粉体技术在无机材料领域的应用2

粉体技术在无机材料领域的应用2
粉体技术在无机材料领域的应用2

粉体技术在无机材料领域的应用

2011年冬

摘要:以玻璃、水泥、陶瓷为主的传统无机材料已经满足不了时代的需求,新兴的粉体技术给无机材料的应用注入了新的活力。本文主要总结了粉体技术对传统无机材料性能的改善以及在矿物加工方面的影响,特别是纳米粉体拓宽了无机材料在能源、环保、催化方面的应用。

关键词:矿物加工水泥粉体精细陶瓷纳米粉体

引言:粉体技术是随着近代科技的发展而发展起来的一门新兴科学技术,它是物理、化学、化工、机械、冶金、材料、生物、信息控制等学科的交叉学科。无机材料的应用历史也很久远,传统的无机材料仍有用武之地,但生产过程中的污染及优良性能的单一这些缺点显而易见。对于任何一项技术或工业过程,其经济性和实用性是决定其存在的根本因素。对于无机材料,将粉体的制备工艺、微观结构、宏观物性、工业化生产和应用技术等有机的结合起来,作为系统工程对粉体的制备过程机理进行深入的研究,增强对微粒的形状、分布、粒度、性能等指标的控制技术,并不断完善粉体的性能测试、表征手段,都从而促进粉体技术在无机材料领域的发展。

1.矿物加工

矿物经粉碎分级后直接用于农业、化工、造纸、塑料、橡胶、涂料等产品中。造纸涂布级高岭土希望在超细粉碎的同时保持片状矿物的特性,提高粉料的涂布遮盖能力。在粉碎工艺上尽量选择剥片原理的粉碎方式和设备,从粉碎机理上来说,强化外力能加强对高岭土的强力剪切。同样是造纸涂布级的超细膜重质碳酸钙,其原始结晶多为立方多面体,为了达到超细粉碎的目的,则需要强化矿物颗粒的体积粉碎和表面的研磨。

复合材料增强用的硅灰石在粉碎时应尽量保持它原始的针状结晶状态,是产品成为天然的短纤维增强材料。强力冲击式粉碎机能够在矿物颗粒内部短时间内形成较强的内应力,使颗粒内部沿着解理面形成裂纹,逐渐扩大直至最后分离形成细小的针状颗粒。

云母由于它的多层结构多被用作电介质材料和珠光颜料,粉碎加工过程中应尽可能保证所得颗粒的径厚比一定。作为珠光颜料的云母粉体,其表面不能有太多的划伤,否则会影响其光学效果。在粉体设备的选择上应尽量选用高压射流式粉碎机,利用颗粒内部层间的膨胀压力而将将颗粒剥离,达到预期的粉碎效果。

重质碳酸钙是由方解石或大理石经粉碎分级而成,它的硬度较低,加工过程中要求有较高的白度。众多的粉碎设备中没几乎都可以用于重质碳酸钙的生产。由于其单位重量售价低,因此比轻质碳酸钙用量大,关键是如何无污染、低成本地达到加工目的是设备和工艺选择的重要问题。目前常用的雷蒙磨和球磨机或振动磨与分级机结合的冲击加超细研磨的方式。这种方式得到的粉体中细粉含量较高,常用于一些聚合物的填充从而得到优异性能的复合材料。

锆英砂的主要成分为硅酸锆,原料中常含有铁、钛等杂质。它的性质稳定,耐研磨,其微粉作为陶瓷行业釉料的乳浊剂,具有遮盖力强,乳浊效果好等特点。然而,锆英砂的超细粉碎过程是一个耗能大、设备磨碎严重、产品易污染的复杂过程。为实现低成本生产、必须综合分析加工工艺,优化设备组合,在能耗和其

他消耗尽可能低的条件下产生高质量硅酸锆粉体。为了高细度,尽可能采用搅拌研磨的方式。为了保证产品的纯度,还需要配合酸洗等提纯措施。

2.水泥粉体

水泥是常用的建筑材料,在生产过程中需要对原料和成品进行两次研磨粉碎。随着对混凝土制品强度要求的提高,水泥的细度也在逐渐增加。原料细度的提高有利于改善原料各组分的混合均匀度。降低游离氧化钙的含量。水泥熟料的硬度较大,而细粉含量的高低在一定程度上决定了混凝土早期强度的高低。水泥的粒度分布对混凝土在不同龄期的强度有着决定性的影响。为了改善混凝土强度降低水化热和减小收缩,近年来磨细矿渣、磨细粉煤灰等混凝土掺合料的用量逐年增加。这类产品的生产设备主要是大型的球磨机振动磨、高效分级机等。

有人利用SEM、XRD、TG-DTA、IR、激光粒度仪、微量热仪、比表面积及孔隙度分析仪等现代分析测试手段研究了微纳粉体对硅酸盐水泥和硫铝酸盐水泥物理力学性能的影响及机理。在此基础上,进一步探讨了超微细矿渣、超微细粉煤灰对水泥物理力学性能的影响,探讨了利用矿渣、粉煤灰、石灰石制备绿色高性能复合超细矿粉的适宜配方和适宜的生产工艺。他们的研究结果表明:纳米SiO2和硅灰对水泥的强度都有较大幅度的提高,在3天以后,掺纳米SiO2的水泥试样强度明显高于掺硅的。这主要是由于纳米SiO2的粒径比硅灰的粒径小,纳米SiO2具有更大的表面能,纳米SiO2中[SiO4]4-离子团聚合程度低,导致了纳米SiO2的火山灰活性比硅灰的火山灰活性要高得多。掺有纳米SiO2的水泥试样中熟料矿物水化反应程度更高,CSH凝胶数量增长更快,结晶态Ca(OH)2含量更低。从而使掺有纳米SiO2的水泥浆体内比表面积和总孔体积。

3.精细陶瓷

精细陶瓷的应用目前,国外精细陶瓷主要被发达国家所垄断,特别是日本、美国和西欧等发达国家的精细陶瓷生产量和应用量是全世界最大的。日本和美国精细陶瓷产量约占全世界市场份额的80%以上.我国精细陶瓷的起步较晚,但改革开放以来,一些外资和中外合资精细陶瓷生产企业的逐渐发展壮大,促使我国的精细陶瓷产业已初具规模,但与日本和美国等发达国家相比,尚属起步阶段.目前,我国精细陶瓷的生产规模仍较小,由于缺乏行业的统计资料,还难于定量描述.但从其结构和功能来区分,我国精细陶瓷的发展趋势仍与国外精细陶瓷的发展趋势基本一致,主要是以电子陶瓷为主.精细陶瓷主要应用于电子、通信、化工、冶金、机械、汽车制造、能源、航空航天等空间技术装备以及国民经济各部门。

陶瓷工业的原料制备过程中需要对物料进行粉磨和混合。为了后续的挤压成型,多采用湿法的批次粉磨工艺。主要粉磨设备为批次球磨机。原料取决于浆料的粉磨效果好坏,直接影响着泥坯的流变性和成型烧结质量。研磨过程中要避免金属物的污染。所使用的衬板多为燧石、橡胶或聚氨酯等非金属材料。研磨介质采用球石或陶瓷磨球。

在精细陶瓷生产过程中、原料超细研磨更为需要。无论是功能陶瓷还是结构陶瓷。都是多种原料固相反应的产物。若原料粉碎得越细,多种原料的混合度就越高,固相反应也就越均匀彻底,产品性能也就越好。达到纳米级的陶瓷微纳米陶瓷,通过其小尺寸效应,希望克服陶瓷材料的脆性,使陶瓷具有像金属一样的柔韧性和可加工性。若能解决单相纳米陶瓷的烧结过程中抑制晶粒长大的技术难题,则它将具有高硬度、高韧性、低温超塑性、易加工等优点。在制备纳米粉体

的工艺上,除了保证纳米粉体的质量,做到尺寸和分布可控,无团聚,能控制颗粒的形状,还要生产量大。

3.1结构陶瓷:

高温、高强、超硬、耐磨、抗腐等机械力学性能为其主要特征。例如,纳米级ZrO2陶瓷,烧结温度为1250℃,施加一不大的力有400%的形变,类似金属的延展性。室温下进行拉伸疲劳试验,断裂后表层晶粒间同样表现为塑性形变。不仅离子型物质如此,共价型的SiCl4也有微小超塑性行为。美国一科学家用CaF2纳米材料在室温下可大幅度弯曲不断裂。纳米TiO2陶瓷度达95%,高硬度,耐高温,若用于改善发动机系统,将大大改善其性能。降低烧结温度制成小晶粒,用于电子陶瓷制备,例如广东肇庆风华集团已采用纳米钛酸钡颗粒烧结来提高片式电容器和片式电感器的各项指标性能。

