心。 系统特点: 数据安全性好;通信速度快;通信质量稳定;系统初期建设成本高;适合安全性和实时性要求较高的应用场合 二、企业公网联网方式 联网拓扑图:

有线通信与无线通信的优劣对比

有线通信与无线通信的优劣对比 发表时间:2018-09-10T16:41:07.203Z 来源:《基层建设》2018年第22期作者:洪常冠[导读] 摘要:随着经济的快速发展,通信技术也与时俱进迈入新的台阶,给人们的日常生活带来了更多的便捷。 广东海格怡创科技有限公司摘要:随着经济的快速发展,通信技术也与时俱进迈入新的台阶,给人们的日常生活带来了更多的便捷。我国有线通信及无线通信在我过通信行业中非常重要,两者相互取长补短发展,对通信行业的发展有着促进作用。而这两者之前也存在较多的区别,各有各的长处与短处,只要将各自的优势充分发挥出来,扬长避短,才可以更好的服务于人民。本文主要分析了有线通信与无线通信的特点并分别探讨了 它们的优劣势。 关键词:有线通信;无线通信;优劣在当前社会中,通信技术有着十分关键的作用,人们生活当中使用的通信包含有无线通信及有线通信,虽说这两者各自发挥着特有的优势,但也存在一定的不足之处,只有将两者相互结合才能够提供给用户更好的服务。 1 有线通信 有线通信模式一般指的是通过有线媒介完成信息传输的形式,通信线路包括有光缆、电缆和多种金属导线等,其内容可为图像、文字或是声音等。通信时,利用媒介发送与传递传输内容的光信号或是电信号,从而能完成信息传输。有线通信的特点要通过实质媒介传输信息,要建立连接于通信两端,基本前提是有关协议,进而把信息传递到接收一端有线通信需要通过实质的线路完成。那么此模式也更依赖线路,其优势体现在该传输模式有更多的稳定性,对外界干扰不大,即使有干扰也不会对通信造成过多的影响,且此通信模式通过高效的媒体介质,在传输的质量以及速度方面都能够取得较佳的效果,有线通信在安全性方面也较为良好,人们一直以来都非常注重通信安全,通过有线通信可以实现这个目标。 有线通信技术发展是根据本身优势进行的,在这种情况中,就要求其服务质量进一步提高,进而在数据传输过程中展现出稳定且高效的优势,是人们对有线技术发展的要求。对于环境抗干扰能力也表现的良好,那么在应用当中几乎不会发生由于外界环境因素干扰而引发的问题,那么也表明有线通信技术稳定性能良好,在数据传输的过程中,利用传输网络可以对信息实时传输,还可以建立有关安全对策,进而防止信息出现泄露。另外,在传输过程中不会对人体产生大的辐射,能够尽可能地减少电子信息传输对人体健康造成的危害,那么可以说明有线传输技术在今后会被更加普遍的使用。 2 无线通信 无线通信是根据无线传输的形式来传送数据,此形式包含有卫星通信以及微波通信。微波是无线电波,此电波传送距离能够在几十千米左右,微波频带也非常宽,有较大的通信容量,能够达到正常通信需求,传送数据。由于微波通信距离几千米,那么在长距离通信的环境中,可以保障传输的速度以及准确率,隔几千米设置微波中继站,便于传送微波。对比微波通信来说,卫星通信传送距离更长,此通信一般是将通信卫星当作卫星通信中继站,利用多个移动体或是地球站间建立微波通信。此形式较为便捷,由于传送距离比较近,那么速率就会变慢,且无线通信通过电磁波通信,在数据传输时会产生辐射,影响身体。 3 有线通信与无线通信接入形式 一般以LAN接入形式实现有线通信连接,一般在以太网当中较多的应用到有线网络,此方式满足IEEE802.3协议标准,综合布线时通常使用光缆联合双绞线覆盖网络,以太网使用冲突检测技术和载波监听多路访问技术,能够在各种光缆中通过各种速率运行,一些电缆速率为100M/s,光纤中的速率能够高达1000M/s或是10G/s,不同的传输介质体现了不同的传播速率。 无线通信方式当中应用非常多,如ZigBee接入形式、WIFI接入形式、GPRS接入形式等等,GPRS接入形式使用的较为广泛,移动通信中经常使用到,GPRS一般是通过共享无线信道接入,利用IPOverPPP实现数据远程接入。该通信技术发展通过GSM通信基础,成为移动分组数据业务。 以上对有线通信以及无线通信进行了分析,总的来说,无线通信接入形式要多于有线通信接入形式。 4 有线通信与无线通信优劣势比较 当前,有线通信以及无线通信两个方式都普遍应用,各种领域以及各种需求的情况中,两者所展现出来的有缺点都不一样。 4.1外观和科技含量 从外观上来说,有线通信及无线通信最大的差别为能够以“线”为纽带。从科技含量上来说,通过线的传输更易实现有线通信,科技含量较低,无线通信起步比较晚,有着较高的技术含量,且为有线通信发展较为完善之后所研制出来的,二者相辅相成。 4.2市场份额 我国有线通信及无线通信的市场都有着广阔的市场,根据各种需要确定。通常来说,动车领域上,由于其具有快速运动的性质不利于建设有线设备,而无线通信能够很容易的进行通信。在相似的领域当中,无线通信所占的市场份额相对较大,在家庭以及办公等方面,有线通信的数据传输方面更加稳定,那么更适合使用,但无线通信技术不断的完善以及发展,更多的领域更加偏向于无线通信。 4.3适用场所 由于“线”的约束,确定了有线通信应用的场所非要为固定的,由于它具有较小辐射的特点它能够应用在规模较大的人群当中。而无线通信不需要“线”的约束,那么它可以大面积的进行覆盖,尤其是对移动等特殊环境而言,而无线相对灵活,在建设现代化军队当中发挥着非常关键的作用。 5 有线通信及无线通信发展前景 有线通信及无线通信二者都是相互影响的,那么在将来较长的时间当中,两者之间优劣对比仍然持续。 5.1有线通信发展前景 如前文而言,有线通信信号相对稳定且不会对人体造成较大的辐射,那么此优点能够充分展现出其在市场当中的地位。利用光纤技术的进一步发展,有线通信传输速度会获得更快速的发展,使用户使用起来更加方便,那么在未来很长的时间当中,有线通信还会持续广泛应用于家庭以及办公当中并展现其关键作用。 5.2无线通信发展前景

