数学分析课本-习题及答案第九章
高中数学第九章统计知识集锦(带答案)

高中数学第九章统计知识集锦单选题1、设一组样本数据x 1,x 2,…,xn 的方差为0.01,则数据10x 1,10x 2,…,10xn 的方差为( ) A .0.01B .0.1C .1D .10 答案:C分析:根据新数据与原数据关系确定方差关系,即得结果.因为数据ax i +b ,(i =1,2,⋯,n)的方差是数据x i ,(i =1,2,⋯,n)的方差的a 2倍, 所以所求数据方差为102×0.01=1 故选:C小提示:本题考查方差,考查基本分析求解能力,属基础题.2、已知一个样本容量为7的样本的平均数为5,方差为2,现样本加入三个新数据4,5,6,若新样本的平均数为x ,方差为s 2,则( ) A .x =5,s 2=1.8B .x =5,s 2=1.6 C .x =4.9,s 2=1.6D .x =5.1,s 2=1.8 答案:B分析:根据平均数、方差公式计算可得.解:设新样本的10个数据分别为x 1,x 2,…,x 7,x 8=4,x 9=5,x 10=6,由题意得∑x i 7i=1=35,又17∑(x i −5)2=27i=1,所以∑(x i −5)2=147i=1,所以x =110(x 1+x 2+⋅⋅⋅+x 10)=110(35+4+5+6)=5,s 2=110[(x 1−5)2+(x 2−5)2+⋅⋅⋅+(x 10−5)2] =110[14+(4−5)2+(5−5)2+(6−5)2]=1.6.故选:B3、某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是( )A.收入最高值与收入最低值的比是3︰1B.结余最高的月份是7月C.1至2月份的收入的变化率与4至5月份的收入的变化率相同D.前6个月的平均收入为40万元答案:D分析:根据统计图对选项逐一分析,由此确定说法错误的选项.最高收入90万元,最低收入30万元,所以A正确.结余最高的为7月,结余60万元,所以B正确.根据两点连线的斜率可知,1至2月份的收入的变化率与4至5月份的收入的变化率相同,所以C正确.=45万元,所以D选项错误.前6个月的平均收入为40+60+30+30+50+606故选:D4、根据气象学上的标准,连续5天的日平均气温低于10℃即为入冬,将连续5天的日平均温度的记录数据(记录数据都是自然数)作为一组样本,现有4组样本①、②、③、④,依次计算得到结果如下:①平均数x<4;②平均数x<4且极差小于或等于3;③平均数x<4且标准差s≤4;④众数等于5且极差小于或等于4.则4组样本中一定符合入冬指标的共有()A.1组B.2组C.3组D.4组答案:B分析:举反例否定①;反证法证明②符合要求;举反例否定③;直接法证明④符合要求.①举反例:0,0,0,4,11,其平均数x=3<4.但不符合入冬指标;②假设有数据大于或等于10,由极差小于或等于3可知,则此组数据中的最小值为10−3=7,此时数据的平均数必然大于7,与x<4矛盾,故假设错误.则此组数据全部小于10. 符合入冬指标;③举反例:1,1,1,1,11,平均数x=3<4,且标准差s=4.但不符合入冬指标;④在众数等于5且极差小于等于4时,则最大数不超过9.符合入冬指标.故选:B.5、为保障食品安全,某监管部门对辖区内一家食品企业进行检查,现从其生产的某种产品中随机抽取100件作为样本,并以产品的一项关键质量指标值为检测依据,整理得到如下的样本频率分布直方图.若质量指标值在[25,35)内的产品为一等品,则该企业生产的产品为一等品的概率约为()A.0.38B.0.61C.0.122D.0.75答案:B×组距,即可得解.分析:利用频率=频率组距根据频率分布直方图可知,质量指标值在[25,35)内的概率P=(0.080+0.042)×5=0.122×5=0.61故选:B6、北京舞蹈学院为了解大一舞蹈专业新生的体重情况,对报到的1000名舞蹈专业生的数据(单位:kg)进行统计,得到如图所示的体重频率分布直方图,则体重在60kg以上的人数为()A.100B.150C.200D.250答案:D分析:根据频率分布直方图求出体重在60kg以上的小矩形的面积,即为概率,根据总人数即可求解.0.040×5+0.010×5=0.25,1000×0.25=250,故选:D.7、某地区对当地3000户家庭的当年所得年收入情况调查统计,年收入(单位:万元)的频率分布直方图如图所示,数据的分组依次为[2,4),[4,6),[6,8),[8,10],则年收入不超过6万元的家庭有( )A.900户B.600户C.300户D.150户答案:A分析:根据频率分布直方图求出[2,4)和[4,6)这两组的频率之和,用这个频率之和乘以样本总量3000即可的答案.由图可知,[2,4)和[4,6)这两组的频率之和为(0.05+0.1)×2=0.3,年收入不超过6万元的家庭有3000×0.3=900户.故选:A.8、某汽车制造厂分别从A,B两类轮胎中各随机抽取了6个进行测试,下面列出了每一个轮胎行驶的最远里程(单位:103km).A类轮胎:94,96,99,99,105,107.B类轮胎:95,95,98,99,104,109.根据以上数据,下列说法正确的是()A.A类轮胎行驶的最远里程的众数小于B类轮胎行驶的最远里程的众数B.A类轮胎行驶的最远里程的极差等于B类轮胎行驶的最远里程的极差C.A类轮胎行驶的最远里程的平均数大于B类轮胎行驶的最远里程的平均数D.A类轮胎的性能更加稳定答案:D分析:根据众数、极差、平均数和方差的定义以及计算公式即可求解.解:对A:A类轮胎行驶的最远里程的众数为99,B类轮胎行驶的最远里程的众数为95,选项A错误;对B:A类轮胎行驶的最远里程的极差为13,B类轮胎行驶的最远里程的极差为14,选项B错误.对C:A类轮胎行驶的最远里程的平均数为100+−6−4−1−1+5+76=100,B类轮胎行驶的最远里程的平均数为100+−5−5−2−1+4+96=100,选项C错误.对D:A类轮胎行驶的最远里程的方差为(94−100)2+(96−100)2+(99−100)2×2+(105−100)2+(107−100)26=643,B类轮胎行驶的最远里程的方差为(95−100)2×2+(98−100)2+(99−100)2+(104−100)2+(109−100)26=763>643,故A类轮胎的性能更加稳定,选项D正确.故选:D.多选题9、甲、乙两班举行电脑汉字录入比赛,参赛学生每分钟录入汉字的个数经统计计算后填入下表,某同学根据表中数据分析得出的结论正确的是()B .甲班的成绩波动比乙班的成绩波动大C .乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀)D .甲班成绩的众数小于乙班成绩的众数 答案:ABC解析:根据图表直接计算平均数、方差和众数与甲、乙两班学生每分钟输入汉字数≥150个的人数分析即可.甲、乙两班学生成绩的平均数都是35,故两班成绩的平均数相同,A 正确;s 甲2=191>110=s 乙2,甲班成绩不如乙班稳定,即甲班的成绩波动较大,B 正确.甲、乙两班人数相同,但甲班的中位数为149,乙班的中位数为151,从而易知乙班不少于150个的人数要多于甲班,C 正确;由题表看不出两班学生成绩的众数,D 错误. 故选:ABC小提示:本题主要考查了根据平均数、方差和众数分析实际意义的问题,属于基础题型.10、某保险公司销售某种保险产品,根据2020年全年该产品的销售额(单位:万元)和该产品的销售额占总销售额的百分比,绘制出如图所示的双层饼图.根据双层饼图,下列说法正确的是( )A .2020年第四季度的销售额为280万元B .2020年上半年的总销售额为500万元C .2020年2月份的销售额为40万元D .2020年12个月的月销售额的众数为60万元 答案:AD分析:结合饼图对选项进行分析,从而确定正确选项.=1000万元,故第四季度的销售额为1000×28%=280万元,A正确;2020年全年的销售额为3000.32020年上半年的总销售额为160+260=420万元,B错误;2020年2月份的销售额为1000×5%=50万元,C错误;则3、4、12三个月的月销售额均为60万元,D正确.故选:AD11、依据我国《地表水环境质量标准》,水质由高到低可以分为I、II、III、IV、V、劣V类六个类别,其中I、II类水质适用于饮用水源地一级保护区,劣V类水质除调节局部气候外,几乎无使用功能.环境监测部门某一年对全国范围内各大水域的水质情况进行监测,统计了各水域不同水质所占的比例,得到了下面的统计图.从统计图中能够得到的合理推断是()A.浙闽片河流、西北诸河、西南诸河水质情况整体高于其他流域水质情况B.辽河流域I~III类水质占比小于60%C.黄河流域的水质比长江流域的水质要好D.IV、V类水质所占的比例最高的是淮河流域答案:ABD分析:根据统计图分析各选项的描述是否正确即可.A:浙闽片河流、西北诸河、西南诸河I-III类水质占比最高,正确;B:由图知:辽河流域I~III类水质占比小于60%,正确;C:由图知:长江流域I~III类水质占比高于黄河流域,其它类占比小于黄河流域,错误;D:淮河流域IV、V类水质所占的比例最高,正确.故选:ABD.12、江西省重点中学协作体于2020年进行了一次校际数学竞赛,共有100名同学参赛,经过评判,这100名参赛者的得分都在[40,90]之间,其得分的频率分布直方图如图,则下列结论正确的是()A.得分在[40,60)之间的共有40人B.从这100名参赛者中随机选取1人,其得分在[60,80)的概率为0.5C.这100名参赛者得分的中位数为65D.可求得a=0.005答案:ABD分析:结合频率分布直方图,对每一个选项一一分析即可.A算出[40,60)的频率,再乘以100可得答案,B算出得分在[60,80)中的频率即可,C找出面积刚好为0.5的位置,再算其频率,D利用频率之和为1,列出算式可求.由频率分布直方图,可得对于选项A,得分在[40,60)之间共有[1−(0.03+0.02+0.01)×10]×100=40人,故A正确;对于选项B,从100名参赛者中随机选取1人,其得分在[60,80)中的概率为(0.03+0.02)×10=0.5,故B正确;对于选项C,前2个小矩形面积之和为0.4,前3个小矩形面积之和为0.7,所以中位数在[60,70],这100名×10≈63.3,故C错误;参赛者得分的中位数为60+0.5−0.40.3对于选项D,由频率分布直方图的性质,可得(a+0.01+0.035+0.030+2.020+0.010)×10=1,解得a=0.005,故D正确.故选:ABD.13、最近几个月,新冠肺炎疫情又出现反复,各学校均加强了疫情防控要求,学生在进校时必须走测温通道,每天早中晚都要进行体温检测并将结果上报主管部门.某班级体温检测员对一周内甲乙两名同学的体温进行了统计,其结果如图所示,则下列结论正确的是()A.甲同学体温的极差为0.4℃B.乙同学体温的众数为36.4℃,中位数与平均数相等C.乙同学的体温比甲同学的体温稳定D.甲同学体温的第60百分位数为36.4℃答案:ABC分析:根据给定的折线图,逐一分析判断各个选项即可作答.观察折线图知,甲同学体温的极差为36.6−36.2=0.4℃,A正确;乙同学体温从小到大排成一列:36.3℃,36.3℃,36.4℃,36.4℃,36.4℃,36.5℃,36.5℃,(36.3×2+36.4×3+36.5×2)=46.4℃,B正乙同学体温的众数为36.4℃,中位数为36.4℃,平均数x=17确;乙同学的体温波动较甲同学的小,极差为0.2℃,也比甲同学的小,因此乙同学的体温比甲同学的体温稳定,C正确;将甲同学的体温从小到大排成一列:36.2℃,36.2℃,36.4℃,36.4℃,36.5℃,36.5℃,36.6℃,因7×60%=4.2,则甲同学体温的第60百分位数为36.5℃,D不正确.故选:ABC填空题14、一个总体中含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的可能性为________.答案:1#0.0520.因为是简单随机抽样,故每个个体被抽到的机会相等,所以指定的某个个体被抽到的可能性为12015、为了考察某区1万名高一年级学生数学知识与能力测试的成绩,从中抽取50本试卷,每本试卷30份,那么样本容量是______.答案:1500分析:直接利用样本容量的定义分析,即可求解.因为从抽取50本试卷,每本试卷30份,所以样本容量为50×30=1500份.所以答案是:150016、已知一组数据丢失了其中一个,剩下的六个数据分别是3,3,5,3,6,11,若这组数据的平均数与众数的和是中位数的2倍,则丢失的数据可能是___________.(答案不唯一,写出一个即可)答案:−10(或4或18)分析:设丢失的数据为x,众数是3,然后分x≤3,3<x<5和x≥5三种情况列方程求解即可,众数是3.3+3+5+3+6+11=31.设丢失的数据为x,则这七个数据的平均数为31+x7∵这组数据的平均数与众数的和是中位数的2倍,∴若x≤3,则中位数为3,此时31+x+3=2×3,解得x=−10;7+3=2x,解得x=4;若3<x<5,则中位数为x,此时31+x7+3=2×5,解得x=18.若x≥5,则中位数为5,此时31+x7所以答案是:−10(或4或18)解答题17、甲、乙两台机床同时生产一种零件,在10天中,两台机床每天生产的次品数分别为:甲010*******乙2311021101(1)分别计算这两组数据的平均数和标准差;(2)由(1)的计算结果,分析哪台机床的性能更好.答案:(1)甲:x1=1.5,s1=√16510,乙:x2=1.2,s2=√195(2)乙机床性能更好分析:(1)根据平均数和标准差公式直接计算可得;(2)比较两组数据的平均数和标准差可知.(1)记甲组数据的平均数和标准差分别为x1,s1,乙组数据的平均数和标准差分别为x2,s2则x1=0+1+0+2+2+0+3+1+2+410=1.5x2=2+3+1+1+0+2+1+1+0+110=1.2s1=√110(2.25+0.25+2.25+0.25+0.25+2.25+2.25+0.25+0.25+6.25)=√16510s2=√110(0.64+3.24+0.04+0.04+1.44+0.64+0.04+0.04+1.44+0.04)=√195(2)由(1)知x1>x2,所以甲机床生产出的次品数高于乙机床生产出的次品数;又s1>s2,所以乙机床的性能比甲机床的性能更加稳定.综上,乙机床性能比甲机床稳定,且生产的次品数更低,所以乙机床的性能更好.18、棉花是我国纺织工业重要的原料.新疆作为我国最大的产棉区,对国家棉花产业发展、确保棉粮安全以及促进新疆农民增收、实现乡村振兴战略都具有重要意义.动态、准确掌握棉花质量现状,可以促进棉花产业健康和稳定的发展.在新疆某地收购的一批棉花中随机抽测了100根棉花的纤维长度(单位:mm),得到样本的频数分布表如下:[300,350] 12 0.12(1)在图中作出样本的频率分布直方图;(2)根据(1)作出的频率分布直方图求这一棉花样本的众数、中位数与平均数,并对这批棉花的众数、中位数和平均数进行估计.答案:(1)答案见解析;(2)众数为:275(mm),中位数为:252.5mm,平均数为:222mm,购进的这批棉花的众数、中位数和平均数分别约为275mm、252.5mm和222mm.分析:(1)将表格中的频率都除以组距50,从而得到小矩形的高度,即可得答案;(2)众数是出现频率最大的,中位数将小矩形面积分成相等两部分,平均数小矩形底边中点值乘以小矩形的面积后再相加,即可得答案;解:(1)样本的频率分布直方图如图所示.(2)由样本的频率分布直方图,得众数为:250+300=275(mm);2设中位数x为,(x−250)×0.008=50%−48%,则解得x=252.5,即中位数为252.5mm.设平均数为x,则x=25×0.04+75×0.08+125×0.1+175×0.1+225×0.16+275×0.4+325×0.12=222,故平均数为222mm.由样本的这些数据,可得购进的这批棉花的众数、中位数和平均数分别约为275mm、252.5mm和222mm.。
高等数学-习题答案-方明亮-第九章