3.2功能陶瓷

以电、磁、光、声、热、力等性能及相互转换为主要特征。例绝缘陶瓷、介电陶瓷、铁电陶瓷、压电陶瓷、半导、导电、超导陶瓷。有的学者基于过渡液相烧结机制的高性能压电陶瓷材料具有低烧结温度、高压电常数和低介质损耗等诸多优点。低烧多层压电变压器(MPT)以其低驱动电压、小体积、高升压比、薄型片式化等优点在液晶显示背光电源等方面获得应用。多层压电变压器及其背光电源具有高功率密度、高转换效率、薄型化和低成本等特点。基于缺陷化学原理和无晶粒长大的致密化烧结动力学,制备了亚微米/纳米晶钛酸钡

基陶瓷及其薄层化贱金属内电极MLCC。研制了低烧铁氧体材料及其片式电感器。

3.3仿生陶瓷

有些研究者应用化学沉淀法制备了粒径约100nm的β-磷酸三钙(β-TCP)超细粉体,并采用放电等离子烧结技术烧结β-TCP,在875℃的烧结温度、150℃/min的升温速率和40MPa的烧结压力下,保温2min,制备得到透明的β-TCP生物陶瓷。XRD、FESEM、密度和透光性能分析结果表明,制备得到的β-TCP生物陶瓷纯度高、结构致密、晶粒平均尺寸约250nm、具有良好的透光性能。细胞相容性研究的结果表明,透明β-TCP生物陶瓷对骨髓间质干细胞的增殖作用明显高于常规的通用聚乙烯培养板。

4.纳米粉体

纳米粉体材料作为一种特殊的精细化工产品,越来越受到人们的关注。纳米粉体的尺度处于原子簇和宏观物体交界的过渡域,是介于宏观物质与微观原子或分子的过渡亚稳态物质,它有着不同于传统固体材料的显著的表面与介面效应、小尺寸效应、量子尺寸效应和宏观量子隧道效应,并且表现出奇异的力学、电学、磁学、光学、热学和化学等特性。

4.1能源方面的应用

用于镍-碱性电池,制成纳米Ni(OH)2;锂离子在电池中的应用Cd-Ni,Zn-Ni

在电池中运用锰钡矿、MnO2纳米纤维、纳米管、聚硅氧烷。

在太阳能电池方面的应用,例如在市场上占有极大份额的晶硅电池板。第三

代电池——染料敏化太阳能电池(DSSCs)的多孔纳米晶TiO2薄膜电极。

4.2环保方面的应用

目前,国内外对层状硅酸盐矿物在废水处理领域中的应用研究主要集中在对其有机改性后对废水中有机污染物的吸附去除,而关于无机粉体改性土对无机污染物特别是有害重金属离子的吸附去除研究较少。层状硅酸盐中的膨润土进行改性,缩小粒径,增大吸附能力,吸附含Cr6+重金属离子废水。

4.3催化方面的应用

锐钛矿型的TiO2作为催化剂,可以与卤代脂肪烃、卤代芳烃、有机

酸类、酚类、硝基芳烃、取代苯胺反应,还可除去空气中的丙醇等有害污染物。类似粉体还有Fe2O3、CdS 、ZnS、PbS 、PbSe、ZnFe2O4 。

TiO2经过C u+、Ag+表面修饰可以杀菌;经Pb化可以使丙炔与水蒸气反应生成甲、乙、丙烷;经Pt化可以分解醋酸为甲烷和二氧化碳;催化甲醇水溶液制取氢气。

结语

粉体制造技术在化学工业及材料工业中占有重要地位。近年来,精细化工产品愈来愈受到重视,广泛应用于国民经济和现代国防的各个领域。粉体技术在无机领域的领用,充分发挥了其小尺寸的力、热、光、电、磁等物理性能,选择多种无机材料制成复合粉体材料将更充分地发挥其优良性能。

参考文献:

[1]盖国胜,徐政。超细粉碎过程中物料的理化特性变化及应用。粉体技术,1997,3

[2]段波。超微粉制备技术的现状与展望。材料工程,1994

[3]董远达。高能球磨法制备纳米材料。材料科学与工程,1993

光催化氧化技术是近几十年来发展起来的一种深度氧化技术(advancedoxidationprocess,AOP)。它是将特定光源(如紫外光)与催化剂联合作用对有机污染物进行降解处理的过程。利用光催化氧化技术,大多数有机污染物可以被降解为CO2、H2O等无污染的小分子。因此,光催化氧化技术应用于环境污染物的治理已成为环境保护领域研究的热点。利用这一技术的关键在于光催化材料的制备。因此,制备既高效又经济的光催化材料是目前研究者关心和迫切需要研究的问题。TiO2因其具有效率高、能耗低、操作简便、反应条件温和、适用范围广、可减少二次污染等优点而被认为是诸多光催化材料中最有应用前途的一种材料,因此是目前研究的热点。本论文介绍了半导体光催化理论、TiO2光催化基本原理、纳米TiO2光催化材料的制备、提高TiO2光催化材料光催化活性的途径、TiO2光催化材料的应用、TiO2光催化材料负载技术的研究进展以及目前存在的问题等。通过粉碎、分级等手段制备了天然金红石光催化材料。用制备的天然金红石光催化材料处理含偶氮染料废水,结果表明其对偶氮染料的作用既有吸附,也有降解,表明天然金红石光催化材料有一定的光催化活性。选用四种不同结构和性质的矿物,分别是架状结构的辉沸石、石英,层状结构的累托石、高岭土,采用溶胶-凝胶法制备了矿物负载纳米TiO2光催化材料。用制备的光催化材料处理含偶氮染料废水,结果表明其对偶氮染料废水有较高的脱色率。辉沸石、累托石、高岭土负载纳米TiO2光催化材料对偶氮染料的作用主要为吸附,石英负载纳米TiO2光催化材料对偶氮染料的作用主要为降解。用γ-巯丙基三甲氧基硅烷对石英进行干法改性,用氧化剂将巯基氧化为磺酸基,通过静电自组装TiO2制备石英表面自组装纳米TiO2光催化材料。用制备的光催化材料处理含偶氮染料废水,结果表明其对偶氮染料废水有较高的脱色率。其对偶氮染料有一定的吸附作用,但主要为降解作用。运用XRD、XPS等测试手段对制备的光催化材料进行了表征以研究其组成。运用紫外-可见光扫描分析及红外光谱等测试手段研究了制备的光催化材料的光催化脱色作用机理。

本文制备了表面镀有光催化剂薄膜的光催化陶瓷,并利用XRD、原位色谱、原位红外光谱和分光光度计等研究了其光催化降解油酸、乙烯、SO2、NOx和灭菌的特性,详细考察了光催化陶瓷在环境保护中的作用.研究结果表明,通过控制制备条件得到的光催化陶瓷具有降解有机污染物、去除无机有害气体和灭菌等环保功能.

制备了表面镀有光催化剂薄膜的自清洁陶瓷,并利用 XRD、AES和原位光催化反应方法等研究了其光催化降解油酸和灭菌的特性,考察了热处理条件和膜厚度

等光催化膜制备与反应条件对自清洁陶瓷光催化活性的影响.研究结果表明,

灭菌效果和油酸光降解速度取决于负载光催化膜的晶相组成、晶粒大小及其比表面积.

采用真空浸渍法制备了多孔莫来石纤维陶瓷负载La1-xSrxCoO3(x=0.2、0.4、0.6、0.8)钙钛矿型催化剂.利用XRD、SEM、BET等对样品进行了表征.通过XRD 发现,所制备的La1-xSrxCoO3催化剂除了存在典型的钙钛矿结构外,图谱中还发现了La(OH)3峰,而且随着x值的减小La(OH)3的衍射峰越来越尖锐.由SEM 可以观察到载体具有立体网状结构并且负载在载体上的催化剂颗粒分散性较好.BET表明随着x增加,比表面积相应增加.利用一氧化氮(NO)和一氧化碳(CO)对所制备的La1-xSrxCoO3系列载体催化剂的催化活性进行了测试比较,发现当Sr取代量为x=0.2时,La1-xSrxCoO3整体催化活性较好.

在该文中我们利用不同的方法制备了镍、氧化铈、钴/镍合金纳米粉体材料,并分别研究了它们的催化脱氢活性、离子选择电极性能以及镍粉生产的工业化放大实验.第一部分:综述;第一章:纳米微粒的特性与应用;该章主要介绍了纳米材料的一些基本特性.例如:量子尺寸效应、表面效应、小尺寸效应、宏观量子尺寸效应等.另外,我们也对纳米材料在催化、陶瓷、石油化工等八个方向的应用做了简要的介绍.第二章:纳米微粒的制备方法;纳米材料的制备方法主要分为三大类:液相法、气相法和高能球磨法.该章中,我们对各方法进行了较详细的分类,并对各方法的原理、特点和应用分别加以介绍.第二部分:实验研究;第三章:纳米镍粉的制备及其催化脱氢活性;第四章:纳米钴镍合金的制备与表征;第五章:纳米氧化铈的制备及其在离子选择电极中的应用;第三部分:应用研究;第六章:纳米镍粉制备的工业放大研究;综合溶液还原法和喷雾法的工艺优势,以水合肼为还原剂,碳酸钠为pH调节剂和缓冲剂,聚乙烯吡咯烷酮为高分子保护剂,在水溶液中还原NiCl<,2>制备纳米镍粉.此法制备粉末颗粒形状规则,大小均匀,无明显团聚,并且易于工业化生产.利用自行设计的反应装置生产了粒径为30nm左右的镍粉.

