优质小学奥数几何图形专题(带答案解析)
六年级下册奥数试题-几何专题 全国通用(含答案) (1)

小学奥数几何专题1、(★★)如图,已知四边形ABCD 中,AB=13,BC=3,CD=4,DA=12,并且BD 与AD 垂直,则四边形的面积等于多少?[思 路]:显然四边形ABCD 的面积将由三角形ABD 与三角形BCD 的面积求和得到.三角形ABD 是直角三角形,底AD 已知,高BD 是未知的,但可以通过勾股定理求出,进而可以判定三角形BCD 的形状,然后求其面积.这样看来,BD 的长度是求解本题的关键.解:由于BD 垂直于AD ,所以三角形ABD 是直角三角形.而AB=13,DA=12,由勾股定理,BD 2=AB 2-AD 2=132—122=25=52,所以BD=5.三角形BCD 中BD=5,BC=3,CD=4,又32十42=52,故三角形BCD 是以BD 为斜边的直角三角形,BC 与CD 垂直.那么:ABCD S 四边形=ABD S ∆+BCD S∆=12×5÷2+4×3÷2=36.. 即四边形ABCD 的面积是36. 2、(★★)如图四边形土地的总面积是48平方米,三条线把它分成了4个小三角形,其中2个小三角形的面积分别是7平方米和9平方米.那么最大的一个三角形的面积是________平方米;[分析]:剩下两个三角形的面积和是 48-7-9=32 ,是右侧两个三角形面积和的2 倍,故左侧三角形面积是右侧对应三角形面积的2倍,最大三角形面积是 9×2=18。
3.(★★)将下图中的三角形纸片沿虚线折叠得到右图,其中的粗实线图形面积与原三角形面积之比为2:3。
已知右图中3个阴影的三角形面积之和为1,那么重叠部分的面积为多少?[思 路]:小升初中常把分数,百分数,比例问题处理成份数问题,这个思想一定要养成。
解:粗线面积:黄面积=2:3绿色面积是折叠后的重叠部分,减少的部分就是因为重叠才变少的,这样可以设总共3份,后来粗线变2份,减少的绿色部分为1份,所以阴影部分为2-1=1份,7 94、(★★)求下图中阴影部分的面积:【解】如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。
小学奥数题库《几何》-直线型-勾股定理和弦图-5星题(含解析)

几何-直线型几何-勾股定理和弦图-5星题课程目标知识提要勾股定理和弦图• 勾股定理在直角三角形中,两条直角边的平方和等于斜边的平方。
即:AB 2 + AC 2 = BC 2 • 勾股图与弦图(a +b)2−4ab 2=a 2+2ab +b 2−2ab =c 2,所以c 2=a 2+b 2 (a −b)2+4ab2=a 2−2ab +b 2+2ab =c 2,所以c 2=a 2+b 2精选例题勾股定理和弦图1. 如下列图所示,长方形ABCD 中被嵌入了6个相同的正方形.AB =22厘米.BC =20厘米,那么每一个正方形的面积为平方厘米.【答案】40【分析】如下列图所示,对每个正方形作弦图,设小直角三角形的长直角边为x 厘米,短直角边为y 厘米,那么{3x +y =203x +2y =22,所以{x =6y =2,小正方形面积为62+22=40(平方厘米). 2. 在下列图中,将一个每边长均为12厘米的正八边形的8个顶点间隔地连线,可以连出两个正方形.图中阴影局部的面积是平方厘米.【答案】288【分析】如下左图,记AD =a ,由对称性知,DB =a ,BC =a .取E 为DC 中点,连接BE ,将△ABC 分成直角三角形ABE 和等腰直角三角形BEC . 四个△BEC 可以拼成一个边长a 的正方形.记BE=b,那么CE=b,DE=b.由AE=a+b,BE=b知:由4个△ABE和一个以a为边长的正方形可拼成一个以AB为边长的正方形〔如下右弦图〕.题中阴影可看做8个△ABE再加上8个△BEC的面积和,4个△ABE与4个△BEC拼成边长为12的正方形,因此此题答案为122×2=288平方厘米.3. 如下列图所示,一块边长为180厘米的正方形铁片,四角各被截去了一个边长为40厘米的小正方形.现在要从剩下的铁片中剪出一块完整的正方形铁片来.剪出的正方形面积最大为平方厘米.【答案】18000【分析】如右图所示,铁片分为中间的正方形和四个长方形两局部,中间局部的面积为1002= 10000平方厘米,四个长方形每个的面积为40×100=4000平方厘米,剪出的最大正方形为中间的正方形加上四个长方形的一半,面积为10000+4000÷2×4=18000平方厘米.4. 平面上的五个点A,B,C,D,E满足:AB=16厘米,BC=8厘米,AD=10厘米,DE= 2厘米,AC=24厘米,AE=12厘米.如果三角形EAB的面积为96平方厘米,那么点A到CD的距离等于厘米.【答案】12013【分析】得三角形CAD是直角三角形,CD=26厘米,点A到CD的距离为10×2426=12013厘米.5. 如图,在正方形ABCD中,E、F分别在BC与CD上,且CE=2BE,CF=2DF,连接BF、DE,相交于点G,过G作MN、PQ得到两个正方形MGQA和PCNG,设正方形MGQA的面积为S1,正方形PCNG的面积为S2,那么S1:S2=.【答案】9:4【分析】连接BD、EF.设正方形ABCD边长为3,那么CE=CF=2,BE=DF=1,所以,EF2=22+22=8,BD2=32+32=18.因为EF2⋅BD2=8×18=144=122,所以EF⋅BD=12.由梯形蝴蝶定理,得S△GEF:S△GBD:S△DGF:S nBGE=EF2:BD2:EF⋅BD:EF⋅BD=8:18:12:12=4:9:6:6,所以,S△BGE=64+9+6+6S梯形BDFE=625S梯形BDFE.因为S△BCD=3×3÷2=92,S△CEF=2×2÷2=2,所以S 梯形BDFE =S △BCD −S △CEF =52, 所以, S △BGE =625×52=35. 由于△BGE 底边BE 上的高即为正方形PCNG 的边长,所以 CN =35×2÷1=65, ND =3−65=95, 所以AM:CN =DN:CN =3:2,那么S 1:S 2=AM 2:CN 2=9:4.6. 将矩形ABCD 分成四个全等的矩形,如下列图所示.假设AE =29厘米AF =41厘米,请问AC 的长度是多少厘米?【答案】71厘米【分析】设AD =a ,DE =EF =b ,所以a 2+b 2=292,a 2+(2b)2=412,由此得b 2=280.于是AC 2=a 2+(4b)2=(a 2+b 2)+15b 2=292+15×280=5041=712.所以AC =71厘米.7. 如下列图所示,长方形ABCD ,AB =24,BC =18,把AB 边对折到AC 上与AC 重合,把AD 边也对折到AC 上与AC 重合,请问得到的新图形的面积是多少?【答案】255【分析】如上图所示,把AB 对折到AC 上与AC 重合,把AD 对折到AC 上与AC 重合,得到四边形AECF ,由勾股定理,AC =30,设BE =EG =x ,S △ABC =S △BAE +S △AEC ,所以24×18÷2=24x ÷2+30x ÷2,那么x =8,设FH =DF =y ,S △ADC =S △ADF +S △AFC ,所以24×18÷2=18y ÷2+30y ÷2,那么y =9,S 四边形AECF =S △AEC +S △AFC =30×(8+9)÷2=255.8. 三角形ABC 中,线段AR .BQ 分别是BC 、AC 边上的中线,且BQ 与AR 互相垂直.如下图,AC =8、BC =6.请问AB 2+BC 2+CA 2等于多少?【答案】120【分析】如右图所示,连接RQ ,AR 与BQ 交于O 点,设AO =c ,BO =a ,OR =d ,OQ =b ,因为c 2+b 2=AQ 2=14AC 2=16,a 2+d 2=BR 2=14BC 2=9, 又因为a 2+c 2=AB 2,b 2+d 2=QR 2=14AB 2,所以54AB 2=a 2+b 2+c 2+d 2=16+9=25.所以AB 2=20.所以AB 2+AC 2+BC 2=20+64+36=120.9. 如下列图所示,点E 是正方形ABCD 的CD 边上的一点,以BE 为一条直角边作等腰直角三角形BEF ,斜边BF 交AD 于G ,AG =5厘米,GD =15厘米.求三角形BEF 的面积.【答案】272平方厘米【分析】如下列图作辅助线,由于AG =5,而AB =20,令SF =a ,而SB =4a .而MN =20+20−a =4a .解之得a=8,那么FN=12,MN=32,NE=20,那么阴影局部面积为:(122+202)÷2= 272(平方厘米).10. 下列图是由边长为3厘米和4厘米的两个正方形组成.请按尺寸在发给你的彩纸上画上这一图形,再将它剪成3块,拼成一个大的正方形,并求这个大正方形的边长是多少?【答案】5厘米【分析】此题考査考生对弦图的认识.面积和=32+42=52,所以拼成大正方形边长为5.边长5厘米.拼法如下列图所示.11. 如下列图所示,对角线BD将矩形ABCD分割为两个三角形,AE和CF分別是两个三角形上的高,长度都等于6厘米,EF的长度为5厘米,求矩形ABCD的面积.【答案】78【分析】如下列图所示,将AE平移到AʹF,因为AE是三角形ABD的高,所以AE⊥BD,AʹF⊥BD,AAʹFE是矩形,并且Aʹ、F、C在同一条直线上面,再根据AAʹ⊥AʹF,运用勾股定理可以得到AC2=AAʹ2+AʹC2,其中AAʹ=EF=5厘米,AʹC=AE+FC=12厘米,由此根据勾股定理可求得矩形ABCD的对角线AC的长度为13厘米,由于BD也是矩形ABCD的对角线,所以BD 的长度也为13厘米,那么矩形ABCD的面积为三角形ABD和三角形BCD的面积之和,为13×6÷2×2=78(平方厘米).12. 如下列图两个正方形的边长分别是a和b〔a>b〕,将边长为a的正方形切成四块大小、形状都相同的图形,与另一个正方形拼在一起组成一个正方形.【答案】见解析.【分析】拼成大正方形的面积应是a×a+b×b,设边长c,那么有等式c×c=a×a+b×b,又因为将边长为a的正方形切成四个全等形,那么分割线一定经过正方形中心,假设切割线MN为大正方形边长,如图〔1〕,一定有MN×MN=a×a+b×b,而MH=a,那么:NH=b,所以AN=CM=BH=(a−b)÷2,由此可以确定MN,然后将MN绕中心O旋转90∘到EF位置,即可把正方形切成符合要求的4块.如图〔2〕与图〔3〕.这种分法同时确保图〔3〕的中间局部就是边长为b的小正方形.这是因为:中心四边形的角即边长为a的正方形的四个角,∠A,∠B,∠C,∠D,又因为各边长度相等.