无线局域网是无线通信专业技术与网络专业技术相结合产物

无线局域网是无线通信技术与网络技术相结合的产物。从专业角度讲,无线局域网就是通过无线信道来实现网络设备之间的通信,并实现通信的移动化、个性化和宽带化。通俗地讲,无线局域网就是在不采用网线的情况下,提供以太网互联功能。 无线局域网概述 无线网络的历史起源可以追溯到50年前第二次世界大战期间。当时,美国陆军研发出了一套无线电传输技术,采用无线电信号进行资料的传输。这项技术令许多学者产生了灵感。1971年,夏威夷大学的研究员创建了第一个无线电通讯网络,称作ALOHNET。这个网络包含7台计算机,采用双向星型拓扑连接,横跨夏威夷的四座岛屿,中心计算机放置在瓦胡岛上。从此,无线网络正式诞生。 1.无线局域网的优点 (1)灵活性和移动性。在有线网络中,网络设备的安放位置受网络位置的限制,而无线局域网在无线信号覆盖区域内的任何一个位置都可以接入网络。无线局域网另一个最大的优点在于其移动性,连接到无线局域网的用户可以移动且能同时与网络保持连接。 (2)安装便捷。无线局域网可以免去或最大程度地减少网络布线的工作量,一般只要安装一个或多个接入点设备,就可建立覆盖整个区域的局域网络。 (3)易于进行网络规划和调整。对于有线网络来说,办公地点或网络拓扑的改变通常意味着重新建网。重新布线是一个昂贵、费时、浪费和琐碎的过程,无线局域网可以避免或减少以上情况的发生。 (4)故障定位容易。有线网络一旦出现物理故障,尤其是由于线路连接不良而造成的网络中断,往往很难查明,而且检修线路需要付出很大的代价。无线网络则很容易定位故障,只需更换故障设备即可恢复网络连接。