仿生

.

纳米材料和纳米技术是21世纪最具潜力的学科分支,本文概述了纳米材料在陶瓷、光电、纺织、催化、化工、电器、医学等各方面的应用,并对纳米材料的应用前景进行了展望.

化锌是一种用途十分广泛的功能材料,已被用于气敏、压敏、催化、抗菌等重要领域.ZnO纳米材料,具有普通ZnO材料所无法比拟的特性和用途,在陶瓷、电子、光学、化工、生物、医药等许多领域展现出特殊的用途.作为一种新型的光电材料,ZnO薄膜和一维ZnO纳米结构在紫外探测器、发光二极管、激光二极管等领域显示出极大的发展潜力,已成为材料领域的研究前沿.尤其是近年来有关一维ZnO纳米结构的形貌与紫外激光的研究,更是受到了人们的极大关注.该研究采用工艺简单的水热法,在温和的条件下成功合成了氧化锌纳米线、纳米棒和纳米管等多种一维纳米结构,采用常压烧结和放电等离子烧结两种烧结工艺制备

出了氧化锌纳米陶瓷,并研究了所制备的各种氧化锌纳米材料的光学性能.用XRD、(HR)TEM、SAED、SEM、TG-DSC-MS、FT-IR等手段对氧化锌纳米材料及其前驱体进行了表征.提供了一种纳米氧化锌粉体的简易制备方法.用

Zn(NO<,3>)<,2>·6H<,2>O作原料、碳酸铵作沉淀剂,不需要对沉淀进行繁杂的水洗处理,即可制备出纳米氧化锌粉体.该方法可大大提高纳米氧化锌粉体的生产效率,具有良好的应用前景.对合成的氧化锌纳米线、纳米棒和纳米粉体进行了紫外-可见吸收光谱的测定,它们的吸收都在370 nm左右接近最大,接近理论计算值368 nm;用氙灯作激发源,在室温下研究了所合成的氧化锌纳米线、纳米棒和纳米粉体的光致发光性能;选用325 nm的激发波长,发现它们都有一个较强的紫外发射和较弱的蓝光、蓝绿光发射,分别对应于氧化锌的带边发射和氧空位

等缺陷的发射;对氧化锌纳米线和纳米棒来说,随水热温度的升高和水热时间的延长,它们的紫外发射强度都提高,这是它们结晶更好的结果;在室温下,用发射波长为325 nm的He-Cd激光器激发,纳米ZnO粉体显示出了很强的紫外发射和较弱的绿光发射,良好的紫外发射性能使纳米ZnO粉体在短波长发光器件中具有潜在的应用前景.

结语

粉体制造技术在化学工业及材料工业中占有重要地位。近年来,化学工业产品结构的变化和高新技术发展的要求,精细化工产品愈来愈受到重视,广泛应用于国民经济和现代国防的各个领域

参考文献

粉体制造技术在化学工业及材料工业中占有重要地位。今年来,化学工业产品结构的变化和高新技术发展的要求,精细化工产品愈来愈受到重视,广泛应用于国民经济和现代国防的各个领域,纳米粉体材料作为一种特殊的精细化工产品,越来越受到人们的关注[[1]。纳米粉体的尺度处于原子簇和宏观物体交界的过渡域,是介于宏观物质与微观原子或分子的过渡亚稳态物质,它有着不同于传统固体材料的显著的表面与介面效应、小尺寸效应、量子尺寸效应和宏观量子隧道效应,并且表现出奇异的力学、电学、磁学、光学、热学和化学等特性[f2,31。据统计美国Dupont公司1985年到992年3000多种产品中62%的是粉体或以其为基础的产品,其化学工业40%增值来源于纳米粉体技术的进步。纳米粉体的制备工艺、微观结构、宏观物性、工业化生产和应用技术等方面成为研究热点。纳米粉体的制备主要可分为液相法和气相法。每一类方法都有许多不同的制备手段,本文综述了纳米粉体材料的制备技术及其应用的研究进展。

在充满生机的21世纪,信息、生物技术、能源、

环境、先进制造技术和国防的高速发展必然对材料

提出新的需求,儿件的小型化、智能化、高集成、高密

度存储和超快传输等对材料的尺、J一要求越来越小;

航空航天、新型军事装备及先进制造技术等对材料

性能要求越来越高。新材料的创新,以及在此基础

上诱发的新技术、新产品的创新是未来to年对社会

发展、经济振兴、国力增强最有影响力的.钱略研究领

域,纳米材料将是起币要作用的关键材料之一。纳

米材料和纳米结构是当今新材料研究领域中最富有

活力、对未来经济和社会发展有着}一分币要影响的

研究对象,也是纳米科技中最为活跃、最接近应用的

币要组成部分。近年来,纳米材料和纳米结构取得

了引人注目的成就,例如,存储密度达到何平方英时

4000;的磁性纳米棒阵列的量子磁盘、成木低廉、发

光频段可调的高效纳米阵列激光器、价格低廉高能

量转化的纳米结构太阳能电池和热电转化儿件、用

作轨道炮道轨的耐烧蚀高强高韧纳米复合材料等的

问世,充分显不了它在国民经济新型支柱产业和高

技术领域应用的巨大潜力。正像美国科学家估不}一的

“这种人们肉眼看不见的极微小的物质很可能给子

各个领域带来一场革命”。纳米材料和纳米结构的

应用将对如何调整国民经济支柱产业的布局、设不l-

新产品、形成新的产业及改造传统产业注入高科技

含量提供新的机遇。

研究纳米材料和纳米结构的币要科学息义在十

它开辟了人们认识自然的新层次,是知识创新的源

泉。由十纳米结构单m的尺度(C1一1 OOnm}与物质

中的许多特征长度,如电子的德布洛息波长、超导相

干长度、隧穿势泉厚度、铁磁性临界尺、J一相当,从而

导致纳米材料和纳米结构的物理、化学特性既不同

十微观的原子、分子,也不同十宏观物体,从而把人

矿物的加工

在粉末冶金等金属材料的生产过程,由于金属的延展性,通过粉碎方法直接制取金属粉体原料困难较大。大量的金属粉体原料是通过粉碎金属氧化物的细粉,然后经还原反应得到。粉碎工艺多选用球磨机或搅拌磨这类输入能量较大、工作性能稳定的设备。像印刷用的铜粉是在喷雾制粉的基础上,进一步用球磨机或搅拌磨对雾化形成的球状颗粒进行延展性粉碎,从而提高粉体的遮盖性。在粉碎过程中,大部分金属粉体都有氧化甚至爆炸的危险,所以应考虑保护气氛。

粉体材料科学与工程培养方案

粉体材料科学与工程培养方案 一、专业简介 粉体材料科学与工程”专业依托“材料科学与工程”一级国家重点学科建设,设有博士点、博士后科研流动站,是国家特色专业和国家本科质量工程重点建设专业,是首批国家“卓越工程师”专业。本专业涉及金属或化合物粉末的制备、并以此为原料制备先进材料,研究材料成分、制备工艺、组织结构和性能之间相互关系,以满足航空航天、新能源技术、生物技术、微电子、汽车工业、国防军工等领域对关键新材料的迫切需求。本专业培养具有坚实的专业理论基础以及材料科学知识、较强的新材料研发能力和创新能力的粉末冶金技术高级专门人才。 二、培养目标 本专业秉承“厚基础、宽专业、高素质、强能力”的人才标准,培养政治思想正确、具有高度的社会责任感、优良的科学文化素养和创新精神、坚实的专业基础、较强的工程实践和工程创新能力、组织和管理能力以及良好国际化视野的高层次、复合型人才。能在材料科学与工程领域,特别是在粉末冶金基础理论、粉末冶金材料(如难熔金属与硬质合金、磁性材料、摩擦减磨材料、粉末高温合金、特种陶瓷材料、电工电子材料)等研究和制造领域从事科学研究与技术开发、工艺设计、材料加工制备、性能检测和生产经营管理、具有国际竞争力的高级专门人才。学生毕业后可在高等院校、科研院所和高新技术企业等从事教学、科研、生产、新材料与材料制备新技术开发以及相关管理方面的工作。 三、培养要求 1、知识要求 拥有良好的人文与社会知识、学科基础知识、专业基础与专业知识。 ①人文与社会知识:掌握一定的哲学、政治学、法学、社会学、心理学等知识。掌握一定的经济、管理等知识,满足工程应用中管理和交流的需要。 ②外语及计算机知识:掌握一门外国语,能顺利地阅读和翻译专业外文技术资料,有较强的听说读写能力;了解计算机基本原理,掌握一种以上计算机语言,能熟练应用计算机解决本专业问题。 ③学科基础知识:掌握材料科学与工程学科所需的数学、物理、化学等自然科学基础的知识