高等数学方明亮版第九章曲线积分与曲面积分习题详解习题9.11 计算下列对弧长的曲线积分:(1)LI xds =⎰,其中L 是圆221x y +=中(0,1)A 到11(,)22B -之间的一段劣弧;解: L AB =的参数方程为:cos ,sin x y θθ==()42ππθ-≤≤,于是2422cos (sin )cos I d ππθθθθ-=-+⎰241cos (1)2d ππθθ-==+⎰.(2)(1)Lx y ds ++⎰,其中L 是顶点为(0,0),(1,0)O A 及(0,1)B 所成三角形的边界;解: L 是分段光滑的闭曲线,如图9-2所示,根据积分的可加性,则有(1)L x y ds ++⎰(1)OA x y ds=++⎰(1)ABx y ds +++⎰(1)BOx y ds +++⎰,由于OA :0y =,01x ≤≤,于是2222()()10dx dy ds dx dx dx dx dx=+=+=,故 103(1)(01)2x y ds x dx ++=++=⎰⎰OA , 而:AB 1y x =-,01x ≤≤,于是2222()()1(1)2dx dy ds dx dx dx dx dx=+=+-=. 故10(1)[(1)1]222AB x y ds x x dx ++=+-+=⎰⎰,xyo(1,0)A (0,1)B xyoABC同理可知:BO 0x =(01y ≤≤),ds dy ===,则 13(1)[01]2BO x y ds y dy ++=++=⎰⎰.综上所述33(1)322L x y ds -+=+=+⎰. (3)22Lx y ds +⎰,其中L 为圆周22x y x +=;解 直接化为定积分.1L 的参数方程为11cos 22x θ=+,1sin 2y θ=(02θπ≤≤), 且12ds d θθ=.于是22201cos222Lx y ds d πθθ+=⋅=⎰⎰.(4)2 Lx yzds ⎰,其中L 为折线段ABCD ,这里(0,0,0)A ,(0,0,2),B (1,0,2),C(1,2,3)D ;解 如图所示,2222 L AB BC CD x yzds x yzds x yzds x yzds =++⎰⎰⎰⎰. 线段AB 的参数方程为 0,0,2(01)x y z t t ===≤≤,则ds =2dt =,故02200 12=⋅⋅⋅=⎰⎰dt t yzds x AB.线段BC 的参数方程为,0,2(01)x t y z t ===≤≤,则,ds dt ==故31220020BC x yzds t dt =⋅⋅⋅=⎰⎰,线段CD 的参数方程为1,2,2x y t z t ===+)10(≤≤t ,则2220215ds dt dt =++=,故11220812(2)525)53CDx yzds t t dt t t dt =⋅⋅+⋅=+=⎰⎰⎰ 2 (2,所以2222 853L AB BC CDx yzds x yzds x yzds x yzds =++=⎰⎰⎰⎰.(5)2Lx ds ⎰,L 为球面2221x y z ++=与平面0x y z ++=的交线。
高等数学教材习题九章

高等数学教材习题九章第一章:导数与微分导数与微分是高等数学中重要的概念,也是解决各种数学问题的基础。
在本章中,我们将学习导数与微分的概念、性质以及应用。
1. 导数的定义在一元函数中,导数表示函数在某一点的变化率。
数学上,导数可以通过定义来描述。
设函数y=f(x),如果极限$$\lim_{{\Delta x \to 0}} \frac{{\Delta y}}{{\Delta x}} = \lim_{{\Delta x \to 0}} \frac{{f(x+\Delta x) - f(x)}}{{\Delta x}}$$存在,则称函数f(x)在点x处可导,该极限值即为函数在点x处的导数,记作f'(x)或$\frac{{dy}}{{dx}}$。
2. 导数的性质导数具有一些重要的性质,如导数的四则运算法则、导数的链式法则等。
这些性质可以帮助我们进行导数的计算和应用。
3. 微分的概念微分,简单来说就是函数在某一点附近的线性近似。
在数学上,微分可以与导数相互转化。
设函数y=f(x),若函数在点x处可导,那么在该点的微分即为$$dy = f'(x) \cdot dx$$第二章:定积分与不定积分积分是微分的逆运算,是高等数学中另一个重要的概念。
本章将介绍定积分与不定积分的概念、性质以及应用。
1. 定积分的定义对于一元函数f(x),定积分可以看作函数在一个区间上的“总体积”。
数学上,定积分可以通过黎曼和或黎曼积分来定义。
设函数f(x)在区间[a, b]上有定义,将[a, b]等分为n份,每个子区间的长度为△x,选取一个代表点,记作$c_i$,则定积分的近似值可以表示为$$\sum_{{i=1}}^{n} f(c_i)\Delta x_i$$当$\Delta x \to 0$时,这个近似值的极限值称为函数f(x)在[a, b]上的黎曼积分,记作$\int_{{a}}^{{b}} f(x) dx$。
2. 定积分的性质定积分具有一些重要的性质,如定积分的线性性质、区间可加性等。
华南理工大学高等数学习题册第9章详细答案

解: Γ 是
1
原式 =
1
⎣(1 + t ) + 2 (1 + 2t ) + 3 (1 + t + 1+ 2t − 1) ⎤ ⎦ dt ∫⎡
0 1
= ∫ ( 6 + 14t ) dt = ( 6t + 7t 2 ) = 13
0 0
(3)
∫
Γ
ydx − xdy + dz ,其中 Γ 是圆柱螺线 x = 2cost , y = 2sin t, z = 3 t 从 t = 0 到
院 系
班级
姓 名
作业编号
第九章
1.计算
曲线积分与曲面积分
2
作业 13 对弧长的曲线积分
Ñ ∫ L x d s ,其中 L 为直线 y = x 及抛物线 y = x
所围成的区域的整个边界.
解: L 可以分解为 L1 : y = x, y′ = 1, x ∈ [0,1] 及 L2 : y = x 2 , y′ = 2 x, x ∈ [0,1]
0 2π
⎛ a2 + b2 ⎞ ⎛ ab sin 2t a 2 + b 2 ⎞ = ∫ ⎜ ab cos 2t − sin 2t ⎟ dt = ⎜ + cos 2t ⎟ = 0 2 2 4 ⎠ ⎝ ⎠0 0 ⎝
(2)
2π
∫
Γ
xdx + ydy + ( x + y − 1) dz ,其中 Γ 是从点 (1,1,1) 到点 ( 2, 3, 4) 的一段直线; x −1 y −1 z −1 = = , x = 1 + t , y = 1+ 2t , z = 1+ 3t ,t : 0 → 1 2 − 1 3 − 1 4 −1
上海大学高等数学教程课后习题答案(第九章)

《高等数学教程》第九章 向量代数与空间解析几何习题参考答案9-1(A )4.;342,324m n CD m n BC-=-=5.;}116,117,116{}116,117,116{---或6.-2 ;7.13, 7 j ;8.(1) 垂直于 x 轴,平行于 yoz 坐标面;(2) 与 y 轴共线,方向与 y 轴的正向相反,垂直于 zox 坐标面;(3) 平行于 z 轴,垂直于 xoy 坐标面。
9.模:2; 方向余弦:21,22,21--;10.434ππγ或=;11.31cos ,31cos ,31cos =-=-=γβα;12.m = 4 , n = 0 .9-1(B )1. ;0,22,221,0,0或-3. }5,4,6{-B , }10,6,9{-C , }7,1,7{--=CA4.(1) 在一直线上, (2) 不在一直线上;6. 2 .9-2(A )1.(1) 28 , (2) 52 ;3.15 , 593;4.}4,2,4{--=b ;5.m = 4 , n = 0 ;6.;}2,2,3{171}2,2,3{171-----或7.12 , 219;8.5 ;9.,1548)^,(sin =b a ,7753)^,(cos =b a(1) }2,0,1{-, (2) }2,10,16{-, (3) 0 , (4) }24,8,0{--;10.(1) 24, (2) 60 ;11.(1) -3, (2) 3, (3) 0 ;13.是14.20 , 619;9-2(B )1.(1) 在一直线上, (2) 不在一直线上;2.(1) 至 (8) 全错;5.1328-;6.;,,,,,共线与c b d c d b d a c a b a ⊥⊥⊥⊥⊥7.;共线必须与b a8.3π;9.)68(51)68(51k j k j ---或;10.(1) 2-=λ, (2) 1002,99821=-=λλ;11.23-.9-3(A )2.04573=-+-z y x ;3.0473=+--z y x ;4.012634=+-+z y x ;5.023=--z y x ;6.049263=-+-z y x ;7.010377=--+z y x ;8.029)3(,5)2(,043)1(=---==+z y y y x ;9.1 ;10.32,32,31;11.270)3(,1)2(,2)1(±===k k k ;12.(1) 18,32=-=l m , (2) 6=l ;9-3(B )1.12=++z y x ;2.02=--z y x ;3.1522=-+z y x ;4.03326=-+±z y x ;5.)54,0,0(,)2,0,0(;6.032=-+-z y x ;7.312228±=++z y x ;9-4(A )1.112243--=-+=-z y x ;2.0270112520255612523=+--=++-z y x z y x 及;3.311121-=-=--z y x , ⎪⎩⎪⎨⎧+=+=-=tz t y tx 31121 ;4.13422zy x =-=--;5.0592298=---z y x ;7.341111;8.4273;9.D = -6 ;9-4(B )1.(1) 平行, (2) 垂直, (3) 直线在平面上(题目中平面方程应为 3=++z y x );2.0=ϕ;3.)32,32,35(-;5.⎩⎨⎧=-+-=--+0140117373117z y x z y x ;6.012=++y x ;7.2849161-==+z y x ;8.,1=λ ⎩⎨⎧=-=-+-0027z x z y x ;10.012720=-++z y x ;11.564922-=-=-z y x ;12.0163401022=-+=-++z x z y x 或;13.03=---z y x ;14.332;15.⎩⎨⎧=++-=-++0893012572z y x z y x ;16.不相交, 29311=d ;9-5(A )1.9116)34()1()32(222=+++++z y x , 它表示以)34,1,32(---为球心, 2932为半径的球面。
数学分析简明教程答案09

第九章再论实数系§1实数连续性的等价描述1.求数列}{n x 的上、下确界(若}{n x 无上(下)确界,则称)(-∞∞+是}{n x 的上(下)确界):(1)nx n 11-=;(2)])2(2[nn n x -+=;(3))3,2,1(11,122 =+==+k k x k x k k ;(4)nn x n n 1])1(1[+-+=;(5)nn n nx )1(21-+=;(6)32cos 11πn n n x n +-=.解(1)0}inf{,1}sup{==n n x x ;(2)-∞=+∞=}inf{,}sup{n n x x ;(3)1}inf{,}sup{=+∞=n n x x ;(4)0}inf{,3}sup{==n n x x ;(5)1}inf{,5}sup{==n n x x ;(6)21}inf{,1}sup{-==n n x x .2.设)(x f 在D 上定义,求证:(1))}({inf )}({sup x f x f Dx Dx ∈∈-=-;(2))}({sup )}({inf x f x f Dx Dx ∈∈-=-.证明(1)设a x f =)}(inf{,则D x ∈∀,都有a x f ≥)(,因而a x f -≤-)(,又由于0>∀ε,都D x ∈∃ε,使得εε+<a x f )(,因而εε-->-a x f )(,因此)}({inf )}({sup x f x f Dx Dx ∈∈-=-.(2)设b x f Dx =∈)}({sup ,则D x ∈∀有b x f ≤)(,从而b x f -≥-)(,又由于,0>∀ε都D x ∈∃ε,使得εε->b x f )(,从而εε+-<-b x f )(,因此)}({sup )}({inf x f x f Dx Dx ∈∈-=-.3.设E sup =β,且E ∉β,试证自E 中可选取数列}{n x 且n x 互不相同,使β=∞→n n x lim ;又若E ∈β,则情形如何?证明由已知条件知E sup =β且E ∉β,因而(1)E x ∈∀,有β<x ;(2)0>∀ε,都存在E x ∈ε,使得εβε->x .由(1)、(2)知:对1=ε,存在E x ∈1,使得ββ<<-11x ;对},21min{1x -=βε,E x ∈∃2,使得ββ<<-221x 并且112)(x x x =-->ββ;对},31min{2x -=βε,E x ∈∃3,使得ββ<<-231x 并且223)(x x x =-->ββ;…如此继续下去,得数列}{n x 且n x 互不相同,并且β=∞→n n x lim .若E ∈β,则结论不真,如⎭⎬⎫⎩⎨⎧=n E 1,则1sup =E ,但没有n x 互不相同的数列}{n x ,使1lim =∞→n n x .4.试证收敛数列必有上确界和下确界,趋于∞+的数列必有下确界,趋于∞-的数列必有上确界.证明(1)由于收敛数列是非空有界数列,且既有上界又有下界,因而有确界定理知其必有上确界和下确界;(2)设+∞=∞→n n x lim ,则N ∃,当N n >时0>n x ,因而}0,,,,min{21N x x x 是数列}{n x 的下界,由确界原理知数列}{n x 存在下确界;(3)设-∞=∞→n n x lim ,则N ∃,当N n >时0<n x ,因而}0,,,,max{21N x x x 是数列}{n x 的上界,由确界定理知数列}{n x 存在上确界.5.试分别举出满足下列条件的数列:(1)有上确界无下确界的数列;(2)含有上确界但不含有下确界的数列;(3)既含有上确界又含有下确界的数列;(4)既不含有上确界又不含有下确界的数列,其中上、下确界都有限.解(1)有上确界无下确界的数列,如}{}{n x n -=有上确界1}sup{-=n x ,但无下确界;(2)含有上确界但不含有下确界的数列,如取⎭⎬⎫⎩⎨⎧=n x n 1}{,则该数列含有它的上确界1}sup{=n x ,但下确界0}inf{=n x ,该数列不含有0;(3)既含有上确界又含有下确界的数列,如⎭⎬⎫⎩⎨⎧-+=n x n n )1(1}{,既含有上确界1,又含有下确界0;(4)既不含有上确界又不含有下确界的数列,其中上、下确界都有限,如⎪⎪⎩⎪⎪⎨⎧∈=-∈+==++.,213;,121Z k k n nZ k k n n x n 则数列}{n x 有上确界3和下确界0,该数列}{n x 上含其上、下确界3和0.§2实数闭区间的紧致性1.利用有限覆盖定理9.2证明紧致性定理9.4.证明设数列}{n x 有界,即存在R b a ∈,,使得对N n ∈∀,都有b x a n ≤≤.下证}{n x 有收敛子列.(1)若}{n x 存在子列}{k n x 是常数列,则}{k n x 是}{n x 的收敛子列.(2)若}{n x 不存在是常数列的子列,下证}{n x 有收敛子列,为此设}|{N n x X n ∈=,则X 是无限点集.反设}{n x 没有收敛的子数列,则],[b a x ∈∀都不是}{n x 的任一子数列的极限,因此对],[b a x ∈∀,都存在开区间),(x x x v u I =,使得x I x ∈且X I x 是有限集(否则对包含x的任一开区间),(x x v u 都有X 的无穷项,则x 是}{n x 的某一子列的极限),因此所有开区间x I 构成闭区间],[b a 的一个开覆盖Ω,由有限覆盖定理知存在有限数m ,使i x mi I b a 1],[=⊂ ,因而有)()()()()(],[3211X I X I X I X I X I X b a m i x x x x x mi =⊂=,注意到上式右端每一项都是有限集,故X b a ],[为有限集,矛盾!综合(1)(2)知}{n x 必有一收敛的子数列.2.利用紧致性定理证明单调有界数列必有极限.证明设数列}{n x 单调递增且有上界,则}{n x 是有界数列,由紧致性定理知数列}{n x 必有收敛子数列}{k n x ,设c x k n k =∞→lim ,则由}{n x 单调递增知c 必为数列}{n x 的上界,且根据数列极限的定义知,,0K ∃>∀ε当K k >时,有ε<-c x k n ,即εε+<<-c x c k n ,特别地ε->+c x K n 1,取1+=k n N ,则当1+=>k n N n 时,由数列}{n x 单调递增且c 为它的上界知εε+<≤≤<-+c c x x c n n K 1,即ε<-c x n ,从而c x n n =∞→lim ,即单调递增有上界数列必有极限.同理可证}{n x 单调递减有下界时必有极限,因而单调有界原理成立.3.用区间套定理证明单调有界数列必有极限.证明不妨假设数列}{n x 单调递增有上界(}{n x 单调递减有下界可同理证明),即存在R b ∈,使得b x x x a n ≤≤≤≤≤= 21,下证数列}{n x 有极限.若b a =,则}{n x 为常驻列,故}{n x 收敛,因而以下假设b a <.取b b a a ==11,,二等分区间],[11b a ,分点为211b a +,若211b a +仍为}{n x 的上界,则令2,11212b a b a a +==;若211b a +不是}{n x 的上界,即存在m ,使211b a x m +>,则令12112,2b b b a a =+=.二等分区间],[22b a ,分点为222b a +,若222b a +为}{n x 的上界,则令2,22323b a b a a +==;若222b a +不是}{n x 的上界,则令.,223223b b b a a =+=依此类推得一闭区间套{}],[n n b a ,每一个区间的右端点都是}{n x 的上界,由闭区间套定理知存在唯一的R c ∈,使得c 属于所有闭区间,下证数列}{n x 的极限为c .