(5)易于扩展。无线局域网有多种配置方式,可以很快从只有几个用户的小型局域网扩展到上千用户的大型网络,并且能够提供节点间"漫游"等有线网络无法实现的特性。 由于无线局域网有以上诸多优点,因此其发展十分迅速。最近几年,无线局域网已经在企业、医院、商店、工厂和学校等场合得到了广泛的应用。 2.无线局域网的理论基础 目前,无线局域网采用的传输媒体主要有两种,即红外线和无线电波。按照不同的调制方式,采用无线电波作为传输媒体的无线局域网又可分为扩频方式与窄带调制方式。 (1)红外线(Infrared Rays,IR)局域网 采用红外线通信方式与无线电波方式相比,可以提供极高的数据速率,有较高的安全性,且设备相对便宜而且简单。但由于红外线对障碍物的透射和绕射能力很差,使得传输距离和覆盖范围都受到很大限制,通常IR局域网的覆盖范围只限制在一间房屋内。 (2)扩频(Spread Spectrum,SS)局域网 如果使用扩频技术,网络可以在ISM(工业、科学和医疗)频段内运行。其理论依据是,通过扩频方式以宽带传输信息来换取信噪比的提高。扩频通信具有抗干扰能力和隐蔽性强、保密性好、多址通信能力强的特点。扩频技术主要分为跳频技术(FHSS)和直接序列扩频(DSSS)两种方式。

最新无线通信技术基础知识(1)

无线通信技术 1.传输介质 传输介质是连接通信设备,为通信设备之间提供信息传输的物理通道;是信息传输的实际载体。有线通信与无线通信中的信号传输,都是电磁波在不同介质中的传播过程,在这一过程中对电磁波频谱的使用从根本上决定了通信过程的信息传输能力。 传输介质可以分为三大类:①有线通信,②无线通信,③光纤通信。 对于不同的传输介质,适宜使用不同的频率。具体情况可见下表。 不同传输媒介可提供不同的通信的带宽。带宽即是可供使用的频谱宽度,高带宽传输介质可以承载较高的比特率。 2无线信道简介 信道又指“通路”,两点之间用于收发的单向或双向通路。可分为有线、无线两大类。

无线信道相对于有线信道通信质量差很多。有限信道典型的信噪比约为46dB,(信号电平比噪声电平高4万倍)。无限信道信噪比波动通常不超过2dB,同时有多重因素会导致信号衰落(骤然降低)。引起衰落的因素有环境有关。 2.1无线信道的传播机制 无线信道基本传播机制如下: ①直射:即无线信号在自由空间中的传播; ②反射:当电磁波遇到比波长大得多的物体时,发生反射,反射一般在地球表面,建筑物、墙壁表面发生; ③绕射:当接收机和发射机之间的无线路径被尖锐的物体边缘阻挡时发生绕射; ④散射:当无线路径中存在小于波长的物体并且单位体积内这种障碍物体的数量较多的时候发生散射。散射发生在粗糙表面、小物体或其它不规则物体上,一般树叶、灯柱等会引起散射。 2.2无线信道的指标 (1)传播损耗:包括以下三类。 ①路径损耗:电波弥散特性造成,反映在公里量级空间距离内,接收信号电平的衰减(也称为大尺度衰落); ②阴影衰落:即慢衰落,是接收信号的场强在长时间内的缓慢变化,一般由于电波在传播路径上遇到由于障碍物的电磁场阴影区所引起的; ③多径衰落:即快衰落,是接收信号场强在整个波长内迅速的随机变化,一般主要由于多径效应引起的。 (2)传播时延:包括传播时延的平均值、传播时延的最大值和传播时延的统计特性等; (3)时延扩展:信号通过不同的路径沿不同的方向到达接收端会引起时延扩展,时延扩展是对信道色散效应的描述; (4)多普勒扩展:是一种由于多普勒频移现象引起的衰落过程的频率扩散,又称时间选择性衰落,是对信道时变效应的描述; (5)干扰:包括干扰的性质以及干扰的强度。 2.3无线信道模型 无线信道模型一般可分为室内传播模型和室外传播模型,后者又可以分为宏蜂窝模型和微蜂窝模型。 (1)室内传播模型:室内传播模型的主要特点是覆盖范围小、环境变动较大、不受气候影响,但受建筑材料影响大。典型模型包括:对数距离路径损耗模型、Ericsson多重断点模型等; (2)室外宏蜂窝模型:当基站天线架设较高、覆盖范围较大时所使用的一类模型。实际使用中一般是几种宏蜂窝模型结合使用来完成网络规划; (3)室外微蜂窝模型:当基站天线的架设高度在3~6m时,多使用室外微蜂窝模型;其描述的损耗可分为视距损耗与非视距损耗。

