伯努利概型与全概公式
Ch1-5 事件的独立性和伯努力概型

前面我们看到独立与互斥的区别和联系, 请看下列两个练习。 设A, B为互斥事件,且P(A)>0, P(B)>0, 下面四个结论中,正确的是: 1. P(B|A)>0, 3. P(A|B)=0, 2. P(A|B)=P(A), 4. P(AB)=P(A)P(B)。
计算 n个独立事件并的概率公式:
设事件 A1 , A2 ,„, An 相互独立, 则
P( A1∪…∪An ) 1 P( A1 A2 „ An)
1 P ( A1 A2 „ An )
1 P ( A1 ) P ( A2 ) „ P ( An )
也就是说: n个独立事件至少有一个发生的 概率等于1减去各自对立事件概率的乘积。
k =0,1,2,…,n 证明与前面的例3类似
小概率事件
—— 若P(A) 0.01 则称A为小概率事件
小概率原理
——一次试验中小概率事件一般是不
会发生的. 若在一次试验中居然发生了, 则可怀疑该事件并非小概率事件.
女士品茶的故事
• 那是20世纪20年代后期,在英国剑桥一个夏日的午后,一 群大学的绅士和他们的夫人们,还有来访者,正围坐在户 外的桌旁,享用着下午茶。在品茶过程中,一位女士坚称: 把茶加进奶里,或把奶加进茶里,不同的做法,会使茶的 味道品起来不同。在场的一帮科学精英们,对这位女士的 “胡言乱语”嗤之以鼻。这怎么可能呢?他们不能想象, 仅仅因为加茶加奶的先后顺序不同,茶就会发生不同的化 学反应。然而,在座的一个身材矮小、戴着厚眼镜、下巴 上蓄着的短尖髯开始变灰的先生,却不这么看,他对这个 问题很感兴趣。 • 他兴奋地说道:“让我们来检验这个命题吧!”并开始策 划一个实验。在实验中,坚持茶有不同味道的那位女士被 奉上一连串的已经调制好的茶,其中,有的是先加茶后加 奶制成的,有的则是先加奶后加茶制成的。
(整理)概率论公式大全

第一章随机事件和概率(1)排列组合公式从m个人中挑出n个人进行排列的可能数。
从m个人中挑出n个人进行组合的可能数。
(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。
乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。
(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用来表示。
基本事件的全体,称为试验的样本空间,用表示。
一个事件就是由中的部分点(基本事件)组成的集合。
通常用大写字母A,B,C,…表示事件,它们是的子集。
为必然事件,Ø为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):如果同时有,,则称事件A与事件B等价,或称A等于B:A=B。
A、B中至少有一个发生的事件:A B,或者A+B。
属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者,它表示A发生而B不发生的事件。
概率论及数理统计公式整理(超全版)

第1章随机事件及其概率−−−→随机波动性和稳定性。
频率(波动)n→∞概率:设Ω为样本空间,A为事件,对每一个事件若满足下列三个条件:,,()(),(A B A B P A P B P ⊂≤设为两个事件,且则,()1().A A P A P A =-设是的对立事件则23()P A A --2)()n i j k A A P A A A =+∑1° {ωω1,=ΩωA )A 更一般地,对事件A 1,,若P(A A …A ,则有21A …)n A (A P =21|(A A A n …n A ①两个事件的独立性设事件A 、B 满足A 、B 是相互独立的。
若事件A 、B 相互独立,且()|(AB P A B P =,它们的对立事件所得的满足),,2,1(0)(niBP i=>则有)()(1PBPAP=设事件1B,2B1°1B,2B,…,2°niiB A1=⊂第二章随机变量及其散布显然分布律应满足下列条件:(1)X的分布函数,若存在非负函数0-1)分布,第三章二维随机变量及其散布(,)}{(x y zP X ξξ≤=第四章随机变量的数字特点第五章大数定律和中心极限定理a PY−−第六章 样本及抽样散布.X n .的个独立的观察值1i =2n 1i =∏,,,x x 设2,3,.{P t t α>称满足条件(1);n -1221,()n S X X =-∑分别是这两个样本的均值第七章 参数估量12;,,(;x x p x θθ∑11,2,l θ=这个估计量称为矩θ为未知参数。