由于02lim)(lim 1=-=--∞→∞→n n n n n ab a b ,故根据数列极限的定义,0>∀ε,存在N ,当N n >时,都有2ε<-n n a b ,而],[n n b a c ∈,故),(],[εε+-⊂c c b a n n .(*)另一方面,由闭区间套的构造知K ∃,使得n K n b x a ≤≤,故对K n >∀,由于K n x x >,故n n K n b x x a ≤≤≤.而由(*)知εε+<<-c x c n ,即ε<-c x n ,从而c x n n =∞→lim ,因而单调有界数列必有极限.4.试分析区间套定理的条件:若将闭区间列改为开区间列,结果怎样?若将条件⊃⊃],[],[2211b a b a 去掉或将条件0→-n n a b 去掉,结果怎样?试举例说明.分析(1)若将闭区间列改为开区间列,结果不真.如开区间列⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛n 1,0满足001lim =⎪⎭⎫ ⎝⎛-∞→n n 且 ⊃⎦⎤⎢⎣⎡⊃⊃⎥⎦⎤⎢⎣⎡⊃⎥⎦⎤⎢⎣⎡⊃⎥⎦⎤⎢⎣⎡n 1,031,021,011,0,但不存在r ,使r 属于所有区间.(2)若将定理其它条件不变,去掉条件 ⊃⊃],[],[2211b a b a ,则定理仍不成立,如⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+n n n 1,是闭区间列,且0→-n n a b ,但显然不存在r ,使r 属于所有区间.(3)若去掉定理条件0→-n n a b ,则定理仍不成立,如闭区间序列⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+-n n 13,11满足 ⊃⊃],[],[2211b a b a ,此时区间]3,1[内任意一点都属于闭区间序列的任何区间,与唯一性矛盾.5.若}{n x 无界,且非无穷大量,则必存在两个子列∞→k n x ,a x k m →(a 为有限数).证明由于}{n x 无界,故N k ∈∀,都存在k n x ,使得k x k n >,因而∞=∞→k n k x lim .又由于}{n x 不是无穷大量,根据无穷大量否定的正面陈述知0M ∃,对0>∀K ,存在K m k >,使得0||M x k m <.从而对于0>∀K ,数列}{k m x 为有界数列,从而必有收敛子列}{k m x .故结论成立.6.有界数列}{n x 若不收敛,则必存在两个子列b x a x k k m n →→,)(b a ≠.证明由于}{n x 为有界数列,由紧致性定理知数列}{n x 必有收敛的子列}{k n x ,不妨设)(∞→→k a x k n ,又因为数列}{n x 不收敛于a ,故从}{n x 中去掉}{k n x 后所得的项还有无穷多项(否则数列}{n x 就收敛于a ).记其为数列}{k n x ,又因为}{k n x 为有界数列,故有收敛子列,设此子列的极限为b ,则b a ≠,而此子列也是}{n x 的子列,故设其为}{k m x ,因而)(lim b a b x k m k ≠=∞→.7.求证:数列}{n a 有界的充要条件是,}{n a 的任何子数列}{k n a 都有收敛的子数列.证明必要性:由紧致性定理知结论成立.充分性:反设数列}{n a 无界.若}{n a 是无穷大量,则}{n a 的任何子列都不存在收敛的子列,矛盾;若}{n a 不是无穷大量,则由第5题知}{n a 有一子列}{k n a 是无穷大量,从而}{k n a 没有收敛的子数列,也矛盾.因而数列}{n a 有界.8.设)(x f 在],[b a 上定义,且在每一点处函数的极限存在,求证:)(x f 在],[b a 上有界.证明对],[b a t ∈∀,由于)(x f 在t 处的极限存在,故设A x f tx =→)(lim ,则对01>=ε,存在0>t δ,x ∀,当t t x δ<-<||0时,有1)(=<-εA x f ,从而1||)(+<A x f ,取{}1||),(max +=A t f M ,则),(t t t t x δδ--∈∀,都有M x f <)(,即)(x f 在区间),(t t t t δδ--上有界.对所有],[b a t ∈,在1=ε下所取的t δ为半径的开区间{}],[|),(b a t t t t t ∈+-δδ构成闭区间],[b a 上的一个开覆盖,由有限覆盖定理知,存在],[,,,21b a t t t n ∈ ,使得),(],[1i i t i t i ni t t b a δδ+-⊂= ,而)(x f 在每个区间),(i i t i t i t t δδ+-),,2,1(n i =上有界,又由于区间个数有限,故)(x f在],[b a 上有界.9.设)(x f 在],[b a 无界,求证:存在],[b a c ∈,对任意0>δ,函数)(x f 在],[),(b a c c δδ+-上无界.证明反设结论不真,即],[b a c ∈∀,0>∃c δ,函数)(x f 在],[),(b a c c c c δδ+-上有界,则对所有的c ,{}],[|),(b a c c c c c ∈+-δδ构成区间],[b a 的一个开覆盖,由有限覆盖定理知其有有限子覆盖,即],[,,,21b a c c c n ∈∃ ,使),(],[1i i c i c i ni c c b a δδ+-⊂= ,由于函数在每一个],[),(b a c c i i c i c i δδ+-有界,而n 是有限数,故)(x f 在],[b a 有界,矛盾.因此结论成立.10.设)(x f 是),(b a 上的凸函数,且有上界,求证:)(lim ),(lim x f x f bx ax -+→→存在.证明由于)(x f 在),(b a 上有上界,故0>∃M ,对M x f b a x ≤∈∀)(),,(.先证明)(lim x f bx -→存在.在区间),(b a 中任取一点0x ,并令00)()()(x x x f x f x g --=,则由)(x f 是),(b a 上的凸函数知)(x g 在),(0b x 上递增,在),(0b x 中任取一点1x ,考察区间),(1b x ,),(1b x x ∈∀,由于1000)()()()(x x x f M x x x f x f x g --≤--=,即)(x g 在),(1b x 上有上界,从而)(x g 在),(1b x 上单调递增且有上界,由定理3.12知)(lim x g b x -→存在,不妨令A x g bx =-→)(lim ,则)()()()()()(lim )(lim 000000x f x b A x f x x x f x f x x x f b x b x +-=⎥⎦⎤⎢⎣⎡+--⋅-=--→→,即)(lim x f bx -→存在.再证明)(lim x f ax +→存在.由于)(x f 是),(b a 上的凸函数,从而)(x g 在),(0x a 上递增,在),(0x a 中任取一点2x ,考察区间),(2x a ,),(2x a x ∈∀,由于ax Mx f x x x f x f x x x f x f x g --≥--=--=000000)()()()()()(,即)(x g 在),(2x a 上有下界,从而)(x g 在),(2x a 上单调递增且有下界,由定理3.12的推论知)(lim x g ax +→存在,设B x g ax =+→)(lim ,则)()()()()()(lim )(lim 000000x f B x a x f x x x f x f x x x f a x a x +-=⎥⎦⎤⎢⎣⎡+--⋅-=++→→,即)(lim x f ax +→也存在.11.设)(x f 在],[b a 上只有第一类间断点,定义)0()0()(--+=x f x f x ω.求证:任意εωε≥>)(,0x 的点x 只有有限多个.证明反证法,使用区间套定理.根据结论,反设存在00>ε,在],[b a 上使0)(εω≥x 的点有无限多个.记],[],[11b a b a =,二等分区间],[11b a ,则在⎥⎦⎤⎢⎣⎡+⎦⎤⎢⎣⎡+111111,2,2,b b a b a a 中至少有一个区间含有无限多个x 使0)(εω≥x ,记此区间为],[22b a ,再二等分区间],[22b a ,在⎥⎦⎤⎢⎣⎡+⎦⎤⎢⎣⎡+222222,2,2,b b a b a a 中至少有一个区间含有无限多个x 使0)(εω≥x ,记此区间为 ],,[33b a ,如此继续下去,得闭区间套],[n n b a ,且每个区间],[n n b a 中含有无限多个x 使0)(εω≥x .由区间套定理可知存在唯一,2,1],,[=∈n b a r n n 由于)(x f 在],[b a 上只有第一类间断点,而],[b a r ∈,故)0(+r f 和)0(-r f 存在,设B r f A r f =-=+)0(,)0(,则对上述00>ε,存在),(,011δδ+∈∀>r r x 时,有2)(0ε<-A x f ,即2)(200εε+<<-A x f A ,从而由极限不等式知,当),(1δ+∈r r x 时,0)(εω<x ;同理存在),(,022r r x δδ-∈∀>时,0)(εω<x .取{}21,min δδδ=,则在),(δδ+-r r 上满足0)(εω≥x 的点至多只能有r 一个点.而根据区间套性质知,N n N >∀∃,时,都有),(],[δδ+-⊂r r b a n n ,从而在],[n n b a 中最多只能有一个点,使得0)(εω≥x ,这与区间套的构造矛盾.故原结论成立.12.设)(x f 在],0[+∞上连续且有界,对),(+∞-∞∈∀a ,a x f =)(在),0[+∞上只有有限个根或无根,求证:)(lim x f x +∞→存在.证明由)(x f 在],0[+∞上有界知)(x f 在],0[+∞上既有上界又有下界,不妨设上界为v ,下界为u ,若v u =,则v u x f x ==+∞→)(lim ,结论必然成立,故以下假定v u <.令],[],[11v u v u =,二等分区间],[11v u ,分点为211v u +,由于2)(11v u x f +=在),0[+∞上只有有限个根或无根,而且)(x f 连续,因而11,0X x X >∀>∃时,有2)(11v u x f +>或2)(11v u x f +<.若2)(11v u x f +>,令⎥⎦⎤⎢⎣⎡+=11122,2],[v v u v u ,若2)(11v u x f +<,则令⎦⎤⎢⎣⎡+=2,],[11122v u u v u ,因此1X x >∀时,],[)(22v u x f ∈,即22)(v x f u ≤≤.二等分区间],[22v u ,分点为222v u +,由于2)(22v u x f +=在),0[+∞上只有有限个根或无根且)(x f 连续,故212,X x X X >∀>∃时,有2)(22v u x f +>或2)(22v u x f +<.若2)(22v u x f +>,令⎥⎦⎤⎢⎣⎡+=22233,2],[v v u v u ,反之令⎥⎦⎤⎢⎣⎡+=2,],[22233v u u v u ,因此2X x >∀时,],[)(33v u x f ∈,即33)(v x f u ≤≤.依此类推,得一区间套]},{[n n v u ,而且由区间套的构造知,n n n X x X X >∀>∃-,1时,n n v x f u ≤≤)(.由区间套定理知存在唯一的 ,2,1],,[=∈n v u r n n ,下证r x f x =+∞→)(lim .事实上,对0>∀ε,由闭区间套]},{[n n v u 的构造知,存在N ,N n >∀时,有),(],[εε+-⊂r r v u n n ,特别地取1+=N n ,则),(],[11εε+-⊂++r r v u N N ,按区间套的构造知11,++>∀∃N N X x X 时,),(],[)(11εε+-⊂∈++r r v u x f N N ,即εε+<<-r x f r )(,从而ε<-r x f )(,即r x f x =+∞→)(lim ,也就是说)(lim x f x +∞→存在.§3实数的完备性1.设)(x f 在),(b a 连续,求证:)(x f 在),(b a 一致连续的充要条件是)(lim x f ax +→与)(lim x f b x -→都存在.证明)⇒必要性由)(x f 在),(b a 一致连续知,0,0>∃>∀δε,),(,b a x x ∈'''∀且δ<''-'||x x 时,都有ε<''-')()(x f x f .特别地,当),(,δ+∈'''a a x x 时,δ<''-'x x ,故ε<''-')()(x f x f ,由Cauchy 收敛原理知)(lim x f ax +→存在.同理可知)(lim x f bx -→也存在.)⇐充分性证法10>∀ε,由)(lim x f a x +→存在知1δ∃,),(,1δ+∈'''∀a a x x 时,ε<''-')()(x f x f ,又由于)(lim x f bx -→也存在,故2δ∃,),(,2b b x x δ-∈'''∀时,ε<''-')()(x f x f .取⎭⎬⎫⎩⎨⎧-=4,2,2min 21a b δδδ,则由以上两条知)(x f 在),[],,(b b a a δδ-+上一致连续,而又因为)(x f 在],[δδ-+b a 上连续,因而一致连续,因此)(x f 在],(δ+a a 、],[δδ-+b a 、),[b b δ-上均一致连续,因此)(x f 在),(b a 一致连续.证法2由已知)(lim x f ax +→与)(lim x f bx -→都存在,设B x f A x f bx ax ==-+→→)(lim ,)(lim ,令⎪⎩⎪⎨⎧=∈==.);,()(;)(b x B b a x x f a x A x F 则)(x F 在],[b a 连续,因而一致连续,从而)(x F 在),(b a 一致连续,而)(x F 在),(b a 上就是)(x f ,因而)(x f 在),(b a 上一致连续.2.求证数列nx n 1211+++= ,当∞→n 时的极限不存在.证明利用Cauchy 收敛原理的否定形式证明.取0,0210>∀>=N ε,任取N n >,则N n >2,从而nn n x x n n 2121112+++++=- 021212121212111ε==+++>+++++>n n n n n n ,由Cauchy 收敛原理的否定知数列nx n 1211+++= 当∞→n 时的极限不存在.3.利用Cauchy 收敛原理讨论下列数列的收敛性.(1))||,1||(2210M a q q a q a q a a x k nn n ≤<++++= ;(2)n n n x 2sin 22sin 21sin 12++++= ;(3)nx n n 1)1(312111+-+-+-= .解(1)0>∀ε,由1||<q 知0lim 1=+∞→n n q,从而N ∃,N n >∀时,有εMq q n ||1||1-<+,对上述N m n N >∀,,时(不妨n m >),有mn n m n n m n x x x x x x x x +++≤+++=-++++ 2121 ++=++++≤++++++221121||||||||n n n n m n n q a q a x x x ()εε=-⋅-<-=++≤+++Mq q M q q M q q M n n n ||1||1||1||||||121.由Cauchy 收敛原理知数列}{n x 收敛.(2)这是(1)中21,sin ,10===q k a a k 的特殊情形,由于21||,1<≤q a k ,故数列}{n x 收敛.(3)证法1利用Cauchy 收敛原理.0>∀ε,由01lim=∞→n n 知,N ∃,N n >∀时ε<n 1,对上述N m n N >∀,,时(不妨n m >),有mn n x x m n n m n 1)1(21)1(11)1(132+++-+++-++-=- mn n n m 1)1(21111---+++-+=.由于01)1(21111>-+++-+--mn n n m ,故mn n x x n m m n 1)1(21111---+++-+=- .若n m -为偶数,则mn n x x n m m n 1)1(21111---+++-+=- m m m n n n 11121312111-⎪⎭⎫ ⎝⎛-----⎪⎭⎫ ⎝⎛+-+-+= ε<+≤11n .若n m -为奇数,则mn n x x n m m n 1)1(21111---+++-+=- ⎪⎭⎫ ⎝⎛----⎪⎭⎫ ⎝⎛+-+-+=m m n n n 111312111 ε<+≤11n .因而由Cauchy 收敛原理知数列}{n x 收敛.