高等数学B(二)2009-2010(C)解答

合集下载

2009-2010(2)微积分试卷A解答

2009-2010(2)微积分试卷A解答

上海立信会计学院 2009~2010学年第二学期2009级本科 《微积分(二)》期终考试试题(A )(本场考试属闭卷考试,禁止使用计算器) 共5页班级________________学号________________姓名___________一.单项选择题(每题仅有一个答案正确)(共10分,每题2分)1、点( 4,-3,5)到oy 轴的距离为 ( ) (A )、2225)3(4+-+ (B )、225)3(+-(C )、22)3(4-+ (D )、2254+2、设yx y x z arcsin)2(2-+=,那么(1,2)z x∂=∂( )(A)、2 (B)、1 (C) 、π2(D)、 π43、下列级数中收敛的是( )(A )、∑∞=+1131n n (B )、∑∞=++1)2(1n n n n(C )、∑∞=123n nn (D )、∑∞=++1)3)(1(4n n n4、微分方程22dxy d +w 2y=0的通解是 其中c ,c 1,c 2均为任意常数(A )、y =ccoswx (B)、y =c sinwx(C)、y =c 1coswx+c 2sinwx (D)、y =coswx+sinwx5、交换+⎰⎰12111),(x dy y x f dx ⎰⎰211),(xdy y x f dx 的次序,则下列结果正确的是( )(A )、⎰⎰211),(yydx y x f dy (B )、⎰⎰211),(y ydx y x f dy(C )、⎰⎰311),(x xdx y x f dy (D )、⎰⎰1311),(x xdx y x f dy二. 填空题(将最简答案填在横线上)(共15分,每题3分)1、设f x y x y xy y (,)+-=+2,则),(x y f =2、设y x ye z +=,则d z =3、D :122≤+y x ,则σd eDyx ⎰⎰+22=4、∑∞=11n pn,当p 满足条件 时收敛。

2009-2010高等数学B第二学期试卷A1.

2009-2010高等数学B第二学期试卷A1.

北京林业大学2009--2010学年第二学期考试试卷课程名称:高等数学B(A卷)课程所在学院:理学院考试班级学号姓名成绩试卷说明:1. 本次考试为闭卷考试。

本试卷共计 4 页,共十大部分,请勿漏答;2. 考试时间为 120分钟,请掌握好答题时间;3. 答题之前,请将试卷和答题纸上的考试班级、学号、姓名填写清楚;4. 本试卷所有答案均写在试卷上;5. 答题完毕,请将试卷和答题纸正面向外对叠交回,不得带出考场;6. 考试中心提示:请你遵守考场纪律,诚信考试、公平竞争!一、填空:(每小题3分,共30分)1. 微分方程的通解为。

2. 微分方程的特解可设为________________________________________。

3. 以点为球心,且通过坐标原点的球面方程为__________________________________。

4. 直线与平面间的关系是______________(平行、垂直、相交。

5. 二元函数在点处两个偏导数与存在是在该点处连续的__________________________条件。

6. 若函数在点处具有偏导数,且在点处有极值,则有_______________ ,___________________。

7. 已知平面区域D是由直线,及所围成,则= 。

8.交换二次积分I=的积分顺序,则。

9. 函数展开为的幂级数的形式为 __________ 。

10. 幂级数的收敛半径为。

二、(6分)求的通解三、(6分)求微分方程满足初始条件的特解四、(6分)求过点及直线的平面方程五、(6分)设求六、(6分)设,求七、(6分)计算八、(6分)求曲面与所围立体的体积。

九、(6分)判别级数的敛散性十、(6分)判别级数的敛散性,若收敛,指出是绝对收敛还是条件收敛?十一、(6分)在曲面上找点,使其到点的距离为最小。

十二、(6分)设具有二阶连续导数,且满足,求的表达式。

十三、(4分)设发散,又,证明收敛。

10高数B2答案

10高数B2答案
5、解所围成的立体为曲顶柱体,
,顶为 2分
4分
5分
7分
9分
6、解因为平面过已知直线,所以点 在平面内.
令 , 2分
取 4分
6分
故所求的平面方程为 8分
即 9分
四、(6分)解:两边对 求导,
1分
两边再对 求导,
2分
这是一个二阶常系数非齐次线性微分方程,且 , ,
特征方程为 , ,
对应齐次方程的通解为 .3分
又 不是特征根,于是令方程特解待定型为 ,
代入方程,得 .
方程的通解为 .4分
由 , , ,
又 .由 , , ,所以6分作拉格朗日函数 3分
令 5分
由(1)、(2)、(3)可得 , 6分
从而得 ,代入(4)式得
8分
由实际最大体积存在,而可能的极值点唯一,因而该点就是所求最大值点.即当长、宽、高均为 时,体积最大,最大体积为
9分
3、解 2分
3分
6分
8分
9分
4、解利用极坐标, 2分
4分
6分
8分
9分
注:若用积分区域对称性及被积函数奇偶性计算,参照本标准酌情评分。