又设的无偏估计,且=(=({((θθθθθθ<和已知方差μ第八章假设查验5 中 2211()~().ni i X n μχσμ=-∑(已知)牛顿二项公式:0()nni i n ini a b C a b-=+=∑积分公式:2x e dx π+∞-=⎰,222x edx π+∞-=⎰二项散布最大值:(n+1)p 为整数(n+1)p=或(n+1)p-1处 非整数最接近(n+1)p 的整数处 Γ函数:765220220220()σσσσσσμ≤≥=未知22122212221212(,)σσσσσσμμ≤≥=未知000()D D D μμμ≤≥=成对数据2220(1)n S χσ-=2122S F S=0/D D t S n-=220220220σσσσσσ><≠221222122212σσσσσσ><≠000D D D μμμ><≠2222122/2221/2(1)(1)(1)(1)n n n n ααααχχχχχχχχ--≥-≤-≥-≤-或12112/2121/212(1,1)(1,1)(1,1)(1,1)F F n n F F n n F F n n F F n n αααα--≥--≤--≥--≥--或/2(1)(1)(1)t t n t t n t t n ααα≥-≤--≥-3421H 原假设检验统计量1H 备择假设拒绝域002()μμμμμμσ≤≥=已知0002()μμμμμμσ≤≥=未知1212122212(,)μμδμμδμμδσσ-≤-≥-=已知0/X Z nμσ-=0/X t S nμ-=221212X Y Z n n δσσ--=+00μμμμμμ≠<>000μμμμμμ><≠δμμδμμδμμ≠-<->-0002/αααz z z z z z ≥-≤≥/2(1)(1)(1)t t n t t n t t n ααα≥-≤--≥-2/αααz z z z z z ≥-≤≥12121222212()μμδμμδμμδσσσ-≤-≥-===未知δμμδμμδμμ≠-<->-0001212/212(2)(2)(1)t t n n t t n n t t n n ααα≥+-≤-+-≥+-1222211221211(1)(2)2w w X Y t S n n n S n S S n n δ--=+-+-=+-Γ(x+1)=xΓ(x),Γ⑴=1,Γ(1/2)=√π,对正整数n,有Γ(n+1)=n!,Γ(1-x)Γ(x)=π/sin (πx)。
概率论与数理统计公式整理(超全免费版)

A,B,C,…表示事件,它们是 的子集。 为必然事件,Ø 为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理, 必然事件(Ω)的概率为 1,而概率为 1 的事件也不一定是必然事件。
①关系: 如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生):
A B 如果同时有 A B , B A ,则称事件 A 与事件 B 等价,或称 A 等于 B:
A=B。
A、B 中至少有一个发生的事件:A B,或者 A+B。 属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A-B,也可
(6)事件 的关系与
表示为 A-AB 或者 AB ,它表示 A 发生而 B 不发生的事件。
j 1
此公式即为贝叶斯公式。
P(Bi ) ,( i 1,2 ,…,n ),通常叫先验概率。P(Bi / A) ,( i 1,2 ,…, n ),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了
(17)伯努 利概型
“由果朔因”的推断。
我们作了 n 次试验,且满足 每次试验只有两种可能结果, A 发生或 A 不发生; n 次试验是重复进行的,即 A 发生的概率每次均一样; 每次试验是独立的,即每次试验 A 发生与否与其他次试验 A 发生与
P( X k) q k1 p, k 1,2,3, ,其中 p≥0,q=1-p。
随机变量 X 服从参数为 p 的几何分布,记为 G(p)。
1
概率论与数理统计 公式(全)
均匀分布