证法2先考虑数列}{n x 的偶子列}{2n x ,由于22131211221)1(3121132)1(2+--+-=+-+-+-=++n n x n n ⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=221121211214131211n n n n n x n n 2211214131211=⎪⎭⎫ ⎝⎛--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-> ,故偶子列}{2n x 是单调递增的数列,又由于1211213121121)1(31211122<⎪⎭⎫ ⎝⎛----⎪⎭⎫ ⎝⎛--=-+-+-=+n n n x n n ,因而偶子列}{2n x 是单调上升且有上界的数列,由单调有界原理知}{2n x 必有极限存在,设a x n n =∞→2lim .又由于121212++=+n x x n n 且0121lim=+∞→n n ,从而a n x x n n n n n =++=∞→∞→+∞→121lim lim lim 212.于是我们证得数列}{n x 的奇、偶子列均收敛而且极限相同,故数列}{n x 收敛.4.证明:极限)(lim 0x f x x →存在的充要条件是:对任意给定0>ε,存在0>δ,当δ<-'<00x x ,δ<-''<00x x 时,恒有ε<''-')()(x f x f .证明)⇒必要性设A x f x x =→)(lim 0,则δδε<-<∀>∃>∀00,,0,0x x x ,就有2)(ε<-A x f ,因此由δ<-'<00x x ,δ<-''<00x x 知ε<-''+-'<-''--'=''-'A x f A x f A x f A x f x f x f )()())(())(()()(,因而必要性成立.)⇐充分性设}{n x 是任意满足0lim x x n n =∞→且0x x n ≠的数列,由已知0,0>∃>∀δε,只要δ<-'<00x x ,δ<-''<00x x 时,有ε<''-')()(x f x f .对上述0>δ,由于0lim x x n n =∞→,且0x x n ≠,故N n N >∀∃,时,有δ<-<||00x x n ;N m >∀时,有δ<-<||00x x m ,于是ε<-)()(m n x f x f ,即)}({n x f 是基本列,由实数列的Cauchy 收敛准则知)(lim n n x f ∞→存在.由}{n x 的取法知任意趋向于0x 而不等于0x 的实数列}{n x 都有极限)(lim n n x f ∞→存在.下证它们的极限都相等.反设)(lim ),(lim 0000x x x x x x x x n nn n n n ≠'='≠=∞→∞→,但)(lim )(lim n n n n x f x f '≠∞→∞→,则定义一个新的数列},,,,{}{2211 x x x x y n ''=,由}{n y 的构造知)(lim 00x y x y n n n ≠=∞→,但)(lim n n y f ∞→有两个子序列极限不相等,故极限)(lim n n y f ∞→不存在,矛盾.从而任意趋向于0x 而不等于0x 的实数列}{n x 构成的数列)(n x f 都有极限存在.而且它们的极限都相等.由Heine 归结原则知)(lim 0x f x x →存在.5.证明)(x f 在0x 点连续的充要条件是:任给0>ε,存在0>ε,当δ<-'0x x ,δ<-''0x x 时,恒有ε<''-')()(x f x f .证明)⇒必要性由)(x f 在0x 点连续知)()(lim 00x f x f x x =→,故δδε<-∀>∃>∀0,,0,0x x x ,就有2)()(0ε<-x f x f ,因此由δ<-'0x x ,δ<-''0x x 知))()(())()(()()(00x f x f x f x f x f x f -''--'=''-'ε<-''+-'≤)()()()(00x f x f x f x f .因而必要性成立.)⇐充分性设}{n x 是任意满足0lim x x n n =∞→的数列,由已知0,0>∃>∀δε,只要δ<-'0x x ,δ<-''0x x 时,就有ε<''-')()(x f x f .对上述0>δ,由于0lim x x n n =∞→,故N n N >∀∃,时,有δ<-||0x x n ,N m >∀时,有δ<-||0x x m ,于是ε<-)()(m n x f x f ,即)}({n x f 是基本列,由实数列的Cauchy 收敛准则知)(lim n n x f ∞→存在.由}{n x 的取法知任意趋向于0x 的实数列}{n x ,)(lim n n x f ∞→存在.下证它们的极限都相等.反设)(lim ),(lim 0000x x x x x x x x n nn n n n ≠'='≠=∞→∞→,但)(lim )(lim n n n n x f x f '≠∞→∞→,则定义一个新的数列},,,,{}{2211 x x x x y n ''=,由}{n y 的构造知0lim x y n n =∞→,但)(lim n n y f ∞→有两个子序列极限不相等,故极限)(lim n n y f ∞→不存在,矛盾.从而,任意趋向于0x 的实数列}{n x 构成的数列)(n x f 都有极限存在,而且极限都相等,由Heine 归结原则知)(lim 0x f x x →存在.特别地,取}{n x 为恒为0x 的常数列,则可得)()(lim 0x f x f n n =∞→,即)()(lim 00x f x f x x =→,从而)(x f 在0x 点连续.6.证明下列极限不存在:(1)32cos 11πn n n x n +-=;(2)nn n nx )1(21-+=;(3))sin(2n n x n +=π;(4)n x n cos =;(5)n x n tan =.解(1)取}{n x 的两个子序列,当k n 3=时,131336cos 13133+-=+-=k k k k k x k π,从而可以得到1lim 3=∞→k k x .而当13+=k n 时,233213)13(2cos 23313+⋅-=++=+k k k k k x k π,从而21lim 13-=+∞→k k x .}{n x 的两个子序列极限不等,故}{n x 的极限不存在.(2)对}{n x 的奇子列,由于121212211+++⎪⎭⎫⎝⎛+=k k k x ,而且12lim 12=+∞→k k ,故1lim 12=+∞→k k x ;对}{n x 的偶子列,由于k k k x 22221+=,而222212222→⋅≤+≤k k k ,故2lim 2=∞→k k x .原数列的奇子列与偶子列极限不同,故}{n x 的极限不存在.(3)由于()21lim2=-+∞→n n nn ,故取41=ε,则存在00,N n N >∀时41212=<--+εn n n ,从而4121412<--+<-n n n ,即43412+<+<+n n n n ,从而()πππππ43412+<+<+n n n n .当n 为偶数时,由于ααπsin )sin(=+n ,从而由上式知()1sin 222≤+=≤n n x n π;当n 为奇数时,由于ααπsin )sin(-=+n ,从而()22sin 12-≤+=≤-n n x n π.因此取220=ε,对N ∀,任取},max{0N N n >,则},max{10N N n >+,而且n x 和1+n x 一个在⎥⎦⎤⎢⎣⎡1,22内,另一个在⎥⎦⎤⎢⎣⎡--22,1内,从而0122ε=>-+n n x x ,由Cauchy 收敛原理的否定形式知数列}{n x 极限不存在.(4)取1sin 20=ε,对N ∀,由阿基米德公理知,存在+∈N k ,使得142+>+N k ππ,在⎪⎭⎫⎝⎛++432,42ππππk k 区间上,由于区间长度12>π,从而存在N n >,使得⎪⎭⎫ ⎝⎛++∈+432,421ππππk k n ,对于n 和2+n ,有1sin )1sin(222sin 22sin2cos )2cos(+=-+++=-+n nn n n n n 01sin 21sin 222ε==⋅≥,由Cauchy 收敛原理的否定形式知数列}{cos }{n x n =极限不存在.(5)取0330>=ε,对N ∀,由阿基米德公理知,存在+∈N k ,使得N k >π,由于⎪⎭⎫ ⎝⎛++2,6ππππk k 的区间长度13>π,从而在⎪⎭⎫ ⎝⎛++2,6ππππk k 中有一个或两个大于N 的正整数点.若在⎪⎭⎫⎝⎛++2,6ππππk k 中只有一个正整数点n ,则⎪⎭⎫⎝⎛+-+=⎪⎭⎫ ⎝⎛+++∈+ππππππππ)1(,2)1(22,21k k k k n ,从而0336tantan )1tan(tan tan )1tan(επ==>>+-=-+n n n n n ;若在⎪⎭⎫⎝⎛++2,6ππππk k 中有两个大于N 的正整数点,则取较大的正整数为n ,同样,⎪⎭⎫⎝⎛+-+∈+πππ)1(,2)1(1k k n ,从而0336tantan )1tan(tan tan )1tan(επ==>>+-=-+n n n n n .由Cauchy 收敛原理的否定形式知数列}{tan }{n x n =极限不存在.7.设)(x f 在),(+∞a 上可导,|)(|x f '单调下降,且)(lim x f x +∞→存在,求证:0)(lim ='+∞→x f x x .证明由于)(lim x f x +∞→存在,由Cauchy 收敛原理,0,0>∃>∀X ε,当X x>2时,也有X x >,从而22)(ε<⎪⎭⎫⎝⎛-x f x f .又因为)(x f 在),(+∞a 可导,故)(x f 在⎪⎭⎫ ⎝⎛x x ,2上满足Lagrange 中值定理条件,因而⎪⎭⎫⎝⎛∈∃x x ,2ξ,使得2)(2)(x f x f x f ξ'=⎪⎭⎫⎝⎛-,从而)(2)(2ξf x x f x f '=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-,又根据)(x f '单调下降得εεξξ=⋅<⎪⎭⎫⎝⎛-='='≤'='222)(2)()()()(x f x f f x f x x f x x f x ,因此0)(lim ='+∞→x f x x .8.设)(x f 在),(+∞-∞可导,且1)(<≤'k x f ,任给0x ,令),2,1,0()(1 ==+n x f x n n ,求证:(1)n n x +∞→lim 存在;(2)上述极限为)(x f x =的根,且是唯一的.证明(1)0>∀ε,取k x x k N ln )1(ln1--=ε,N m n >∀,,不妨m n <,下证ε<-||n m x x .由已知)(x f 在),(+∞-∞可导,故由Lagrange 中值定理得1111))(()()(---+-≤-'=-=-n n n n n n n n x x k x x f x f x f x x ξ,同理 ,211----≤-n n n n x x k x x ,依此类推得011x x k x x nn n -≤-+,因此nn m m n n m m m n m x x x x x x x x x x x -++-≤-+-+-=-+-+--11111 011101011)(x x k k k x x k x x k n n m n m -+++=-++-≤+-- 010111)(x x kk x x kk nn n--=-++<+ .由于k x x k N n ln )1(ln01--=>ε,而1<k ,从而01)1(lnln x x k k n --<ε,故ε<--=-011x x kk x x nn m ,因此由Cauchy 收敛原理知n n x +∞→lim 存在.(2)由于)(x f 在),(+∞-∞可导,因而连续,在)(1n n x f x =+两边同时对∞→n 取极限,则)lim (lim n n n n x f x +∞→+∞→=,即n n x +∞→lim 是)(x f x =的根,下证唯一性.反设有)(,b a b a ≠,且)(a f a =,)(b f b =,则b a b a k b a f b f a f b a -<-≤-⋅'=-=-)()()(ξ,矛盾,故根是唯一的.9.设)(x f 在],[b a 满足条件:(1)10],,[,,)()(<<∈∀-≤-k b a y x y x k y f x f ;(2))(x f 的值域包含在],[b a 内.则对任意],[0b a x ∈,令),2,1,0()(1 ==+n x f x n n ,有(1)n n x +∞→lim 存在;(2)方程)(x f x =的解在],[b a 上是唯一的,这个解就是上述极限值.证明(1)0>∀ε,取k x x k N ln ||)1(ln01--=ε,N m n >∀,,不妨m n <,下证ε<-n m x x .由已知)(1n n x f x =+,而],[0b a x ∈且)(x f 的值域包含在],[b a 内,因而对n ∀,都有],[b a x n ∈,从而01111)()(x x k x x k x f x f x x n n n n n n n -≤-≤-=---+,因此nn m m n n m m m n m x x x x x x x x x x x -++-≤-+-+-=-+-+--11111 011101011)(x x k k k x x k x x k n n m n m -+++=-++-≤+-- ε<--=-++<+010111)(x x kk x x kk nn n.因此由Cauchy 收敛原理知n n x +∞→lim 存在.(2)设方程)(x f x =在],[b a 上有两个不同的解d c ,,则d c d c k d f c f d c -<-<-=-)()(,矛盾,故根是唯一的.§4再论闭区间上连续函数的性质1.设)(x f 在],[b a 上连续,并且最大值点0x 是唯一的,又设],[b a x n ∈,使)()(lim 0x f x f n n =+∞→,求证0lim x x n n =+∞→.证明不妨设),(0b a x ∈,当a x =0或b x =0时同理可证.对任意},min{000x b a x --<<ε,由于)(x f 在],[b a 上连续,故)(x f 在],[0ε-x a 、],[00εε+-x x 、],[0b x ε+上连续,由闭区间连续函数的最值定理,)(x f 在],[0ε-x a 、],[00εε+-x x 、],[0b x ε+上均有最大值,显然)(x f 在],[00εε+-x x 上的最大值为)(0x f ,设)(x f 在],[0ε-x a 和],[0b x ε+上的最大值为M ,由最大值点的唯一性可知M x f >)(0.取02)(0>-Mx f ,由)()(lim 0x f x f n n =+∞→知N n N >∀∃,时,2)()()(00Mx f x f x f n -<-,即M Mx f M x f x f x f n >+=-->2)(2)()()(000,而)(x f 在],[0ε-x a 和],[0b x ε+上的最大值为M ,故),(00εε+-∈x x x n ,即ε<-||0x x n ,从而0lim x x n n =+∞→.2.设)(x f 在],[b a 上连续,可微;又设(1))(max )(min x f p x f bx a bx a ≤≤≤≤<<;(2)如果p x f =)(,则有0)(≠'x f ,求证:p x f =)(的根只有有限多个.证明利用区间套定理.反设p x f =)(在],[b a 上有无穷多个根,设],[],[11b a b a =,二等分区间],[11b a ,则在两个子区间中必有一个区间含有p x f =)(的无穷多个根,设此区间为],[22b a ,再二等分区间],[22b a ,则在两个子区间中必有一个区间含有p x f =)(的无穷多个根,设此区间为 ],,[33b a .依此类推得一区间套]},{[n n b a ,由区间套的构造知p x f =)(在任意],[n n b a 有无穷多个根.由区间套定理知],[b a r ∈∃,使得对于任意],[,n n b a r N n ∈∈+.若p r f ≠)(,则令p x f x g -=)()(,)(x g 也在],[b a 连续,且0)()(≠-=p r f r g ,从而由保号性知),(,δδδ+-∈∀∃r r x 时,都有0)(≠x g ,即p x f ≠)(,而由区间套知N n N >∀∃,时),(],[δδ+-⊂r r b a n n ,即p x f =)(在],[n n b a 无根,这与区间套的构造矛盾.若p r f =)(,则0)(≠'r f ,即0)()(lim≠--→rx r f x f rx ,从而x ∀'∃,δ,当δ'<-<||0r x 时,有0)()(≠--rx r f x f ,即p x f ≠)(,从而在),(δδ'+'-r r 上)(x f 只有一个根r ,而由区间套知N n N >∀∃,时),(],[δδ+-⊂r r b a n n ,即p x f =)(在],[n n b a 只有一个根,这与区间套的构造矛盾.因此p x f =)(在],[b a 上只有有限多个根.3.设)(x f 在],[b a 上连续,0)(,0)(><b f a f ,求证:存在),(b a ∈ξ,使0)(=ξf 且)(0)(b x x f ≤<>ξ.