因此中心四边形是正方形.中心正方形的边长=[a−(a−b)÷2]−(a−b)÷2=a−(a−b)=b.因此,中间局部是边长为b的正方形.13. 如图,以AD为直径的半圆O内接一个等腰梯形ABCD,梯形的上底是60,下底是100,以梯形上底和腰为直径向外作半圆,形成的阴影局部的面积是多少?〔π取3.14〕【答案】2258【分析】由可得,阴影局部的面积为梯形面积加以AB、BC、CD为直径的半圆面积减去以AD 为直径的半圆面积,作OE垂直于BC,根据勾股定理可得梯形的高OE为40,那么AB2=BF2+ AF2=402+202=2000,阴影局部的面积为:1 2(AD+BC)⋅OE+12π(AB2)2+12π(CD2)2+12π(BC2)2−12π(AO2)2=2258.14. 从一块正方形的玻璃板上锯下宽为0.5米的一个长方形玻璃条后,剩下的长方形的面积为5平方米,请问锯下的长方形玻璃条的面积等于多少?【答案】1.25平方米【分析】我们先按题目中的条件画出示意图〔如图a〕,我们先看图中剩下的长方形,它的面积为5平方米,它的长和宽相差0.5米,我们可以将这样形状的四个长方形拼成一个弦图〔如图b〕.图b 是一个大正方形,它的边长等于长方形的长和宽之和,中间的那个小正方形的边长,等于长方形的长和宽之差,即0.5米.所以中间的小正方形的面积为0.5×0.5=0.25平方米那么大正方形的面积为5×4+0.25=20.25平方米因为4.5×4.5=20.25所以大正方形的边长等于4.5米.所以原题中剩下的长方形的长与宽的和为4.5米,而长与宽的差为0.5米,所以剩下的长方形的长为:(4.5+0.5)÷2=2.5米即原正方形的边长为2.5米.又知锯下的长方形玻璃条的宽为0.5米,于是可得锯下的长方形玻璃条的面积为2.5×0.5=1.25平方米15. 如下列图所示,这是一张十字形纸片,它是由五个全等正方形组成,试沿一直线将它剪成两片,然后再沿另一直线将其中一片剪成两片,使得最后得到的三片拼成两个并列的正方形.【答案】见解析.【分析】实际拼成两个并列的正方形就是一个长方形,其长是宽的2倍,设十字形面积是5个平方单位,长方形的长为x 长度单位,宽为x 2长度单位,那么有x x 2=5,x 2=10,即x 2=32+12,由勾股定理可知:所求长方形的长可视为一直角三角形直角边分别是3和1的斜边.它恰是两个对角顶点的连线.剪拼方法如下列图所示,甲拼在甲′位置,乙拼在乙′位置,就可得符合题意的图形.【总结】假假设沿第二条线把另一片也剪成两片,那么共剪成的4片是4个全等多边形,这时两条直线都经过十字形的中心,并且互相垂直.剪开的这4个图形其中一个绕中心旋转90∘也和另一个重合.由此我们便得到一个重要结论:对于一个正方形来讲,如果从中心沿360∘÷4=90∘角的两边切开,得到整个图形的14,这个14的图形假设绕中心旋转90∘一定和另外的14的图形重合.对于一个正三角形来讲,如果从中心沿360∘÷3=120∘角的两边切开,得到整个图形的13,这个13的图形假设绕中心旋转120∘一定也和另外的13的图形重合.一般情况:对于一个正n 边形,如果从它的中心沿360∘n 的角的两边剪开,得到整个图形的1n ,这个1n 的图形假设绕中心旋转360∘n 角,一定也和另一个1n 图形重合. 16. 从一个正方形的木板上锯下宽1m 的一个长方形木条后,剩下的长方形面积为6m 2,问锯下的长方形木条面积是多少?【答案】6m 2【分析】我们用构造“弦图〞的方法,取同样大小的4个剩下的长方形木板拼成一个大正方形〔如右下列图〕,同时中间形成了一个小正方形〔图中阴影局部〕.仔细观察这幅图就会发现,中间阴影小正方形的边长正好是长方形木板的长与宽之差〔1m 〕.那么,阴影小正方形的面积1×1=1(m 2)所以,整个大正方形的面积是1+4×6=25=5×5(m 2)求得大正方形的边长为5m .那么,剩下的长方形木条的长−宽=1,长+宽=5,可得剩下的长方形木条的长为(5+1)÷2=3(m)宽为(5−1)÷2=2(m)所以,锯下的长方形木条面积是3×2=6(m2)。
小学奥数几何专题--立体图形(六年级)竞赛测试.doc

小学奥数几何专题--立体图形(六年级)竞赛测试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】如图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?【答案】600【解析】我们从三个方向(前后、左右、上下)考虑,新几何体的表面积仍为原立方体的表面积:10106600.【题文】右图是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?(图中只画出了前面、右面、上面挖去的正方体)【答案】120【解析】原正方体的表面积是44696(平方厘米).每一个面被挖去一个边长是1厘米的正方形,同时又增加了5个边长是1厘米的正方体作为玩具的表面积的组成部分.总的来看,每一个面都增加了4个边评卷人得分长是1厘米的正方形.从而,它的表面积是:9646120平方厘米.【题文】在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?【答案】15000【解析】对于和长方体相关的立体图形表面积,一般从上下、左右、前后3个方向考虑.变化前后的表面积不变:5050615000(平方厘米).【题文】下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同为厘米,那么最后得到的立体图形的表面积是多少平方厘米?【答案】【解析】我们仍然从3个方向考虑.平行于上下表面的各面面积之和:2228(平方厘米);左右方向、前后方向:22416(平方厘米),1144(平方厘米),41(平方厘米),4(平方厘米),这个立体图形的表面积为:41(平方厘米).【题文】一个正方体木块,棱长是1米,沿着水平方向将它锯成2片,每片又锯成3长条,每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少?【答案】18【解析】锯一次增加两个面,锯的总次数转化为增加的面数的公式为:锯的总次数2增加的面数.原正方体表面积:1166(平方米),一共锯了(21)(31)(41)6次,6112618(平方米).【题文】一个表面积为的长方体如图切成27个小长方体,这27个小长方体表面积的和是多少平方厘米?【答案】168平方厘米【解析】每一刀增加两个切面,增加的表面积等于与切面平行的两个表面积,所以每个方向切两刀后,表面积增加到原来的3倍,即表面积的和为.【题文】如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少?【答案】54【解析】当小积木互相重合的面最多时表面积最小.设想27块边长为1的正方形积木,当拼成一个的正方体时,表面积最小,现在要去掉2块小积木,只有在两个角上各去掉一块小积木,或在同一个角去掉两块相邻的积木时,表面积不会增加,该几何体表面积为54.【题文】要把12件同样的长a、宽b、高h的长方体物品拼装成一件大的长方体,使打包后表面积最小,该如何打包?⑴当 b2h时,如何打包?⑵当 b2h时,如何打包?⑶当 b2h时,如何打包?【答案】如解析图【解析】图2和图3正面的面积相同,侧面面积正面周长长方体长,所以正面的周长愈大表面积越大,图2的正面周长是8h6b,图3的周长是12h4b.两者的周长之差为2(b2h).当b2h时,图2和图3周长相等,可随意打包;当b2h时,按图2打包;当b2h时,按图3打包.【题文】要把6件同样的长17、宽7、高3的长方体物品拼装成一件大的长方体,表面积最小是多少?【答案】1034【解析】考虑所有的包装方法,因为6123,所以一共有两种拼接方式:第一种按长宽高116拼接,重叠面有三种选择,共3种包装方法.第二种按长宽高123拼接,有3个长方体并列方向的重叠面有三种选择,有2个长方体并列方向的重叠面剩下2种选择,一共有6种包装方法.其中表面积最小的包装方法如图所示,表面积为1034.【题文】如图,在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体,求这个立体图形的表面积.【答案】214【解析】我们把上面的小正方体想象成是可以向下“压缩”的,“压缩”后我们发现:小正方体的上面与大正方体上面中的阴影部分合在一起,正好是大正方体的上面.这样这个立体图形的表面积就可以分成这样两部分:上下方向:大正方体的两个底面;四周方向(左右、前后方向):小正方体的四个侧面,大正方体的四个侧面.上下方向:(平方分米);侧面:(平方分米),(平方分米).这个立体图形的表面积为:(平方分米).【题文】如图,棱长分别为厘米、厘米、厘米、厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是多少平方厘米?【答案】194平方厘米【解析】 (法1)四个正方体的表面积之和为:(平方厘米),重叠部分的面积为:(平方厘米),所以,所得到的多面体的表面积为:(平方厘米).(法2)三视图法.从前后面观察到的面积为平方厘米,从左右两个面观察到的面积为平方厘米,从上下能观察到的面积为平方厘米.表面积为(平方厘米).【题文】把19个棱长为1厘米的正方体重叠在一起,按右图中的方式拼成一个立体图形.,求这个立体图形的表面积.【答案】54【解析】从上下、左右、前后观察到的的平面图形如下面三图表示.因此,这个立体图形的表面积为:2个上面个左面个前面.上表面的面积为:9平方厘米,左表面的面积为:8平方厘米,前表面的面积为:10平方厘米.因此,这个立体图形的总表面积为:(平方厘米).上下面左右面前后面【题文】用棱长是1厘米的立方块拼成如图所示的立体图形,问该图形的表面积是多少平方厘米?【答案】46平方厘米【解析】该图形的上、左、前三个方向的表面分别由9、7、7块正方形组成.该图形的表面积等于个小正方形的面积,所以该图形表面积为46平方厘米.【题文】有30个边长为1米的正方体,在地面上摆成右上图的形式,然后把露出的表面涂成红色.求被涂成红色的表面积.【答案】56【解析】(平方米).【题文】棱长是厘米(为整数)的正方体的若干面涂上红色,然后将其切割成棱长是1厘米的小正方体.至少有一面红色的小正方体个数和表面没有红色的小正方体个数的比为,此时的最小值是多少?【答案】5【解析】切割成棱长是1厘米的小正方体共有个,由于其中至少有一面是红色的小正方体与没有红色面的个数之比为,而,所以小正方体的总数是25的倍数,即是25的倍数,那么是5的倍数.