无线通信网络(1)

Fundamental concepts involved in the wireless networks Hierarchical structure of the wireless communication networks Some existing wireless networking techniques Final Exam: 50% Course Project: 30% Homework: 20%

(Messaging Services,SMS,MMS) 蜂窝可以允许频谱资源的空间复用

(Telstar 卫星通信: --卫星语音、电视广播--卫星数据广播--卫星语音通信…… Motorala Iridium Project, 1990s VSAT 的发展极大地推动了卫星通信技术的普遍应用 WLL or Direct Sequence Spread Spectrum (DSSS ). IEEE 802 Standards Ethernet

) can be achieved. Note: 1 foot 英尺=12 inches 英寸=0.3048 metre 米 of up to 150 meters. 1.6, 5, and 10 Mbps for asynchronous data transfer. Asynchronous data device Streaming data device data device to an LCD projector. Source: MSSI Co.rates in excess of 120 Mbps can be supported. Note: 1 mile 英里=1.609 kilometres 千米

无线通信与网络实验报告

实验报告课程名称:无线通信与网络 实验项目:matlab仿真实验 实验地点: 专业班级:学号: 学生姓名: 指导教师: 2013年4月12日

实验1 卷积编码和译码的matlab仿真实现 一、实验目的 了解掌握如何使用matlab来进行卷积编码和译码的仿真。 二、实验内容 1、SIMULINK仿真模块的参数设置以及重要参数的意义 2、不同回溯长度对卷积码性能的影响 3、不同码率对卷积码误码性能的影响 4、不同约束长度对卷积码的误码性能影响 三、基本原理 本实验分为卷积编码和卷积译码两部分: 卷积编码的最佳译码准则为:在给定已知编码结构、信道特性和接收序列的情况下,译码器将把与已经发送的序列最相似的序列作为传送的码字序列的估值。对于二进制对称信道,最相似传送序列就是在汉明距离上与接收序列最近的序列。 卷积码的译码方法有两大类:一类是大数逻辑译码,又称门限译码(硬判决);另一种是概率译码(软判决),概率译码又分为维特比译码和序列译码两种。门限译码方法是以分组码理论为基础的,其译码设备简单,速度快,但其误码性能要比概率译码法差[2]。 当卷积码的约束长度不太大时,与序列译码相比,维特比译码器比较简单,计算速度快。维特比译码算法是1967年由Viterbi提出,近年来有大的发展。目前在数字通信的前向纠错系统中用的较多,而且在卫星深空通信中应用更多,该算法在卫星通信中已被采用作为标准技术。 采用概率译码的基本思想是:把已接收序列与所有可能的发送序列做比较,选择其中码距最小的一个序列作为发送序列。如果发送L组信息比特,那么对 于(n,k)卷积码来说,可能发送的序列有2kL个,计算机或译码器需存储这些序列并进行比较,以找到码距最小的那个序列。当传信率和信息组数L较大时,使 得译码器难以实现。维特比算法则对上述概率译码做了简化,以至成为了一种实