证明令],[|{b a x x E ∈=且}0)(=x f ,由于0)(,0)(><b f a f ,且)(x f 在],[b a 上连续,由介值性定理知φ≠E ,从而E 为非空有界数集,由确界原理知E 有上确界,设E sup =ξ,下证0)(=ξf .事实上,由于E sup =ξ,由本章第一节习题3知可以在E 中选取数列}{n x ,使ξ=∞→n n x lim ,又由)(x f 连续知0)(lim )lim ()(===∞→∞→n n n n x f x f f ξ,又对于],(b x ξ∈∀,由于E x ∉,从而0)(≠x f ,又根据0)(>b f 知0)(>x f ,因而结论成立.4.设)(x f 是],[b a 上的连续函数,其最大值和最小值分别为M 和)(M m m <,求证:必存在区间],[βα,满足条件:(1)m f M f ==)(,)(βα或M f m f ==)(,)(βα;(2)M x f m <<)(,当),(βα∈x .证明由于)(x f 是],[b a 上的连续函数,且有最大值M 和最小值m ,故由最值定理知],[b a c ∈∃,使得M c f =)(;],[b a d ∈∃,使得m d f =)(,由于M m <,故d c ≠,令},min{d c =α,},max{d c =β,则在区间],[βα上满足:(1)m f M f ==)(,)(βα或M f m f ==)(,)(βα;(2)对),(βα∈∀x ,由于m f M f ==)(,)(βα或M f m f ==)(,)(βα,而m M ,分别为],[b a 上的最大值和最小值,故M x f m <<)(.5.设)(x f 在]2,0[a 上连续,且)2()0(a f f =,求证:存在],0[a x ∈,使)()(a x f x f +=.证明考虑辅助函数)()()(a x f x f x g +-=,],0[a x ∈.若)()0(a f f =,根据已知条件)2()0(a f f =可知,取0=x 或a x =时,均有)()(a x f x f +=,命题已证.若)()0(a f f ≠,则)()0()0(a f f g -=,)0()()2()()(f a f a f a f a g -=-=,从而)0(g 与)(a g 符号相反,由零点定理知],0[a x ∈∃,使0)(=x g ,即)()(a x f x f +=.6.设)(x f 在],[b a 上连续,且取值为整数,求证≡)(x f 常数.证明反设)(x f 不恒为常数,则],[,21b a x x ∈∃,使得)()(21x f x f ≠,又由于)(x f 取值为整数,故)(),(21x f x f 均为整数,在)(),(21x f x f 之间任取一非整数c ,则由介值性定理知],[b a ∈∃ξ,使得c f =)(ξ,这与)(x f 取值为整数矛盾.7.设)(x f 在),(b a 一致连续,±∞≠b a ,,证明:)(x f 在],[b a 上有界.证明由于)(x f 在],[b a 上一致连续,故取01>=ε,则0>∃δ,当δ<-21x x 时,有1)()(21<-x f x f .取定11,b a ,其中δ+<<a a a 1,b b b <<-1δ,则],(1a a x ∈∀,有δ<-1a x ,故1)()(1<-a f x f ,因而1)()(1+<a f x f ;同理),[1b b x ∈∀,有δ<-1b x ,故1)()(1<-b f x f ,因而1)()(1+<b f x f ,因此)(x f 在区间],(1a a 和区间),[1b b 均有界.另一方面,由于)(x f 在],[11b a 上一致连续,根据闭区间上连续函数的性质可知存在01>M ,使得111)(],,[M x f b a x <∈∀.取0}1)(,1)(,max{111>++=b f a f M M ,则),(b a x ∈∀,均有M x f <)(,因而)(x f 在),(b a 上有界.8.若函数)(x f 在),(b a 上满足利普希茨(Lipschitz )条件,即存在常数K ,使得x x K x f x f ''-'≤''-')()(,),(,b a x x ∈'''.证明:)(x f 在),(b a 上一致连续.证明,0>∀ε取,21εδK=则对δ<''-'∈'''∀x x b a x x ),,(,,由Lipschitz 条件知εε<⋅<''-'≤''-'KK x x K x f x f 21)()(,因而依定义知)(x f 在),(b a 上一致连续.9.试用一致连续的定义证明:若函数)(x f 在],[c a 和],[b c 上都一致连续,则)(x f 在],[b a 上也一致连续.证明对0>∀ε,由函数)(x f 在],[c a 一致连续知01>∃δ,对],[,21c a x x ∈∀而且121δ<-x x ,就有2)()(21ε<-x f x f ;又根据函数)(x f 在],[b c 上一致连续知02>∃δ,],[,21b c x x ∈∀且221δ<-x x 时,就有2)()(21ε<-x f x f .取},min{21δδδ=,则],[,21b a x x ∈∀且δ<-21x x 时,若21,x x 同属于],[c a ,有εε<<-2)()(21x f x f ;若21,x x 同属于],[b c ,也有εε<<-2)()(21x f x f ;若21,x x 一个属于],[c a ,另一个属于],[b c ,则由δ<-21x x 知δδ<-<-c x c x 21,,从而εεε=+<-+-≤-22)()()()()()(2121x f c f c f x f x f x f .因而],[,21b a x x ∈∀且δ<-21x x 时,ε<-)()(21x f x f .因此由一致连续的定义可知)(x f 在],[b a 上一致连续.10.设函数)(x f 在),(+∞-∞上连续,且极限)(lim x f x -∞→与)(lim x f x +∞→存在.证明:)(x f 在),(+∞-∞上一致连续.证明对0>∀ε,由于)(lim x f x -∞→存在,根据Cauchy 收敛原理知,存在01>X ,任意121,X x x -<时,就有ε<-)()(21x f x f ;又由于)(lim x f x +∞→存在,故存在02>X ,任意221,X x x >,就有ε<-)()(21x f x f .由于)(x f 在),(+∞-∞上连续,故)(x f 在区间]1,1[21+--X X 上连续,因而在]1,1[21+--X X 上一致连续,由一致连续的定义知,对上述0>ε,存在01>δ,任意]1),1([,2121++-∈X X x x ,只要112δ<-x x ,就有ε<-)()(21x f x f .取0}1,min{1>=δδ,则),(,21+∞-∞∈∀x x ,只要δ<-21x x ,则21,x x 同属于区间),(1X --∞、]1),1([21++-X X 或),(2+∞X ,由上述讨论知,不管在哪种情况下,都有ε<-)()(21x f x f ,因而)(x f 在),(+∞-∞上一致连续.11.若)(x f 在区间X (有穷或无穷)中具有有界的导数,即M x f ≤')(,X x ∈,则)(x f 在X 中一致连续.证明对0>∀ε,取Mεδ=,则对任意X x x ∈21,,只要δ<-||21x x ,根据Lagrange 中值定理,存在ξ在21,x x 之间,且εδξ=<-≤-'=-M x x M x x f x f x f 212121|))((|)()(,从而)(x f 在X 中一致连续.12.求证:x x x f ln )(=在),0(+∞上一致连续.证明由于x x x f ln )(=,故xx x xxx f 2ln 2ln 211)(+=+=',xx x x f 4ln )(-='',令0)(=''x f 得1=x ,故1=x 是)(x f '的稳定点,当0)(),1,0(>''∈x f x ,从而)(x f '单调递增;而当0)(),,1(<''+∞∈x f x ,故)(x f '单调递减,因此1=x 是)(x f '的极大值点,也是最大值点,而1)1(='f ,从而对),0(+∞∈∀x ,1)(≤'x f .再令0)(='x f 得2-=e x ,在区间),[2+∞-e 上,由于0)(≥'x f ,因而在),[2+∞-e 上1)(0≤'≤x f ,即1)(≤'x f ,由上题结论知)(x f 在),[2+∞-e 上一致连续.此外,由于0ln lim )(lim 00==++→→x x x f x x ,若令⎩⎨⎧=>=.00,0ln )(x x x x x g则)(x g 在]2,0[连续,因而一致连续,从而)(x g 在]2,0(上一致连续,即)(x f 在]2,0(一致连续.对0>∀ε,由)(x f 在),[2+∞-e 上一致连续知,01>∃δ,对任意),[,221+∞∈-e x x 且121δ<-x x ,都有ε<-)()(21x f x f ;又由)(x f 在]2,0(上一致连续知,02>∃δ,对任意]2,0(,21∈x x 且221δ<-x x ,也有ε<-)()(21x f x f .取0}1,,min{21>=δδδ,则当),0(,21+∞∈x x 且δ<-21x x 时,要么],2,0(,21∈x x 要么),[,221+∞∈-e x x ,从而ε<-)()(21x f x f .因此x x x f ln )(=在),0(+∞上一致连续.13.设)(x f 在),(+∞a 上可导,且+∞='+∞→)(lim x f x ,求证:)(x f 在),(+∞a 上不一致连续.证明取10=ε,对0>∀δ,由于+∞='+∞→)(lim x f x ,故0>∃X ,当X x >时,有δ2)(>'x f ,任取X x >1,X x x >+=212δ,虽然有δδ<=-221x x ,但根据lagrange 中值定理知,存在)2,(11δξ+∈x x ,使得02121122)()()(εδδξ==⋅>-⋅'=-x x f x f x f .根据一致连续的否定定义知)(x f 在),(+∞a 上不一致连续.14.求证:x x x f ln )(=在),0(+∞上不一致连续.证明由于+∞=+='+∞→+∞→)1(ln lim )(lim x x f x x ,由上题结论知结论成立.§5可积性1.判断下列函数在区间]1,0[上的可积性:(1))(x f 在]1,0[上有界,不连续点为),2,1(1==n nx ;(2)⎪⎩⎪⎨⎧=∈⎪⎭⎫⎝⎛=;0,0],1,0(,sin sgn )(x x x x f π(3)⎪⎩⎪⎨⎧=∈⎥⎦⎤⎢⎣⎡-=;0,0],1,0(,11)(x x x x x f(4)[]⎪⎩⎪⎨⎧=∈=.0,0],1,0(,1)(1x x x f x解(1)由于)(x f 在]1,0[上有界,故存在0>M ,对]1,0[∈∀x ,都有M x f ≤)(,故在区间]1,0[的任何子区间上,)(x f 的振幅M 2≤ω.对任给0>ε,由于04lim=∞→n Mn ,故N n N >∀∃,时,都有24ε<n M ,特别地取10+=N n 时,也有240ε<n M .由于)(x f 在⎥⎦⎤⎢⎣⎡1,10n 上只有有限个间断点,因而是可积的,即01>∃δ,使得对区间⎥⎦⎤⎢⎣⎡1,10n 的任何1)max(δλ<∆='i x 的分法,都有∑<∆'''2i i i x εω.取⎭⎫⎩⎨⎧=011,min n δδ,对]1,0[的任意δλ<∆=)max(i x 的分法,下证εω<∆∑=ni i i x 1.由于)1,0(10∈n ,故对上述任意分法,都存在分点00,1i i x x -,使得00011i i x n x <≤-,因而∑∑∑∑∑+=-=+==-=∆++∆≤∆+∆+∆=∆ni i iii i i ni i iii i n i i i iiiixM x M xx xx o 11111110000022ωδωωωωεεεε=+<++≤222121200n M n M,这里最后一项210εω<∆∑+=ni i i i x 是由于[]⎥⎦⎤⎢⎣⎡⊂+1,11,010n x i ,而)(x f 在⎥⎦⎤⎢⎣⎡1,10n 可积,故函数在区间[]1,10+i x 可积,因而21εω<∆∑+=ni i i i x .因此0lim 10=∆∑=→ni i i x ωλ,即)(x f 在]1,0[上可积.(2)由于)(x f 在]1,0[上有界,且不连续点为),2,1(1==n nx 和0=x ,根据(1)的证法知)(x f 在]1,0[上可积.(3)由于)(x f 在]1,0[上有1)(≤x f ,故)(x f 有界,而且)(x f 的不连续点为0=x 和),2,1(1==n nx ,由(2)的证法知,)(x f 在]1,0[可积.(4)由于)(x f 在]1,0[上有1)(0≤≤x f ,故)(x f 有界,而且)(x f 的不连续点只有。
高中数学第九章统计考点题型与解题方法(带答案)
高中数学第九章统计考点题型与解题方法单选题1、某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是()A.收入最高值与收入最低值的比是3︰1B.结余最高的月份是7月C.1至2月份的收入的变化率与4至5月份的收入的变化率相同D.前6个月的平均收入为40万元答案:D分析:根据统计图对选项逐一分析,由此确定说法错误的选项.最高收入90万元,最低收入30万元,所以A正确.结余最高的为7月,结余60万元,所以B正确.根据两点连线的斜率可知,1至2月份的收入的变化率与4至5月份的收入的变化率相同,所以C正确.前6个月的平均收入为40+60+30+30+50+60=45万元,所以D选项错误.6故选:D2、在样本的频率分布直方图中,一共有n(n≥4,n∈Z)个小矩形,第4个小矩形的面积等于其余(n−1)个,则第4个小矩形对应的频率为()小矩形面积和的37A.0.3B.0.4C.0.5D.0.7答案:A(1−x),解方程可分析:设第4个小矩形对应的频率为x,然后根据频率分布直方图的性质和题意可得x=37得结果设第4个小矩形对应的频率为x,则其余(n−1)个小矩形对应的频率为1−x,(1−x),解得x=0.3.所以x=37故选:A.3、下列调查中,适合普查的是()A.一批手机电池的使用寿命B.中国公民保护环境的意识C.你所在学校的男女同学的人数D.了解全国人民对建设高铁的意见答案:C分析:根据抽样调查和普查的特点即可判断.由题调查一批手机电池的使用寿命,中国公民保护环境的意识,了解全国人民对建设高铁的意见适合用抽样调查,调查所在学校的男女同学的人数适合普查.故选:C.4、m个数据的平均数为a,中位数为b,方差为c.若将这m个数据均扩大到原来的2倍得到一组新数据,则下列关于这组新数据的说法正确的是()A.平均数为a B.中位数为2b C.标准差为√2c D.方差为2c答案:B分析:m个x1,x2,⋯,x n数据的平均数为a,中位数为b,方差为c.若将这m个数据均扩大到原来的2倍得到一组新数据2x1,2x2,⋯,2x n,根据平均数、中位数、方差、标准差的定义进行判断即可.m个x1,x2,⋯,x n数据的平均数为a,中位数为b,方差为c.若将这m个数据均扩大到原来的2倍得到一组新数据2x1,2x2,⋯,2x n,则由于平均数为所有数之和除以m,故平均数变为2a,故A错;中位数为这组数从小到大排列后中间的那个数或中间两数和的平均数,由于每个数都变为原来2倍,所以中位数也变为原来的2倍,即2b,故B对;方差描述的是这组数的波动情况,x1,x2,⋯,x n的方差为c,则2x1,2x2,⋯,2x n的方差为22c=4c,标准差为√22c=2c,故C,D错;故选:B小提示:熟悉平均数、中位数、方差、标准差的概念,特别是一组数据扩大某个倍数或增加某个数值的情况下,平均数、中位数、方差、标准差的变化.5、抽样统计甲射击运动员10次的训练成绩分别为86,85,88,86,90,89,88,87,85,92,则这10次成绩的80%分位数为()A.88.5B.89C.91D.89.5答案:D分析:将数据从小到大排列,计算10×80%=8,得到答案.甲射击运动员10次的训练成绩从小到大分别为:85,85,86,86,87,88,88,89,90,92.10×80%=8,这10次成绩的80%分位数为:89+90=89.5.2故选:D.6、某汽车制造厂分别从A,B两类轮胎中各随机抽取了6个进行测试,下面列出了每一个轮胎行驶的最远里程(单位:103km).A类轮胎:94,96,99,99,105,107.B类轮胎:95,95,98,99,104,109.根据以上数据,下列说法正确的是()A.A类轮胎行驶的最远里程的众数小于B类轮胎行驶的最远里程的众数B.A类轮胎行驶的最远里程的极差等于B类轮胎行驶的最远里程的极差C.A类轮胎行驶的最远里程的平均数大于B类轮胎行驶的最远里程的平均数D.A类轮胎的性能更加稳定答案:D分析:根据众数、极差、平均数和方差的定义以及计算公式即可求解.解:对A:A类轮胎行驶的最远里程的众数为99,B类轮胎行驶的最远里程的众数为95,选项A错误;对B:A类轮胎行驶的最远里程的极差为13,B类轮胎行驶的最远里程的极差为14,选项B错误.对C :A 类轮胎行驶的最远里程的平均数为100+−6−4−1−1+5+76=100,B 类轮胎行驶的最远里程的平均数为100+−5−5−2−1+4+96=100,选项C 错误.