功能粉体材料作业

微纳粉末制备中的晶体结构控制 谌伟学号123511026 摘要:具有特殊形貌和尺寸的无机纳米/微米粉末的可控合成已成为现代材料合成和纳米器件制造过程中一个研究热点本,本文分析了研究晶体宏观形貌与内部结构关系的几种主要理论,分别从晶核的形成和长大,以及其影响因素与结晶模式,分析了粉末制备中控制晶体结构的机理。 关键词:微纳粉末;晶体结构;晶体习性;结晶控制 晶体形态的变化,受内部结构和外部生长环境的控制。晶体形态是其成份和内部结构的外在反映,一定成份和内部结构的晶体具有一定的形态特征,因而晶体外形在一定程度上反映了其内部结构特征。外部生长条件的变化通过内部结构影响晶体的形态,晶体形态随外界条件的变化而发生规律性的变化,因此可以通过晶体的外形特征来认识、掌握晶体的生长条件。在晶形分析过程中,内部结构对晶形的控制是基础,通过晶体结构特征对晶体形态作出比较准确的分析和推断,是进一步研究晶体形态与生长条件关系的前提。结晶学是研究晶体的生长、外部形貌、内部构造、化学组成、物理性质、人工制造和破坏以及它们之间关系的一门经典自然科学。结晶学是岩石学、矿物学、地质学和药物学等许多学科的基础,也是材料科学的重要基础科学之一。无论是材料制品的研究、生产制造还是实际应用,都离不开结晶学理论知识的指导。 1晶核的形成 任何晶体的生长都有晶核形成和晶核长大两个阶段,二者受不同因素控制。前一阶段热力学条件起着决定性作用,后一阶段主要受动力学条件控制。晶体的生长是一个相变过程,晶核的形成就是相变的开始。一个体系内能否形成晶核取决于相变进行的方向,而晶核的长大则取决于相变进行的限度。从热力学理论可知,只有在体系的相变驱动力足够大时,相变才能自发地进行,即自发进行的过程是在吉布斯自由能减小而相变驱动力增到足够大的过程。 (1)均匀成核作用:在均匀的没有相界面存在的体系内,自发地发生相变而形成晶核的作用,称为均匀成核作用。所谓均匀成核只是统计性的宏观看法。实际上体系内的某个局部在某瞬间总是存在着偏离平衡态的组成密度起伏或热起伏的。原始态的原子和分子有可能聚集在一起形成新相的质点集团,这种质点

无机粉体分散剂-连接有机与无机的桥梁

无机粉体分散剂-连接有机与无机的桥梁 无机粉体分散剂是一种在无机材料和高分子材料的复合体系中,能通过物理和/或化学作用把二者结合,亦或能通过物理和/或化学反应,使二者的亲和性得到改善,从而提高复合材料综合性能的一种物质。 通过使用粉体分散剂,可在无机物质和有机物质的界面之间架起"分子桥",把两种性质悬殊的材料连接在一起,形成有机基体-粉体分散剂-无机基体的结合层,提高复合材料的性能和增加粘接强度。 那么无机粉体分散剂的应用性能主要体现在什么方面呢? 1.对无机粉体表面进行包覆处理 能改善玻璃纤维和树脂的粘合性能,大大提高玻璃纤维增强复合材料的强度、电气、抗水、抗气候等性能,

它对复合材料机械性能的提高,效果也十分显著。 2.增加相容性与分散性 可预先对填料进行表面处理,也可直接加入树脂中,从而改善填料在树脂中的分散性及粘合力,改善无机填料与树脂之间的相容性,改善工艺性能和提高填充塑料(包括橡胶)的机械、电学和耐气候等性能。 3.用作密封剂、粘接剂和涂料的增粘剂 提高材料的粘接强度、耐水、耐气候等性能。粉体分散剂之所以能作为增粘剂,其作用原理在于它本身有两种基团:一种基团可以和被粘的骨架材料结合;而另一种基团可以与高分子材料或粘接剂结合,从而在粘接界面形成强力较高的化学键,提高粘接强度。 4.其他方面的应用: ①使固定化酶附着到玻璃基材表面;②油井钻探中防;③使砖石表面具有憎水性;④通过防吸湿作用,使荧光灯涂层具有较高的表面电阻;⑤提高液体色谱柱中有机相对玻璃表面的吸湿性能;⑥改善填充橡胶的物理加工性能等。 5.小结 随着科技的发展,对于高性能的材料的要求也会更加高,无机粉体分散剂在工业、复合材料工业、高分子工业中不可缺少的助剂之一。

二氧化锡半导体纳米粉体

二氧化锡半导体纳米粉体的制备及气敏性能研究报告 学院:资源加工与生物工程学院 班级:无机0801 姓名:魏军参 学号:0305080723 组员:张明陈铭鹰项成有

半导体纳米粉体的制备及气敏性能研究 前言 SnO2 粉体作为一种功能基本材料,在气敏、湿敏、光学技术等方面有着广泛的应用。目前是应用在气敏元件最多的基本原材料之一。纳米级SnO2 对H2 、C2H2 等气体有着较高的灵敏度、选择性和稳定性,具有更广阔的应用市场前景。研究纳米SnO2 粉体的制备方法很多,例如:真空蒸发凝聚法、低温等离子法、水解法、醇盐水解法、化学共沉淀法、溶胶—凝胶法,近期还出现了微乳液法,水热合成法等。每种制粉方法各有特点,但是在目前技术装备水平和纳米粉体应用市场还未真正形成的条件下,上述纳米粉体制备方法由于技术成熟度或制备成本等方面的原因,大多都还未形成具有实际意义上的生产规模,主要还处于提供研究样品阶段。 以廉价的无机盐SnCl4·5H2O为原料,采用溶胶-凝胶法制备出粒度均匀的超细SnO2粉体,该工艺具有设备简单,过程易控,成本低,收率高等优点。实验考察制备工艺过程中原料浓度、反应温度、反应终点pH值、干燥脱水方式、培烧温度等因素对纳米SnO2粉体粒径的影响。实验过程以TG-DTA热分析、红外光谱等测试手段,分析前驱体氢氧化物受热行为,前驱体表面基团及过程防团聚机理等。利用透射电子显微镜、X-射线衍射仪、比表面测试仪分别对纳米粒子的形貌与粒径分布、晶相组成、比表面积进行了表征与测定。 在实验中制备得到得SnO2 胶体,在干燥、煅烧的过程中很容易形成团聚。因为粉体颗粒细小, 表面能巨大, 往往会粘结在一起。水热法是近年来出现的制备超细粉体的新方法,其利用密封压力容器, 以水为溶剂, 温度从低温到高温(100 ℃~400 ℃) , 压力在10~200 MPa 。该方法为前驱物反应提供了一个在常压下无法实现的特使物理化学条件。避免在普通煅烧过程中, 由于晶粒间细小间隙产生毛细现象导致的颗粒长大团聚。 水热法制备过程中, 粉体在液相中达到“煅烧”温度。通过控制反应条件, 有效阻碍颗粒间的长大, 保持颗粒粒度均匀, 形态规则, 且干燥后无需煅烧, 避免形成硬团聚。 本文以SnCl4·5H2O 为原料, 利用溶胶凝胶法和离心洗涤制备纯净凝胶, 水热脱水法制备SnO2微晶;研究不同水热条件下, SnO2 粉体的形成、晶粒大小以及分散性能。 文献综述 1.1 半导体纳米粉体 半导体定义 电阻率介于金属和绝缘体[1]之间并有负的电阻温度系数的物质。半导体室温时电阻率约在10E-5~10E7欧姆?米之间,温度升高时电阻率指数则减小。半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括Ⅲ-Ⅴ族化合物(砷化镓、磷化镓等)、Ⅱ-Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。 本征半导体:不含杂质且无晶格缺陷的半导体称为本征半导体。在极低温度下,半导体的价带是满带(见能带理论),受到热激发后,价带中的部分电子会越过禁带进入能量较高的空带,空带中存在电子后成为导带,价带中缺少一个电子后形成一个带正电的空位,称为空穴。导带中的电子和价带中的空穴合称电子 - 空穴对,均能自由移动,即载流子,它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。这种由