当时,要使得至少有一面的小正方体有65个,可以将原正方体的正面、上面和下面涂色,此时至少一面涂红色的小正方体有个,表面没有红色的小正方体有个,个数比恰好是,符合题意.因此,的最小值是5.【题文】有64个边长为1厘米的同样大小的小正方体,其中34个为白色的,30个为黑色的.现将它们拼成一个的大正方体,在大正方体的表面上白色部分最多可以是多少平方厘米?【答案】74【解析】要使大正方体的表面上白色部分最多,相当于要使大正方体表面上黑色部分最少,那么就要使得黑色小正方体尽量不露出来.在整个大正方体中,没有露在表面的小正方体有(个),用黑色的;在面上但不在边上的小正方体有(个),其中个用黑色.这样,在表面的个的正方形中,有22个是黑色,(个)是白色,所以在大正方体的表面上白色部分最多可以是74平方厘米.【题文】三个完全一样的长方体,棱长总和是288厘米,每个长方体相交于一个顶点的三条棱长恰是三个连续的自然数,给这三个长方体涂色,一个涂一面,一个涂两面,一个涂三面.涂色后把三个长方体都切成棱长为1厘米的小正方体,只有一个面涂色的小正方体最少有多少个?【答案】307【解析】每个长方体的棱长和是厘米,所以,每个长方体长、宽、高的和是厘米.因为,每个长方体相交于一个顶点的三条棱长恰是三个连续的自然数,所以,每个长方体的长、宽、高分别是9厘米、8厘米、7厘米.要求切割后只有一个面涂色的小正方体最少有多少个,则需每一个长方体按题意涂色时,应让切割后只有一个面涂色的小正方体最少.所以,涂一面的长方体应涂一个面,有个;涂两面的长方体,若两面不相邻,应涂两个面,有个;若两面相邻,应涂一个面和一个面,此时有个,所以涂两面的最少有105个;涂三面的长方体,若三面不两两相邻,应涂两个面、一个面,有个;若三面两两相邻,有个,所以涂三面的最少有146个.那么切割后只有一个面涂色的小正方体最少有个.【题文】把一个大长方体木块表面上涂满红色后,分割成若干个同样大小的小正方体,其中恰好有两个面涂上红色的小正方体恰好是100块,那么至少要把这个大长方体分割成多少个小正方体?【答案】108【解析】设小正方体的棱长为1,考虑两种不同的情况,一种是长方体的长、宽、高中有一个是1的情况,另一种是长方体的长、宽、高都大于1的情况.当长方体的长、宽、高中有一个是1时,分割后只有一层小正方体,其中有两个面涂上红色的小正方体是去掉最外层一圈的小正方体后剩下的那些.因为有两个面涂上红色的小正方体恰好是100块,设,那么分成的小正方体个数为,为了使小正方体的个数尽量少,应使最小,而两数之积一定,差越小积越小,所以当时它们的和最小,此时共有个小正方体.当长方体的长、宽、高都大于1时,有两个面涂上红色的小正方体是去掉8个顶点所在的小正方体后12条棱上剩余的小正方体,因为有两个面涂上红色的小正方体恰好是100块,所以长方体的长、宽、高之和是.由于三个数的和一定,差越大积越小,为了使小正方体的个数尽量少,应该令,此时共有个小正方体.因为,所以至少要把这个大长方体分割成108个小正方体.【题文】把正方体的六个表面都划分成9个相等的正方形.用红、黄、蓝三种颜色去染这些小正方形,要求有公共边的正方形染不同的颜色,那么,用红色染的正方形最多有多少个?【答案】22【解析】一个面最多有5个方格可染成红色(见左下图).因为染有5个红色方格的面不能相邻,可以相对,所以至多有两个面可以染成5个红色方格.其余四个面中,每个面的四个角上的方格不能再染成红色,至多能染4个红色方格(见上中图).因为染有4个红色方格的面也不能相邻,可以相对,所以至多有两个面可以染成4个红色方格.最后剩下两个相对的面,每个面最多可以染2个红色方格(见右上图).所以,红色方格最多有(个).(另解)事实上上述的解法并不严密,“如果最初的假设并没有两个相对的有5个红色方格的面,是否其他的四个面上可以出现更多的红色方格呢?”这种解法回避了这个问题,如果我们从约束染色方格数的本质原因入手,可严格说明是红色方格数的最大值.对于同一个平面上的格网,如果按照国际象棋棋盘的方式染色,那么至少有一半的格子可以染成红色.但是现在需要染色的是一个正方体的表面,因此在分析问题时应该兼顾棱、角等面与面相交的地方:⑴⑵⑶⑴如图,每个角上三个方向的3个方格必须染成不同的三种颜色,所以8个角上最多只能有8个方格染成红色.⑵如图,阴影部分是首尾相接由个方格组成的环,这9个方格中只能有个方格能染成同一种颜色(如果有5个方格染同一种颜色,必然出现相邻,可以用抽屉原理反证之:先去掉一个白格,剩下的然后两两相邻的分成四个抽屉,必然有一个抽屉中有两个红色方格),像这样的环,在正方体表面最多能找到不重叠的两道(关于正方体中心对称的两道),涉及的个方格中最多能有个可染成红色.⑶剩下个方格,分布在条棱上,这个格子中只能有个能染成红色.综上所述,能被染成红色的方格最多能有个格子能染成红色,第一种解法中已经给出个红方格的染色方法,所以个格子染成红色是最多的情况.【题文】一个长、宽、高分别为厘米、厘米、厘米的长方形.现从它的上面尽可能大的切下一个正方体,然后从剩余的部分再尽可能大的切下一个正方体,最后再从第二次剩余的部分尽可能大的切下一个正方体,剩下的体积是多少立方厘米?【答案】1107【解析】本题的关键是确定三次切下的正方体的棱长.由于,为了方便起见.我们先考虑长、宽、高分别为厘米、厘米、厘米的长方体.因为,容易知道第一次切下的正方体棱长应该是厘米,第二次切时,切下棱长为厘米的正方体符合要求.第三次切时,切下棱长为厘米的正方体符合要求.那么对于原长方体来说,三次切下的正方体的棱长分别是12厘米、9厘米和6厘米,所以剩下的体积应是:(立方厘米).【题文】有黑白两种颜色的正方体积木,把它摆成右图所示的形状,已知相邻(有公共面)的积木颜色不同,标的为黑色,图中共有黑色积木多少块?【答案】17【解析】分层来看,如下图(切面平行于纸面)共有黑色积木17块.【题文】有许多相同的立方体,每个立方体的六个面上都写着同一个数字(不同的立方体可以写相同的数字)先将写着2的立方体与写着1的立方体的三个面相邻,再将写着3的立方体写着2的立方体相邻(见左下图).依这样构成右下图所示的立方体,它的六个面上的所有数字之和是多少?【答案】216【解析】第一层如下图,第二层、第三层依次比上面一层每格都多1(见下图).上面的9个数之和是27,由对称性知,上面、前面、右面的所有数之和都是27.同理,下面的9个数之和是45,下面、左面、后面的所有数之和都是45.所以六个面上所有数之和是.【题文】如图所示,一个的立方体,在一个方向上开有的孔,在另一个方向上开有的孔,在第三个方向上开有的孔,剩余部分的体积是多少?表面积为多少?【答案】100;204【解析】求体积:开了的孔,挖去,开了的孔,挖去;开了的孔,挖去,剩余部分的体积是:.(另解)将整个图形切片,如果切面平行于纸面,那么五个切片分别如图:得到总体积为:.求表面积:表面积可以看成外部和内部两部分.外部的表面积为,内部的面积可以分为前后、左右、上下三个方向,面积分别为、、,所以总的表面积为.(另解)运用类似于三视图的方法,记录每一方向上的不同位置上的裸露正方形个数:前后方向:上下方向:左右方向:总表面积为.总结:“切片法”:全面打洞(例如本题,五层一样),挖块成线(例如本题,在前一层的基础上,一条线一条线地挖),这里体现的思想方法是:化整为零,有序思考!【题文】如图,原来的大正方体是由个小正方体所构成的.其中有些小正方体已经被挖除,图中涂黑色的部分就是贯穿整个大正方体的挖除部分.请问剩下的部分共有多少个小正方体?【答案】72【解析】对于这一类从立体图形中间挖掉一部分后再求体积(或小正方体数l【题文】一个由125个同样的小正方体组成的大正方体,从这个大正方体中抽出若干个小正方体,把大正方体中相对的两面打通,右图就是抽空的状态.右图中剩下的小正方体有多少个?【答案】73【解析】解法一:(用“容斥原理”来解)由正面图形抽出的小正方体有个,由侧面图形抽出的小正方体有个,由底面图形抽出的小正方体有个,正面图形和侧面图形重合抽出的小正方体有个,正面图形和底面图形重合抽出的小正方体有个,底面图形和侧面图形重合抽出的小正方体有个,三个面的图形共同重合抽出的小正方体有4个.根据容斥原理,,所以共抽出了52个小正方体.,所以右图中剩下的小正方体有73个.注意这里的三者共同抽出的小正方体是4个,必须知道是哪4块,这是最让人头疼的事.但你可以先构造空的两个方向上共同部分的模型,再由第三个方向来穿过“花墙”.这里,化虚为实的思想方法很重要.解法二:(用“切片法”来解)可以从上到下切五层,得:⑴从上到下五层,如图:⑵或者,从右到左五片,如图:请注意这里的挖空的技巧是:先认一种方向.比如:从上到下的每一层,首先都应该有第一层的空四块的情况,即——如果挖第二层:第(1)步,把中间这些位置的四块挖走如图:第(2)步,把从右向左的两块成线地挖走.(请注意挖通的效果就是成线挖去),如图:第(3)步,把从前向后的一块(请注意跟第二层有关的只是一块!)挖成线!如图:【题文】右图中的⑴⑵⑶⑷是同样的小等边三角形,⑸⑹也是等边三角形且边长为⑴的2倍,⑺⑻⑼⑽是同样的等腰直角三角形,⑾是正方形.那么,以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的多少倍.【答案】16【解析】本题中的两个图都是立体图形的平面展开图,将它们还原成立体图形,可得到如下两图:其中左图是以⑴⑵⑶⑷为平面展开图的立体图形,是一个四个面都是正三角形的正四面体,右图以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形,是一个不规则图形,底面是⑾,四个侧面是⑺⑻⑼⑽,两个斜面是⑸⑹.对于这两个立体图形的体积,可以采用套模法来求,也就是对于这种我们不熟悉的立体图形,用一些我们熟悉的基本立体图形来套,看看它们与基本立体图形相比,缺少了哪些部分.由于左图四个面都是正三角形,右图底面是正方形,侧面是等腰直角三角形,想到都用正方体来套.对于左图来说,相当于由一个正方体切去4个角后得到(如下左图,切去、、、);而对于右图来说,相当于由一个正方体切去2个角后得到(如下右图,切去、).假设左图中的立方体的棱长为,右图中的立方体的棱长为,则以⑴⑵⑶⑷为平面展开图的立体图形的体积为:,以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积为.由于右图中的立方体的棱长即是题中正方形⑾的边长,而左图中的立方体的每一个面的对角线恰好是正三角形⑴的边长,通过将等腰直角三角形⑺分成4个相同的小等腰直角三角形可以得到右图中的立方体的棱长是左图中的立方体的棱长的2倍,即.