对D :A 类轮胎行驶的最远里程的方差为(94−100)2+(96−100)2+(99−100)2×2+(105−100)2+(107−100)26=643,B 类轮胎行驶的最远里程的方差为(95−100)2×2+(98−100)2+(99−100)2+(104−100)2+(109−100)26=763>643,故A 类轮胎的性能更加稳定,选项D 正确. 故选:D.7、关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请全校m 名同学每人随机写下一个都小于1的正实数对(x,y );再统计两数能与1构成钝角三角形三边的数对(x,y )的个数a ;最后再根据统计数a 估计π的值,那么可以估计π的值约为( ) A .4am B .a+2mC .a+2m mD .4a+2m m答案:D解析:由试验结果知m 对0~1之间的均匀随机数x,y ,满足{0<x <10<y <1,面积为1,再计算构成钝角三角形三边的数对(x,y),满足条件的面积,由几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的面积,即可估计π的值.解:根据题意知,m 名同学取m 对都小于1的正实数对(x,y ),即{0<x <10<y <1,对应区域为边长为1的正方形,其面积为1,若两个正实数x,y 能与1构成钝角三角形三边,则有{x 2+y 2<1x +y >10<x <10<y <1,其面积S =π4−12;则有am=π4−12,解得π=4a+2m m故选:D .小提示:本题考查线性规划可行域问题及随机模拟法求圆周率的几何概型应用问题. 线性规划可行域是一个封闭的图形,可以直接解出可行域的面积;求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解.8、数据x1,x2,x3,…,x m的平均数为x,数据y1,y2,y3,…,y n的平均数为y,则数据x1,x2,x3,…,x m,y1,y2,y3,…,y n的平均数为()A.xn +ymB.xm+ynC.nx+mym+n D.mx+nym+n答案:D分析:利用平均数的计算公式计算.由题意得:x1+x2+x3+⋯+x m=mx,y1+y2+y3+⋯+y n=ny,所以x1+x2+x3+⋯+x m+y1+y2+y3+⋯+y nm+n =mx+nym+n故选:D多选题9、2020年突如其来的新冠肺炎疫情对房地产市场造成明显的冲击,如图为某市2020年国庆节7天假期的楼房认购量与成交量的折线图,某同学根据折线图对这7天的认购量(单位:套)与成交量(单位:套)作出如下判断,则判断正确的是()A.日成交量的中位数是16B.日成交量超过平均成交量的只有1天C.10月7日认购量量的增长率大于10月7日成交量的增长率D.日认购量的方差大于日成交量的方差答案:BD解析:根据拆线图判断各数据特征后判断各选项.由拆线图日成交量的中位数是26,A错;日成交量均值为13+8+32+16+26+38+1667≈42.7,大于均值的只有一天,B正确;10月7日认购量量的增长率为y1=276−112112≈1.464,成交量的增长率为y2=166−3838≈3.368,显然C错;日认购量的均值为223+105+91+107+100+112+2767≈144.857,由各数据与均值的差可以看出日认购量的方差大于日成交量的方差,D正确.故选:BD.小提示:关键点点睛:本题考查统计图表,考查拆线图的识别.解题关键是由拆线图得出各数据,然后求得各数据特征.如中位数,均值,增长率,方差,解题中还要善于估值,如本题中的方差,从而大致比较出大小.10、如图是国家统计局发布的2020年12月至2021年12月的全国居民消费价格涨跌幅,其中同比=本期数−去年同期数去年同期数×100%,环比=本期数−上期数上期数×100%.则下列说法正确的是()A.2020年12月至2021年12月全国居民消费价格环比的极差为1.5% B.2020年12月至2021年12月全国居民消费价格同比的中位数为0.9% C.这13个月中,2021年6月全国居民消费价格最低D.2021年比2020年全国居民消费平均价格增长大于1.0%答案:AB分析:计算出2020年12月至2021年12月全国居民消费价格环比的极差,可判断A选项;利用中位数的定义可判断B选项;根据涨幅可判断C选项;利用平均数公式可判断D选项.2020年12月至2021年12月全国居民消费价格环比的最大值为1.0%,最小值为−0.5%,所以其极差为1.5%,A项正确;2020年12月至2021年12月全国居民消费价格同比(单位:%)从小到大依次为−0.3、−0.2、0.2、0.4、0.7、0.8、0.9、1.0、1.1、1.3、1.5、1.5、2.3,其中位数为0.9%,B项正确;从环比来看,假设2020年全国居民消费平均价格为1,经计算可得2020年12月全国居民消费平均价格,C 项错误;2021年比2020年全国居民消费价格平均增长为1 12(−0.3−0.2+0.4+0.9+1.3+1.1+1.0+0.8+0.7+1.5+2.3+1.5)=1112<1.0,D项错误.故选:AB.11、如图所示的两个扇形统计图分别统计了某地2010年和2020年小学生参加课外兴趣班的情况,已知2020年当地小学生参加课外兴趣班的总人数是2010年当地小学生参加课外兴趣班的总人数的4倍,则下列说法正确的是()A.2020年参加音乐兴趣班的小学生人数是2010年参加音乐兴趣班的小学生人数的4倍B.这10年间,参加编程兴趣班的小学生人数变化最大C.2020年参加美术兴趣班的小学生人数少于2010年参加美术兴趣班的小学生人数D.相对于2010年,2020年参加不同课外兴趣班的小学生人数更平均答案:ABD分析:设2010年参加课外兴趣班的小学生总人数为a,则2020年参加课外兴趣班的小学生总人数是4a,根据扇形统计图中的比例计算,并逐项检验,即可得到结果.设2010年参加课外兴趣班的小学生总人数为a,则2020年参加课外兴趣班的小学生总人数是4a;由统计图可知,2010年参加音乐兴趣班的小学生人数是a×21%=0.21a,2020年参加音乐兴趣班的小学生人数是4a×21%=0.84a,故A正确.这10年间参加编程兴趣班的小学生人数变化量为4a×32%−a×5%=1.23a,这10年间参加语言表演的小学生人数变化量为4a×20%−a×14%=0.66a,这10年间参加音乐的小学生人数变化量为4a×21%−a×21%=0.63a,这10年间参加美术的小学生人数变化量为4a×27%−a×60%=0.48a,所以这10年间参加编程兴趣班的小学生人数变化量最大,故B正确.2020年参加美术兴趣班的小学生人数为4a×27%=1.08a,2010年参加美术兴趣班的小学生人数为a×60%=0.6a,1.08a>0.6a,故C不正确,根据扇形统计图中的比例分布,可知D正确.故选:ABD12、某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述正确的有()A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个答案:ABC分析:根据雷达图提供的数据判断各选项可得.对于选项A,由图易知各月的平均最低气温都在0℃以上,A正确;对于选项B,七月的平均最高气温点与平均最低气温点间的距离大于一月的平均最高气温点与平均最低气温点间的距离,所以七月的平均温差比一月的平均温差大,B正确;对于选项C,三月和十一月的平均最高气温均为10℃,所以C正确;对于选项D,平均最高气温高于20℃的月份有七月、八月,共2个月份,故D错误.故选:ABC.13、PM2.5是衡量空气质量的重要指标,下图是某地7月1日到10日的PM2.5日均值(单位:ug/m3)的折线图,则下列关于这10天中PM2.5日均值的说法正确的是A.众数为30B.中位数是31C.平均数小于中位数D.后4天的方差小于前4天的方差答案:AD分析:根据折线图,由众数,中位数,平均数,方差等概念及公式,逐项判断,即可得出结果.众数即是出现次数最多的数字,由折线图可得,众数为30,即A正确;中位数即是处在中间位置的数字,将折线图中数字由小到大依次排序,得到:17,25,30,30,31,32,34,38,42,126;处在中间位置的数字是:31,32,因此中位数为31.5,即B错;由折线图可得,平均数为:17+25+30+30+31+32+34+38+42+12610=40.5>31.5,故C错;前4天的平均数为:38+25+17+304=27.5,后4天的平均数为42+31+32+304=33.75前4天方差为:s12=(38−27.5)2+(25−27.5)2+(17−27.5)2+(30−27.5)24=58.25,后4天方差为:s22=(42−33.75)2+(31−33.75)2+(32−33.75)2+(30−33.75)24=23.1875,所以后4天的方差小于前4天的方差,故D正确.故选:AD.小提示:本题主要考查由折线图计算众数、中位数、平均数、方差等,属于基础题型.填空题14、某次数学考试中20个人的成绩如下:101,103,107,110,112,113,116,123,124,125,125,125,126,128,134,135,137,139,144,148,若这组数据的众数为a,中位数为b,极差为c,则a+b+ c=___________.答案:297分析:根据众数、中位数和极差的定义逐个求解再求和即可由题意,a=125,b=125,c=148−101=47,故a+b+c=125+125+47=297所以答案是:29715、某学校组织学生参加数学测试,成绩的频率分布直方图如下,数据的分组依次是[20,40),[40,60),[60,80),[80,100],则可估计这次数学测试成绩的第40百分位数是_________.答案:65分析:利用百分位数的定义求解.解:成绩在[20,60)的频率是(0.005+0.01)×20=0.3,成绩在[20,80)的频率为0.3+0.02×20=0.7,所以第40百分位数一定在[60,80)内,×20=65,所以这次数学测试成绩的第40百分位数是60+0.4−0.30.4所以答案是:6516、若一组数据x1,x2,x3,⋯,x n的平均数是30,另一组数据x1+y1,x2+y2,x3+y3,⋯,x n+y n的平均数是70,则第三组数据4y1+1,4y2+1,4y3+1,⋯,4y n+1的平均数是___________.答案:161分析:根据数据平均数计算公式可得.数据x1+y1,x2+y2,x3+y3,⋯,x n+y n共有n个,其平均数为1 n ∑(x i+y i)ni=1=1n∑x ini=1+1n∑y ini=1=30+y=70.因此y=40故数据4y1+1,4y2+1,4y3+1,⋯,4y n+1的平均数是4×40+1=161.所以答案是:161解答题17、某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:s12和s22.(1)求x,y,s12,s22;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y−x≥2√s12+s2210,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).答案:(1)x=10,y=10.3,s12=0.036,s22=0.04;(2)新设备生产产品的该项指标的均值较旧设备有显著提高.分析:(1)根据平均数和方差的计算方法,计算出平均数和方差.(2)根据题目所给判断依据,结合(1)的结论进行判断.(1)x=9.8+10.3+10+10.2+9.9+9.8+10+10.1+10.2+9.710=10,y=10.1+10.4+10.1+10+10.1+10.3+10.6+10.5+10.4+10.510=10.3,s12=0.22+0.32+0+0.22+0.12+0.22+0+0.12+0.22+0.3210=0.036,s22=0.22+0.12+0.22+0.32+0.22+0+0.32+0.22+0.12+0.2210=0.04.(2)依题意,y−x=0.3=2×0.15=2√0.152=2√0.0225,2√0.036+0.0410=2√0.0076,y−x≥2√s12+s2210,所以新设备生产产品的该项指标的均值较旧设备有显著提高.18、“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称.某市为了了解人们对“一带一路”的认知程度,对不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分为100分(90分及以上为认知程度高).现从参赛者中抽取了x人,按年龄分成5组,第一组:[20,25),第二组:[25,30),第三组:[30,35),第四组:[35,40),第五组:[40,45],得到如图所示的频率分布直方图,已知第一组有6人.(1)求x;(2)求抽取的x人的年龄的中位数(结果保留整数);(3)从该市大学生、军人、医务人员、工人、个体户五种人中用分层抽样的方法依次抽取6人,42人,36人,24人,12人,分别记为1~5组,从这5个按年龄分的组和5个按职业分的组中每组各选派1人参加知识竞赛,分别代表相应组的成绩,年龄组中1~5组的成绩分别为93,96,97,94,90,职业组中1~5组的成绩分别为93,98,94,95,90.①分别求5个年龄组和5个职业组成绩的平均数和方差;②以上述数据为依据,评价5个年龄组和5个职业组对“一带一路”的认知程度,并谈谈你的感想.答案:(1)总体是该中学高三年级400名学生的视力;样本是所抽取的50名学生的视力.(2)答案见解析.分析:(1)根据总体与样本的定义直接写出;(2)根据抽签法与随机数法的抽样过程写出即可.解:(1)总体是该中学高三年级400名学生的视力;样本是所抽取的50名学生的视力.(2)选择①.利用抽签法步骤如下,第一步:将这50名学生编号,编号为1,2,3, (50)第二步:将50个号码分别写在纸条上,并揉成团,制成号签.第三步:将得到的号签放在一个不透明的容器中,搅拌均匀.第四步:从容器中逐一抽取6个号签,并记录上面的号码.对应上面6个号码的学生就是抽取的学生.选择②.利用随机数法步骤如下,第一步:将这50名学生编号,编号为01,02,03, (50)第二步:用计算机产生1~50范围内的整数随机数,把产生的随机数作为抽中的编号.第三步:重复第二步的过程,直到抽足6个号码.对应上面6个号码的学生就是抽取的学生.=0.05,即可求解.解析:(1)根据频率分布直方图求出第一组的频率,再由6x(2)设中位数为a,根据0.01×5+0.07×5+(a-30)×0.06=0.5,求解即可.(3)①求出平均数,再根据方差的式子即可求解;②比较平均数与方差即可得出结论.=0.05,∴x=120.(1)根据频率分布直方图得第一组的频率为0.01×5=0.05,∴6x(2)设中位数为a,则0.01×5+0.07×5+(a-30)×0.06=0.5,∴a=95≈32,则中位数为32.3(3)①5个年龄组成绩的平均数为x1=1×(93+96+97+94+90)=94,5×[(-1)2+22+32+02+(-4)2]=6.方差为s12=15×(93+98+94+95+90)=94,5个职业组成绩的平均数为x2=15×[(-1)2+42+02+12+(-4)2]=6.8.方差为s22=15②从平均数来看两组的认知程度相同,从方差来看年龄组的认知程度更稳定(感想合理即可).当今,青少年视力水平的下降已引起全社会的关注.为了了解某中学高三年级400名学生的视力情况,从中抽取了50名学生进行视力检测.(1)在这个问题中,总体、样本各是什么?(2)在①抽签法,②随机数法这两个条件中任选一个填入下面的横线上,并解答.为深入了解这50名学生的视力情况,从中随机抽取6人,请写出利用___9___抽取该样本的过程.。
大一下册高数习题册答案第9章
第9章 多元函数的微分法及其应用§ 1 多元函数概念一、设]),,([:,),(,),(22222y y x f y x y x y x y x f ϕϕ求-=+=.二、求下列函数的定义域:1、2221)1(),(y x y x y x f ---= };1|),{(22≠+x y y x 2、xyz arcsin = };0,|),{(≠≤x x y y x三、求下列极限:1、222)0,0(),(sin lim y x yx y x +→ (0)2、x y x x y3)2,(),()1(lim+∞→ (6e )四、证明极限 242)0,0(),(lim y x yx y x +→不存在.证明:当沿着x 轴趋于(0,0)时,极限为零,当沿着2x y =趋于(0,0)时,极限为21, 二者不相等,所以极限不存在五、证明函数⎪⎩⎪⎨⎧=≠+=)0,0(),(,0)0,0(),(,1sin ),(22y x y x yx xy y x f 在整个xoy 面上连续。
证明:当)0,0(),(≠y x 时,为初等函数,连续),(y x f 。
当)0,0(),(=y x 时,)0,0(01sin lim 22)0,0(),(f y x xy y x ==+→,所以函数在(0,0)也连续。