高分子材料中粉体表面改性的作用

超细粉体材料进行表面改性的作用分析 (上海汇精亚纳米新材料有限公司刘涛) (凤阳汇精纳米新材料科技有限公司) 高新技术的发展对材料的要求越来越高,而材料又是技术进步的关键和后盾。随着科技的发展,我们经常需要既能适应高温、高压、高硬度条件的材料,又具有能发光、导电、电磁、吸附等特殊性能的材料。因此,对材料特殊性能及品质要求的提高,为适应发展需要,人们不断地开发超微细粉体这一新兴填料体系。但由于超细粉体间普遍存在着范德华力(分子间作用力)、库仑力(静电力),粉体的细化过程实质上是以粒子的内部结合力不断被破坏,体系总能量不断增加的过程。因此从热力学角度来看,超细粉体有自发凝聚的倾向,而且颗粒越细小,团聚越严重。因此如何使团聚解聚,使颗粒均匀分散成为超细粉体材料得到很好应用的首要问题。研究表明,影响超细粉体分散的主要原因是:1:液桥力(液体的表面张力):当粉体受潮时,此力最大;2:范德华力;3:库仑力,不同电荷吸引力是粉体团聚的第三大因素。而对于超细粉体在高分子材料中的分散,一是常温下的分散混合,二是熔融状态下的分散混合,这两个过程都要求做到分散均匀。表面改性就是指在保持材料或制品原性能的前提下,赋予其表面新的性能,如生物相容性、抗静电性能、染色性能及良好的分散性能等。汇精公司粉体材料的表面改性产品就是用偶联剂及表面活性剂在粉体表面进行,其可以降低粉体表面能,提高相容性,阻止或减轻团聚体的形成,提高其分散性,并使得粉体在高分子材料中得到迅速、均匀的分散。若超细粉体不加任何处理就加入到高分子材料中去,材料与聚合物之间就会存在明显的界面,如果在基体树脂中存在的许多空洞,在外力作用下能承受外力的有效截面积减少,填充材料的力学性能就会变差。因此超细粉体在表面处理水份控制以及选择合适的表面改性剂是非常关键的。 上海汇精亚纳米新材料有限公司、凤阳汇精纳米新材料科技有限公司利用自身丰富粉体应用技术资源,采用专业的配方,使用SLG加热式连续性表面改性机对超细粉体材料进行表面改性处理,使得超细粉体材料在各行业的使用性能得到大大提升,更赋予它新的功能;使得超细粉体的各项性能得到更好的发挥,适应了时代发展的趋势需求。

无机粉体

第四章 一. 惰性气体蒸发-冷凝法原理 该法所蒸发出来的气体金属粒子不断与环境中的惰性气体原子发生碰撞,既降低了动能又得到了冷却,本身成为浮游状态,从而有可能通过互相碰撞成核长大。惰性气体压力越大,离加热源越近,处于浮游状态的原子也越多,成核几率大,生长相对较快。当颗粒长到一定程度后就会沉积到特定的容器壁上,由于此时不在发生运动,粒子不再继续长大,这就有可能制备相对较小的超微粒子。 早期相关的装置很多,一般采用电或石墨加热器,在充有几百帕氩的压力下可制备10 nm左右的Al、Mg、Zn、Sn、Cr、Fe、Co、Ni和Ca等金属粉体。 图3-48为一种产物粉体可以原位压结的改进装置示意图 图3-48 惰性气体蒸发-冷凝装置示意图 1-蒸发源;2-液氮冷却的冷阱;3-惰性气体室;4-粉料收集和压 结装置 待蒸发金属如铁经电加热的器皿中蒸发后,进入压力约为1kPa的气氛中,经碰撞、成核、长大,最后凝结在直立指状冷阱上,形成一种结构松散的粉状晶粒集合体,然后将体系抽至真空,可用移动的特种刮刀将粉末刮入收集器或进入挤压装置压成快状纳米材料。 二.化学气相沉积法 化学气相法是利用挥发性的金属化合物的蒸气,通过化学反应生成所需要的化合物,在保护性气体环境下快速冷凝,从而制备各种超微粉体的方法。 化学气相沉积(CVD)乃是通过化学反应的方式,利用加热、等离子激励或光辐射等各种能源,在反应器内使气态或蒸汽状态的化学物质在气相或气固界面上经化学反应形成固态沉积物的技术。 三.作业题 1. 超微粉体气相合成时,不论采用物理气相合成还是化学气相反应合成中的哪一种具体方法,都会涉及气相粒子成核,晶核长大,凝聚等一系列粒子生长的基本过程。 2. 什么是过饱和度? 答:过饱和度就是指超过饱和度的那一部分溶质的质量与饱和度的比,它表示了溶液的过饱和程度。 3. 判断:气相反应平衡常数越大,反应率越大。(√) 判断:物理气相合成主要制备金属氧化物粉体(×)

无机纳米粉体表面改性研究进展

摘要: 由于纳米粒子易团聚, 对其进行表面改性是很必要的。本文综述了纳米粒子表面改性的主要方法, 介绍了国内外表面改性的一些实例, 并对纳米粒子表面改性的一些新发展和应用前景作了说明。 关键词: 纳米粉体; 团聚; 表面改性;表征 Abstract:Accumulation is one of the most important problems to be resolved in the application of nanosize power.Surface modification can efficiently resolve this problem.In this aricle,the author discuss the cause of the accumulation,the way of surface medication and the manifestion of surface modification. Key words: nanosizes power, accumulation, surface modification, manifetation 1、引言 物质经微纳米化后, 尤其是处于纳米状态时, 其尺寸介于原子、分子与块状材料之间, 故有人称之为物质的第四状态。由于纳米粒子具有大比表面积, 随着粒子半径的减小, 其表面能和表面张力都急剧增大,此外还具有小尺寸效应、量子尺寸效应和量子隧道效应, 因而纳米材料具有独特的力学、光、热、电、磁、吸附、气敏等性质, 在传统材料中加入纳米粉体将大大改善其性能或带来意想不到的性质。 目前, 纳米材料在信息、能源、环境和生物技术等高科技产业中的应用已取得了初步成果。但是在应用过程中, 由于纳米粒子粒径小, 表面活性高, 使其易发生团聚而形成尺寸较大的团聚体[1], 严重地阻碍了纳米粉体的应用和相应的纳米材料的制备。 2、纳米粒子的团聚 所谓纳米粉体的团聚是指原生的纳米粉体颗粒在制备、分离、处理及存放过程中相互连接、由多个颗粒形成较大的颗粒团簇的现象。 从热力学上, 纳米粒子的分散体系具有巨大的比表面积, 表面能很大, 系统会自动朝着表面积减小的方向变化, 导致纳米粒子发生团聚。粉末的团聚分为软团聚和硬团聚。软团聚主要是由于颗粒之间的范德华力和库仑力所致, 该团聚可通过施加机械能能消除粉末的硬团聚体内除了颗粒之间的范德华力和库仑力之外, 还存在化学键作用, 目前人们对粉末的硬团聚机理存在不同的看法, 其中最有代表性的是晶桥理论、毛细管吸附理论、氢键作用理论和化学键作用理论[2]。 图1 纳米粒子的团聚机理示意图 Fig1 agglomeration mechanism schematic diagram of nano2particles 为了解决纳米粉体的团聚问题以及改善粉体粒子表面活性,就需要对粉体粒子进行表面改性。

粉体材料的制备方法有几种

粉体材料的制备方法有几种?各有什么优缺点?(20分) 答:粉末的制备方法: 气相合成、湿化学合成、机械粉碎. 1. 物理方法 (1)真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。 (2)物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 (3)机械球磨法 采用球磨方法,控制适当的条件得到纯元素纳米粒子、合金纳米粒子或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 2. 化学方法 (1)气相沉积法 利用金属化合物蒸气的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。 (2)沉淀法 把沉淀剂加入到盐溶液中反应后,将沉淀热处理得到纳米材料。其特点简单易行,但纯度低,颗粒半径大,适合制备氧化物。 (3)水热合成法 高温高压下在水溶液或蒸汽等流体中合成,再经分离和热处理得纳米粒子。其特点纯度高,分散性好、粒度易控制。 (4)溶胶凝胶法 金属化合物经溶液、溶胶、凝胶而固化,再经低温热处理而生成纳米粒子。其特点反应物种多,产物颗粒均一,过程易控制,适于氧化物和Ⅱ~Ⅵ族化合物的制备。 (5)微乳液法 两种互不相溶的溶剂在表面活性剂的作用下形成乳液,在微泡中经成核、聚结、团聚、热处理后得纳米粒子。其特点粒子的单分散和界面性好,Ⅱ~Ⅵ族半导体纳米粒子多用此法制备 2. 为什么要对粉体材料的表面进行改性?什么是物理吸附?什么是化学吸附?试举例说明。(20分) 答: 材料表面改性的目的 力学性能:表面硬化、防氧化、耐磨等 电学性能:表面导电、透明电极 光学性能:表面波导、镀膜玻璃 生物性能:生物活性、抗菌性 化学性能:催化性 装饰性能:塑料表面金属化 材料表面改性的意义 通过较为简单的方法使一个部件部件或产品产品具有更为综合的性能第一节材料表面结构的变化 粉体表面改性是指用物理、化学、机械等方法对粉体材料表面进行处理,根据应用的需要有目的改变粉体材料表面的物理化学性质,如表面组成、结构和官能团、