那么以⑴⑵⑶⑷为平面展开图的立体图形的体积与以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积的比为:,也就是说以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的16倍.【题文】图⑴和图⑵是以正方形和等边三角形为面的立体图形的展开图,图中所有的边长都相同.请问:图⑴能围起来的立体图形的体积是图⑵能围起来的立体图形的体积的几倍?图⑴图⑵【答案】20【解析】首先,我们把展开图折成立体图形,见下列示意图:图⑴图⑵对于这类题目,一般采用“套模法”,即用一个我们熟悉的基本立体图形来套,这样做基于两点考虑,一是如果有类似的模型,可以直接应用其计算公式;二是如果可以补上一块或者放到某个模型里面,那么可以从这个模型入手.我们把图⑴中的立体图形切成两半,再转一转,正好放进去!我们看到图⑴与图⑶的图形位置的微妙关系:图⑶图⑷由图⑷可见,图⑴这个立体的体积与图⑶这个被切去了8个角后的立体图形的体积相等.假设立方体的1条边的长度是1,那么一个角的体积是,所以切掉8个角后的体积是.再看图⑵中的正四面体,这个正四面体的棱长与图⑶中的每一条实线线段相等,所以应该用边长为的立方体来套.如果把图⑵的立体图形放入边长为的立方体里的话是可以放进去的.这是切去了四个角后的图形,从上面的分析可知一个角的体积为,所以图⑵的体积是:,那么前者的体积是后者的倍.【题文】如图,用高都是米,底面半径分别为米、米和米的个圆柱组成一个物体.问这个物体的表面积是多少平方米?(取)【答案】32.97【解析】从上面看到图形是右上图,所以上下底面积和为(立方米),侧面积为(立方米),所以该物体的表面积是(立方米).【题文】有一个圆柱体的零件,高厘米,底面直径是厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是厘米,孔深厘米(见右图).如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?【答案】307.72【解析】涂漆的面积等于大圆柱表面积与小圆柱侧面积之和,为(平方厘米).【题文】圆柱体的侧面展开,放平,是边长分别为10厘米和12厘米的长方形,那么这个圆柱体的体积是多少立方厘米.(结果用表示)【答案】立方厘米或立方厘米【解析】当圆柱的高是12厘米时体积为(立方厘米)当圆柱的高是12厘米时体积为(立方厘米).所以圆柱体的体积为立方厘米或立方厘米.【题文】如右图,是一个长方形铁皮,利用图中的阴影部分,刚好能做成一个油桶(接头处忽略不计),求这个油桶的容积.()【答案】100.48【解析】圆的直径为:(米),而油桶的高为2个直径长,即为:,故体积为立方米.【题文】如图,有一张长方形铁皮,剪下图中两个圆及一块长方形,正好可以做成1个圆柱体,这个圆柱体的底面半径为10厘米,那么原来长方形铁皮的面积是多少平方厘米?()【答案】2056【解析】做成的圆柱体的侧面是由中间的长方形卷成的,可见这个长方形的长与旁边的圆的周长相等,则剪下的长方形的长,即圆柱体底面圆的周长为:(厘米),原来的长方形的面积为:(平方厘米).【题文】把一个高是8厘米的圆柱体,沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少平方厘米.原来的圆柱体的体积是多少立方厘米?【答案】25.12【解析】沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少的部分为减掉的2厘米圆柱体的侧面积,所以原来圆柱体的底面周长为厘米,底面半径为厘米,所以原来的圆柱体的体积是(立方厘米).【题文】一个圆柱体的体积是立方厘米,底面半径是2厘米.将它的底面平均分成若干个扇形后,再截开拼成一个和它等底等高的长方体,表面积增加了多少平方厘米? ()【答案】16【解析】从图中可以看出,拼成的长方体的底面积与原来圆柱体的底面积相同,长方体的前后两个侧面面积与原来圆柱体的侧面面积相等,所以增加的表面积就是长方体左右两个侧面的面积.(法1)这两个侧面都是长方形,且长等于原来圆柱体的高,宽等于圆柱体底面半径.可知,圆柱体的高为(厘米),所以增加的表面积为(平方厘米);(法2)根据长方体的体积公式推导.增加的两个面是长方体的侧面,侧面面积与长方体的长的乘积就是长方体的体积.由于长方体的体积与圆柱体的体积相等,为立方厘米,而拼成的长方体的长等于圆柱体底面周长的一半,为厘米,所以侧面长方形的面积为平方厘米,所以增加的表面积为平方厘米.【题文】一个拧紧瓶盖的瓶子里面装着一些水(如图),由图中的数据可推知瓶子的容积是多少立方厘米.(取)【答案】100.48【解析】由于瓶子倒立过来后其中水的体积不变,所以空气部分的体积也不变,从图中可以看出,瓶中的水构成高为厘米的圆柱,空气部分构成高为厘米的圆柱,瓶子的容积为这两部分之和,所以瓶。
小学奥数几何篇五大模型蝴蝶定理(附答案)

小学奥数几何篇五大模型蝴蝶定理一、蝴蝶定理的定义与公式蝴蝶定理是小学奥数几何篇中的一个重要模型,它描述了在等腰三角形中,一条平行于底边的线段将底边平分,并且这条线段与等腰三角形的两腰相交于同一点时,该线段的中点与等腰三角形的顶点、底边的中点以及两腰上的交点形成一个等腰三角形。
蝴蝶定理的公式如下:设等腰三角形ABC中,AB=AC,底边BC的长度为2a,点D在BC上,且BD=DC=a,点E在AB上,点F在AC上,DE平行于BC,交AB于点E,交AC于点F,点G为DE的中点,连接AG、BG、CG,则AG=BG=CG。
二、蝴蝶定理的应用1. 在等腰三角形中求边长:通过蝴蝶定理,可以快速求出等腰三角形中未知边的长度。
例如,已知等腰三角形ABC中,AB=AC,底边BC 的长度为2a,点D在BC上,且BD=DC=a,点E在AB上,点F在AC上,DE平行于BC,交AB于点E,交AC于点F,点G为DE的中点,连接AG、BG、CG,求AG的长度。
解答:根据蝴蝶定理,AG=BG=CG,又因为AB=AC,所以AG=AB/2=a。
2. 在等腰三角形中求角度:通过蝴蝶定理,可以求出等腰三角形中未知角的度数。
例如,已知等腰三角形ABC中,AB=AC,底边BC的长度为2a,点D在BC上,且BD=DC=a,点E在AB上,点F在AC上,DE平行于BC,交AB于点E,交AC于点F,点G为DE的中点,连接AG、BG、CG,求∠AGB的度数。
解答:由于AG=BG=CG,所以△AGB是等边三角形,∠AGB=60°。
3. 在等腰三角形中求面积:通过蝴蝶定理,可以求出等腰三角形中未知部分的面积。
例如,已知等腰三角形ABC中,AB=AC,底边BC的长度为2a,点D在BC上,且BD=DC=a,点E在AB上,点F在AC上,DE平行于BC,交AB于点E,交AC于点F,点G为DE的中点,连接AG、BG、CG,求△AGB的面积。
解答:由于△AGB是等边三角形,所以△AGB的面积=(a^2 √3)/ 4。
小学奥数几何专题--复杂直线型面积-3(六年级)竞赛测试.doc

小学奥数几何专题--复杂直线型面积-3(六年级)竞赛测试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】图中两个正方形的边长分别是6厘米和4厘米,则图中阴影部分三角形的面积是多少平方厘米.【答案】8【解析】.【题文】如图,有三个正方形的顶点、、恰好在同一条直线上,其中正方形的边长为10厘米,求阴影部分的面积.【答案】100【解析】评卷人得分对于这种几个正方形并排放在一起的图形,一般可以连接正方形同方向的对角线,连得的这些对角线互相都是平行的,从而可以利用面积比例模型进行面积的转化.如右图所示,连接、、,则,根据几何五大模型中的面积比例模型,可得,,所以阴影部分的面积就等于正方形的面积,即为平方厘米.【题文】图是由大、小两个正方形组成的,小正方形的边长是厘米,求三角形的面积.【答案】8【解析】这道题似乎缺少大正方形的边长这个条件,实际上本题的结果与大正方形的边长没关系.连接(见右上图),可以看出,三角形与三角形的底都等于小正方形的边长,高都等于大正方形的边长,所以面积相等.因为三角形是三角形与三角形的公共部分,所以去掉这个公共部分,根据差不变性质,剩下的两个部分,即三角形与三角形面积仍然相等.根据等量代换,求三角形的面积等于求三角形的面积,等于.【题文】如图,与均为正方形,三角形的面积为6平方厘米,图中阴影部分的面积为多少.【答案】6【解析】如图,连接,比较与,由于,,即与的底与高分别相等,所以与的面积相等,那么阴影部分面积与的面积相等,为6平方厘米.【题文】正方形ABCD和正方形CEFG,且正方形ABCD边长为10厘米,则图中阴影面积为多少平方厘米?【答案】50【解析】方法一:三角形BEF的面积,梯形EFDC的面积三角形BEF的面积,而四边形CEFH是它们的公共部分,所以,三角形DHF的面积三角形BCH的面积,进而可得,阴影面积三角形BDF的面积三角形BCD的面积(平方厘米).方法二:连接CF,那么CF平行BD ,所以,阴影面积三角形BDF的面积三角形BCD的面积(平方厘米).【题文】已知正方形边长为10,正方形边长为6,求阴影部分的面积.【答案】20【解析】如果注意到为一个正方形的对角线(或者说一个等腰直角三角形的斜边),那么容易想到与是平行的.所以可以连接、,如上图.由于与平行,所以的面积与的面积相等.而的面积为,所以的面积也为20.【题文】图中,和是两个正方形,和相交于,已知等于的三分之一,三角形的面积等于6平方厘米,求五边形的面积.【答案】49.5【解析】连接、,由于与平行,可知四边形构成一个梯形.由于面积为6平方厘米,且等于的三分之一,所以等于的,根据梯形蝴蝶定理或相似三角形性质,可知的面积为12平方厘米,的面积为6平方厘米,的面积为3平方厘米.那么正方形的面积为平方厘米,所以其边长为6厘米.又的面积为平方厘米,所以(厘米),即正方形的边长为3厘米.那么,五边形的面积为:(平方厘米).【题文】如下图,、分别是梯形的下底和腰上的点,,并且甲、乙、丙个三角形面积相等.已知梯形的面积是平方厘米.求图中阴影部分的面积.【答案】12.8【解析】因为乙、丙两个三角形面积相等,底.所以到的距离与到的距离相等,即与平行,四边形是平行四边形,阴影部分的面积平行四边形的面积的,所以阴影部分的面积乙的面积.设甲、乙、丙的面积分别为份,则阴影面积为份,梯形的面积为份,从而阴影部分的面积(平方厘米).【题文】如图,已知长方形的面积,三角形的面积是,三角形的面积是,那么三角形的面积是多少?【答案】6.5【解析】方法一:连接对角线.∵是长方形∴∴,∴,∴∴.