丙烷球罐设计

合集下载

0236-2010 液化石油气球形储罐及附属设施设计规定

0236-2010 液化石油气球形储罐及附属设施设计规定

Q/SY 中国石油天然气股份有限公司企业标准Q/SY TZ 0236—2010液化石油气球形储罐及附属设施设计规定Design Specification ofLiquefied Petroleum Gas Spherical Tanks and Auxiliary Facilities2010-07-01发布2010-08-01实施目次前言 (III)引言 (IV)1 范围 (1)2 规范性引用文件 (1)3 术语和定义 (1)4 球罐的设计 (2)4.1 基本规定 (2)4.2 球壳及其受压元件的材料 (2)4.3 球罐的结构 (2)4.4 球罐的开口 (3)4.5 球罐的制造与组焊 (3)5 安全附件 (4)5.1 总体要求 (4)5.2 安全阀 (4)5.3 压力检测仪表 (4)5.4 液位检测仪表 (4)5.5 温度计 (4)5.6 梯子平台 (5)6 阀门及工艺管线 (5)6.1 设计原则 (5)6.2 进口工艺管线 (5)6.3 出口工艺管线 (5)6.4 切水工艺管线 (5)6.5 注水工艺管线 (5)6.6 气相平衡工艺管线 (5)6.7 放空工艺管线 (6)6.8 取样口 (6)6.9 其它 (6)7 控制系统 (6)8 厂区布置及消防系统 (6)8.1 设计依据 (6)8.2 厂区布置 (6)8.3 球罐区布置 (7)8.4 防护墙 (7)8.5 消防系统 (8)8.6 检测系统和静电释放 (8)9 装卸栈台的要求 (8)附录A(资料性附录)液化石油气球罐及附件流程图 (9)前言本标准依据GB/T 1.1-2009规定的起草规则编制。

本标准由塔里木油田公司标准化技术委员会提出。

本标准由质量安全环保处归口。

本标准起草单位:中国石油塔里木油田公司、兰州石油机械研究所。

本标准主要起草人:李循迹、陈东风、邹应勇、雷霆、任天树、寇国、宣培传、赵现如、刘福录、朱保国、王万磊。

引言为规范中国石油天然气股份有限公司塔里木油田分公司液化石油气球罐及附属设施的设计,提高液化石油气球罐及附属设施的使用安全性,避免或减少事故的发生,特制定本标准。

球罐毕业设计总说明书(非常详尽)[管理资料]

球罐毕业设计总说明书(非常详尽)[管理资料]

目录前言 (1)第1 章概论 (2)球罐的特点 (2)球罐分类 (2) (2) (2) (3)第2章材料的选用 (4)球罐的选材准则 (4) (4) (5)选材 (5) (6)壳体用钢板 (6) (6)锻件用钢 (7)第3章结构设计 (8)概况 (8)球壳的设计 (10)各种球罐的特点 (10) (12)坡口设计 (17) (18)赤道正切柱式支柱结构 (19)拉杆结构 (20)人孔和接管 (21) (21) (21)球罐的附件 (21) (21) (23) (24) (24)球罐对基础的要求 (25)第4章强度计算 (26)设计条件 (26)球壳计算 (27)球罐的质量计算 (27)地震载荷计算 (28) (28)地震力 (29)风载荷计算 (29)弯距计算 (29)支柱的计算 (30) (30) (30) (31)地脚螺栓计算 (33)支柱底板 (33) (33) (34)拉杆计算 (34) (34)拉杆连接部位的计算 (34) (35)焊缝强度验算 (35)支柱与球壳连接最低点a的应力校核 (35)a点的应力 (35)a点的应力校核 (36)支柱与球壳连接焊缝的强度校核 (36)开孔补强计算 (37)第5章工厂制造及现场组装 (38) (38) (38) (38) (39) (39) (39)第6章焊接 (40)焊接工艺的确定 (40)焊后热处理 (40)第7章检查 (42) (42)竣工检查 (42) (43)开罐检查 (43)致谢 (44)参考文献 (45)前言乙烯被称为“石化工业之母”,乙烯的生产能力往往被看作是一个国家经济实力的体现。