《高等数学(Ⅱ)》B类练习题答案

《高等数学(Ⅱ)》B类练习题答案

《高等数学(Ⅱ)》B 类练习题答案一、单项选择题1—5:CCCCC 6—10:BBCCA 11—15:AAABD二、填空题1、xy e yz x z z -=∂∂ ,xy e xz y z z -=∂∂ ;2、yzxy z y z z x z x z 2+=∂∂+=∂∂, ; 3、)()(,)()(xyz xysin 1xyz xzsin 1y z xyz xysin 1xyz yzsin 1x z -+=∂∂-+=∂∂ ; 4、dz x ylnx dy x zlnx dx yz.x du yz yz 1yz ⋅⋅+⋅⋅+=- ; 5、dy -dx dz -= ; 6、dy 12dx 41-2dz +-=),( 7、()⎰⎰313ydx y x f dy , ; 8、⎰⎰y-2y10dx y x f dy),( ;9、⎰⎰2x x1dy y x f dx ),( ; 10、)()(2yx 121e 1y +=+- ; 11、1x y 22+= ; 12、1y x 5y 325=-;三、判断题1--5:对 对 对 错 错 6—10:对 对 错 对 对 11—15:对 错 对 对 对四、计算题1、求下列函数的偏导数(1)、22232232()2 (2) (3)()2(2)(6)xy xy xy xy xy xy ze y x y e x xe yx y x ze x x y e y ye x xy y ∂=⋅⋅++⋅∂=++∂=⋅⋅++⋅∂=++分分(2)、(3)(6)x y x y x y x y x y x y z e e x e z e e y e ++++++∂=∂=∂=∂=分分(3)、222222222222222222212ln(12[ln()](3)2ln(2ln( (6)z x xx y x y y x y x x y y x y z x x y x y y y y x y x x x y x y y ∂=⋅+⋅∂+=++∂=-⋅+⋅∂+=-++)+)+分)+)分(4)22222212ln ()2ln(3)12ln(6)x y y z x x y x x y x yx x xy z y x y x y '=⋅+⋅-+=-'=⋅+⋅+()分+()分(5)22221[sin()]2 (3)1[sin()]22 (6)x y z x y z x y y'=-+='=-+⋅=分分(6)22221cos()22(3)1cos()2(6)xyz x y xz x y'=+⋅='=+=分分(7)2222221ln1(ln) (3)12ln1(2ln) (6) x y x yxx yx y x yyx yz e xy exe xyxz e xy eye xyy++++++'=⋅+⋅=+'=⋅⋅+⋅=+分分(8)22222222222222222ln()2[ln()] (3)2ln()2[ln()] (6) xy xyxxyxy xyyxyxz e y x y ex yxe y x yx yyz e x x y ex yye x x yx y'=⋅⋅++⋅+=+++'=⋅⋅++⋅+=+++分分(9)sin 2cos 22 22cos 2)(3)sin 2cos 22 22cos 2) (6x y z xy xy yxy y xy z xy xy xxy x xy '=+⋅=+'=+⋅⋅=+分)分(10)2222222222222222sin()cos()2 [sin()2cos()] (3)sin()cos()2 [sin()2cos()](xy xy x xy xy xy y xy z e y x y e x y x e y x y x x y z e x x y e x y y e x x y y x y '=⋅⋅++⋅+⋅=+++'=⋅⋅++⋅+⋅=+++分6)分2、求下列函数的全微分 (1)222222222222222 (2(3)2 (2(5)(2x y x y x y x y x y xy xy z e x e y x ez ey e x ye dz e +++++++∂=⋅∂=∂=⋅∂=∴=分分22(2(6)x y dx e dy ++分(2)2222222222242233()2 (2)(3)2()2 2()(5)xy xy xy xy x xy xy ze y x y e x xe x y y x z e xy x y e y ye x y xy y dz e ∂=⋅⋅++⋅∂=++∂=⋅⋅++⋅∂=++∴=分分2222433(2)2()(6)y xy x y y x dx e x y xy y dy +++++分(3)2221ln (1ln )(3)11 ln ()1 (ln 1)(5)1(1ln )(ln 1)z y x y x x y x xy xx y z x y y x y x yxx y y x xdz dx dy x y x y ∂=-⋅⋅∂=-∂=⋅⋅-∂=-∴=-+-+分+分(6)分(4)22211ln ()1 (ln 1)(3)1 ln (1ln )(5)1(ln 1)(1ln)z y x x y x y xyyx z x y xy y x y yx yy x y x ydz dx dy yx y x ∂=⋅⋅-∂=-∂=-⋅⋅∂=-∴=-+-+分+分(6)分(5)sin (3)sin 2(5)2)x y z z ydz dx ydy '=-='=-==+分分(6)分(6)2(3)(5)) (6) xyz xzdz xdx dy'=='===+分分分(7)1ln1) (3)1ln()1) (5)1)xyxzy xxy xxzy yxy yx xdz dxy x'=+⋅=+'=+⋅-=-=++分分1)(6)dyy y-分(8)221ln1(ln(3)()ln(5)1(x xy yxxyx xy yyxyx xy yz e eyeyxz e eyxeydz e dx ey'=⋅⋅='=⋅-⋅==+分分2ln(6xdyy-分(9)22221sin + cos ()(3)1(sin cos )1()sin + cos1(cos sin )(5)x xyy x x yx xyy y x yy y yz e e y x x x y y ye y x x xx y y z e e y x x x y x ye x x y xd '=⋅⋅⋅⋅-=-'=⋅-⋅⋅⋅=⋅-分分2211(sin cos )(cos sin )(6)x xyy y y y y x yz e dx e dy y x x x x x y x=-+⋅-分(10)3、计算下列二重积分 (1)解:D 的图形(略),{}x y x x y x D ≤≤≤≤=2,10),(……2分⎰⎰⎰⎰--=--=xx D dy y x dx dxdy y x I 2)2(21)2(2110……2分⎰++-=1432)412147(x x x x 12011=……2分 (2)解: D 的图形为: (略){}x y x x y x D ≤≤≤≤=2,10),(……2分⎰⎰⎰⎰==xx Dxydy dx xydxdy I 21……2分⎰-=153)(21dx x x ……1分241=……1分 (3) 解:D 的图形为: (略){}1,11),(≤≤≤≤-=y x x y x D ……2分⎰⎰-=Dd y x y I σ)(22⎰⎰-=-12211)(xdy y x y dx ……2分⎰---=1122)1(41dx x 154-=……2分(4)解:D 的图形为: (略)⎭⎬⎫⎩⎨⎧≤≤≤≤=y x y y y x D 1,21),(……2分 ⎰⎰Dd y x σ22⎰⎰=21122yydx y x dy ……2分 ⎰-=215)313(dy y y ……1分6427=……1分(5)解:⎰⎰⎰⎰-++==210222x y x D y x dy edxdxdy eI ……2分⎰-=22)(dx e e x ……2分2=……2分(6)解:⎭⎬⎫⎩⎨⎧≤≤≤≤=20,10),(πy x y x D ……2分 ⎰⎰⎰⎰=2212sin sin πσydy x dx yd xD……2分⎰=12dx x 31=……2分 (7) 解:⎭⎬⎫⎩⎨⎧-≤≤≤≤=x y x y x D 20,20),(ππ……2分⎰⎰⎰⎰-+=+xDdy y x dx d y x 22)sin()sin(ππσ……2分⎰=2cos πxdx ……1分1=……1分(8) 解:⎰⎰⎰⎰=11dx ye dy d ye xyDxyσ……2分 ⎰-=1)1(dy e y ……2分2-=e ……2分(9) 解:⎭⎬⎫⎩⎨⎧-≤≤≤≤=x y x y x D 20,20),(ππ……2分⎰⎰⎰⎰-+=+xDdy y x x dx d y x x 22)sin()sin(ππσ……1分⎰⎰=+-=-2220cos )cos(πππxdx x dx y x x x……1分12-=π……2分(10) 解:{}x y x x y x D ≤≤≤≤=2,10),(……2分⎰⎰⎰⎰+=+xx Ddy y x xy dx y x xy 2)()(10……2分⎰⎰+--=+=146710322)652131()3121(2dx x x x dx xy y x x x ……1分 563=……1分4、求下列微分方程的通解(1)解:方程变形为23)(3)(1xy x y dxdy +=令x y u =,则ux y =,dxdux u dx dy +=,代入方程中得2331u u dx du x u +=+……2分 分离变量得x dxdu u u =-32213……1分两边积分得13ln ln )12ln(21C x u +=--……2分 微分方程的解为:Cx x y =-332……1分(2)解:方程变形为1)(2-=xy x y dx dy令x y u =,则ux y =,dxdux u dx dy +=,代入方程中得12-=+u u dx du x u ……2分分离变量得xdxdu u =-)11(……1分 两边积分得1ln ln C x u u +=-……2分 微分方程的解为:C xyy +=ln ……1分(3)解:方程变形为)ln 1(xy