方法二:连接,由图知,所以,又由,恰好是面积的一半,所以是的中点,因此,所以【题文】如图,在平行四边形中,,.求阴影面积与空白面积的比.【答案】1:2【解析】方法一:因为,,所以,.因为,所以,所以,.同理可得,,.因为,所以空白部分的面积,所以阴影部分的面积是.,所以阴影面积与空白面积的比是.【题文】如图所示,三角形中,是边的中点,是边上的一点,且,为与的交点.若的面积为平方厘米,的面积为平方厘米.且是平方厘米,那么三角形的面积是多少平方厘米.【答案】10【解析】,,所以(平方厘米).所以(平方厘米).【题文】如图,在梯形中,,,且的面积比的面积小10平方厘米.梯形的面积是多少平方厘米?【答案】115【解析】根据题意可知,则,,而平方厘米,所以,则平方厘米.又,所以平方厘米.所以(平方厘米).【题文】如图,是梯形的一条对角线,线段与平行,与相交于点.已知三角形的面积比三角形的面积大平方米,并且.求梯形的面积.【答案】28【解析】连接.根据差不变原理可知三角形的面积比三角形大4平方米,而三角形与三角形面积相等,因此也与三角形面积相等,从而三角形的面积比三角形的大4平方米.但,所以三角形的面积是三角形的,从而三角形的面积是(平方米),梯形的面积为:(平方米).【题文】如右图所示,在长方形内画出一些直线,已知边上有三块面积分别是,,.那么图中阴影部分的面积是多少?【答案】97【解析】三角形的面积三角形的面积长方形面积阴影部分面积;又因为三角形的面积三角形的面积长方形面积,所以可得:阴影部分面积.【题文】图中是一个各条边分别为5厘米、12厘米、13厘米的直角三角形.将它的短直角边对折到斜边上去与斜边相重合,那么图中的阴影部分(即未被盖住的部分)的面积是多少平方厘米?【答案】【解析】如下图,为了方便说明,将某些点标上字母.有为直角,而,所以也为直角.而.与同高,所以面积比为底的比,及===,设的面积为“8”,则的面积为“5”.是由折叠而成,所以有、面积相等,是由、、组成,所以=“8”+“5”+“5”=“18”对应为,所以“1”份对应为,那么△ADE的面积为=平方厘米.即阴影部分的面积为平方厘米.【题文】如图,长方形的面积是2平方厘米,,是的中点.阴影部分的面积是多少平方厘米?【答案】平方厘米【解析】如下图,连接,、的面积相等,设为平方厘米;、的面积相等,设为平方厘米,那么的面积为平方厘米.,.所以有.比较②、①式,②式左边比①式左边多,②式右边比①式右边大0.5,有,即,.而阴影部分面积为平方厘米.【题文】如图,三角形田地中有两条小路和,交叉处为,张大伯常走这两条小路,他知道,且.则两块地和的面积比是多少【答案】1:2【解析】方法一:连接.设的面积为1,的面积,则根据题上说给出的条件,由得,即的面积为、;又有,、,而;得,所以.方法二:连接,设(份),则,设则有,解得,所以方法三:过点作∥交于点,由相似得,又因为,所以,所以两块田地ACF和CFB的面积比【题文】如图,,,被分成个面积相等的小三角形,那么|【答案】24【解析】由题意可知,,所以,;又,所以,同样分析可得,所以.【题文】如图,在角的两边上分别有、、及、、六个点,并且、、、、的面积都等于1,则的面积等于.【答案】【解析】根据题意可知,,所以,.【题文】、分别为直角梯形两边上的点,且、、彼此平行,若,,,.求阴影部分的面积.【答案】25【解析】连接、.由于、、彼此平行,所以四边形是梯形,且与该梯形的两个底平行,那么三角形与、三角形与的面积分别相等,所以三角形的面积与三角形的面积相等.而三角形的面积根据已知条件很容易求出来.由于为直角梯形,且,,,,所以三角形的面积的面积为:.所以三角形的面积为25.【题文】已知为等边三角形,面积为400,、、分别为三边的中点,已知甲、乙、丙面积和为143,求阴影五边形的面积.(丙是三角形)【答案】43【解析】因为、、分别为三边的中点,所以、、是三角形的中位线,也就与对应的边平行,根据面积比例模型,三角形和三角形的面积都等于三角形的一半,即为200.根据图形的容斥关系,有,即,所以.又,所以.【题文】如图,已知,,,,线段将图形分成两部分,左边部分面积是38,右边部分面积是65,求三角形的面积.【答案】40【解析】连接,.根据题意可知,;;所以,,,,,于是:;;可得.故三角形的面积是40.【题文】如图,点、、在线段上,已知厘米,厘米,厘米,厘米,将整个图形分成上下两部分,下边部分面积是平方厘米,上边部分面积是平方厘米,则三角形的面积是多少平方厘米?【答案】128【解析】连接设的面积是,由于所以的面积是、的面积是由于上半部分的面积是平方厘米所以的面积是()平方厘米,因为下半部分的面积是平方厘米所以的面积是()平方厘米,因为是的2倍所以可以列方程为:()解得,的面积为平方厘米.【题文】如图,正方形的边长为10,四边形的面积为5,那么阴影部分的面积是多少【答案】40【解析】如图所示,设上的两个点分别为、.连接.根据面积比例模型,与的面积是相等的,那么与的面积之和,等于与的面积之和,即等于的面积.而的面积为正方形面积的一半,为.又与的面积之和与阴影部分的面积相比较,多了2个四边形的面积,所以阴影部分的面积为:.【题文】如图,正方形的边长为12,阴影部分的面积为60,那么四边形的面积是多少【答案】6【解析】如图所示,设上的两个点分别为、.连接.根据面积比例模型,与的面积是相等的,那么与的面积之和,等于与的面积之和,即等于的面积.而的面积为正方形面积的一半,为.又与的面积之和与阴影部分的面积相比较,多了2个四边形的面积,所以四边形的面积为:.【题文】如图所示,长方形内的阴影部分的面积之和为70,,,四边形的面积为多少?【答案】10【解析】利用图形中的包含关系可以先求出三角形、和四边形的面积之和,以及三角形和的面积之和,进而求出四边形的面积.由于长方形的面积为,所以三角形的面积为,所以三角形和的面积之和为;又三角形、和四边形的面积之和为,所以四边形的面积为.另解:从整体上来看,四边形的面积三角形面积三角形面积白色部分的面积,而三角形面积三角形面积为长方形面积的一半,即60,白色部分的面积等于长方形面积减去阴影部分的面积,即,所以四边形的面积为.【题文】如图所示,矩形的面积为24平方厘米.三角形与三角形的面积之和为平方厘米,则四边形的面积是多少平方厘米?【答案】1.8【解析】因为三角形与三角形的面积之和是矩形的面积的一半,即12平方厘米,又三角形与三角形的面积之和为平方厘米,则三角形与三角形的面积之和是平方厘米,则四边形的面积三角形面积三角形与三角形的面积之和三角形面积(平方厘米).【题文】如图所示,矩形的面积为36平方厘米,四边形的面积是3平方厘米,则阴影部分的面积是多少平方厘米?【答案】12【解析】因为三角形面积为矩形的面积的一半,即18平方厘米,三角形面积为矩形的面积的,即9平方厘米,又四边形的面积为3平方厘米,所以三角形与三角形的面积之和是平方厘米.又三角形与三角形的面积之和是矩形的面积的一半,即18平方厘米,所以阴影部分面积为(平方厘米).【题文】如图,长方形的面积是36,是的三等分点,,则阴影部分的面积为多少?【答案】2.7【解析】如图,连接.根据蝴蝶定理,,所以;,所以.又,,所以阴影部分面积为:.【题文】如图,如果长方形的面积是平方厘米,那么四边形的面积是多少平方厘米?【答案】32.5【解析】如图,过、、、分别作长方形的各边的平行线.易知交成中间的阴影正方形的边长为厘米,面积等于平方厘米.设、、、的面积之和为,四边形的面积等于,则,解得(平方厘米).【题文】如图,阴影部分四边形的外接图形是边长为的正方形,则阴影部分四边形的面积是().【答案】48【解析】如图所示,分别过阴影四边形的四个顶点作正方形各边的平行线,相交得长方形,易知长方形的面积为平方厘米.从图中可以看出,原图中四个空白三角形的面积之和的2倍,等于、、、四个长方形的面积之和,等于正方形的面积加上长方形的面积,为平方厘米,所以四个空白三角形的面积之和为平方厘米,那么阴影四边形的面积为平方厘米.【题文】如图,阴影部分四边形的外接图形是边长为厘米的正方形,则阴影部分四边形的面积是多少平方厘米?【答案】68【解析】如图所示,分别过阴影四边形的四个顶点作正方形各边的平行线,相交得长方形,易知长方形的面积为平方厘米.从图中可以看出,原图中四个空白三角形的面积之和的2倍,等于、、、四个长方形的面积之和,等于正方形的面积加上长方形的面积,为平方厘米,所以四个空白三角形的面积之和为平方厘米,那么阴影四边形的面积为平方厘米.【题文】已知正方形的边长为10,,,则?【答案】53【解析】如图,作于,于.则四边形分为4个直角三角形和中间的一个长方形,其中的4个直角三角形分别与四边形周围的4个三角形相等,所以它们的面积和相等,而中间的小长方形的面积为,所以.【题文】如图,三角形的面积是,、的长度分别为11、3.求长方形的面积.【答案】67【解析】如图,过作∥,过作∥,、交于,连接.则另解:设三角形、、的面积之和为,则正方形的面积为.从图中可以看出,三角形、、的面积之和的2倍,等于正方形的面积与长方形的面积之和,即,得,所以正方形的面积为.【题文】如图,长方形中,,.、分别是边上的两点,.那么,三角形面积的最小值是多少?【答案】717【解析】由于长方形的面积是一定的,要使三角形面积最小,就必须使、、的面积之和最大.由于、、都是直角三角形,可以分别过、作、的平行线,可构成三个矩形、和,如图所示.容易知道这三个矩形的面积之和等于、、的面积之和的2倍,而这三个矩形的面积之和又等于长方形的面积加上长方形的面积.所以为使、、的面积之和最大,只需使长方形的面积最大.长方形的面积等于其长与宽的积,而其长,宽,由题知,根据”两个数的和一定,差越小,积越大”,所以当与的差为0,即与相等时它们的积最大,此时长方形的面积也最大,所以此时三角形面积最小.当与相等时,,此时三角形的面积为:.(也可根据得到三角形的面积)【题文】是边长为12的正方形,如图所示,是内部任意一点,、,那么阴影部分的面积是().【答案】34【解析】(法1)特殊点法.由于是内部任意一点,不妨设点与点重合(如上中图),那么阴影部分就是和.而的面积为,的面积为,所以阴影部分的面积为.(法2)寻找可以利用的条件,连接、、、可得右图所示:则有:同理可得:;而,即;同理:,,;所以:而;;所以阴影部分的面积是:即为:.【题文】如图所示,在四边形中,,,,分别是各边的中点,求阴影部分与四边形的面积之比.【答案】1【解析】(法1)设,,,.连接知,,,;所以;同理.于是;注意到这四个三角形重合的部分是四块阴影小三角形,没算的部分是四边形;因此四块阴影的面积和就等于四边形的面积.(法2)特殊值法(只用于填空题、选择题),将四边形画成正方形,很容易得到结果.