所以函数 在整个xoy 面上连续。
六、设)(2y x f y x z +++=且当y=0时2x z =,求f(x)及z 的表达式. 解:f(x)=x x -2,z y xy y x -++=2222 § 2 偏导数1、设z=x yxe xy + ,验证 z xy +=∂∂+∂∂yzy x z x证明:x y x y x y e x ,e x y e y +=∂∂-+=∂∂y z x z ,∴z xy xe xy xy x y+=++=∂∂+∂∂yzy x z x42244222222)()),,((y y x x y y x y y x f +-=+-=ϕ答案:2、求空间曲线⎪⎩⎪⎨⎧=+=Γ21:22y y x z 在点(1,21,23)处切线与y 轴正向夹角(4π) 3、设yx y xy y x f arcsin )1(),(2-+=, 求)1,(x f x ( 1)4、设yz x u =, 求x u ∂∂ ,yu ∂∂ ,z u ∂∂ 解:1-=∂∂y z x y z x u ,x x yz y u y zln 2-=∂∂ x x y z u y zln 1=∂∂5、设222z y x u ++=,证明 : u zu y u x u 2222222=∂∂+∂∂+∂∂6、判断下面的函数在(0,0) 处是否连续?是否可导(偏导)?说明理由⎪⎩⎪⎨⎧≠+≠++=0,00,1sin ),(222222y x y x yx x y x f )0,0(0),(lim 0f y x f y x ==→→ 连续; 21sinlim )0,0(x f x x →= 不存在, 000lim)0,0(0=--=→y f y y7、设函数 f(x,y)在点(a,b )处的偏导数存在,求 xb x a f b x a f x ),(),(lim--+→(2f x (a,b)) § 3 全微分 1、单选题(1)二元函数f(x,y)在点(x,y)处连续是它在该点处偏导数存在的 __________(A) 必要条件而非充分条件 (B )充分条件而非必要条件 (C )充分必要条件 (D )既非充分又非必要条件(2)对于二元函数f(x,y),下列有关偏导数与全微分关系中正确的是___(A) 偏导数不连续,则全微分必不存在 (B )偏导数连续,则全微分必存在 (C )全微分存在,则偏导数必连续 (D )全微分存在,而偏导数不一定存在 2、求下列函数的全微分:1)x y e z = )1(2dy x dx xy e dz x y+-=2))sin(2xy z = 解:)2()cos(22xydy dx y xy dz +=3)zyx u = 解:xdz x zyxdy x z dx x z y du z yz y z y ln ln 121-+=-3、设)2cos(y x y z -=, 求)4,0(πdz解:dy y x y y x dx y x y dz ))2sin(2)2(cos()2sin(-+-+--= ∴)4,0(|πdz =dy dx 24ππ-4、设22),,(yx zz y x f += 求:)1,2,1(df )542(251dz dy dx +--5、讨论函数⎪⎩⎪⎨⎧=≠++=)0,0(),(,0)0,0(),(,1sin)(),(2222y x y x yx y x y x f 在(0,0)点处的连续性 、偏导数、 可微性解:)0,0(01sin )(lim 2222)0,0(),(f y x y x y x ==++→ 所以),(y x f 在(0,0)点处连续。
高中数学第九章统计经典大题例题(带答案)
高中数学第九章统计经典大题例题单选题1、为保障食品安全,某监管部门对辖区内一家食品企业进行检查,现从其生产的某种产品中随机抽取100件作为样本,并以产品的一项关键质量指标值为检测依据,整理得到如下的样本频率分布直方图.若质量指标值在[25,35)内的产品为一等品,则该企业生产的产品为一等品的概率约为()A.0.38B.0.61C.0.122D.0.75答案:B×组距,即可得解.分析:利用频率=频率组距根据频率分布直方图可知,质量指标值在[25,35)内的概率P=(0.080+0.042)×5=0.122×5=0.61故选:B2、为了更好地支持“中小型企业”的发展,某市决定对部分企业的税收进行适当的减免,某机构调查了当地的中小型企业年收入情况,并根据所得数据画出了样本的频率分布直方图,下面三个结论:①样本数据落在区间[300,500)的频率为0.45;②如果规定年收入在500万元以内的企业才能享受减免税政策,估计有55%的当地中小型企业能享受到减免③样本的中位数为480万元.其中正确结论的个数为A.0B.1C.2D.3答案:D解析:根据直方图求出a=0.0025,求出[300,500)的频率,可判断①;求出[200,500)的频率,可判断②;根据中位数是从左到右频率为0.5的分界点,先确定在哪个区间,再求出占该区间的比例,求出中位数,判断③.由(0.001+0.0015+0,002+0.0005+2a)×100=1,a=0.0025,[300,500)的频率为(0.002+0.0025)×100=0.45,①正确;[200,500)的频率为(0.0015+0.002+0.0025)×100=0.55,②正确;[200,400)的频率为0.3,[200,500)的频率为0.55,,中位数在[400,500)且占该组的45×100=480,③正确.故中位数为400+0.5−0.30.25故选:D.小提示:本题考查补全直方图,由直方图求频率和平均数,属于基础题3、某地区对当地3000户家庭的当年所得年收入情况调查统计,年收入(单位:万元)的频率分布直方图如图所示,数据的分组依次为[2,4),[4,6),[6,8),[8,10],则年收入不超过6万元的家庭有( )A.900户B.600户C.300户D.150户分析:根据频率分布直方图求出[2,4)和[4,6)这两组的频率之和,用这个频率之和乘以样本总量3000即可的答案.由图可知,[2,4)和[4,6)这两组的频率之和为(0.05+0.1)×2=0.3,年收入不超过6万元的家庭有3000×0.3=900户.故选:A.4、新莽铜嘉量是由王莽国师刘歆等人设计制造的标准量器,它包括了龠(yuè)、合、升、斗、斛这五个容量单位.每一个量又有详细的分铭,记录了各器的径、深、底面积和容积.现根据铭文计算,当时制造容器时所用的圆周率分别为3.1547,3.1992,3.1498,3.2031,比《周髀算经》的“径一而周三”前进了一大步,则上面4个数据与祖冲之给出的约率(227≈3.1429)、密率(355113≈3.1416)这6个数据的中位数与极差分别为()A.3.1429,0.0615B.3.1523,0.0615C.3.1498,0.0484D.3.1547,0.0484答案:B分析:先对这6个数由小到大(或由大到小)排列,然后利用中位数和极差的定义求解即可所给6个数据由小到大排列依次为3.1416,3.1429,3.1498,3.1547,3.1992,3.2031,所以这6个数据的中位数为(3.1498+3.1547)÷2≈3.1523,极差为3.2031−3.1416=0.0615,故选:B.5、下表是某校校级联欢晚会比赛中12个班级的得分情况,则得分的30百分位数是()答案:D分析:根据百分位数的定义求解即可.12×30%=3.6,把12个班级的得分按照从小到大排序为7,7,8,9,9,10,10,10,11,13,13,14,可得30百分位数是第4个得分数,即9.故选:D6、某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论错误的是()注:90后指1990年及以后出生,80后指1980−1989年之间出生,80前指1979年及以前出生.A.互联网行业从业人员中从事技术和运营岗位的人数占总人数的三成以上B.互联网行业中从事技术岗位的人数超过总人数的20%C.互联网行业中从事运营岗位的人数90后一定比80前多D.互联网行业中从事技术岗位的人数90后一定比80后多答案:D解析:根据整个互联网行业从业者年龄分布饼状图、90后从事互联网行业岗位分布条形图,对四个选项逐一分析,即可得出正确选项.对于选项A,因为互联网行业从业人员中,“90后”占比为56%,其中从事技术和运营岗位的人数占的比分别为39.6%和17%,则“90后”从事技术和运营岗位的人数占总人数的56%×(39.6%+17%)≈31.7%.“80前”和“80后”中必然也有从事技术和运营岗位的人,则总的占比一定超过三成,故选项A正确;对于选项B,因为互联网行业从业人员中,“90后”占比为56%,其中从事技术岗位的人数占的比为39.6%,则“90后”从事技术岗位的人数占总人数的56%×39.6%≈22.2%.“80前”和“80后”中必然也有从事技术岗位的人,则总的占比一定超过20%,故选项B正确;对于选项C,“90后”从事运营岗位的人数占总人数的比为56%×17%≈9.5%,大于“80前”的总人数所占比3%,故选项C正确;选项D,“90后”从事技术岗位的人数占总人数的56%×39.6%≈22.2%,“80后”的总人数所占比为41%,条件中未给出从事技术岗位的占比,故不能判断,所以选项D错误.故选:D.小提示:关键点点睛:本题考查利用扇形统计图和条形统计图解决实际问题,解本题的关键就是利用条形统计图中“90后”事互联网行业岗位的占比乘以“90后”所占总人数的占比,再对各选项逐一分析即可.7、总体由编号01,02,…,29,30的30个个体组成.利用下面的随机数表选取6个个体,选取方法是从如下随机数表的第1行的第6列和第7列数字开始由左到右依次选取两个数字,则选出来的第6个个体的编号为()第1行78 16 62 32 08 02 62 42 62 52 53 69 97 28 01 98第2行32 04 92 34 49 35 82 00 36 23 48 69 69 38 74 81A.27B.26C.25D.19答案:D分析:根据随机数表法的步骤即可求得答案.由题意,取出的数有23,20,80(超出范围,故舍去),26,24,26(重复,故舍去),25,25(重复,故舍去),36(超出范围,故舍去),99(超出范围,故舍去),72(超出范围,故舍去),80(超出范围,故舍去),19.故选:D.8、某学校在校学生有2000人,为了增强学生的体质,学校举行了跑步和登山比赛,每人都参加且只参加其中一项比赛,高一、高二、高三年级参加跑步的人数分别为a,b,c,且a:b:c=2:5:3,全校参加登山的人数占总人数的1.为了了解学生对本次比赛的满意程度,按分层抽样的方法从中抽取一个容量为200的样本进4行调查,则应从高三年级参加跑步的学生中抽取()A.15人B.30人C.40人D.45人答案:D分析:由题知全校参加跑步的人数为2000×3=1500,再根据分层抽样的方法求解即可得答案.4=1500,解:由题意,可知全校参加跑步的人数为2000×34=450.所以a+b+c=1500.因为a:b:c=2:5:3,所以c=1500×32+5+3因为按分层抽样的方法从中抽取一个容量为200的样本,所以应从高三年级参加跑步的学生中抽取的人数为450×200=45.2000故选:D多选题9、最近几个月,新冠肺炎疫情又出现反复,各学校均加强了疫情防控要求,学生在进校时必须走测温通道,每天早中晚都要进行体温检测并将结果上报主管部门.某班级体温检测员对一周内甲乙两名同学的体温进行了统计,其结果如图所示,则下列结论正确的是()A.甲同学体温的极差为0.4℃B.乙同学体温的众数为36.4℃,中位数与平均数相等C.乙同学的体温比甲同学的体温稳定D.甲同学体温的第60百分位数为36.4℃答案:ABC分析:根据给定的折线图,逐一分析判断各个选项即可作答.观察折线图知,甲同学体温的极差为36.6−36.2=0.4℃,A正确;乙同学体温从小到大排成一列:36.3℃,36.3℃,36.4℃,36.4℃,36.4℃,36.5℃,36.5℃,(36.3×2+36.4×3+36.5×2)=46.4℃,B正乙同学体温的众数为36.4℃,中位数为36.4℃,平均数x=17确;乙同学的体温波动较甲同学的小,极差为0.2℃,也比甲同学的小,因此乙同学的体温比甲同学的体温稳定,C正确;将甲同学的体温从小到大排成一列:36.2℃,36.2℃,36.4℃,36.4℃,36.5℃,36.5℃,36.6℃,因7×60%=4.2,则甲同学体温的第60百分位数为36.5℃,D不正确.故选:ABC10、下表记录了某地区一年之内的月降水量是53mm和56mmC.该年份月降水量的25%分位数是52mmD.该年份月降水量的中位数是56mm答案:ACD分析:A. 利用极差的定义判断;B.利用众数的定义判断;C.利用百分位数的定义判断;D.利用中位数的定义判断.A. 该年份月降水量的极差是71-46=25mm,故正确;B.该年份月降水量的众数是56mm,故错误;C.该年份月降水量从小到大为46,48,51,53,53,56,56,56,56,58,64,66,71,12×25%=3,=52mm,故正确;所以年份月降水量的25%分位数是51+532D. 该年份月降水量从小到大为46,48,51,53,53,56,56,56,56,58,64,66,71,所以该年份月降水量的中位数是56+56=56mm,故正确;2故选:ACD11、某教育局对全区高一年级的学生身高进行抽样调查,随机抽取了200名学生,他们的身高都处在A,B,C,D,E五个层次内,根据抽样结果得到统计图表如下,则下列结论正确的是().A.男生人数为80人B.B层次男女生人数差值最大C.D层次男生人数多于女生人数D.E层次女生人数最少答案:ABD分析:根据条形图求出抽取女生人,得出抽取男生人,再对照图表判断选项中的命题是否正确即可.解:由条形图知,抽取女生学生有18+48+30+18+6=120(人),所以抽取男生有200−120=80(人),选项A正确;B层次的男生有80×(1−10%−15%−20%−25%)=24(人),A,B,C,D,E五个层次男生人数分别:8,24,20,16,12(人),与女生各层次差值分别为:10,24,10,2,6,选项B正确;D层次的男生有12(人),女生有18人,男生人数少于女生,选项C错误;E层次的女生人数最少,选项D正确.故选:ABD.12、某保险公司为客户定制了5个险种:甲,一年期短险;乙,两全保险;丙,理财类保险;丁,定期寿险:戊,重大疾病保险,各种保险按相关约定进行参保与理赔.该保险公司对5个险种参保客户进行抽样调查,得出如下的统计图例:用该样本估计总体,以下四个选项正确的是()A.54周岁以上参保人数最少B.18~29周岁人群参保总费用最少C.丁险种更受参保人青睐D.30周岁以上的人群约占参保人群20%答案:AC分析:根据选项逐一对相应的统计图进行分析判断即可.解:对A:由扇形图可知,54周岁以上参保人数最少,故选项A正确;对B:由折线图可知,18~29周岁人群人均参保费用最少,但是由扇形图知参保人数并不是最少的,所以参保总费用不是最少,故选项B错误;对C:由柱状图可知,丁险种参保比例最高,故选项C正确;对D:由扇形图可知,30周岁以上的人群约占参保人群80%,故选项D错误.故选:AC.13、睡眠很重要,教育部《关于进一步加强中小学生睡眠管理工作的通知》中强调“小学生每天睡眠时间应达到10小时,初中生应达到9小时,高中生应达到8小时”.某机构调查了1万个学生时间利用信息得出下图,则以下判断正确的有()A .高三年级学生平均学习时间最长B .中小学生的平均睡眠时间都没有达到《通知》中的标准,其中高中生平均睡眠时间最接近标准C .大多数年龄段学生平均睡眠时间长于学习时间D .与高中生相比,大学生平均学习时间大幅下降,释放出的时间基本是在睡眠答案:BC分析:根据图象提供数据对选项进行分析,从而确定正确答案.根据图象可知,高三年级学生平均学习时间没有高二年级学生平均学习时间长,A 选项错误.根据图象可知,中小学生平均睡眠时间都没有达到《通知》中的标准,高中生平均睡眠时间最接近标准,B 选项正确.学习时间大于睡眠时间的有:初二、初三、高一、高二、高三,占比516.睡眠时间长于学习时间的占比1116,C 选项正确.从高三到大学一年级,学习时间减少9.65−5.71=3.94,睡眠时间增加8.52−7.9=0.62,所以D 选项错误. 故选:BC填空题14、已知一组样本数据5、2、3、6,则该组数据的第70百分位数为__________.答案:5分析:首先计算指数,再由百分位数的定义可得答案.解:这组样本数据5、2、3、6,从小到大排列为2、3、5、6,又4×70%=2.8,则该组数据的第70百分位数为第3个数5,所以答案是:5.15、若样本数据x1,x2,⋅⋅⋅,x8的标准差为1,则数据2x1−1,2x2−1,⋅⋅⋅,2x8−1的标准差为_______.答案:2解析:若一组数据x1,x2,x3,⋯,x n的方差为s2,则数据ax1+b,ax2+b,ax3+b,⋯,ax n+b的方差为a2s2.若样本数据x1,x2,⋅⋅⋅,x8的标准差为1,则其方差也为1,所以数据2x1−1,2x2−1,⋅⋅⋅,2x8−1的方差为4,标准差为2.所以答案是:2.16、某车间生产A,B,C三种不同型号的产品,产量之比分别为5:k:3,为检验产品的质量,现用分层抽样的方法抽取一个容量为120的样本进行检验,已知B种型号的产品共抽取了24件,则C种型号的产品抽取的件数为_________.