x y dx dy += 令x y u =,则ux y =,dx dux u dx dy +=,代入方程中得)ln 1(u u dxdu x u +=+……2分分离变量得xdxu u du =ln ……1分 两边积分得1ln )ln(ln C x u +=……2分 微分方程的解为:Cx e xy=……1分(4)解:方程变形为3)(1xx ydx dy +=令x y u =,则ux y =,dx dux u dx dy +=,代入方程中得31u u dx du x u +=+……2分分离变量得xdxu du u =+-43)1(……1分 两边积分得143ln ln 31C x u u+=-……2分 微分方程的解为:333yx Ce y =……1分(5)解:原方程变为:1sin 1222+-=++x x y x x dx dy ()122+=x x x p ,()1sin 2+-=x xx q()()⎰⎰+=+=1ln 1222x dx x xdx x p()()()x dx x dx e x x dx e x q x dxx p cos sin 1sin 1ln 22=-=+-=⎰⎰⎰⎰+所以 ()()()⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-c dx e x q e y dxx p dx x p =()()()c x x c x ex ++=++-cos 11cos 21ln 2 (c 为任意常数) (6)解:原方程变为:x x y x y 122+=-' ()x x p 2-= , ()xx x q 12+=()⎰⎰-=-=2ln 2x dx xdx x p ()()⎰⎰⎰-=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎰-23ln 2211112x x dx x dx e x x dx ex q x dxx p所以()()()⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-c dx e x q e y dx x p dx x p =2121232ln 2-+=⎪⎭⎫ ⎝⎛+-cx x c x x ex (c 为任意常数)(7)解:()xx p 1-= , ()x x q ln =()⎰⎰-=-=x dx x dx x p ln 1()()()()2ln ln ln 2ln x dx x x dx e x dx e x q x dx x p ===⎰⎰⎰⎰- 所以()()()⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-c dx e x q e y dx x p dx x p =()()⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛+c x x c x e x2ln 2ln 22ln (c 为任意常数) (8)解:原方程变为:x e x y xy 32=-' ()xx p 2-= , ()x e x x q 3=()⎰⎰-=-=2ln 2x dx x dx x p()()⎰⎰⎰-===⎰-x x x x x dxx p e xe dx xe dx e e x dx e x q 2ln 3所以 ()()()⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-c dx e x q e y dxx p dx x p =()()c e xe x c e xe e x x x x x +-=+-2ln 2(c 为任意常数)(9)解:两边积分,得⎰+-=='12ln 2ln 2c x x x xdx y两边再积分,得()dx c x x x y ⎰+-=12ln 2212223ln c x c x x x ++-= (1c ,2c 为任意常数)(10)解:两边积分,得()11cos sin sin 1cos c x x x x c x x xd dx x x y +++=++=+='⎰⎰两边再积分,得()21212sin 2cos cos sin c x c x x x x dx c x x x x y ++++-=+++=⎰(1c ,2c 为任意常数)五、应用题1、 求下列函数的极值 (1)解: 解:⎩⎨⎧=-+==++=012012y x f y x f yx解得驻点(-1,1). ……………4分 又,2,1,2======yy xy xx f C f B f A ……………7分0032>>=-A B AC 且,故0)1,1(=-f 是极小值. ……………10分(2) 解:⎪⎩⎪⎨⎧=-==+-=01230622''y f x f y x 解得驻点(3,2),(3, -2). ……………4分又 y f f f yy xy xx 6,0,2''''''==-= ……………6分关于驻点(3,2)有,,12,0,2==-=C B A,0242<-=-B AC 故函数在点(3,2)没有极值。