无线网络通信新技术的应用

无线网络通信新技术的应用 【摘要】文中对无线局域网中以无线电波、红外线等无线媒介来代替目前有线局域网进行了介绍。探讨了无线网络通信新技术,它们包括WiMAX技术、3G技术简介和UWB超宽带技术的介绍,指出随着无线网络通信新技术的应用,依靠网络为工具进行沟通和交流,已经成为时代的需要,需要人类更好地探索与开发。 【关键词】无线局域网;无线电波;无线媒介;网络通信 0.引言 无线局域网是指以无线电波、红外线等无线媒介来代替目前有线局域网中的传输媒介(比如电缆)而构成的网络。无线局域网内使用的通信技术覆盖范围一般为半径100m左右,也就是说差不多几个房间或小公司的办公室。当然实际的覆盖范围受很多因素影响,比如通信区域中的高大障碍物。无线网络通信技术作为下一代通信网当中最具有潜力的IT领域技术之一,业界越来越对关注无线网络通信技术的反战。随着移动通信和Internet的用户不断增长,各种通信技术陆续更新换代并相互融合,新的无线网络技术更是层出不穷,其中就有3G、WiMax 等。在这些技术当中,无线网络通信技术充当着一个核心角色,又由于当今用户对网络化、无线化移动化、便携化的强烈需求,各种数据业务需求相继出现。 1.无线网络通信新技术 改革开放30多年,随着高科技的发展,我国的通讯科技水平得到不断的提高和发展,网络不仅在传输带宽上得到了飞速的发展,在通信方面也演变出了迅猛的网络连接方式,就如同现今的人人皆有的手机一样,无线网络正逐渐成为人们流行追逐的目标和企业完善体系必备选择方案。其中衍生出了如下无线网络新技术的出现: 1.1关于WiMAX技术的简介 WiMAX技术源于英特尔,随其发展日益进入到了人们的生活当中,设备商同时利润能不断增大。它是针对微波和毫米波频段的空中接口标准的一项无线城域网技术,主要用于无线接入点连接互联网,DSL的无线扩展技术给居民用户和中小企业带来便携和移动的好处,其技术优势主要三点,第一,传输距离够远,传输距离最远可以到达50公里左右,而与之前WIFI而言,是无法比拟的。覆盖的信号范围很广,只要用过建立少数的基站就能实现全面的覆盖,解决了无线网络范围的问题。第二,接入速度够快,WiMAX采用OFDM调制方式,频道设置带宽为20MHz,由室外固定天线稳定接受无线电波,因此,WiMAX所提供的最高接入速度可以达到70M每秒,对于无线网络而言,这是一个超越了宽带速度上十倍的速度。第三,具有较为广泛的多媒体通信服务,由于其本身具有良好的安全性以及可扩展性,从而实现了包括了语音、视频等传输的电信级多媒体通信服务。WiMAX作为一种新型宽带无线城域的接入结束,随着标准化工作进展,演变为可编写、移动以及充分应用到互联网接入技术,此技术将备受业界关注。 1.2关于3G技术知识的简介 3G技术,它是指第三代手机(3G)的应用开始。一般地讲,是指将无线通信与国际互联网等多媒体通信结合的新一代移动通信系统,未来的3G必将与社区网站进行结合,WAP与web的结合是一种趋势,如时下流行的微博客网站:

G无线通信网络蜂窝结构体系和关键技术

5G 无线通信系统:前景和挑战 5G 无线通信网络 蜂窝结构体系和关键技术 演讲人:蓝之远 小组成员:蓝之远、孔胜、黄栋、刘威阳、 刘冰、徐迪、徐明月、赵晓通 2014年10月