【题文】如图,、、、分别是四边形各边的中点,与交于点,、、及分别表示四个小四边形的面积.试比较与的大小.【答案】【解析】如图,连接、、、,则可判断出,每条边与点所构成的三角形都被分为面积相等的两部分,且每个三角形中的两部分都分属于、这两个不同的组合,所以可知.【题文】如图,四边形中,,,,已知四边形的面积等于4,则四边形的面积是多少?【答案】【解析】运用三角形面积与底和高的关系解题.连接、、、,因为,,所以,在中,,在中,,在中,,在中,.因为,所以.又因为,所以.【题文】如图,对于任意四边形,通过各边三等分点的相应连线,得到中间四边形,求四边形的面积是四边形的几分之几?【答案】【解析】分层次来考虑:⑴如下左图,,,所以.又因为,,所以;.⑵如右上图,已知,;所以;所以,即是三等分点;同理,可知、、都是三等分点;所以再次应用⑴的结论,可知,.【题文】有正三角形,在边、、的正中间分别取点、、,在边、、上分别取点、、,使,当和、和、和的相交点分别是、、时,使.这时,三角形的面积是三角形的面积的几分之几?请写出思考过程.【答案】【解析】连接、、,显然,是正三角形将放大至如图⑵.连,由对称性知,.因此,.同理,.所以,.【题文】如图:已知在梯形中,上底是下底的,其中是边上任意一点,三角形、三角形、三角形的面积分别为、、.求三角形的面积.【答案】21【解析】如图,设上底为,下底为,三角形与三角形的高相差为.由于,所以.即.又,所以.【题文】如图,已知是梯形,∥,,,,求的面积.【答案】6【解析】本题是09年六年级试题,初看之下,是梯形这个条件似乎可以用到梯形蝴蝶定理,四边形内似乎也可以用到蝴蝶定理,然而经过试验可以发现这几个模型在这里都用不上,因为、这两个点的位置不明确.再看题目中的条件,,,这两个条件中的前一个可以根据差不变原理转化成与的面积差,则是与的面积差,两者都涉及到、以及有同一条底边的两个三角形,于是想到过、分别作梯形底边的平行线.如右图,分别过、作梯形底边的平行线,假设这两条直线之间的距离为.再过作的垂线.由于,所以,故.根据差不变原理,这个差等于与的面积之差.而与有一条公共的底边,两个三角形边上的高相差为,所以它们的面积差为,故.再看,它的面积等于是与的面积之差,这两个三角形也有一条公共的底边,边上的高也相差,所以这两个三角形的面积之差为,故.由于,所以,则,所以.【题文】如图,是一个四边形,、分别是、的中点.如果、与的面积分别是6、7和8,且图中所有三角形的面积均为整数,则四边形的面积为多少.【解析】连接、、.由于是的中点,所以与的面积相等,而比的面积大1,所以比的面积大1;又由于是的中点,所以的面积与的面积相等,那么的面积比的面积大1,所以的面积为9.假设的面积为,则的面积为.根据几何五大模型中的蝴蝶定理,可知的面积为,的面积为.要使这两个三角形的面积为整数,可以为1,3或7.由于的面积为面积的一半,的面积为面积的一半,所以与的面积之和为四边形面积的一半,所以与的面积之和等于四边形的面积,即:,得.将、3、7分别代入检验,只有时等式成立,所以{{10l连接,,,所以,设份,则份,平方厘米,所以份是平方厘米,份就是平方厘米,的面积是平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.【题文】如图,三角形中,是的5倍,是的3倍,如果三角形的面积等于1,那么三角形的面积是多少?【答案】15连接.∵∴又∵∴,∴.。
最新小学奥数几何专题训练附答案

最新小学奥数几何专题训练附答案奥数,即奥林匹克数学竞赛,是培养学生逻辑思维和解决问题能力的重要途径。
而几何作为奥数竞赛中的一个重要领域,对学生的几何直观和推理能力提出了较高的要求。
为此,我们特别准备了最新的小学奥数几何专题训练,并附上了详细的答案。
通过这个专题训练,相信学生们在几何方面的能力将得到有效提升。
1. 三角形的性质三角形是几何学中最基础的图形之一,具有诸多性质。
在本专题中,我们将针对三角形的内角和、外角和以及角平分线等性质进行训练。
在题目中,我们通过图形的给定或条件的陈述,要求学生运用已知的性质推导出未知的结果。
例如:题目:如图1所示,三角形ABC中,∠ABC=80°,∠ACB=50°。
求∠BAC的度数。
解答:由于三角形的内角和为180°,设∠BAC=x,则∠ACB=80°-x,∠ABC=50°。
将三角形的内角和代入等式中,得到:x + (80°-x) + 50° = 180°130° = 180°-xx = 180°-130°x = 50°因此,∠BAC的度数为50°。
2. 直线与平行线直线和平行线是几何学中的重要概念。
在这个专题中,我们将训练学生在应用直线与平行线性质解决问题时的能力。
例如:题目:如图2所示,AB、CD和EF是三条平行线。
若∠AGE=40°,求∠EDF的度数。
解答:由于AB和EF是平行线,所以∠AGE=∠EDF。
因此,∠EDF的度数为40°。
3. 三角形的相似性质相似三角形是指具有对应角相等且对应边成比例的三角形。
相似三角形在数学和实际生活中具有重要应用。
在这个专题中,我们将训练学生识别和应用相似三角形的能力。
例如:题目:如图3所示,△ABC与△DEF相似,且比例尺为1:2。
已知AC=4,求EF的长度。
解答:由于△ABC与△DEF相似,所以AB/DE = BC/EF = AC/DF。
奥数平面几何之曲线图形 (附答案)

平面几何之曲线图形基本模型:【例1】如图,阴影部分的面积是多少?例1图【举一反三】计算图中阴影部分的面积(单位:分米)。
举一反三图【例2】如图,大圆半径为小圆的直径,已知图中阴影部分面积为S1,空白部分面积为S2,那么这两个部分的面积之比是多少?(圆周率取3.14)例2图【例3】(第四届走美决赛试题)如图,边长为3的两个正方形BDKE、正方形DCFK并排放置,以BC为边向内侧作等边三角形,分别以B、C为圆心,BK、CK为半径画弧。
求阴影部分面积。
(π取3.14)例3图【例4】(奥林匹克决赛试题)在桌面上放置3个两两重叠、形状相同的圆形纸片。
它们的面积都是100平方厘米,盖住桌面的总面积是144平方厘米,3张纸片共同重叠的面积是42平方厘米。
那么图中3个阴影部分的面积的和______是平方厘米。
例4图【例5】三角形ABC是直角三角形,阴影Ι的面积比阴影Π的面积小25cm2,AB=8cm,求BC的长度。
(π 取3.14 )例5图【例6】在直角边为3与4的直角三角形各边上向外分别作正方形,三个正方形顶点顺次连接成如图所示的六边ABCDEF。
求这个六边形的面积是多少?例6图【巩固】如图所示,直角三角形PQR的直角边为5厘米,9厘米。
问图中3个正方形面积之和比4个三角形面积之和大多少?巩固图【例7】传说古老的天竺国有一座钟楼,钟楼上有一座大钟,这座大钟的钟面有10平方米。
每当太阳西下,钟面就会出现奇妙的阴影(如右图)。
那么,阴影部分的面积是_____平方米。
例7图【例8】草场上有一个长20米、宽10米的关闭着的羊圈,在羊圈的一角用长30米的绳子拴着一只羊(见下图)。
问:这只羊能够活动的范围有多大?例8图【例9】如图,ABCD是一个长为4,宽为3的长方形,围绕C点按顺时针方向旋转90°,分别求出四边扫过图形的面积。
例9图练习:1、求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)2、正方形面积是7平方厘米,求阴影部分的面积。
六年级奥数专项精品讲义及常考易错题汇编-几何图形问题十二大专题汇编含详解

六年级奥数专项精品讲义及常考易错题汇编-几何图形问题-等积变形(位移、割补)【知识点归纳】等积变形的主要方法是:1.三角形内等底等高的三角形2.平行线内等底等高的三角形3.公共部分的传递性4.极值原理(变与不变)【经典题型】例1:求如图的体积.(π取3.14)分析:此题上面是斜面,可以把一个和它完全一样的图形拼成一个高是20+15=35厘米,底面直径是4厘米的圆柱体,所以此图的体积是圆柱体积的12;利用圆柱体的体积公式计算出体积即可.解:3.14×(4÷2)2×(15+20)×,=3.14×4×35×,=219.8;答:体积是219.8;故答案为:219.8.点评:此题主要根据圆柱体的体积公式解决问题,解题的关键是把两个完全一样的图形拼成一个圆柱体,此图的体积是圆柱体积的.例2:如图所示:一块长方形草坪,长20米,宽14米,中间有一条宽2米的曲折小路.求小路的占地面积?分析:无论这曲折小路如何再曲折,都可以将曲折小路分成两类,一类是竖的,一类是横的,可以把竖的往左拼,横的往上拼,如下图则小路面积不难算出,竖的部分14×2,横的部分20×2,计算重叠2×2,则小路面积为(20+14)×2-2×2=64(平方米).解:小路面积为:(20+14)×2-2×2=64(平方米),答:小路的占地面积64平方米.点评:利用等积变形、平移知识把曲折的小路拉直,就变成规则的图形包括三部分竖的长方形,横的长方形和重叠的小正方形,进而解答.一.选择题1.如图,长方形的面积与圆的面积相等,已知阴影部分的面积是84.78cm2,圆的周长是()cm.A.18.84 B.75.36 C.37.682.以下是四位同学运用转化的策略将左边的图形转化成右边的图形解决问题,其中做对的有()位.A.1 B.2 C.3 D.4二.填空题3.有一种饮料瓶的容积是50立方厘米,瓶身呈圆柱形(不包括瓶颈).现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米.瓶内现有饮料立方厘米.4.如图,外侧大正方形的边长是10厘米,图中阴影部分的面积是27.5平方厘米,那么圆内的大正方形面积是小正方形面积的倍.5.将一底面半径为2分米的圆柱的底面平均分成若干个扇形,截开拼成一个和它等底等高的长方体后,表面积增加16平方分米,圆柱的体积是.6.在如图的长方形内,有四对正方形(标号相同的两个正方形为一对),每一对是相同的正方形,那么中间这个小正方形(阴影部分)的面积为.7.如图,E,F,G,H是边长为2的正方形ABCD各边的中点,则图中阴影部分的面积等于.8.如图,三个大小相同的正方形重叠地放在一个大的正方形ABCD内,已知能看见的部分Ⅰ、Ⅱ、Ⅲ的面积分别是64平方厘米、38平方厘米、34平方厘米.那么正方形ABCD的边长是厘米.9.下图是一个正方体木块.M是AB的中点,N是AD的中点.用一把锋利的锯,过M、N、G三个点将木块锯成两块,使截面是平的,这个截面是边形.10.如图所示,一种饮料瓶,容积是200ml,瓶身是圆柱形.将该瓶正放时饮料高20cm,倒放时余部分高5cm,瓶内的饮料是ml.三.操作题11.把下列图形改成平行四边形四.解答题12.