无机材料机械及设备教学大纲

《无机材料机械及设备》教学大纲 一、课程基本信息 1.课程编号: 2.课程名称:无机材料机械及设备 3.英文名称: 4.课程简介:无机材料机械及设备是材料科学与工程专业的一门专业主干课程。主要内容包括:粉体的基本性质;粉碎;筛分;分离;混合;练泥机械等设备的工作原理、构造、性能及应用。 二、课程说明 1.教学目的和要求 通过本课程的学习,使学生能够系统地掌握无机材料机械及 设备的基本理论和基础知识;处理工艺及装备技术;粉体加工工艺 原理及流程;机械设备的原理、构造、性能及应用。注重培养学生 分析与解决问题的能力。强调理论与实践的结合,培养高级应用型 工程技术人才。 2.与相关课程衔接 先修课程:机械制图、机械基础及化工原理。 3.学时、学分 总学时:48学时;周学时:3学时;学分:3分。 4.开课学期:第7学期。 5.教学方法:课堂教学,PPT。 6.考核方式:期末闭卷考试,总成绩=考试成绩×70%+平时成绩 (1)

30%。 7.教材及参考书 教材:无机非金属材料工业机械及设备,张庆今主编,华南理工大学出版社出版 8.主要参考书 [1] 张长森,程俊华等编.粉体工程.自编校内教材,2001.1 [2] 陶珍东、郑少华主编.粉体工程与设备.北京:化学工业 出版社,2003. [3] 陆厚根编著,粉体技术导论,上海:同济大学出版社, 1998. [4] 谢洪勇编著.粉体力学与工程. 2003. [5] 王奎生编著.工程流体与粉体力学基础.北京:中国计量 出版社,2002.9. [6] 卢寿慈主编.粉体技术手册. 北京:化学工业出版 社,2004. [7] 毋伟, 陈建峰, 卢寿慈编著.超细粉体表面修饰. 北 京:化学工业出版社,2004. [8] 李凤生等编著.超细粉体技术.北京:国防工业出版社, 2000. (2)

粉体材料与工程专业培养计划(草稿)

粉体材料科学与工程专业培养计划 一、培养目标: 本专业培养适应社会主义现代化建设需要,德、智、体、美全面发展,并具有较好的社会科学基础和一定的人文、艺术基础,具有创新精神和实践能力,获得工程师基本训练的高级工程技术专门人才。毕业生具备粉体材料工程领域的基础知识,系统掌握粉体材料科学与工程的基本理论、基本的实验技能和科学创新的研究方法的高级应用型人才。 二、培养规格与要求: 本专业人才应具有以下知识、能力和素质: 1、知识结构要求 工具性知识:外语、计算机及信息技术应用等方面的知识。 人文社会科学知识:哲学、思想道德、政治学、法学、心理学等方面的知识。 自然科学知识:数学、物理学、化学等方面的知识。 工程技术知识:工程图学、机械基础、电工电子学等方面的知识。 经济管理知识:经济学、管理学等方面的知识。 专业知识:了解粉体材料科学与工程领域的一般原理和专业知识;掌握粉体材料合成制备、加工、结构与性能测定及应用等方面的基础知识、基本原理和基本实验技能;熟悉国家关于粉体材料科学与工程研究、开发及相关的产业政策、国内外知识产权等方面的法律法规;了解粉体材料科学与工程专业的理论前沿、应用前景和最新发展动态,以及粉体材料科学与工程产业的发展状况;具有研究、改进粉体材料性能、开发、设计新材料的初步能力。 2、能力结构要求 获取知识的能力:具有良好的自学能力、表达能力、社交能力、计算机及信息技术应用能力。 应用知识能力:具有综合应用知识解决问题能力、综合实验能力、工程实践能力。 创新能力:具有创造性思维能力、创新实验能力、科技开发能力。 3、素质结构要求 思想道德素质:热爱祖国,拥护中国共产党的领导,树立科学的世界观、人生观和价值观;具有责任心和社会责任感;具有法律意识,自觉遵纪守法;热爱本专业、注重职业道德修养;具有诚信意识和团队精神。 文化素质:具有一定的文学艺术修养、人际沟通修养和现代意识。 专业素质:掌握科学思维方法和科学研究方法;具备求实创新意识和严谨的科学素养;具有一定的工程意识和效益意识。 身心素质:具有较好的身体素质和心理素质。 三、主干学科:材料科学与工程,化学工程与技术 四、核心课程: 马克思主义基本原理、高等数学、大学物理、物理实验、大学计算机基础、大学英语、工程图学、电工与电子技术、无机化学、分析化学、有机化学、物理化学、纳米材料科学导论,材料科学基础、材料物理性能、材料研究与测试方法、粉体工程、材料合成与加工工程及热工过程及设备。 五、主要实践性教学环节: 基础实验、专业实验,机械制造(金工)实习、电工电子工艺实习、计算机上机、课程实习、创新设计、认识实习、生产实习、毕业实习、科技方法训练(工程设计训练)、毕业设计(毕业论文)等集中实践周共44周。 六、主要指标: 课内(普通教育和专业教育)总学时2496(其中实验232学时、上机120学时、听力64学时),集中实践环节共44周;普通教育和专业教育总计200学分,综合教育40学分。 七、学制:四年 八、授予学位:工学学士

常用无机粉体材料种类及作用

常用无机粉体材料种类及作用 目前,在中国每年至少有400万吨的无机粉体材料作为原料的一部分被用于塑料制品的生产。用无机粉体材料替代部分石油产品,一方面,每年可以节约数百万吨石油;另一方面,对于所生成的塑料制品而言,不但有利于降低原材料成本,而且可以使填充塑料材料的某些性能按照预定的方向得到改善,从而提高塑料制品的巿场竞争力。 常用无机粉体材料种类及作用 据统计,中国500余家碳酸钙厂家生产的约500万吨产品中,有一半就是销往塑料行业的。此外,滑石粉、煅烧高岭土、硅灰石粉等多种无机粉体材料也被广泛应用,有的甚至成为功能性塑料材料不可缺少的组成部分。 碳酸钙 碳酸钙就是塑料加工时用得最广、用量最大的无机粉体填料。据中国无机盐工业协会钙镁分会统计,每年用于塑料填充的碳酸钙总量在二百多万吨,就是各种用途中所占份额最大的,约50%左右。 根据加工方法不同,碳酸钙分为轻质与重质两种。轻质碳酸钙(简称轻钙)就是由石灰石经煅烧、消化、碳化而成的,其间经历了化学反应,而重质碳酸钙就是经研磨(干法或湿法)而成的,只有粒径大小的变化而无化学反应过程。目前在塑料薄膜中使用的碳酸钙都就是1250目的重质碳酸钙,已大量用于PE包装袋的生产,在农用地膜中因透光性受到影响,虽然可以使用,但添加量较小。 1) 重钙的细度对PE薄膜力学性能的影响十分明显,见表1。 表1 重质细度对PE薄膜力学性能的影响 2) 碳酸钙粒子的分散对PE薄膜的性能具有决定性作用 PE薄膜生产企业对重钙的添加量十分关心,希望添加量越多越好,但同时力学性能、耐老化性能、透光性都不要受到过大的影响。特别就是在农用地膜中到底能够使用多少碳酸钙就是非常值得努力探讨的问题。宝鸡云鹏塑料科技有限公司对此进行了有益的探索,并取得喜人的成果。表2列出纯LLDPE地膜及分别添加10%、15%、20%、33%云鹏公司生产的纳米改性塑料复合材料的LLDPE地膜的力学性能。

超细粉体材料的制备技术现状及应用形势

文章编号:1008-7524(2005)03-0034-03 超细粉体材料的制备技术现状及应用形势* 房永广1,梁志诚2,彭会清3 (1.江西理工大学环建学院,江西赣州341000;2.化工部连云港设计研究院, 江苏连云港222004;3.武汉理工大学资环学院,湖北武汉430070) 摘要:综述了国内超细粉体材料的制备工艺、设备现状及进展,并介绍了超细粉体材料在电子信息、医药、农药、模具、军事、化工等方面的应用。 关键词:超细粉体;制备;综述 中图分类号:TD921+.4文献标识码:A 0引言 从上世纪50年代日本首先进行超细材料的研究以后,到上世纪80~90年代世界各国都投入了大量的人力、物力进行研究。我国早在上世纪60年代就对非金属矿物超细粉体技术、装备进行了研究,对于超细粉体材料的系统的研究则开始于上世纪80年代后期。 超细粉体从广义上讲是从微米级到纳米级的一系列超细材料,在狭义上讲是从微米级、亚微米级到100纳米以上的一系列超细材料。材料被破碎成超细粉体后由于粒度细、分布窄、质量均匀,因而具有比表面积大、表面活性高、化学反应速度快、溶解速度快、烧结体强度大以及独特的电性、磁性、光学性等,因而广泛应用于电子信息、医药、农药、军事、化工、轻工、环保、模具等领域。可以预见超细粉体材料将是21世纪重要的基础材料。1超细粉体的制备设备 超细粉体的制备方法有很多,但从其制备的原理上分主要有两种:一种是化学合成法,一种是物理粉碎法。化学合成法是通过化学反应或物相转换,由离子、原子、分子经过晶核形成和晶体长大而制备得到粉体,由于生产工艺复杂、成本高、而产量却不高,所以化学合成法在制备超细粉体方面应用不广。物理粉碎法是通过机械力的作用,使物料粉碎。物理粉碎法相对于化学合成法,成本较低,工艺相对简单,产量大。因此,目前制备超细粉体材料的主要方法为物理粉碎法。常用的超细粉碎设备有气流粉碎机、机械冲击粉碎机、振动磨、搅拌磨、胶体磨以及球磨机等。 1.1气流粉碎机 自从1892年美国人戈麦斯第一次提出挡板式气流粉碎机的模型并申请专利以来,经过百余年的发展,目前气流磨已经发展成熟,成为国内外用于超细粉体加工的主要设备。我国研制气流粉碎机开始于上世纪80年代初。目前气流粉碎机可分为圆盘式、对喷式、靶式、循环式、流化床式等。 气流粉碎机又称流能磨或喷射磨,由高压气体通过喷射嘴产生的喷射气流产生的巨大动能,使颗粒相互碰撞、冲击、摩擦、剪切而实现超细粉碎。粉碎出的产品粒度细,且分布较集中;颗粒表面光滑,形状完整;纯度高,活性大,分散性好。目前超细粉碎机有很多的机型,其中流化床式气流粉碎机是其效率最高的。其工作原理为物料进入粉碎室,超音速喷射流在下部形成向心逆喷射流场,在压差作用下,使磨底物料流态化,被加速的物料在多喷嘴的交汇点汇合,产生剧烈的冲击碰撞,摩擦而粉碎,被粉碎的细粉随气流一起运动至上部的涡轮分级机处,在离心力作用下,将符合细度要求的微粉排出。其优点是粉碎效率高,能耗 # 34 # *收稿日期:2004-09-24