答案:36分析:根据题意可得24120=k5+k+3,解方程求出k的值,再根据C种型号的产品所占的比例,求出C种型号的产品应抽取的数量.由题意,得24120=k5+k+3,所以k=2,所以C种型号的产品抽取的件数为120×35+2+3=36.所以答案是:36.解答题17、在①55%分位数,②众数这两个条件中任选一个,补充在下面问题中的横线上,并解答问题.维生素C又叫L-抗坏血酸,是一种水溶性维生素,是高等灵长类动物与其他少数生物的必需营养素.现从猕猴桃、柚子两种食物中测得每100克维生素C的含量(单位:mg)各10个数据如下,其中猕猴桃的一个数据x被污损.猕猴桃:104,119,106,102,132,107,113,134,116,x;柚子:121,113,109,122,114,116,132,121,131,117.已知x等于柚子的10个数据中的___________.(1)求x的值与猕猴桃的数据的中位数;(2)分别计算上述猕猴桃、柚子两种食物中测得每100克维生素C含量的平均数.答案:(1)121,中位数为114.5(2)115.4mg,119.6mg分析:(1)先将柚子从小到大排序,若选①,利用55%分位数的定义得到x=121,若选②,利用众数的定义进行也得到x=121,接着代入猕猴桃里面,从小到大排序算出中位数;(2)利用平均数的定义进行计算(1)柚子的10个数据按照从小到大的顺序排列为:109,113,114,116,117,121,121,122,131,132.选①,因为10×55%=5.5,所以柚子10个数据的55%分位数为第6个数,即121,所以x=121.猕猴桃的10个数据按照从小到大的顺序排列为:102,104,106,107,113,116,119,121,132,134,则(113+116)=114.5.中位数为12选②,因为柚子的10个数据的众数为121,所以x=121.猕猴桃的10个数据按照从小到大的顺序排列为:102,104,106,107,113,116,119,121,132,134,则(113+116)=114.5.中位数为12(2)×(102+104+106+107+113+116+119+121+由(1)得每100克猕猴桃维生素C含量的平均数为110132+134)=115.4mg×(109+113+114+116+117+121+121+122+131+每100克柚子维生素C含量的平均数为110132)=119.6mg18、从某校高一年级新生中随机抽取一个容量为20的身高样本,数据如下(单位:cm,数据间无大小顺序要求):152,155,158,164,164,165,165,165,166,167,168,168,169,170,170,170,171,x,174,175.(1)若x为这组数据的一个众数,求x的取值集合;(2)若样本数据的第90百分位数是173,求x的值;(3)若x=174,试估计该校高一年级新生的平均身高.答案:(1){164,165,168,170}(2)172(3)166.5(cm)分析:(1)首先排列19个数据,根据众数的定义,即可确定x的取值集合;(2)首先确定第90百分位数是第18项和第19项数据的平均数,再讨论x的取值,根据百分位数,列式求值;(3)根据平均数公式,列式求值.(1)其余十九个数据152,155,158,164,164,165,165,165,166,167,168,168,169,170,170,170,171,174,175中,数据出现的频数为3的数有165,170,出现频数为2的数据有164,168.因为x为这组数据的一个众数,所以x的取值集合为{164,165,168,170}.(2)因为20×90%=18,所以90百分位数是第18项和第19项数据的平均数,若x⩽171,则90百分位数为1(171+174)=17,矛盾.2(x+174)=173,所以x=172.若171<x<175,即12(174+175)=174.5,矛盾.若x⩾175,则90百分位数为12综上,x的值为172.(3)依题意可得152+155+158+164+164+165+165+165+166+167+168+168+169+170+170+170+171+174+174+175=3330所以平均数为3330÷20=166.5(cm),估计该校高一年级学生的平均身高.。
高等数学第九章多元函数微分习题答案
高等数学第九章多元函数微分习题 答案
高等数学第九章多元函数微分习题 答案
高等数学第九章多元函数微分习题 答案
高等数学第九章多元函数微分习题 答案
高等数学第九章多元函数微分习题 答案
高等数学第九章多元函数微分习题 答案
第三节
高等数学第九章多元函数微分习题 答案
高等数学第九章多元函数微分习题 答案
高等数学第九章多元函数微 分习题答案
第一节
高等数学第九章多元函数微分习题 答案
高等数学第九章多元函数微分习题 答案
高等数学第九章多元函数微分习题 答案
高等数学第九章多元函数微分习题 答案
第二节
高等数学第九章多元函数微分习题 答案
高等数学第九章多元函数微分习题 答案
高等数学第九章多元函数微分习题 答案
高等数学题 答案
第八节
高等数学第九章多元函数微分习题 答案
高等数学第九章多元函数微分习题 答案
高等数学第九章多元函数微分习题 答案
高等数学第九章多元函数微分习题 答案
高等数学第九章多元函数微分习题 答案
第五节
高等数学第九章多元函数微分习题 答案
高等数学第九章多元函数微分习题 答案
高等数学第九章多元函数微分习题 答案
高等数学第九章多元函数微分习题 答案
高等数学第九章多元函数微分习题 答案
高等数学第九章多元函数微分习题 答案
高等数学第九章多元函数微分习题 答案
高等数学第九章多元函数微分习题 答案
高等数学第九章多元函数微分习题 答案
高等数学第九章多元函数微分习题 答案
第四节
高等数学第九章多元函数微分习题 答案
高等数学第九章多元函数微分习题 答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 定积分一、填空题=-++-+-∞→_41241141(lim 22222nn n n n Λ2.=+⎰⎰→x xt x dtttdtt 0sin 01sin )1(lim__________3.[]=⎰-222,1max dx x __________4.设⎰+=xdt tt x f 02sin 1cos )(,则=+⎰202)(1)('πdx x f x f ___________ 5.设)(x f 在[]4,0上连续,且⎰--=2123)(x x dt t f ,则=)2(f ___________6.=+-⎰→421ln sin limx x tdt xx _________7.=++⎰-dx x xx 2222)cos 1(sin ππ______________ 8.[]⎰-=-++-11)()(22lndx x f x f xx_________,其中)(x f 连续。
10.设0)()(21=-+⎰x x f dx x f ,则=⎰1)(dx x f _______________11.若⎰=+101sinb dx xx,则=+⎰102)1(cos dx x x _________ 12.设)(x f 连续,则=-⎰x dt t x tf dxd 022)(____________ 13.=⎰022cos xdt t x dx d ______________ 14.=-⎰ππ222cos sin dx x x ____________15.=+-⎰-dx x x 112cos 21sin αα____________16.[]=-⎰π2sin )(cos 'cos )(cos dx x x f x x f ____________17.设)(x f 有一个原函数x xsin ,则=⎰ππ2)('dx x xf ____________18.若1≤y ,则=-⎰-11dx ey x x___________19.已知2)2(x xex f =,则=⎰-11)(dx x f ________20. 已知)(x f 在),(+∞-∞上连续,且2)0(=f ,且设⎰=2sin )()(x xdt t f x F ,则=')0(F21.设⎪⎩⎪⎨⎧>⋅<--=⎰-x x x x dt t x x x e x f 0322 0 sin 0 31)(则=→)(lim 0x f x22.函数dt t t t x x⎰+--=2112)(ϕ在区间[]2 0上的最大值为 ,最小值为23.若已知)(x f 满足方程⎰--=xdx x f x x x f 022)(13)(,则=)(x f24.已知函数)1( )1()(1-≥-=⎰-x dt t x f x,则)(x f 与x 轴所围成的面积为25.函数221x x y -=在区间⎥⎦⎤⎢⎣⎡23 ,21上的平均值为二、选择填空 1.若xx x f 104)5(2-=-,则积分=+⎰40)12(dx x f ( ) B.4πC.是发散的广义积分D.是收敛的广义积分2.若已知5)2(',3)2(,1)0(===f f f ,则=''⎰10)2(dx x f x ______________3.设)(x f 是以l 为周期的连续函数,则()⎰+++lk a kla dx x f )1(之值( )A.仅与a 有关B.仅与a 无关C.与a 及k 均无关D.与a 和k 均有关 4.若0→x 时,⎰''-=xdt t f t x x F 022)()()(的导数与2x 进等价无穷小,则必有( )(其中f有二阶连续导数)。
A.1)0(=''fB.21)0(=''f C.0)0(=''f D.)0(f ''不存在 5.若x x x x f nnn 2211lim)(+-=∞→,且设k dx x f =⎰20)(,则必有( )。
A.0=kB.1=kC.1-=kD.2=k 6.设⎰+=x x xttdt e x f 2sin sin )(,则=)(x f ( )A.正常数B.负常数C.恒为0D.不是常数 7.已知)(t f 是()+∞∞-,内的连续函数,则⎰⎰ψ=xx dt t dt t f 11)()(3恒成立时,必有=ψ)(t ( )A.)(3t fB.)(33t f tC.)(32t f t D.)(332t f t8.设)(x f 在[]a a ,-上连续且为偶函数,⎰=Φxdt t f x 0)()(,则( )A .)(x Φ是奇函数 B. )(x Φ是偶函数C. )(x Φ是非奇非偶函数D. )(x Φ可能是奇函数,也可能是偶函数 9.设y 是由方程0sin 2=⎰⎰xy ttdt dt e π所确定的x 的函数,则=dxdy( )。
A.x x cos 1sin - B.1cos sin +-x xC.y e x cosD.y ex cos -11.设,cos 1sin 2262dx x xx M ⎰-+=ππdx x x N )cos (sin 6223+=⎰-ππ,⎰--=22632)cos sin (ππdx x x x P ,则有( )A.M P N <<B.N P M <<C.P M N <<D.N M P <<13.若)(x f 是具有连续导数的函数,且0)0(=f ,设⎪⎩⎪⎨⎧=≠=ψ⎰0,00,)()(2x x x dtt tf x x ,0≠x ,则=ψ)0('( )A.)0('fB.)0('31f D.3114.若设⎰-=xdt x t dx d x f 0)sin()(,则必有( ) A.x x f sin )(-= B.x x f cos 1)(+-= C.x x f sin )(= D.x x f sin 1)(-=15.若)(t x x=是由方程0112=-⎰+-x t dt e t 所确定,则022=t dt xd 之值为( )C.2e D.22e 16.定积分定义i bani i x f dx x f ∆=⎰∑=)(lim )(1ξ,说明( )A ],[b a 必须n 等分,i ξ是],[1i i x x -端点。
B ],[b a 可任意分法,i ξ必须是],[1i i x x -端点。
C ],[b a 可任意分法,0max →∆=i x λ,i ξ可在],[1i i x x -内任取。
D ],[b a 必须等分,0max →∆=i x λ,i ξ可在],[1i i x x -内任取。
17.积分中值定理⎰-=baa b f dx x f ))(()(ξ其中( )A ξ是],[b a 内任意一点B ξ是],[b a 内必定存在的某一点C ξ是],[b a 内唯一的某点D ξ是],[b a 内中点 18.设)(x f 与)(x g 在],[b a 上连续,且⎰⎰>babadx x g dx x f )()(,则)()(x g x f >成立的情况是( )A 当+∞<<∞-x 时均成立B b x a ≤≤时成立C 在],[b a 之间至少有些点使之成立D 在],[b a 内不可能成立19.若⎭⎬⎫⎩⎨⎧≤≤≤≤=21,10 ,)(2x x x x x f ,则⎰=x dt t f x 0)()(ϕ在开区间)2,0(上( ) A 有第一类间段点 B 有第二类间段点C 两种间段点都有D 是连续的20.若设⎰-=xdt x t dx d x f 0)sin()(,则必有( )A x x f sin )(-=B x x f cos 1)(+-=C x x f sin )(=D x x f sin 1)(-= 21.下面结论错误的是( ) A 若)(x f 在),(b a 内连续,则)(dx x f ba⎰存在B 若)(x f 在],[b a 上可积,则)(x f 在],[b a 上必有界C 若)(x f 在],[b a 上可积,则)(x f 在],[b a 上必可积D 若)(x f 在],[b a 上单调有界,则)(x f 在],[b a 上必可积 22.下面结论正确的是( ) A 若],[],[d c b a ⊇,则必有)()(⎰⎰≥dcbadx x f dx x f ;B 若)(x f 可积,则)(x f 必可积;C 若)(x f 是周期为T 的函数,则对于任意常数a 都有⎰⎰+=Ta aTdx x f dx x f 0)()(D 若)(x f 在],[b a 上可积,则)(x f 在),(b a 内必定有原函数。
23.下列各式不等于零的是( )Adx xxx ⎰-+-212111ln cos B dx x x x x ⎰--+33242523cos Cdx xx ⎰-2322cos 1sin ππD ⎰--31)3)(1(x x dx24.设,sin )(2sin tdt e x F x xt ⎰+=π则)(x F ( ).(A)为正常数; (B)为负常数;(C)恒为零; (D)不为常数;25.设)(x f 连续,则=-⎰dt t x tf dx d x22)(( ) (A));(2x xf (B));(2x xf -(C));(22x xf (D));(22x xf -三、计算题1.按定积分定义证明:(1)()⎰-=ba ab k kdx ; (2)⎰-=baa b x e e e2.根据定理,试比较下列各定积分的大小。
(1)⎰1xdx 与⎰12dx x(2)⎰20πxdx 与⎰20sinxdxπ⎰1x dx3.求下列极限:(1)xdt t cos limx20x ⎰→;(2)⎰⎰∞→x22x0t x dtt 2e )dt e (lim24.计算下列定积分:(1)()⎰+10dx 3x 2; (2)⎰+-1022dx x 1x 1; (3)⎰2e edx xln 1; (4)⎰--10xx dx 2e e ; (5)⎰π302xdx tg ; (6)⎰⎪⎭⎫⎝⎛+94dx x 1x ;(7)⎰+49x1dx ; (8)()⎰ee12dx xx ln ;(9)⎰π205xdx 2sin x cos ;(10)⎰-102dx x 4;(11)()⎰>-a2220a dx x a x ;(12)()⎰+-12321x xdx;(13)⎰-+10xx e e dx ; (14)⎰π+202dx x sin 1x cos ; (15)⎰1x dx arcsin ;(16)⎰π20x xdx sin e ;(17)⎰ee 1dx x ln ;(18)⎰10x dx e ; (19)()⎰>+-a20a dx xa xa x ; (20)⎰ρθθ+θθ20.d cos sin cos5.应用定积分概念求下列极限:(1)⎪⎭⎫⎝⎛+⋅⋅⋅++++∞→n 212n 11n 1lim n(2)⎪⎭⎫⎝⎛+⋅⋅⋅++++∞→2222n n 212n 11n 1n lim (3)⎪⎭⎫ ⎝⎛π-+⋅⋅⋅+π+π∞→n 1n sin n 2sin n sin n 1limn (4)()()⎪⎪⎭⎫ ⎝⎛-+⋅⋅⋅+++∞→1n 2n 11n n 1n 1lim2n 6.设f 具有连续的导函数,试求:()()⎰'-xa dt t f t x dxd 并用此结果求()⎰-x0tdt cos t x dxd四、证明题 1.证明:()⎰=ba J dx x f 存在的充要条件是:对任意一积分和()(∑=fn Tn ,2,1…),只要0lim →∞→Tn n ,都有().lim J Tn f n =∑∞→(这里()∑f Tn 是指f 对某一分割Tn 及所属的某一介点集所作的积分和)。