目录

一、摘要 第4代无线通信系统已经部署或即将被部署在许多国家。然而,随着无线移动设备和服务爆炸式的发展,它们仍然面临着甚至4G不能调解的一些挑战,例如,频谱危机和高能耗。无线系统设计人员面临着不断增长的高数据率和移动性要求的需求的新的无线应用。因此,已经开始研究第五代无线系统,预计将在2020年部署。在本文中,我们提出一个潜在的蜂窝体系结构,分室内场景和室外场景,并讨论5G无线通信系统各种有前途的技术,比如,大规模MIMO,节能高效通信,认知无线电网络和可见光通信。还讨论了未来面对这些潜在的技术的挑战。 二、介绍 创新和有效的利用信息和通信技术(ICT)已在提高世界经济中变得越来越重要。无线通信网络在全球ICT战略中可能是最关键的因素,是许多其他工业的支柱。它是世界上发展最快、最具活力的行业之一。欧洲移动天文台报道称:移动通信业在2010年有总计1740亿欧元收入。一举超过了航空工业和制药业。无线技术的发展大大提高了人们的沟通能力、在商业活动和社交活动中的生活。 无线移动通信显着的成就反映技术更新快速步调。从第2代移动通信系统(2G)在1991年的初次露面到3G系统在2001年首次着手进行,无线移动系统从一个单纯的电话系统已经变换成一个能传输丰富多媒体内容的网络。4G无线系统设计满足高级国际移动通信(IMT-A)的需求,利用IP协议提供所有服务。在4G系统,采用一种高级无线电接口,是利用正交频分复用(OFDM),多输入多输出(MIMO)和链路适配(或自适应)技术。4G无线网络可以支持在低速移动中1 Gb/s速率,例如漫游/本地无线接入;在高速移动中最高100Mb/s,例如移动接入。长期演进(LTE)和它的延伸,先进的长期演进系统,作用可实现的4G系统,最近已部署或很快将在全球部署。 然而,订制移动宽带系统的用户数量每年都在以引人关注的增加。越来越多的人渴望更快的移动互联网接入服务,时尚的手机,总的来说,与他人或获取信息的即时通信。当今更强大的智能手机和便携式电脑越来越受欢迎,它追求先进的多媒体功能。这导致了无线移动设备和服务的爆发。EMO指出,从2006年以来移动宽带每年以92%的速度增长。它已被无线世界研究论坛的预测(WWRF)到2017年时有7万亿无线设备服务于7亿人口;换句话说,连接网络的无线设备将达到世界人口的1000倍。随着越来越多的设备无线上网,很多研究需要面临解决的挑战。 最关键性的挑战之一是物理上为蜂窝通信分配的射频(RF)频谱十分稀缺。蜂窝频率使用超高频段的手机,通常范围从几百MHz到几GHz。这些频谱大量被使用,使运营商获得更多的频谱很困难。另一个挑战是,先进的无线技术的部署是以高能耗为代价。在无线通信系统中的能量消耗的增加会间接的导致二氧化碳排放增加,目前被认为是对环境的一大威胁。此外,它已被报道,蜂窝运营商基站(BSS)的能耗占他们的电费账单70%。事实上,节能高效的通信不在4G无线系统的初始条件之一,但它是后一阶段的问题。其他挑战,例如,平均频谱效率,高速率和高移动性,无缝覆盖,不同的服务质量(QoS)要求,和分散的用户体验(不同的无线设备/接口和异构网络不兼容性),仅举几例。 所有上述问题给蜂窝服务供应商施加更多压力,他们正面临着不断增加更高的数据传输速率,更大的网络容量,更高的频谱效率,更高的能源效率,高流动性的新的无线应用所需

无线网络技术及应用

邮电大学工程硕士研究生堂下考试答卷 2016学年第二学期 考试科目无线网络技术及应用 姓名 年级 专业 2016年 6月28日

D2D终端直通技术研究 摘要:D2D(device-to-device)通信是一种在蜂窝系统的控制下,允许终端用户通过共享小区资源进行直接通信的新技术,通过提高空间利用率从而提高频谱利用率,在某些场景下使移动通信变得更加直接和高效,缓解基站压力,提高用户体验。本文首先给出了D2D通信系统的基本概念、技术特点,重点关注干扰管理、模式选择、资源分配和功率控制。最后对D2D通信技术在下一代网络中的应用提出了一些构想。 关键词:D2D通信技术;蜂窝网络;资源分配;下一代网络 一、D2D的概念及技术特点 D2D(Device-to-Device)通信,也称为邻近服务(Proximity Service,Pro Se),是由3GPP组织提出的一种点到点的无线通信技术,它可以在蜂窝通信系统的控制下允许LTE终端之间利用小区无线资源直接进行通信,而不经过蜂窝网络中转。作为面向5G的关键候选技术,D2D技术能够提升通信系统的频谱效率,减轻系统负荷,在一定程度上解决无线通信系统频谱资源匮乏的问题。同时,由于降低了通信距离,D2D技术还可以降低移动终端发射功率,减少电池消耗,提高终端续航时间。LTE-D2D 有以下几个技术特点。 (1)工作在许可频段 基于LTE技术的D2D工作在许可频段,作为LTE通信技术的一种补充,它使用的是蜂窝系统的频段,通过基站对无线资源的控制使得对小区其他用户的干扰控制在可接受围,因此可以给用户提供干扰可控的环境和较高质量的通信服务。并且利用网络中广泛分布的用户终端以及D2D通信链路短距离的特点,可以实现频谱资源的有效利用,获得资源空分复用增益。而蓝牙、Wi-Fi Direct、Flash Lin Q等技术,工作在免许可频段,存在严重干扰,通信QoS无法得到保障。 (2)网络参与D2D通信流程