青岛科技大学数理学院中德学院2009-2010学年2学期高等数学B下A卷考试试题与答案

青岛科技大学数理学院中德学院2009-2010学年2学期高等数学B下A卷考试试题与答案

2009/2010 2 高等数学B (下)(A 卷 )数理学院 中德学院相关专业(答案写在答题纸上,写在试题纸上无效)一、填空题(每小题3分,共15分)1.向量)4,1,3(=a ,(1,0,2)b =-,则a b ⋅= 。

2.设22z x y =+,则dz = 。

3.设积分曲线L 为圆221x y +=,则曲线积分22()Lx y ds +=⎰。

4.函数()xf x e =展开为1x -的幂级数是 。

5.二次积分21(,)x dxf x y dy ⎰⎰交换积分次序可表示为 。

二、选择题(每小题3分,共15分)1.函数),(y x f z =在点),(00y x 处偏导数连续是函数在该点存在全微分的 . (A ) 充分条件 (B) 必要条件 (C) 充要条件 (D) 既非充分又非必要条件。

2.1.方程组2241x y z ⎧+=⎨=⎩在空间表示( )()A 两条直线 ()B 椭圆 ()C 圆 ()D 圆柱面3.若L 是圆周229x y +=的逆时针方向,则曲线积分2Lydx xdy +=⎰( )。

()A 3π ()Bπ ()C 4π ()D 9π4.级数 21(1)nn n ∞=-∑( ). ()A 发散 ()B 绝对收敛 ()C 条件收敛 ()D 以上均不是5.以2π为周期的函数在[,)ππ-上的表达式为22,0(),0x f x x x ππ⎧-≤<⎪=⎨≤<⎪⎩,其傅里叶级数的和函数为(),s x 则(0)s =( )。

()A 1 ()B12()C 0 ()D 2. 三、(共21分)课程考试试题学期学年拟题人:校对人:拟题学院(系): 适 用 专 业:1、(7分)设(,2)z f xy x y =+,其中f 具有二阶连续偏导数,求2,z z x x y∂∂∂∂∂。

2、(7分)计算二重积分2(2)Dx xy dxdy +⎰⎰,其中积分区域D 由20,y y x ==和1x =所围。

西南交通大学期末真题及答案09-10高等数学IIA卷解答

西南交通大学期末真题及答案09-10高等数学IIA卷解答

班 级 学 号 姓 名9.()(3)xyLy e dx x e dy -++=⎰ 2ab π .其中L 是椭圆22221x y a b +=的正向.三、计算题(每小题8分,共64分)10.已知函数ln(u x =,曲线23:x ty t z t =⎧⎪Γ=⎨⎪=⎩.求(1) 曲线Γ在点(1,1,1)处切线方向的单位向量(沿t 增加方向);(2) 函数ln(u x =在点(1,0,0)处沿(1)所指方向的方向导数的值.解:(1) 切线方向 {}{}211,2,31,2,3t t t == ………………………………2’}1,2,3 …………………………………….4’ (2)ργρβραρρ)cos ,cos ,cos 1(lim 0+=∂∂→u l u ………………….…….….6’ 14131+=…………………………………………….………….8’ 11. 设 sin()0x y e x z ++= 计算,z z x y∂∂∂∂. 解:令(,,)sin()x y F x y z e x z +=+ ………………………….1’(,,)sin()cos()x y x y x F x y z e x z e x z ++=+++ (,,)sin()x y y F x y z e x z +=+ (,,)cos()x y z F x y z e x z +=+..4’1tan()x zF zx z x F ∂=-=--+∂ ………………………….6’tan()zx z y∂=-+∂ ………………………….8’ 12.计算二重积分66cos yxdy dx xππ⎰⎰. 解:66600cos cos x yx x dy dx dx dy x xπππ=⎰⎰⎰⎰ ……………………4’60cos xdx π=⎰601cos 2xdx π==⎰…………………………8’ 13计算三重积分 I zdxdydz Ω=⎰⎰⎰.其中Ω由锥面z =与平面1z =所围成的区域.解:2221x y zI zdxdydz dzzdxdy Ω+≤==⎰⎰⎰⎰⎰⎰…………….4’1304z dz ππ==⎰ ………………8’或解2211x y I zdxdydz dxdy Ω+≤==⎰⎰⎰⎰⎰ …………………..4’()22221112x y x y dxdy +≤=--⎰⎰4π= ………………….8’ 14.设Γ是曲线2222x y z a x y z⎧++=⎨++=⎩,计算 22()x y ds Γ+⎰. 解: 222222()()3x y ds x y z ds ΓΓ+=++⎰⎰ …………………4’ =223a ds Γ⎰ ………………….6’=343a π ………………….8’15.计算32223x dydz xz dzdx y dxdy ∑++⎰⎰,∑为抛物面224z x y =--被平面0z =所截下的部分的下侧.解;作曲面221:0,:4xy z D x y ∑=+≤,朝上。