无机材料化学

纳米陶瓷材料的概论 摘要 由于硬度高、耐高温、耐磨损、质量轻和导热性好,陶瓷材料是现代工业三大基本材料之一, 但其脆性大、韧性小而限制了在一些特殊领域的应用。纳米材料及技术运用到陶瓷材料中极大地改善了它的应用性能,对材料的电学、热学、磁学、光学性质产生重要影响,为材料的利用开拓了一个崭新的领域。本文介绍了纳米技术和陶瓷材料结合形成的纳米陶瓷材料的发展历程、性能和种类, 以及制备方法、应用和国内研究现状。 关键词:陶瓷纳米材料纳米陶瓷材料性能制备方法应用现状 Abstract Since hardness, high temperature, wear-resistant, light weight and good thermal conductivity, the ceramic material is one of three basic materials in modern industry, but its brittleness, toughness small and limited in some special areas of application. Nano-materials and technology applied to ceramic materials has greatly improved the performance of its application, the material of the electrical, thermal, magnetic, optical properties have important implications for the use of materials opens up a new frontier. This paper introduces nanotechnology and nano-ceramic material to form ceramic materials development process, performance and types of preparation methods, application and domestic research. Keyword: ceramic nano-materials nano-materials ceramics preparation method application status. 前言 陶瓷是人类最早使用的材料之一,在人类发展史上起着重要的作用。但是, 由于传统的陶瓷材料脆性大,韧性和强度较差、可靠性低,使陶瓷材料的应用领域受到较大限制。随着纳米技术的广泛应用,纳米陶瓷随之产生。所谓纳米陶瓷, 是指陶瓷材料的显微结构中,晶粒尺寸、晶界宽度、第二相分布、气孔尺寸、缺陷尺寸都是在纳米级的水平上。纳米陶瓷复合材料通过有效的分散、复合而使异质纳米颗粒均匀弥散地保留于陶瓷基质结构中,这大大改善了陶瓷材料的韧性、耐磨性和高温力学性能。纳米陶瓷材料不仅能在低温条件象金属材料那样可任意弯曲而不产生裂纹,而且能够象金属材料那样进行机械切削加工甚至可以做成陶瓷弹簧。纳米陶瓷材料的这些优良力学性能,使其在切削刀具、轴承、汽车发动机部件等多方面得到广泛应用并在许多超高温、强腐蚀等苛刻的环境下起着其他材料不可替代的作用。纳米陶瓷在人工关节、人工骨、人工齿以及牙种植体、耳听骨修饰体等人工器官制造及临床应用领域有广阔的应用前景。此外, 纳米陶瓷的高磁化率、高矫顽率、低饱和磁矩、低磁耗, 特别是光吸收效应都将成为材料开拓应用的新领域,是当今材料科学研究的热点。 1.陶瓷的发展历程 中国的陶器可追溯到9000年前,瓷器也早在4000年前出现。最初利用火煅

粉体科学与工程

1、影响颗粒堆积的因素及致密堆积的经验:影响颗粒堆积的主要因素:一类是颗粒本身的几何特性, 如颗粒大小、粒度分布及颗粒;一类是颗粒间接触状态和颗粒堆积条件,如颗粒间接触点作 用力形式、堆积空间的形状与大小、堆积速度和外力施加方式与强度等条件。致密堆积经验:(1)用单一粒径尺寸的颗粒不能满足致密堆积对颗粒级配的要求(2)采用多组分且组分粒径尺寸相差较大(一般相差4~5倍)的颗粒,可较好的满足致密堆积对粒度与级配的要求(3)细颗粒数量应足够填充堆积体的空隙,两组分时,粗细数量比例约为7:3,三组分时,粗中细比例为7:1:2,相对而言,可以更好地满足致密堆积对粒度与级配的要求(4)在可能的条件下,适当增大临界颗粒尺寸可较好的满足致密堆积对粒度与级配的要求。 2、颗粒尺寸大小对颗粒的熔点、溶解度、热容得影响,并简要解释:晶体颗粒的熔点:晶体颗粒尺寸越小,其熔点也越低。1)基于晶体饱和蒸气压的解释: 颗粒尺寸越小,饱和蒸汽压越高,熔点越低。2)基于晶体熔化能量的解释:颗粒尺寸越小, 表面能越高,晶体颗粒熔点越低。晶体颗粒的溶解度:颗粒尺寸越小,溶解度越大。尺寸越小,饱和蒸汽压越大。当温度 一定时,溶质在溶液中的浓度随着饱和蒸汽压的提高而增大。晶体颗粒的比热:颗粒尺寸越小,德拜温度越低,晶格比热越大。晶体吸热是通过激发 晶格振动(声子振动)和激发电子,以及生成热缺陷等来完成的。颗粒尺寸减小意味着颗粒 表而原子相对数量的增加,即化学键被截断的表而质点数量的相对增加。由于表面原子在一侧失去最近邻原子的成键力,而引起表面原子

的扰动,使得表而原子和次表面原子距离被拉 开到大于体内原子的距离。造成表面质点的振幅大于体内质点的振幅,产生所谓“振动弛豫”, 即表而质点振动频率的降低,晶格比热容和德拜温度的比值有以下关系Cv=12π4RT3/5Q3。 3、为什么导体颗粒具有接触荷电特性,其机理是什么?颗粒荷电的主要方式有接触电荷、电场荷电、碰撞荷电和粉碎荷电。接触荷电是指两个不带电且功函数不同的导体颗粒,因相互接触,而后分离,使两个颗粒带上极性相反的等量的电荷;碰撞荷电:(1)颗粒与运动离子的碰撞荷电(2)颗粒与器壁的碰撞荷电;电场荷电:在常压下,当两个大小差别很大的电极上有足够大的电位差时,会引起空气电离,产生大量的空间电荷,形成电晕电流。其中阳离子和电子在想异性电极的有序运动中与电场内的颗粒碰撞失速,而吸附在颗粒表面,使颗粒荷电;粉碎荷电:颗粒粉碎时,连接质点的键被切断,且正负电荷相对于破裂面呈现电量不等的分布,使颗粒荷电。1)粗颗粒易带正电,细颗粒易带负电,且颗粒尺寸越小,比 电荷就越大。2)粉碎过程中还存在着颗粒间、颗粒与设备壁而间的相互摩擦引起的摩擦带 电。 3)颗粒粉碎荷电,是以零电荷为中心的正、负对称分布,且单位颗粒表而积的电荷数分布,近似为正态分布。 4、颗粒的光吸收机理是什么,光吸收现象有何应用意义?机理:由于光传播时的交变电磁场与颗粒分子的相互作用,使颗粒分子中的电子出现受迫振动,而维持电子振动所消耗 的能量,变为其他形式的能量而耗散掉。应用:光照吸收材料应用在电镜、核磁共振、波普仪

2019粉体材料科学与工程专业就业方向与就业前景

2019粉体材料科学与工程专业就业方向与就 业前景 1、粉体材料科学与工程专业简介 粉体材料科学与工程专业培养能在材料科学与工程领域,特别是在粉体材料、粉末冶金、陶瓷材料等领域,从事科学研究、工程设计、技术与产品开发、质量控制和生产经营管理等方面工作的高级专门人才。要求学生系统掌握粉体材料科学与工程的基础理论、基本知识和基本技能,具有创新精神和一定的创新能力;了解金属和非金属粉体材料的生产工艺及相关设备,具有在粉体制备、测试、改性和应用等方面应用新技术、进行设备及技术管理的能力;能在新材料、新能源、农业和医药产业等新兴产业以及兵工等与粉体相关行业工作。 2、粉体材料科学与工程专业就业方向 本专业学生毕业后可到科研院(所)、高等院校、国防军工及其他产业部门从事纳米材料、信息材料、生物材料、军用新材料等新型粉体材料的科研、设计、开发、生产、教学、管理等工作。 从事行业: 毕业后主要在石油、新能源、机械等行业工作,大致如下:1石油/化工/矿产/地质 2新能源 3机械/设备/重工