无线通信领域的新技术

无线通信领域的新技术——感知无线电 李忠孝 无线电通信频谱是一种宝贵的资源,伴随着无线通信业务量和新技术的快速发展,频谱资源日趋紧张。如何开放频谱和提高频谱利用率对频谱管理提出了严峻的挑战。感知无线电技术在这种情况下应运而生。感知无线电(CR:Cognitive Radio)提供了一种依伺机接入方式共享和利用频谱的手段,它可以有效地解决这两个问题。 感知无线电是一种无线电系统,它能够自动地检测周围的环境情况,智能地调整系统的参数以适应环境的变化,在不对授权用户造成干扰的条件下从空间、频率、时间等多维地利用空闲频谱资源进行通信。它区别于其他传统无线电系统的主要特点是:1)对环境情况的感知能力;2)对环境变化的自适应性;3)系统功能模块的可重构性;4)自主地工作和运行等。 感知无线电是一种用于提高无线电通信频谱利用率的智能技术。具有认知功能的无线通信设备可以感知周围的环境,再利用已经分配给授权用户,但在某一特定的时刻和环境下并没有被占用的频带,即动态利用“频谱空穴”;并能够根据输入激励的变化实时地调整其传输参数,在有限信号空间中以最优的方式有效地传送信息,以实现无论何时何地都能保证通信的高可靠性和无线频谱利用的高效性。感知无线电的一个认知周期包涵三个基本过程:感知频谱环境;信道识别;功率控制和频谱管理。其中,感知频谱环境是感知无线电的最显著特征,能够感知并分析特定区域的频段,找出适合通信的频谱空穴,即频谱空穴的检测和选择。根据不同的感知灵敏度和感知速度,频谱检测的方法有匹配滤波器、能量检测、循环平稳特征检测、协同检测等。 感知无线电技术是无线电发展的一个新里程碑,其应用会带来历史性的变革。对于频谱管制者而言,该技术可以大大提高可用频谱数量,提高频谱利用率,有效利用资源;对于频谱持有者而言,利用该技术可以在不受干扰的前提下开发二级频谱市场,在相同频段上提供不同的服务;对设备厂商而言,该技术可以带来更多的机会,具备感知无线电功能的设备将更具竞争力;对终端用户而言,可以带来更多带宽,在感知无线电技术成熟后,用户可以享受到单个无线电终端接入多种无线网络的优势;在军事通信方面,根据感知无线电的特点可以“见缝插针”地利用空闲频谱通信,提高通信的可靠性和对抗能力。因此,感知无线电技术必将是未来无线通信的一个重要发展方向,为无线电资源管理和无线接入市场带来新的发展契机和动力。 目前,CR的发展还处于初级阶段,各项理论和技术处于研究和探索之中,但它已得到了各界的关注,很多著名学者和机构投入到它的研究中。启动了很多针对此的研究项目,最引人注目的是IEEE802.22工作组。该工作组制定了利用空闲电视频段进行宽带无线接入的技术标准,这是第一个引入感知无线电概念的IEEE技术标准化活动。

几种无线通信技术的比较.