以乙烯为龙头的石油化工工业在国民经济和社会发展中占有重要地位,能够引导、带动其他相关产业乃至整个国民经济的发展,具有较强的支撑、辐射和带动作用。

美国、西欧、日本等发达国家和一些发展中国家和地区,在经济起飞阶段,无不把石油化工工业作为支柱产业加快发展。

乙烯的发展必然促进乙烯装备的发展。

石油化工储罐设计规范(范文2篇)

石油化工储罐设计规范(范文2篇)

石油化工储罐设计规范(范文2篇)以下是网友分享的关于石油化工储罐设计规范的资料2篇,希望对您有所帮助,就爱阅读感谢您的支持。

石油化工储罐设计规范(1)SH 3136-2003 石油化工液化烃球形储罐设计规范ICS 75.P 72备案号:中华人民共和国石油化口巨行业韦示刹韭SH 3液化烃球形储罐安全设计规范Design specification for safety ofliquefied hydrocarbon spherical tanks2004-03-中华人民共和国国家发展和改革委员会发布标准下载网(.bzxzw4>>)SH 3目次前言、,,。

III围,,?? 2 规范性引用文件。

3 术语和定义。

24 液化烃球形储罐的设计?..............................................................................................,4.定。

...?24,2 液化烃球形储罐的材料。

34. 3液化烃球形储罐的结构??。

44.4 液化烃球形储罐的接口。

44.5 设计文件,。

一44.6 制造与安装。

55 仪表。

,。

,65.度、。

?。

75.2 压力75.3 液位。

7 6 阀门。

76.阀。

??。

76.2 安全阀。

、?一76.3 排液阀76.4 排气阀。

76. 5 止回阀。

,,。

77 与液化烃球形储罐连接的管道及其组成件。

了8 其它。

8用词说明。

9 附:条文说明,标准下载网(.bzxzw>)SH 3月明吕本规范是根据原国家经贸委《关于下达2003年行业标准项目计划的通知》(国经贸厅行业〔2003号)和中国石化安技函【200有限公司主编、中国石化集团洛阳石化工程公司及中国石化工程建设公司参编,由中国石化集团公司工程建设管理部组织审定。

本规范共分8章,主要内容包括储存液化烃用碳素钢和低合金钢钢制焊接球形储罐的设计条件、材料选择、结构设计、设计文件组成及设计对制造、安装的技术要求、以及与球形储罐本体相连的仪表、阀门、及其组成件等相关安全附件的设计。

储罐的结构

储罐的结构

球瓣在不同带位 置尺寸大小不 一,互换有限; 下料成型复杂, 板材利用率低; 球极板尺寸往往 较小,人孔、接 管等容易拥挤, 有时焊缝不易错 开。
焊缝布置复杂, 施工组装困难, 对球壳板的制造 精度要求高。
适用于各种 容量的球 罐。
容积小于 1 2 0 m 3球 罐 。
5.2 储罐的结构
过程设备设计
5.2.3 球形储罐
罐体 支座 人孔和接管 附件
21
过程设备设计
5.2 储罐的结构
5.2.3 球形储罐
过程设备设计
分类
22
外观
球形 椭球形
壳体构造方式
球壳层数 球壳组合方案
单数 多数
桔瓣式 足球瓣
支撑方式
支柱式支座 筒形或锥形裙式支座
混合式
5.2 储罐的结构
典型结构示例
圆球形单层纯桔瓣式 赤道正切球罐
1-球壳
8-可熔塞
2-上部支柱 9-接地凸缘
3-内部筋板 10-底板
4-外部端板 11-下部支耳
5-内部导环 12-下部支柱
6-防火隔热层 13-上部支耳
7-防火层夹子
36
过程设备设计
图5-12 支柱结构图
5.2 储罐的结构
支柱的结构
支柱 底板 端板
过程设备设计
单段式 双段式
单段式
由一根圆管或卷制圆筒组成,其上端与球壳相接的圆弧 形状通常由制造厂完成,下端与底板焊好,然后运到现 场与球罐进行组装和焊接。
1-球壳;2-液位计导管;3-避雷针;
4-安全泄放阀;5-操作平台;6-盘梯;
26
7-喷淋水管;8-支柱;9-拉杆
5.2 储罐的结构
过程设备设计