高等数学C(二)09-10真题(A卷)答案


=
=
方法二:微分法. 方程两端分别求微分得到 2 cos(x + 2y − 3z )(dx + 2dy − 3dz ) = dx + 2dy − 3dz 变形得到 [6 cos(x+2y −3z )−3]dz = [2 cos(x+2y −3z )−1]dx+[4 cos(x+2y −3z )−2]dy. 当6 cos(x + 2y − 3z ) − 3 ̸= 0时,上式可以写为 dz = 所以 ∂z ∂x ∂z ∂y = = 2 cos(x + 2y − 3z ) − 1 6 cos(x + 2y − 3z ) − 3 4 cos(x + 2y − 3z ) − 2 . 6 cos(x + 2y − 3z ) − 3 · · · · · · · · · · · · · · · (6′ ) · · · · · · · · · · · · · · · (8′ ) 2 cos(x + 2y − 3z ) − 1 4 cos(x + 2y − 3z ) − 2 dx + dy 6 cos(x + 2y − 3z ) − 3 6 cos(x + 2y − 3z ) − 3 · · · · · · · · · · · · · · · (4′ ) · · · · · · · · · · · · · · · (3′ ) · · · · · · · · · · · · · · · (2′ )
令x(y ) = C (y ) · y −2 , 代入非齐方程得C ′ (y ) = 1. 故C (y ) = y + C , 其中C 为自由常数. 原微分方程的通解为 x(y ) = (y + C )y −2 . · · · · · · · · · · · · · · · (5′ )