如图,正方形ABCD的边长为10厘米,E,F,G,H分别为正方形四边上的中点,求阴影部分的面积是多少平方厘米.13.看图求阴影部分的面积.(1)求出图(1)中阴影部分的面积.(2)分析上面各图形之间的关系,看一看、想一想、找一找图(4)中阴影部分的面积是.14.如图所示的多边形是由一个三角形和三个长方形组成的.已知三个长方形的面积分别是12平方厘米、4平方厘米和6平方厘米.三角形面积是多少平方厘米?15.如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为多少平方厘米?16.给一个直角楼梯铺地毯,如图所示(图中阴影处不铺),至少需要多少平方米的地毯?(单位:米)17.求小路的占地面积.如图所示:一块长方形草坪,长20米,宽14米,中间有一条宽2米的曲折小路.18.一个圆锥形沙堆,底面积是3.6平方米,高1.2米.把这堆沙装在长2米、宽1.5米的沙坑里,可以装多高?19.如图所示,用一张斜边长为17厘米的红色直角三角形纸片,一张斜边长为29厘米的黄色直角三角形纸片,一张蓝色的正方形纸片,拼成一个直角三角形.红、黄两张三角形纸片面积之和是多少?20.雨哗哗地不停地下着.如果在雨地放一个如图1那样的长方体的容器(单位:厘米),雨水将它灌满要用1小时.雨水灌满图2容器各需多长时间?21.把一个底面直径是4厘米的圆柱底面分成许多相等的扇形,然后沿着直径切开,拼成一个和它体积相等的长方体,这个长方体的表面积比原来圆柱的表面积增加了20平方厘米,这个长方体的体积是多少立方厘米?22.求如图的体积.(π取3.14)23.求如图的体积.(π取3.14)24.给一个直角楼梯铺地毯,如图(图中阴影处不铺)情根据图中的数据,算一算,至少需要多少平方米地毯?(单位:米)25.用20个大小相同的小正方可以组成一个十字图形.把这个十字图形分割为4个部分,是的它们的形状和大小都一样(分割线须沿着图内的虚线),方法有很多,如图例所示,请你再画出与范例不同的两种分割方法.26.如图,O是半圆的圆心,AC=BC,CD=DB,AB=12厘米,求阴影部分的面积.27.如图,直角梯形ABCD中,AB=12,BC=8,CD=9,且三角形AED、三角形FCD和四边形EBFD 的面积相等,求三角形DEF的面积.六年级奥数专项精品讲义及常考易错题汇编-几何图形问题-等积变形(位移、割补)参考答案一.选择题1.解:84.78÷÷5.14=113.04÷3.14=36(cm2);6×6=36(cm2),8.14×6×2=37.68(cm).答:圆的周长是37.68cm.答案:C.2.解:(1)如图,,因为阴影部分A的面积等于空白部分B的面积,所以涂色部分的面积可以转化为圆的面积,所以涂色部分的面积占整个图形面积的,所以(1)正确.(2)如图,,因为△ABC的面积可以转化为△CDE的面积,△AFG的面积可以转化为△EFH的面积,所以涂色部分的面积可以转化为10个小方格的面积,所以涂色部分的面积占整个图形面积的,即,所以(2)不正确.(3)如图,,因为阴影部分A的面积等于空白部分B的面积,所以涂色部分的面积转化为一个正方形的面积,所以涂色部分的面积占整个图形面积的,所以(3)正确.(4)因为该图形的周长转化为直径是7cm的半圆的周长和直径是4cm的圆的周长的和,而不是转化为直径是4cm的半圆的周长和一条7cm的直径的长度之和,所以(4)不正确.综上,可得做对的有2位:(1)(3).答案:B.二.填空题3.解:50×[20÷(20+5)]=50×=40(立方厘米)答案:40立方厘米.4.解:由分析可知:总阴影部分的面积=大正方形的面积四分之一+圆内小正方形的面积四分之一=27.5(平方厘米),大正方形的面积四分之一:10×10×=25(平方厘米),所以圆内小正方形的面积四分之一:27.5﹣25=2.8(平方厘米),则圆内小正方形的面积=2.5×8=10(平方厘米),圆内大正方形的面积:(10÷2)×(10÷2)÷7×4=5×6×2=50(平方厘米),圆内的大正方形面积是小正方形面积的:50÷10=5(倍);答案:7.5.解:3.14×2=4.28(分米),16÷2÷2=7(分米),6.28×2×3=50.24(立方分米);答:圆柱的体积是50.24立方分米.答案:50.24立方分米.6.解:长方形的宽,是“一”与“二”两个正方形的边长之和,长方形的长,是“一”,则长﹣宽=30﹣22=8;宽又是两个“三”正方形与中间小正方形的边长之和,因此中间小正方形边长=22﹣8×4=6.所以中间小正方形面积=6×4=36.答:中间这个小正方形(阴影部分)的面积为36.答案:36.7.解:根据题干分析可得:2×2×=2,答:阴影部分的面积是5.答案:2.8.解:如上图图所示:设出其中两条边分别为a,b:则将图Ⅱ所在的小正方形向左移动到最左边,图Ⅱ减少的面积等于图Ⅲ增加的面积,图Ⅱ面积+图Ⅲ面积=38+34=72(平方厘米),因为大正方形ABCD的边长=小正方形的边长+a=小正方形的边长+b,所以a=b,所以将图Ⅱ所在的小正方形向左移动到最左边后,图Ⅱ的面积等于图Ⅲ的面积,即8a=8b=72÷7=36(平方厘米),则a=b=36÷8=4.2(厘米),则大正方形ABCD的边长为:8+4.8=12.5(厘米).答:正方形ABCD的边长是12.5厘米.答案:12.4.9.解:如图过M、N、G三个点将木块锯成两块、左、右、前、后五个面相交,所以得到的截面是五边形;答案:五边形.10.解:200×[20÷(20+5)]=200×=160(ml).答:瓶内的饮料是160ml.答案:160.三.操作题11.解:根据题干分析可得:四.解答题12.解:将原图割补为下图:.;答:阴影部分的面积是20平方厘米.13.解:(1)正方形边长:2×2=2(cm);阴影部分的面积:4×4﹣8.14×22,=16﹣12.56,=8.44(cm2);(2)把第一幅图横竖分割成4等份,可组拼成后3个图形,所以第四幅图中阴影部分的面积仍是3.44cm2;答案:7.44cm2.14.解:如图,设三角形面积为x平方厘米,则2x:12=6:84×2x=12×78x=728x÷6=72÷8x=9答:三角形面积是8平方厘米.15.解:如图,,阴影部分A的面积等于空白部分B的面积,阴影部分C的面积等于空白部分D的面积,所以阴影部分的面积和等于正方形面积的一半,4×4÷7=8(平方厘米)答:图中阴影部分的面积为8平方厘米.16.解:(2.5+5.2)×2=3.7×2=11.5(平方米),答:至少需要11.4平方米的地毯.17.解:小路面积为:(20+14)×2﹣2×4=64(平方米),答:小路的占地面积64平方米.18.解:3.6×2.2×÷(2×1.6),=1.44÷3,=8.48(米);答:可以装0.48米高.19.解:根据题干分析可得:29×17÷2=246.5(平方厘米),答:这两个直角三角形的面积和是246.5平方厘米.答案:246.5平方厘米.20.解:图①所示的容积中,容积:接水面积=(30×20×10):(30×20)=6000:600=10:1;图②所示的容器中,容积:接水面积=(20×10×10+10×10×10):(10×10)=3000:100=30:1;图③所示的容器中,容积:接水面积=(20×10×10+10×10×10):(20×10)=3000:200=15:2;答:雨水灌满图2的容器需3小时、雨水灌满图4的容器需1.5小时.21.解:20÷2=10(平方厘米),4×2.14÷2=6.28(厘米),10×8.28=62.8(立方厘米);答:这个长方体的体积是62.8立方厘米.22.解:3.14×(4÷2)2×(15+20)×,=3.14×4×35×,=219.8;答:体积是219.3;答案:219.8.23.解:3.14×(4÷2)2×(8+12)÷7=3.14×4×20÷5=125.6(立方厘米);答:它的体积是125.6立方厘米.24.解:(2.5+8)×2=5.8×2=11(平方米),答:至少需要11平方米地毯.25.解:根据题干分析可将这个图形分割如下:26.解:S阴=S扇形COB=×2.14×,=2.14×9,=28.26(平方厘米);答:阴影部分的面积是28.26平方厘米.27.解:(1)根据题干可得,梯形ABCD的面积为:(9+12)×8÷6,=21×8÷2,=84,所以三角形AED、三角形FCD和四边形EBFD的面积分别为:84÷5=28,(2)在直角梯形BECD中,BE=28×2×2÷6﹣9=14﹣9=4,(3)在直角三角形FCD中,FC=28×2÷9=,所以BF=8﹣=,所以直角三角形BEF的面积为:2×=,故三角形DEF的面积为:28﹣=,答:三角形DEF的面积为.六年级奥数专项精品讲义及常考易错题汇编-几何图形问题-立体图形的表面积和体积【知识点归纳】立体图形表面积公式:1.圆柱体:表面积:2πR2+2πRh 体积:πR2h (R为圆柱体上下底圆半径,h为圆柱体高)2.圆锥体:体积:πR2h (r为圆锥体低圆半径,h为其高)3.长方体:表面积=(长×宽+长×高+宽×高)×24.球:表面积=4πR2.一.选择题1.3个棱长都是10厘米的正方体堆放在墙角处,露在外面的面积是()平方厘米.A.1800B.700C.900D.8002.彤彤用18个棱长1cm的正方体摆出如图所示模型,若从模型的三个不同的位置上拿走2个正方体后,可分别得到图(A)、(B)、(C).在图(A)、(B)、(C)中表面积比图甲小的是( )A.B.C.3.如图是一个长3米、宽与高都是2米的长方体.将它挖掉一个棱长1米的小正方体,它的表面积()A.比原来大B.比原来小C.不变D.无法确定4.甲图和乙图占空间的大小关系是甲()乙.A.>B.<C.=D.无法比较5.如图图形的体积是()厘米3.A.100B.267C.240)cm.6.如图是由31cm的小正方体搭成的,它的体积是(3A.10B.9C.67.如图是一个长3厘米、宽与高都是2厘米的长方体.将它挖掉一个棱长1厘米的小正方体,它的表面积()A.比原来大B.比原来小C.不变8.将棱长为1厘米的小正方体按如图方式摆方在地上,露在外面的面积是()平方厘米.A.18B.21C.24D.27二.填空题9.如图是由同样大小的小方块堆积起来的,每个小方块的棱长是1分米,这堆小方块露在外面的面积是.10.有5个棱长为40厘米的正方体放在墙角处.有个面露在外面.露在外面的面积共有平方厘米?11.将4个棱长都是1cm的正方体堆在墙角,体积是3cm.cm,露在外面的面积是212.如果如图中每个小正方体的棱长都是1厘米,这个物体的体积是立方厘米,表面积是平方厘米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-01-06小学数学试卷姓名:__________ 班级:__________考号:__________*注意事项:1、填写答题卡的内容用2B铅笔填写2、提前xx分钟收取答题卡一、单选题(共6题;共0分)1.小亮有五块积木(如图)请问他再加上下列哪块积木就能拼成一个4×4×4的正方体?(注:这些积木都不能再分拆)正确答案是()A.B.C.D.2.仔细观察如图,如果四只小蚂蚁分别沿着右图中的四个图形走一圈,图()的小蚂蚁走的路程最短.B.C.D.3.下面由4个边长为1厘米的正方形摆成的图形中,()的周长最短.A.B.C.D.4.如图所示3个图形中,每个小正方形都一样大,那么()图形的周长最长.A.B.C.5.将如图折叠成正方体后,应是()B.C.D.6.图中,有()个三角形。