4原材料和加工 5其他行业 6建筑/建材/工程 7环保 8采掘业/冶炼 从事岗位: 毕业后主要从事研发工程师、工艺工程师、材料工程师等工作,大致如下: 1研发工程师 2工艺工程师 3材料工程师 工作城市: 毕业后,上海、深圳、东莞等城市就业机会比较多,大致如下: 1上海 2深圳 3东莞 4广州 5济南 6厦门 7北京 8南通 3、粉体材料科学与工程专业就业前景怎么样 学生毕业后,可在高等院校、科研院所和高新技术企业等部

门从事粉体材料加工制备、粉末冶金、硬质合金与超硬材料、陶瓷材料、新型电工电子材料、纳米材料和复合材料等方面的科研、生产及新产品、新技术开发、教学及相关管理方面的工作。 截止到2013年12月24日,325859位粉体材料科学与工程专业毕业生的平均薪资为4979元,其中应届毕业生工资3567元,0-2年工资4241元,10年以上工资1000元,3-5年工资5328元,6-7年工资6801元,8-10年工资7681元。

粉体表面改性

粉体表面改性学习报告 前言:粉体是无数个细小固体粒子集合体的总称。根据固体粒子的尺寸不同可以将固体粒子分为颗粒、微米颗粒、亚微米颗粒、超微颗粒、纳米颗粒。通常粉体是尺度界于10-9m到10-3m范围的颗粒。随着颗粒尺寸的减小相应的各种性质也随着尺寸的改变而改变。 因此小尺寸颗粒有如下几个特征: 1.比表面积增大促进溶解性和物质活性的提高,易于反应处理。 2.颗粒状态易于流动,具有与液体相类似的流动性。 3.实现分散、混合、均质化控制材料的组成与构造。 4.易于成分分离,有效地从天然资源或废弃物中分离有用成分。 5. 由于比表面积大,因此粉体粒子容易聚集,吸附。 6. 具有与气体相类似的压缩性,具有固体的抗变形能力。 因此,利用这些特点,对矿物粉体进行表面改性,然后运用于农业、化工、造纸、塑料、橡胶、涂料等产品中。特别是经过改性的矿物粉体用于有机物填料不仅可以降低材料的成本,而且还可以改善材料的各方面性能。常用的矿物填料有碳酸钙、云母、硅灰石、滑石、高岭土、等因为具有独特的物理化学性质,能改善聚合物的物理性能、力学性能、加工性能和热性能,在聚合物中的应用发展很快。无机填料在聚合物中的作用,概括起来就是增量、增强和赋予新功能,但是由于无机填料与高聚物的相容性差,如果直接添加,会造成分散不均,甚至引起应力集中,降低材料的力学性能,这些弊端不但限制了填料在聚合物中的添加量,而且还严重影响制品性能,所以通过对无机填料进行表面改性,改变了无机填料原有的表面性质,改善无机填料与聚合物的亲合性,相容性,以及加工的流动性,分散性,还可以提高填料与聚合物相界面之间的结合力,使聚合物材料的综合性能得到显著提高,从而使非功能的无机填料转变为功能无机填料。近年来,随着聚合物的迅猛发展无机填料的表面改性也受到了前所未有的关注。 一、无机粉体表面改性机理 由于无机矿物材料是极性或强极性的亲水旷物,而有机高聚物基质具有非极性的疏水表面,彼此相容性差,通常无机矿物材料难以在有机基体中均匀分散,因此如果过多地或者直接将无机矿物材料填充到有机基体中,容易导致复合材料的某些力学性能下降甚至出现脆化等问题。无机粉体表面改性是利用粉体表面的活性基团或电性与某些带有两性基团的小分子或高分子化合物( 表面改性剂) 进行复合改性,使其表面性质由疏水性变为亲水性或由亲水性变为疏水性,从而改善粉体粒子表面的浸润性,增强粉体粒子在介质中的界面相容性,使粒子容易分散在水中或有机化合物中。粉体表面改性是材料制备工程的重要手段,也是新材料、新工艺和新产品开发的重要内容,通过粉体表面改性可以提高粉体材料的附加价值、扩大产品的用途并且开发新的产品。如滑石粉可作为塑料填料,提高塑料制品的电绝缘性、抗酸性耐火性等; 云母可作为塑料增强填料,提高塑料制品的弯曲弹性模量和拉伸弹性模量;高岭土具有优良的电绝缘性能和一定的阻燃作用,可作为聚氯乙烯等聚烯烃绝缘电线包皮; 石英对热塑性树脂和热固性树脂具有较高的补强作用,并且能提高制品的刚硬度,对提高塑料制品的电绝缘性也能起一定的作用; 金红石型二氧化钛作为塑料填料可增大光的反射率,起到光屏蔽剂的作用。赤泥、粉煤灰均为塑料填料,既可消除污染,又可降低成本。目前无机粉体表面改性技术在保证改性效果的前提下力求降低成本,并根据无机粉体的具体情况,如粒度大小、颗粒分布、表面极性、浸润性、电性、酸碱性以及应用目的和要求等来选择适当的表面改性剂和相应的改性工艺。由于无机粉体种类的多样性以及表面改性剂的不断更新,无机粉体改性的方法很多。根据表面改性剂和粉体粒子之间有没有发生化学反应,可以将无

纳米粉体材料行业分析报告行业基本情况.doc

报告概要 行业评级:纳米粉体新材料行业推荐 行业内重点公司推荐:广东羚光 行业分析师:袁熠 执业证编号:S123011470019 电话:(021)64318677 Email:YuanYi@https://www.360docs.net/doc/d116512948.html, 纳米粉体材料行业分析报告 一、行业基本情况 1、行业主管部门及监管体制 公司属于金属制品制造业,行业主管部门是国家发展与改革委员会、工业和信息化部及其各地分支机构,主要负责产业政策的制定并监督、检查其执行情况;研究制定行业发展规划,指导行业结构调整、行业体制改革、技术进步和技术改造等工作。 中国微米纳米技术学会(CHINESE SOCIETY OF MICRO-NANO TECH-NOLOGY ,英文缩写为CSMNT )是全国范围纳米行业的自律性管理 组织,其主要筹办各种学术活动,包括组织各种学术会、展览会、战略研讨会、 国际交流等等,为我国微米纳米技术的计划与规划、关键技术联合攻关、技术交流、人才培养、科学普及发挥重要作用,为国内外各界微米纳米技术研究人员和 单位的交流、科研成果的转化和产业化提供交流平台。 江苏省新材料产业协会是江苏省内的新材料行业自律性组织,协会由全省新材料产业领域的企事业单位、大专院校、科研机构以及其他相关经济组织自愿组成,是实行行业服务和自律管理的全省性、行业性、非盈利性的社会组织。主要 开展新材料产业全面调查,研究发展趋势,参与制定新材料产业规划和产品技术、质量行业标准,构建综合服务平台,促进产业体制和技术创新,促进新材料企业

持续发展,为江苏省新材料产业发展提供助力。 目前,国家发展与改革委员会、工业和信息化部对行业的管理仅限于宏观管理、政策性引导,行业协会进行指导性管理,公司自主从事业务发展、内部管理 和生产经营。纳米材料行业市场化程度较高,主要表现在市场主体和交易方式上, 政策壁垒已经完全消除,企业可以自由进入,产品价格由市场供求关系决定,国家不干预企业产品定价,行业运作已经充分市场化。 2、行业主管法律法规 (1)主要法律法规 行业相关法规: 序号法律法规名称发布单位 1 《中华人民共和国产品质量法》全国人大 2 《中华人民共和国标准化法》全国人大 3 《中华人民共和国计量法》全国人大 4 《中华人民共和国计量法实施细则》国家计量局 (2)国家标准 国家质检总局与国家标准委联合发布的与纳米材料有关的国家标准,主要有:序号行业标准名称编号 1 纳米材料术语GB/T 19619-2004 2 纳米粉末粒度分布的测定X 射线小角散射法GB/T 13221-2004 3 气体吸附BET 法测定固态物质比表面积GB/T19587-2004 4 纳米镍粉GB/T 19588-2004 5 纳米氧化锌GB/T 19589-2004 6 超微细碳酸钙GB/T 19590-2004 7 纳米二氧化钛GB/T 19591-2004 3、行业主要产业政策 公司处于前沿技术细分行业,公司产品主要运用于片式元件(电容器、电感器和电阻器)、新能源等领域,公司产品的应用领域符合国家的产业政策,属于 国家鼓励发展行业,影响本行业发展的法律法规及政策主要有: 2016 年6 月江苏省政府发布的《江苏省国民经济和社会发展“十三五”规划

相关文档
最新文档