10000立球罐设计说明

10000立球罐设计说明

摘要球形压力容器(以下简称球罐)具有占地少、受力情况好、承压能力高,可分片运到现场安装成形、容积的大小基本不受运输限制等其它压力容器无可比拟的优点,在石油、化工、城市燃气、冶金等领域广泛用于存储气体和液化气体。

近年来我国球罐的大型化和高参数化工程技术水平有了长足的进步,通过对引进球罐的消化、吸收和创新,很多高参数球罐已经实现了国产化,为我国的经济发展做出了积极的贡献。

为满足我国石油液化气存储需求,同时也满足石油、化工、轻纺、冶金等行业对球罐大型化的需要,迫切需要发展有自主知识产权的特大型球罐核心技术。

球罐的大型化是一个复杂的系统工程,它涉及到多个学科和技术领域。

针对10000m3大型石油液化气球罐设计、制造中的几个关键技术:球罐选材、结构设计和应力分析等方面进行了研究,完成了如下工作:(1)阅读大量国内外文献,在系统了解球罐结构设计及制造方法的基础上,完成文献综述的撰写。

(2)对球罐选材进行分析比较,最终确定采用15MnNbR;对球罐进行工艺结构设计和尺寸计算;根据GB12337-98《钢制球形储罐》对球罐进行结构与强度设计计算。