MK_09-10(2)高数A(二)、B(二)试卷

安徽大学2009—2010学年第二学期院/系 专业 姓名 学号答 题 勿 超 装 订 线------------------------------装---------------------------------------------订----------------------------------------线----------------------------------------《高等数学A (二)、B (二)》考试试卷(A 卷)(闭卷 时间120分钟)题 号 一 二 三 四 五 总分 得 分 阅卷人一、填空题(本大题共五小题,每小题2分,共10分)得分1.点(2到平面的距离为 ,1,1)10x y z +−+=.2.极限222lim x x y xy x y →+∞→+∞⎛⎞=⎜⎟+⎝⎠ .3.交换积分次序 /2sin 0 0d (,)d xx f x y y π=∫∫.4.设()f x 是周期为2的函数,它在区间(1,1]−上的定义为 则32,10,(),01,x f x x x −<≤⎧=⎨<≤⎩()f x 的Fourier 级数在1x =处收敛于.5.函数u x 在点处沿方向的方向导数为 yz =(1,1,1)(2,2,1).得分二、选择题(本大题共五小题,每小题2分,共10分)6. 二元函数(,)f x y =(0处 ( ) ,0)A. 连续,但偏导数不存在; B .不连续,且偏导数不存在;C .不连续,但偏导数存在;D .连续,且偏导数存在.7.设第二类曲面积分1d d SI xyz z x =∫∫,22d d SI xy z z x =∫∫,其中为的上半部分,方向取上侧.若为在第一卦限部分,且与方向一致,则 ( )S 2221x y z ++=1S S S A .; B. 120I I ==10I =,1222d S d I xy z z x =∫∫;C. 112d S d I xyz z x =∫∫,1222d S d I xy z z x =∫∫; D. 112d S d I xyz z x =∫∫,.20I =8. 设为中开区域,且内任意一条闭曲线总可以张成一片完全属于Ω3\ΩΩ的曲面,函数在Ω内连续可导.若曲线积分只依赖于曲线,,P Q R d d d LP x Q y R z ++∫L 的端点,而与积分路径无关,则下述命题不正确的是 ( )A .对Ω内任意光滑闭曲线,曲线积分C d d d CP x Q y R z 0++=∫v ;B. 存在Ω上某个三元函数,使得(,,)u x y z d d d d u P x Q y R z =++;C. 等式,,P Q R P Q Ry x x z z y∂∂∂∂∂∂===∂∂∂∂∂∂在开区域Ω内恒成立; D. 等式0P Q R x y z∂∂∂++=∂∂∂在开区域Ω内恒成立. 9. 设函数(,)f x y 在开区域内有二阶连续偏导数, 且D 0000(,)(,)0x y f x y f x y ==.则下列为(,)f x y 在点00(,)x y 处取极小值的充分条件的是 ( )A. ; 200000000(,)0,(,)(,)(,)0xx xx yy xyf x y f x y f x y f x y >−><><B. ; 200000000(,)0,(,)(,)(,)0xx xx yy xyf x y f x y f x y f x y >−C. ; 200000000(,)0,(,)(,)(,)0xx xx yy xyf x y f x y f x y f x y <−D. . 200000000(,)0,(,)(,)(,)0xx xx yy xyf x y f x y f x y f x y <−10. 设函数具有二阶连续偏导数,则(,,)u f x y z =div f =grad ( )A. xx yy zz f f f ++;B. x y z f f f ++;C. (,,)x y z f f f ;D. (,,)xx yy zz f f f .三、计算题(本大题共五小题,其中第11、12、13题每小题10分,第14、15题每小题12分,共54分)得分11. 设平面:通过曲面Π0x ay z b +−+=2z x y 2=+在点处的法线(1,1,2)L ,求的值. ,a b12. 计算第二类曲线积分22d d Ly x x yx y −+∫v ,其中L 为正方形边界||,取顺时针方向.||1x y +=院/系 专业 姓名 学号答 题 勿 超 装 订 线------------------------------装---------------------------------------------订----------------------------------------线----------------------------------------13.计算第一类曲面积分222d z S x y z Σ++∫∫,其中Σ为圆柱面222x y R +=)(0R >介于平面与0z =z h =()之间的部分. 0h >.14.将函数()arctan f x x =展开成x 的幂级数,并求级数0(1)21nn n ∞=−+∑的和.15.设函数()f u 具有二阶连续导数,且.(sin )x z f e y =(1) 求2222,.z z x y∂∂∂∂(2)若函数满足方程(sin )xz f e y =22222x z ze z x y∂∂+=∂∂,求函数().f u四、应用题(本大题共两小题,其中第16题10分,第17题6分,共16分)得分------------------------------装---------------------------------------------订----------------------------------------线----------------------------------------16. 将一根长为l 的铁丝分割成两段,一段围成一个圆,另一段围成一个长方形.求使得圆面积与长方形面积之和最大的分割方法.17. 已知一条非均匀金属线L 放置于平面上,刚好为抛物线Oxy 2y x =对应于01x ≤≤的那一段,且它在点(,)x y 处的线密度为(,)x y x ρ=,求该金属丝的质量.院/系 专业 姓名 学号答 题 勿 超 装 订 线得分 五、证明题(本大题共两小题,其中第18题6分,第19题4分,共10分)18.证明级数11(1)ln n n n n ∞=+−∑条件收敛.19.设空间闭区域可表示为{(Ω,,)|01,1,}x y z x x y x z y ≤≤≤≤≤≤.若()f t 在[0上连续,且.试证明:,1](,,)()()()F x y z f x f y f z =1301(,,)d d d [()d ]6F x y z x y z f t t Ω=∫∫∫∫.。

高等数学II试题C(含答案)

⾼等数学II试题C(含答案)⼀、单项选择题(从下列各题四个备选答案中选出⼀个正确答案,并将其号码写在题⼲后⾯的括号内。

共8⼩题,每⼩题2分,共16分)1、下列命题正确的是( B )A.若lim 0n n u →∞=,则级数1n n u ∞=∑收敛 B.若lim 0n n u →∞≠,则级数1n n u ∞=∑发散C.若级数1n n u ∞=∑发散,则lim 0n n u →∞≠ D.级数1n n u ∞=∑发散,则必有lim n n u →∞=∞2、若幂级数0nn n a x ∞=∑收敛半径为R ,则()02nn n a x ∞=-∑的收敛开区间是( D )A.(-R ,R )B.(1-R ,1+R )C.(),-∞+∞D.(2-R ,2+R )3、微分⽅程32220d y dy x dx dx ??++=的阶数是( B ).2 C4、设直线1158:121x y z L --+==-与2L :515112--。

则1L 与2L 的夹⾓为( C ).A . 6π B.4π C.3π D.2π5、设=+≠++=0,00,),(222222y x y x y x xy y x f ,则在)0,0(点关于),(y x f 叙述正确的是( B )A .连续但偏导也存在 B.不连续但偏导存在 C. 连续但偏导不存在 D.不连续偏导也不存在 6、若函数()y x f ,在点()00,y x 处取极⼤值,则 (B )A.()00,0x f x y =,()00,0y f x y =B .若()00,y x 是D 内唯⼀极值点,则必为最⼤值点 C.()()()()200000000,,,0,,0xy xx yy xx f x y f x y f x y f x y ??-?<7、下列级数中条件收敛的是(A )A.n n n 1)1(11∑∞=+- B.211)1(n n n∑∞=- C.1)1(1+-∑∞=n n n n D.)1(1)1(1+-∑∞=n n n n8、⽅程y xdy dx e dx +=的通解是( C ) A.x y cxe = B.x y xe c =+C.()ln 1y cx =--D.()ln 1y x c =-++⼆、填空题(将正确的内容填在各题⼲预备的横线上,内容填错或未填者,该空⽆分。