设随机变量 X 的值只落在[a,b]内,其密度函数 f (x) 在[a,b] 上为常数 1 ,即
概率论与数理统计基础公式大全

2° P(Ω) =1
3° 对于两两互不相容的事件 , ,…有
常称为可列(完全)可加性。
则称P(A)为事件 的概率。
(8)古典概型
1° ,
2° 。
设任一事件 ,它是由 组成的,则有
P(A)= =
(9)几何概型
若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件A,
条件概率是概率的一种,所有概率的性质都适合于条件概率。
例如P(Ω/B)=1 P( /A)=1-P(B/A)
(13)乘法公式
乘法公式:
更一般地,对事件A1,A2,…An,若P(A1A2…An-1)>0,则有
… …… … 。
(14)独立性
①两个事件的独立性
设事件 、 满足 ,则称事件 、 是相互独立的。
(2)
(2)二维随机变量的本质
(3)联合分布函数
设(X,Y)为二维随机变量,对于任意实数x,y,二元函数
称为二维随机向量(X,Y)的分布函数,或称为随机变量X和Y的联合分布函数。
分布函数是一个以全平面为其定义域,以事件 的概率为函数值的一个实值函数。分布函数F(x,y)具有以下的基本性质:
(1)
(2)F(x,y)分别对x和y是非减的,即
当x2>x1时,有F(x2,y)≥F(x1,y);当y2>y1时,有F(x,y2) ≥F(x,y1);
(3)F(x,y)分别对x和y是右连续的,即
(4)
(5)对于
.
(4)离散型与连续型的关系
(5)边缘分布
离散型
X的边缘分布为
概率统计公式大全复习重点汇总

第一章随机事件和概率〔1〕排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进展排列的可能数。
)!(!!nmnmC nm-=从m个人中挑出n个人进展组合的可能数。
〔2〕加法和乘法原理加法原理〔两种方法均能完成此事〕:某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,那么这件事可由种方法来完成。
乘法原理〔两个步骤分别不能完成这件事〕:m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,那么这件事可由m×n 种方法来完成。
〔3〕一些常见排列重复排列和非重复排列〔有序〕对立事件〔至少有一个〕顺序问题〔4〕随机试验和随机事件如果一个试验在一样条件下可以重复进展,而每次试验的可能结果不止一个,但在进展一次试验之前却不能断言它出现哪个结果,那么称这种试验为随机试验。
试验的可能结果称为随机事件。
〔5〕根在一个试验下,不管事件有多少个,总可以从其中找出本领件、样本空间和事件这样一组事件,它具有如下性质:①每进展一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的局部事件组成的。
这样一组事件中的每一个事件称为根本领件,用ω来表示。
根本领件的全体,称为试验的样本空间,用Ω表示。
一个事件就是由Ω中的局部点〔根本领件ω〕组成的集合。
通常用大写字母A,B,C,…表示事件,它们是Ω的子集。
Ω为必然事件,Ø为不可能事件。
不可能事件〔Ø〕的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件〔Ω〕的概率为1,而概率为1的事件也不一定是必然事件。
〔6〕事件的关系及运算①关系:如果事件A的组成局部也是事件B的组成局部,〔A发生必有事件B发生〕:BA⊂如果同时有BA⊂,AB⊃,那么称事件A及事件B等价,或称A等于B:。
A、B中至少有一个发生的事件: ,或者。
属于A而不属于B的局部所构成的事件,称为A及B 的差,记为,也可表示为或者BA,它表示A发生而B 不发生的事件。
概率论与数理统计公式整理(完整版)
An 1) 。
①两个事件的独立性
设事件 A 、B 满足 P(AB) P( A)P(B) ,则称事件 A 、B 是相互独立的。
若事件 A 、 B 相互独立,且 P( A) 0 ,则有
P(B | A) P( AB) P( A)P(B) P(B)
P( A)
P( A)
(14)独立 性
(15)全概 公式
布,所以(0-1)分布是二项分布的特例。
5 / 27
概率论与数理统计 公式(全)
泊松分布
设随机变量 X 的分布律为 P( X k) k e , 0 , k 0,1,2, k!