(3)进行球罐图纸绘制,完成球罐装配图及各主要零部件图。

(4)使用压力容器分析设计系统(VAS2.0)对球罐进行强度分析,对球壳和支座连接处进行应力分析和强度评定。

关键词:球形储罐;容器用钢;结构;应力分析Design of 10000m3 Spherical Tank for Liquefied Petrolem GasAbstractBecause of its unexampled advantages such as less floor area covering, high-pressure capability and transport facilitates,Spherical pressure tanks (hereinafter referred to as the“sto rage tank”)used for storage of gas and liquefied gas more widely than other storage tanks in the oil,chemical,city gas,metallurgy and other fields. In recent years,China engineering and technical level of spherical tank has made great progress through the introduction,absorption and innovation of foreign spherical tank technology.To meet the demand of our country's liquefied petrolem gas storage,and meet the demand of large-scale tank in the petroleum,chemical,textile,metallurgical and other industries,it is urgent to develop the core technique of large-scale spherical tank with our own intellectual property rights.Construction of increasingly larger spherical tank is a complex and systematicproject,which involves a number of disciplines and technical fields. in view of research of key design and manufacture technology of 10000 m3large-scale liquefied petrolem gas tank,from the perspectives such as evaluation and selection of main material , structure design theory and stress analysis,we have solved several key technology of spherical tank construction.This article has completed the primary research work coverage,which was shown as follows:(1)Based on well understanding of structure design and manufacturing methods of spherical tank , I write literature summary after reading a large number of domestic and foreign literature.(2) Through analysis and comparison of the materials,I finally select 15MnNbR;After the structural design of process and dimension calculation,I complete the calculation of structure and strength according to GB12337-98.(3) The drawings of the tank include an assembly drawing and several parts drawings.(4)For the junction between spherical shell and stanchion, stress analysis and strength assessment is completed by the system of Design by Analysis for pressure vessels(VAS2.0).Key Words:Spherical tank;Steel for pressure vessels ;structure ;stress analysis目录摘要 (I)Abstract (II)1 文献综述 (1)1.1 课题研究的工程背景及理论、实际意义 (1)1.2 球罐用钢 (1)1.2.1 球罐用钢基本要求分析 (1)1.2.2 国内外球罐的常用钢种 (2)1.2.3 几种典型球罐用钢的优劣对比 (2)1.3 球罐设计 (3)1.3.1 球罐设计的执行标准及法规 (3)1.3.2 球壳结构 (4)1.3.3 支座结构 (4)1.3.4 拉杆结构 (5)1.3.5 支柱与球壳连接下部结构 (6)1.3.6 接管补强结构 (7)1.3.7 球罐的设计方法 (8)1.4 球罐制造 (10)1.5 球罐安装及检验技术 (11)1.6 球罐的发展趋势和面临的问题 (11)1.6.1 球罐发展趋势 (11)1.6.2 球罐的大型化面临的问题 (12)2 10000m3石油液化气球罐设计说明 (13)2.1 基本参数 (13)2.2 基础资料 (13)2.2.1 安装与运行地区气象环境条件 (13)2.2.2 场地条件 (14)2.2.3 工作介质 (14)2.2.4 运行要求 (14)2.3 球罐主要设计参数的确定 (14)2.3.1 设计压力和设计温度 (14)2.3.2 人孔、接管位置及尺寸的确定 (15)2.3.3 腐蚀余量的确定 (15)2.4 设计原则 (15)2.4.1 设计规范的确定 (15)2.4.2 压力试验方法 (16)2.5 球壳设计 (16)2.5.1 材料选用 (16)2.5.2 球罐支柱数和分带角的确定 (16)2.5.3 混合式结构的排板计算 (16)2.5.4 球壳 (18)2.5.5 开孔补强 (19)2.5.6 安全泄放设计 (20)2.5.7 法兰密封 (20)2.6 球罐支柱与拉杆 (20)2.6.1 球罐连接结构型式的确定 (20)2.6.2 支柱结构 (20)2.6.3 拉杆 (21)2.6.4 支柱和拉杆设计计算 (21)2.7 制造要求 (21)2.7.1 球壳板 (21)2.7.2 坡口 (21)2.7.3 焊条 (21)2.7.4 组焊 (22)2.7.5 焊后热处理 (22)2.7.6 其他要求 (22)3 球罐的强度计算 (23)3.1 设计条件 (23)3.2 球壳计算 (23)3.2.1 计算压力 (23)3.2.2 球壳各带的厚度计算 (24)3.2.3 球壳薄膜应力校核 (25)3.2.4 球壳许用外压力 (26)3.2.5 球壳压应力校核 (26)3.3 球罐质量计算 (27)3.4 地震载荷计算 (29)3.4.1 自振周期 (29)3.4.2 地震力 (29)3.5 风载荷计算 (29)3.6 弯矩计算 (30)3.7 支柱计算 (30)3.7.1 单个支柱的垂直载荷 (30)3.7.2 组合载荷 (31)3.7.3 单个支柱弯矩 (31)3.7.4 支柱稳定性校核 (32)3.8 地脚螺栓计算 (33)3.8.1 拉杆作用在支柱上的水平力 (33)3.8.2 支柱底板与基础的摩擦力 (34)3.8.3 地脚螺栓 (34)3.9 支柱底板 (34)3.9.1 支柱底板直径 (34)3.9.2 底板厚度 (35)3.10 拉杆计算 (35)3.10.1 拉杆螺纹小径的计算 (35)3.10.2 拉杆连接部位的计算: (36)3.11 支柱与球壳连接最低点a的应力校核 (38)3.11.1 a点的剪切应力 (38)3.11.2 a点的纬向应力 (38)3.11.3 a点的应力校核 (38)3.12 支柱与球壳连接焊缝的强度校核 (39)3.13 安全泄放计算 (39)3.13.1 安全阀排泄量 (39)3.13.2 安全阀排放面积的计算 (40)3.14 开孔补强计算 (40)3.14.1 DN50开孔补强 (40)3.14.2 DN80开孔补强 (41)3.14.3 DN150开孔补强 (41)3.14.4 DN40开孔补强 (41)4 10000m3石油液化气球罐应力分析 (43)4.1 应力分析方案 (43)4.2 结构分析 (43)4.3 应力分析结果 (44)4.4 强度评定 (44)4.4.1 连接处支柱强度评定 (44)4.4.2 连接处球壳强度评定 (45)4.4.3 连接处托板强度评定 (45)4.5 常规设计与分析设计的比较 (46)结论 (49)参考文献 (50)致谢 (51)1 文献综述1.1 课题研究的工程背景及理论、实际意义随着我国石油、化工、轻纺、冶金及城市燃气工业的发展,作为存储容器的球罐,得到了广泛的应用和迅速的发展,在石化企业、国防工业、冶金工业及城市燃气中,用于储存液态丙烷、丁烷、丙烯、丁烯及其混合物(LPG)、液化天然气(LNG)、液氧、液氮和液氨、液氢等物料。