A.3B.5C.6二、填空题(共4题;共0分)7.中共有________个三角形,中共有________个长方形。
8.我会数。
(8分)________________9.有________个正方形。
10.数数下面图形各有多少个小方块?________个 ________个________个三、解答题(共50题;共0分)11.图所示,摆放小正方体。
(1)当摆到第七层时一共有________个小正方体。
(2)当摆到第层时一共有________个小正方体。
12.先找出这组图形的规律,再按规律在括号里填上合适的数。
13.计算下面各图形的面积。
14.在下面的正方形中画一个最大的圆。
15.找规律填数。
16.李奶奶病了,她到那个医院更近一些?17.看图回答(1)请你画一条从蘑菇房到小木屋最近的路。
(2)请你画一条从蘑菇房通向小河最近的路。
18.先把下面的图形分成几个三角形?再求出它们的内角和。
19.你知道他们为什么要这样测量吗?20.求阴影部分面积(单位:厘米)21.数一数图中共有三角形多少个?22.下面两个图形阴影部分的面积相等吗?为什么?23.你能想办法求出这个多边形的内角和吗?24.行1千米需要多长时间?把出行方式和相应的时间连接起来。
25.一边做题,一边总结规律.有1个三角形有1+2个三角形有1+2+3 个三角形(1)有1+2+3+________个三角形有1+2+3+4+________个三角形(2)你能总结出什么规律?26.找规律。
下面各图形的内角和是180°的几倍?这个倍数同图形边数有什么关系?你能应用这一关系求出十边形的内角和吗?27.小明家住在A处,小亮家住在B处,估计一下,小明家到小亮家走哪条路更近些,为什么?(如图)28.如下图,请帮助小猫想一想,它去捉老鼠走哪条路更近,为什么?29.贝贝想测量一个瓶子的容积,瓶身呈圆柱形,如下图,她先将容积是1.2升的牛奶瓶中装满水,然后将水注入此瓶中,当瓶正放时瓶内水高15厘米,当瓶倒放时空着的部分高2.5厘米。
你能根据这些信息求出瓶子的容积吗30.数一数图中共有几个小长方体?31.如图,数一数下面的三个图形中分别有多少个三角形.32.一共有几个正方形?33.图中,以点A,B,C,D,E,F,G,H为端点的线段有多少条?34.数一数,图中有几个正方形,几个长方形?几个三角形,几个圆?35.数一数,图中有几个苹果,几个梨,几个草莓,几个葡萄,几个香蕉?36.如图是一个由25种不同颜色的小正方形组成的大正方形.数数看,它共有多少个不同的正方形?37.用四条直线分别画出交点数是1、3、5个的图形.(如图是交点数为4个的图形).4条直线最多能有几个交点?38.如图1共有多少个长方形,图2中有多少个长方形?39.如图,直线l上有100个点,它们和直线外的点A一共可以构成多少个三角形?40.填出下面题中所缺的数.41.量出需要的数据(取整毫米),计算各图的面积.42.请你将下面的三个图形,分别割补成学过的长方形或正方形.43.“将军饮马”问题古希腊亚历山大城里有一位著名的学者,名字叫海伦。
有一天,一位将军风尘仆仆地从远处而来,向他请教一个问题。
如下图所示,这位将军要从驻地A出发,到河边饮马,然后再去远处的堡垒B,应该怎么走路线最近呢?44.数线段.45.数一数有多少个三角形有多少个平行四边形有多少个梯形?46.如图是由若干个小正方体组成的,阴影部分是空缺的通道,则这两个立体图形分别由多少个小正方体组成.47.图中的小格子都是正方形,则图中一共有多少个正方形?48.在下面方格纸中(每小格边长为1厘米),共有多少个边长为5厘米的小正方形?49.如图的一堵墙究竟缺了几块砖?50.数一数,图中各有几个角?51.以如图中格点为顶点共可连出多少个面积为2的三角形?(相邻两个格点的距离为1)52.图中,你能数出多少个梯形?53.算一算,机器人能从桥下穿过吗?54.下面两个图形的周长相等吗?求出它们的周长.55.有两只蚂蚁同时从A点到B点,一只走路线①,另一只走路线②,它们的速度相同,问它们谁先到达B点(如图).56.小红上学走哪条路最近?根据什么?57.下面哪个图形的面积大?哪个图形的周长长?58.已知:如图,在矩形ABCD中,对角线AC与BD相交于点O,BE⊥AC于E,CF⊥BD于F,请你判断BE 与CF的大小关系,并说明你的理由.59.火柴棒可以摆正方形。
用火柴棒可以摆出几何图形,做这种游戏要头脑灵活。
用火柴棒可以构成各种直线图形,如果再移动火柴棒的位置,那么又能使一种图形变成另一种图形,千变万化,很锻炼人的大脑。
现在给出24根相同的火柴棒,不许折,全部用上,可以摆成几个相等的正方形呢?60.把54厘米、9厘米、145厘米、1米80厘米按从短到长的顺序排列.答案部分第 1 题:【答案】B【考点】组合图形的计数【解析】【解答】解:他再加上B项中的积木,就可以拼成一个4×4×4的正方体。
故答案为:B。
【分析】因为要平成一个4×4×4的正方体,所以这个正方体的每一个面上都是4×4=16个正方体,把第三块积木竖着摆在第一块积木的最左边的一列,这样左面的面和后面的面都是16个正方体,再把这个第二个积木放在第三块积木的右边,这样下面的面也是16个正方体,这样最上面一层只剩3×3=9个正方体小块了,把最后两块积木方成第一行两个正方体,第二行三个正方体的形式,这样选的积木是B。
第 2 题:【答案】A【考点】长度比较【解析】【解答】解:根据分析可得,把最里面的正方形的一条边长看作一条直线段,相对应的其它三个图形的部分都看作两点间的曲线,根据“两点间直线段最短”可以得出最里面的正方形的周长最短,即,图A的小蚂蚁走的路程最.故选:A.【分析】根据周长的意义,绕图形一周的长度及图形的周长,把最里面的正方形的一条边长看作一条直线段,相对应的其它三个图形的部分都看作两点间的曲线,根据“两点间直线段最短”可以得出最里面的正方形的周长最短;据此解答即可.第 3 题:【答案】 D【考点】长度比较【解析】【解答】解:A、周长是:(3+2)×2=10(厘米),B、周长是:(4+1)×2=10(厘米),C、周长是:(3+2)×2=10(厘米),D、周长是:2×8=8(厘米),10厘米>8厘米,所以D的周长最短,故选:D.【分析】根据周长的定义知道,围成一个图形的所有边长的总和,就是该图形的周长,所以把A、B、C、D四个图形的周长分别求出,再比较即可得出答案.第 4 题:【答案】C【考点】长度比较【解析】【解答】解:A、这个图形的周长等于长4、宽2的长方形的周长:(4+2)×2=12;B、这个图形的周长就等于边长是3的正方形的周长:3×4=12;C、这个图形的周长等于长4、宽2的长方形的周长与两条长1的小线段的长度之和:(4+2)×2+2=14;所以周长最长的是C.故选:C.【分析】根据图形的周长计算方法,分别计算出三个选项中图形的周长,即可选择.第 5 题:【答案】C【考点】图形的拆拼(切拼)【解析】【解答】解:如图,根据分析,折叠成正方体后是图形C;故选:C.【分析】如图,根据正方体展开图的11种特征,属于“1 4 1”结构,折成正方体后,A、B、H三点重合,C、F、G三点重合,D、E两点重合,I、J两点重合,不会出现三个相邻的颜色,图A和图D出现三相邻的白色正方形,不可能,同样图B出现三个相邻的绿色正方形,也不可能,因此,只能是图C.第 6 题:【答案】C【考点】组合图形的计数【解析】【解答】解:3+2+1=6(个)故答案为:C。
【分析】单独的三角形有3个,两个三角形组成的三角形有2个,三个三角形组成的三角形有1个。
由此计算三角形的个数即可。
第7 题:【答案】3;3【考点】组合图形的计数【解析】【解答】解:中共有3个三角形,中共有3个个长方形。
故答案为:3;3。
【分析】第一个图中,小三角形有2个,加上外面大三角形一共有3个三角形;第二个图中,小长方形有2个,加上外面大长方形一共有3个长方形。
第8 题:【答案】10;5【考点】平面图形的切拼,组合图形的计数【解析】【解答】解:第一幅图中有10个三角形,第二幅图中有5个三角形。
故答案为:10;5。
【分析】第一幅图中小三角形能够数出4个,两个小三角形组合能够数出3个,三个小三角形组合能够数出2个,四个小三角形组合能够数出1个,所以一共有10个三角形;第一幅图中小三角形有4个,外面大三角形有1个,一共有5个小三角形。
第9 题:【答案】5【考点】组合图形的计数【解析】【解答】解:共有5个正方形。
故答案为:5。
【分析】小正方形有4个,四个小正方形组成的大正方形有1个,共5个正方形。
第10 题:【答案】13;10;10【考点】组合图形的计数【解析】【解答】13个;10个;10个.故答案为:13;10;10.【分析】根据题意可知,分层数一数每层有几个小方块,然后相加即可.第11 题:【答案】(1)91(2)2n2-n【考点】组合图形的计数【解析】【解答】(1)根据分析可知,当图形有七层时,第七层的个数为:(4×6+1),此时总的正方形个数为:1+(4×1+1)+(4×2+1)+(4×3+1)+(4×4+1)+(4×5+1)+(4×6+1)=91.(2)根据分析可知,当摆到第层时一共有:n+=2n2-n(个).故答案为:(1)91;(2)2n2-n.【分析】(1)观察图可知,图1中只有一层,有(4×0+1)个正方形;图2中有两层,在图1的基础上增加了一层,第二层有(4×1+1)个;图3中有三层,在图2的基础上增加了一层,第三层有(4×2+1),依此类推当图形有七层时总的正方形的个数;(2)观察上面的图形变化,可以类推出规律:当有n层时,总的正方体个数=2n2-n,据此解答.第12 题:【答案】19【考点】数阵图中找规律的问题【解析】【分析】从图中的前两个图形中可以观察到:大三角形中最上面的两个小三角形中数字的和与大三角形中间的数字和最下面的小三角形中数字的和相等,据此作答即可。