则称随机变量 X 服从参数为 的泊松分布,记为 X ~ () 或
超几何分布 几何分布
者 P( )。
泊松分布为二项分布的极限分布(np=λ,n→∞)。
当 A=Ω时,P( B )=1- P(B)
(12)条件 概率
定义 设 A、B 是两个事件,且 P(A)>0,则称 P( AB) 为事件 A 发生条件下,事 P( A)
件 B 发生的条件概率,记为 P(B / A) P( AB) 。 P( A)
条件概率是概率的一种,所有概率的性质都适合于条件概率。
2 / 27
一个事件就是由 中的部分点(基本事件 )组成的集合。通常用大写字母
A,B,C,…表示事件,它们是 的子集。 为必然事件,Ø 为不可能事件。
不可能事件(Ø )的概率为零,而概率为零的事件不一定是不可能事件;同理, 必然事件(Ω)的概率为 1,而概率为 1 的事件也不一定是必然事件。
①关系: 如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生):
设事件 B1, B2 ,…, Bn 及 A 满足
第4讲全概率公式与贝叶斯公式
P(B)
可得 P(AB) P(A B)P(B)
第四节 全概率公式与贝叶斯公式
一、全概率公式 二、贝叶斯公式
一、全概率公式
下面用概率的有限可加性及条件概率的定义和乘法 定理建立计算概率的公式。先引入一个例子
例1 某工厂的两个车间生产同型号的家用电器。据 以往经验,第1车间的次品率为0.15,第2车间的次品 率为0.12。两个车间生产的成品混合堆放在一个仓库 里且无区分标志,假设第1、2车间生产的成品比例为 2:3。
证明 性质4 P(A B) P(A) P(AB)
证明:因为 A A A(B B) AB AB 且 AB AB 所以 P(A) P(AB) P(AB), 又 P(A- B) P(AB), 于是 P(A- B) P(A) P(AB)
定理2 (乘法公式)
B1 B2 B1B2 故由全概率公式
P(A) P(A B1)P(B1) P(A B2 )P(B2 ) 60%80% 40% 40% 64%
例3 玻璃杯成箱出售,每箱20只,假设各箱含0, 1,2只残次品的概率相应地为0.8,0.1和0.1。一顾客 欲买一箱玻璃杯,在购买时,售货员随机地查看4只, 若无残次品,则买下该箱玻璃杯,否则,则退回。 试求:
技术水平,可以认为机器调整良好的概率为75%, 由机器的性能知,机器调整良好时产品合格率为9 0%,调整的不好时,产品合格率为30%。若生 产第一件产品合格,求此时机器调整良好的概率; 若生产第一件产品不合格,求此时机器调整不良好 的概率。
解 记 B { 机器调整良好 }
A { 第一件产品合格 } 且已知
0.5 0.6 0.5 0.6
概论公式
第一章随机事件和概率(1)排列组合公式从m个人中挑出n个人进行排列的可能数。
从m个人中挑出n个人进行组合的可能数。
(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。
乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。
(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用来表示。
基本事件的全体,称为试验的样本空间,用表示。
一个事件就是由中的部分点(基本事件)组成的集合。
通常用大写字母A,B,C,…表示事件,它们是的子集。
为必然事件,Ø为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
第二章随机变量及其分布第三章二维随机变量及其分布第四章随机变量的数字特征第五章大数定律和中心极限定理第六章样本及抽样分布第七章参数估计第八章假设检验单正态总体均值和方差的假设检验。
概率公式大全