高等数学大一期末试卷(B)及答案

中国传媒大学2009-2010学年第 一 学期期末考试试卷(B 卷)及参考解答与评分标准考试科目: 高等数学A (上) 考试班级: 2009级工科各班 考试方式: 闭卷命题教师:本大题共3小题,每小题3分,总计9分 ) 1、0)(0='x f 是可导函数)(x f 在0x 点处取得极值的 必要 条件. 2、设)20()1tan(cos ln π<<⎩⎨⎧+==t e y t x t,确定函数)(x y y =,则=dxdy)1(sec cot 2t t e t e +-。

3、=++⎰522x x dx C x ++21arctan 21。

填在题末的括号中。

本大题共3小题,每小题3分,总计 9分)1、,则,若设0)(lim 134)(2=++-+=∞→x f b ax x x x f x )44()()44()()44()()44).((,.; ,.; ,.; ,)可表示为,的值,用数组(,----D C B A b a b a答( B )2、下列结论正确的是( ))(A 初等函数必存在原函数;)(B 每个不定积分都可以表示为初等函数; )(C 初等函数的原函数必定是初等函数; )(D C B A ,,都不对。

答( D )3、若⎰-=x e xe dt tf dxd 0)(,则=)(x fxx e D e C x B x A 2222)( )()( )(----- 答( A )2小题,每小题5分,总计10分 )1、求极限0lim →x xxx 3sin arcsin -。

解:0lim →x =-x x x 3sin arcsin 0lim →x 3arcsin x xx - (3分)lim→=x 311122=--x x 0lim →x ()()xx x62121232---61-=。

(5分)2、2tanln x y =,求dx dy 。

解: 2sec 212tan 12xx y ⋅⋅=' (3分)x x x x csc sin 12cos2sin 21==⋅=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
试卷号:《 高等数学B(二)》(C卷) (答案)
一、单项选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中)
(本大题分4小题, 每小题4分, 共16分)
1、答:C 2、B 3、(D) 4、B
二、填空题(将正确答案填在横线上)
(本大题分4小题, 每小题4分, 共16分)
1、4

2、yxAxBx*(cossin)44

3、1zedydx
4、1020)(••••rdrrfd
三、解答下列各题
(本大题共10小题,总计68分)
1、(本小题7分)

解:xxxdydxI1110 4分
3
1
)22(102dxxx
7分

2、(本小题6分)

2
)(1xyyzx


(6分)

3、(本小题8分)
由01260332yzxzyx,得驻点2,1),2,1( 3分

xxzzzzDyyyxxyxx366006

062,1,036)2,1(xxzD
6分


0142,1D

点)2,1(非极值点。
函数z无极大值点,在点2,1处取极小值。 8分
2

4、(本小题8分)
,dyydxxy

令,,yxuyuxu得:21duuxdxu 4分

解得:11lnlnln,uuxCcxueu,即:yxCye。8分
(二)
11
11,[1]dydyyydx

xxedyCedyy

(ln)yCy

5、(本小题5分)
解:
,0)21ln(nu
n
同发散。原级数与11,21lim

n
n

n
n

n

u

5 分
6、(本小题5分)

1)1(1cos22nn
n
n




1211n
n
所以原级数绝对收敛。 5分

7、(本小题8分)
解:
n
nxxxxxxy0
222

2221122
, 4分



0122n
n
n

x

y

2,2x

。 8分

8、(本小题8分)

解: DxydxdyyxyxV)12(2222 4分



30220299)12(drrrrd

8分

9、(本小题7分 )
解:()1(),()()1,()1xfxfxfxfxfxCe,5分
3

由初始条件得:
1,C
所以通解为:()1xfxe。 (7分)

10、
(本小题6分 )
证:103322sin2)(sindrrrdyxD 2分

3393
3
sin6,sin!3rrrrtttt
,4分


1
0
3
sindrrr

5

1
1

0
4
drr


1
0
3
sindrrr

33061)6
(10104drrr

,所以原不等式成立。

6分

相关文档
最新文档