液化石油气球罐区的安全设计方案

液化石油气球罐区的安全设计方案

液化石油气球罐区的安全设计方案1. 区域规划:LPG球罐应该远离人口密集地区、高楼和易燃材料仓库。

球罐区域应该有足够的通风和排水系统,并且设有围栏和警示标识,以便限制非授权人员进入。

2. 理化性质:LPG是易燃易爆的气体,因此球罐区应该设计成密封、防爆和耐火的结构。

球罐应该采用防爆设计,并设有报警系统,以便在发生泄漏或火灾时及时发出警报。

3. 储存安全:球罐应该安装在平坦的地面上,并且固定在混凝土基础上,以防止倾覆。

球罐之间应该有足够的间距,并且配备防静电装置,以避免静电引发爆炸。

4. 管道安全:球罐区的管道设计应该符合相关安全标准,采用高强度材料制造,避免腐蚀和泄漏。

除了定期进行检查和维护外,还应该设有紧急切断阀和快速关闭系统,以便在必要时迅速切断气体供应。

5. 消防安全:球罐区应该配备充足的消防设备,包括喷淋系统、泡沫灭火系统和消防器材,以便在发生火灾时及时扑救。

同时,球罐区的员工应该接受相关的消防培训,了解如何应对火灾紧急情况。

综上所述,LPG球罐区的安全设计方案需要考虑到区域规划、理化性质、储存安全、管道安全和消防安全等多个方面,以确保球罐区域的安全运营和使用。

球罐区是一个潜在的高危区域,需要特别注意安全设计。

作为液化石油气(LPG)的存储和分配中心,球罐区存在许多潜在的安全风险,如气体泄漏、爆炸和火灾等。

因此,对球罐区进行全面的安全设计方案是非常重要的。

首先,需要考虑的是球罐区的区域规划。

为了减少潜在的危险,球罐应该远离人口密集地区、高楼和易燃材料仓库。

此外,球罐区域应该有足够的通风和排水系统,以确保气体能够迅速散发和排除。

围栏和警示标识也是必不可少的,以便限制非授权人员进入球罐区域。

其次,针对LPG的理化性质,球罐区应该设计成密封、防爆和耐火的结构。

球罐采用防爆设计,并设有报警系统,以便在发生泄漏或火灾时及时发出警报。

还应定期对球罐进行检查和维护,确保其完好无损,以避免因设备老化导致的安全隐患。

5.2 储罐的结构

5.2 储罐的结构

过程设备设计
5.2.1 卧式圆柱形储罐
地面卧式储罐
卧式圆柱形储罐 地下卧式储罐
5
5.2
储罐的结构
过程设备设计
图5-1 100m 3 液化石油气储罐结构示意图 1-活动支座;2-气相平衡引入管;3-气相引入管;4-出液口防涡 器;5-进液口引入管;6-支撑板;7-固定支座;8-液位计连通管; 9支撑;10-椭圆形封头;11-内梯;12-人孔;13-法兰接管; 6 14-管托架;15-筒体
储罐的结构
过程设备设计
1. 罐体
作用
球形储罐主体,储存物料、承受物料工作压力和液柱静压力 纯桔瓣式罐体 按其组合方式分 足球瓣式罐体 混合式罐体
25
5.2
储罐的结构
过程设备设计
(1)纯桔瓣式罐体
球壳全部按桔瓣片 形状进行分割成型 后再组合
图5-9 赤道正切柱式支承单层壳球罐
1-球壳;2-液位计导管;3-避雷针; 4-安全泄放阀;5-操作平台;6-盘梯;
可以改善拉杆的受力状况, 从而获得更好的球罐稳定性
பைடு நூலகம் 5.2
储罐的结构
过程设备设计
C 相隔一柱单层交叉可调式拉杆
图5-16 相隔一柱单层交叉可调式拉杆
45
5.2
储罐的结构
过程设备设计
固定式
拉杆常用钢管制作,管状拉杆必 须开设排气孔。拉杆一端焊在支 柱加强板上,另一端焊在交叉节 点的中心固定板上。也可取消中 心板将拉杆直接十字焊接。
埋没并达到规定的埋土深度
8
5.2
储罐的结构
过程设备设计
地面卧式储罐 区别
地下卧式储罐 接管集中安放 管口的开设位置
9
5.2

液化烃球罐区注水设计方法研究

液化烃球罐区注水设计方法研究

液化烃球罐区注水设计方法研究摘要:为解决液化烃球罐区注水环节存在的注水口位置设置不一、注水设计粗糙随意的问题,规避注水设计不当造成的风险因素,保障装置的平稳、顺畅运行。