第一章随机事件和概率第二章随机变量及其分布第三章二维随机变量及其分布第四章随机变量的数字特征第七章参数估计单正态总体均值和方差的假设检验公式整理1.随机事件及其概率吸收律:AAB A AA A =⋃=∅⋃Ω=Ω⋃)( AB A A A AA =⋃⋂∅=∅⋂=Ω⋂)()(AB A B A B A -==-反演律:B A B A =⋃ B A AB ⋃=n i in i iA A 11=== ni in i iA A 11===2.概率的定义及其计算)(1)(A P A P -=若B A ⊂ )()()(A P B P A B P -=-⇒对任意两个事件A , B , 有 )()()(AB P B P A B P -=- 加法公式:对任意两个事件A , B , 有)()()()(AB P B P A P B A P -+=⋃ )()()(B P A P B A P +≤⋃)()1()()()()(2111111n n nnk j i kjinj i jini i n i i A A A P A A A P A A P A P A P -≤<<≤≤<≤==-+++-=∑∑∑3.条件概率 ()=A B P )()(A P AB P 乘法公式())0)(()()(>=A P A B P A P AB P()())0)(()()(12112112121>=--n n n n A A A P A A A A P A A P A P A A A P 全概率公式∑==ni i AB P A P 1)()( )()(1i ni i B A P B P ⋅=∑=Bayes 公式)(A B P k )()(A P AB P k =∑==n i i i k k B A P B P B A P B P 1)()()()(4.随机变量及其分布 分布函数计算)()()()()(a F b F a X P b X P b X a P -=≤-≤=≤<5.离散型随机变量 (1) 0 – 1 分布1,0,)1()(1=-==-k p p k X P k k(2) 二项分布 ),(p n B 若P ( A ) = pn k p p C k X P k n kk n ,,1,0,)1()( =-==-.*Possion 定理0lim >=∞→λn n np有,2,1,0!)1(lim ==---∞→k k ep p C kkn n k nk n n λλ(3) Poisson 分布 )(λP,2,1,0,!)(===-k k ek X P kλλ6.连续型随机变量 (1) 均匀分布 ),(b a U⎪⎩⎪⎨⎧<<-=其他,0,1)(b x a ab x f ⎪⎪⎩⎪⎪⎨⎧--=1,,0)(a b a x x F(2) 指数分布 )(λE⎪⎩⎪⎨⎧>=-其他,00,)(x e x f x λλ⎩⎨⎧≥-<=-0,10,0)(x e x x F xλ (3) 正态分布 N (μ , σ 2 )+∞<<∞-=--x e x f x 222)(21)(σμσπ⎰∞---=xt t ex F d 21)(222)(σμσπ*N (0,1) — 标准正态分布+∞<<∞-=-x e x x 2221)(πϕ+∞<<∞-=Φ⎰∞--x t ex xt d 21)(22π7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数⎰⎰∞-∞-=xydvdu v u f y x F ),(),(边缘分布函数与边缘密度函数⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()(⎰+∞∞-=dv v x f x f X ),()(⎰⎰∞-+∞∞-=yY dudv v u f y F ),()(⎰+∞∞-=du y u f y f Y ),()(8. 连续型二维随机变量(1) 区域G 上的均匀分布,U ( G )⎪⎩⎪⎨⎧∈=其他,0),(,1),(Gy x A y x f(2)二维正态分布+∞<<-∞+∞<<∞-⨯-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+------y x ey x f y y x x ,121),(2222212121212)())((2)()1(21221σμσσμμρσμρρσπσ9. 二维随机变量的 条件分布0)()()(),(>=x f x y f x f y x f X X Y X0)()()(>=y f y x f y f Y Y X Y⎰⎰+∞∞-+∞∞-==dy y f y x f dy y x f x f Y Y X X )()(),()(⎰⎰+∞∞-+∞∞-==dx x f x y f dx y x f y f X X Y Y )()(),()()(y x f Y X )(),(y f y x f Y =)()()(y f x f x y f Y X X Y = )(x y f X Y )(),(x f y x f X =)()()(x f y f y x f X Y Y X = 10.