几种无线通信技术的比较 摘要:随着电子技术、计算机技术的发展,近年来无线通信技术蓬勃发展,出现了各种标准的无线数据传输标准,它们各有其优缺点和不同的应用场合,本文将目前应用的、无线通信方式进行了分析对比,并总结和预见了它们今后的发展方向。 关键词:Zigbee Bluetooth UWB Wi-Fi NFC Several Wireless Communications Technology Comparison Abstract:As the development of electronic technology,computer technology, wireless communication technology have a rapid development in recent years,emerged wireless data transmission standard,they have their advantages and disadvantages,and different applications,the application of various wireless communication were analyzed and compared,and summarized and foresee their future development. 一.几种无线通讯技术 (一)ZigBee 1.简介: Zigbee是基于IEEE802.15.4标准的低功耗个域网协议。根据这个协议规定的技术是一种短距离、低功耗的无线通信技术。其特点是近距离、低复杂度、自组织、低功耗、低数据速率、低成本。主要适合用于自动控制和远程控制领域,可以嵌入各种设备。 ZigBee是一种高可靠的无线数传网络,类似于CDMA和GSM网络。ZigBee数传模块类似于移动网络基站。通讯距离从标准的75m到几百米、几公里,并且支持无限扩展。ZigBee是一个由可多到65000个无线数传模块组成的一个无线数传网络平台,在整个网络范围内,每一个ZigBee网络数传模块之间可以相互通信,每个网络节点间的距离可以从标准的75m无限扩展。与移动通信的CDMA网或GSM网不同的是,ZigBee网络主要是为工业现场自动化控制数据传输而建立,因而,它必须具有简单,使用方便,工作可靠,价格低的特点。而移动通信网主要是为语音通信而建立,每个基站价值一般都在百万元人民币以上,而每个ZigBee―基站‖却不到1000元人民币。每个ZigBee网络节点不仅本身可以作为监控对象,例如其所连接的传感器直接进行数据采集和监控,还可以自动中转别的网络节点传过来的数据资料。除此之外,每一个Zigbee网络节点(FFD)还可在自己信号覆盖的范围内,和多个不承担网络信息中转任务的孤立的子节点(RFD)无线连接。

无线通信与网络实验指导(一)

信息工程学院2014年8月

实验一无线网络实验室初识以及AD-HOC网络的基本组建一、实验目的 1.了解无线网络的基本组成,初步认识无线网络 2.熟悉掌握无线网络实验室网络的拓扑结构以及架构情况 3.熟悉实验室环境 4.设计最简单的AD-HOC无线网络 二、实验设备和器材 1.计算机 2.无线网卡 3.无线网络接入点 4.无线网络接入控制器 5.接入交换机 6.可用的网线若干 三、实验原理 1、实验室无线网络情况概述 XX20-707机房的无线网络由7个AP、2个AC、1个接入交换机构成。其中所有AP 和AC都接到交换机上,7个AP有3个AP用作胖AP使用,4个AP用作瘦AP使用,AP 通过交换机的POE功能实现供电,AP接入电压为48V,电流为0.3安培。 两个AC用来管理4个AP组成瘦AP无线网络,其中AC1用于网络的配置练习,通过AC2可以接入外网。 2、AD-HOC网络 Ad-Hoc网络是一种没有有线基础设施支持的移动网络,网络中的节点均由移动主机构成。Ad-Hoc网络最初应用于军事领域,它的研究起源于战场环境下分组无线网数据通信项目,该项目由DARPA资助,其后,又在1983年和1994年进行了抗毁可适应网络SURAN (Survivable AdaptiveNetwork)和全球移动信息系统GloMo(Global Information System)项目的研究。由于无线通信和终端技术的不断发展,Ad-Hoc 网络在民用环境下也得到了发展,如需要在没有有线基础设施的地区进行临时通信时,可以很方便地通过搭建Ad-Hoc 网络实现。 在Ad-Hoc网络中,当两个移动主机在彼此的通信覆盖范围内时,它们可以直接通信。但是由于移动主机的通信覆盖范围有限,如果两个相距较远的主机要进行通信,则需要通过它们之间的移动主机B的转发才能实现。因此在Ad-Hoc网络中,主机同时还是路由器,担

相关文档
最新文档