随机变量的数字特征数学期望∑+∞==1)(k k k p x X E⎰+∞∞-=dx x xf X E )()(随机变量函数的数学期望 X 的 k 阶原点矩)(kX E X 的 k 阶绝对原点矩)|(|kX E X 的 k 阶中心矩)))(((kX E X E - X 的 方差)()))(((2X D X E X E =- X ,Y 的 k + l 阶混合原点矩)(lkY X E X ,Y 的 k + l 阶混合中心矩()l k Y E Y X E X E ))(())((--X ,Y 的 二阶混合原点矩)(XY E X ,Y 的二阶混合中心矩 X ,Y 的协方差()))())(((Y E Y X E X E --X ,Y 的相关系数XY Y D X D Y E Y X E X E ρ=⎪⎪⎭⎫⎝⎛--)()())())((( X 的方差D (X ) =E ((X - E (X ))2))()()(22X E X E X D -=协方差()))())(((),cov(Y E Y X E X E Y X --=)()()(Y E X E XY E -=())()()(21Y D X D Y X D --±±= 相关系数)()(),cov(Y D X D Y X XY =ρ⎰∞---=xt t ex F d 21)(222)(σμσπ*N (0,1) — 标准正态分布+∞<<∞-=-x ex x 2221)(πϕ+∞<<∞-=Φ⎰∞--x t e x xt d 21)(22π7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数⎰⎰∞-∞-=xydvdu v u f y x F ),(),(边缘分布函数与边缘密度函数⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()(⎰+∞∞-=dv v x f x f X ),()(⎰⎰∞-+∞∞-=yY dudv v u f y F ),()(⎰+∞∞-=du y u f y f Y ),()(8. 连续型二维随机变量(1) 区域G 上的均匀分布,U ( G )⎪⎩⎪⎨⎧∈=其他,0),(,1),(Gy x A y x f(2)二维正态分布+∞<<-∞+∞<<∞-⨯-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+------y x ey x f y y x x ,121),(2222212121212)())((2)()1(21221σμσσμμρσμρρσπσ9.二维随机变量的 条件分布0)()()(),(>=x f x y f x f y x f X X Y X0)()()(>=y f y x f y f Y Y X Y⎰⎰+∞∞-+∞∞-==dy y f y x f dy y x f x f Y Y X X )()(),()(⎰⎰+∞∞-+∞∞-==dx x f x y f dx y x f y f X X Y Y )()(),()( )(y x f Y X )(),(y f y x f Y = )()()(y f x f x y f Y X X Y = )(x y f X Y )(),(x f y x f X = )()()(x f y f y x f X Y Y X = 10.随机变量的数字特征数学期望∑+∞==1)(k k k p x X E⎰+∞∞-=dx x xf X E )()(随机变量函数的数学期望X 的 k 阶原点矩)(k X EX 的 k 阶绝对原点矩)|(|k X EX 的 k 阶中心矩)))(((k X E X E - X 的 方差)()))(((2X D X E X E =- X ,Y 的 k + l 阶混合原点矩)(l k Y X E X ,Y 的 k + l 阶混合中心矩()l k Y E Y X E X E ))(())((--X ,Y 的 二阶混合原点矩)(XY EX ,Y 的二阶混合中心矩 X ,Y 的协方差 ()))())(((Y E Y X E X E --X ,Y 的相关系数XY Y D X D Y E Y X E X E ρ=⎪⎪⎭⎫⎝⎛--)()())())(((X 的方差D (X ) =E ((X - E (X ))2))()()(22X E X E X D -=协方差()))())(((),cov(Y E Y X E X E Y X --=)()()(Y E X E XY E -= ())()()(21Y D X D Y X D --±±= 相关系数)()(),cov(Y D X D Y X XY =ρ。