文章简要阐述案例项目背景,探讨液化烃球罐区注水操作的正确方法,归纳可行的设计举措,从注水口位置确定、注水阀防漏操作、注水泵流量、压力设计等方面进行深入探讨,希望能为相关从业者提供借鉴。

关键词:液化烃;球罐区;注水方法前言:液化烃是我国石油化工企业中极为重要的原料类型,可以用于裂解制乙烯、丙烯,也可以当做燃料提供生产动力,其自身具有较为鲜明的易燃易爆性质,危险性评定为甲A类,气相密度大于空气,若存储不当发生泄漏,是非常容易出现火灾、爆炸事故的。

为解决该种问题,很多企业会选择注水方式进行阻隔防护,如何优化注水设计细节,减少注水操作风险,是注水过程中必须关注的焦点问题。

1案例项目概况为直观说明液化烃球罐区注水设计方法,本文引入某石化公司实际运行案例辅助阐述,案例企业共设置79台液化烃储罐,注水口位置设计不一,主要球罐区情况分述如下:(1)石油二厂球罐注水点位于紧急切断阀与罐体之间,配备远程控制阀、手动切断阀、止回阀等,采用固定式连接方式。

(2)石油三厂配备单独注水泵,注水口位置与石油二厂一致,同样设置有止回阀、手动切断阀,但没有远程控制功能。

(3)乙烯化工厂注水线直接引自消防水总管,注水点位于紧急切断阀之前,配备止回阀、手动切断阀,但没有远程控制功能。

(4)烯烃厂,存储温度在0℃以下,注水口位于紧急切断阀前,设有止回阀、手动切断阀,同样没有远程控制功能。

2液化烃球罐区注水流程分析2.1储罐注水口设置储罐注水口位置设计环节,主要参考了中石化建[2011]518号《液化烃球罐区注水系统设计规定》、中石油企业标准Q/SY1719-2014《液化烃储罐应急技术规范》所述内容。

结果发现二者在注水口设计上存在较大差异,前者倾向于将注水口设置在紧急切断阀之前,这与案例项目乙烯化工厂、烯烃厂的做法是一致的;后者则倾向于将注水口放置在紧急切断阀、罐体之间[1],以确保紧急切断阀关闭状态下,注水操作仍旧能够正常进行,这与案例项目石油二厂、石油三厂的做法是相同的,后期要跟踪关注SH 3136-2003《液化烃球形储罐安全设计规范》修订情况,及时根据统一标准改进注水口设置方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

培黎石油工程学院课程设计课程名称油气储运题目350 m3丙烷球罐设计系部培黎石油工程学院油气储运工程系专业油气储运工程班级2011级3班学生姓名程建斌学号20111801050303指导教师徐菁张艳丽2014年 11 月 13 日培黎石油工程学院课程设计任务书题目名称350 m3丙烷球罐设计系部培黎石油工程学院油气储运工程系专业班级油气储运工程2011级3班学生姓名程建斌一、课程设计的内容储罐设计包括工艺设计和机械设计两部分:1、工艺设计:是根据化工生产任务提供的工艺条件:包括压力、温度、产量、物料性能等,通过工艺计算和生产经验确定设备的结构型式、设备总体尺寸及管口尺寸和方位。

2、机械强度设计:是在工艺设计的基础上,进行强度、刚度和稳定性设计和校核计算, 对设备的内、外附件进行选型和结构设计计算,最后绘制设备的装配图和零部件图。

二、课程设计的要求与数据1. 设计条件物料:丙烷地震设防烈度:8度安装地区:兰州球罐建造场地:Ⅱ类,近震温度:35℃丙烷饱和蒸汽压:1.231Mpa丙烷密度:474 kg/m32. 课程设计辅导资料:“压力容器设计手册”、“管道及储罐强度设计”、“固定式压力容器安全技术监察规程”、“化工容器”等;三、课程设计应完成的工作1.课程设计时间:4周;2.课程设计内容:储罐设计包括工艺设计和机械设计两部分:(1)工艺设计:是根据化工生产任务提供的工艺条件:包括压力、温度、产量、物料性能等,通过工艺计算和生产经验确定设备的结构型式、设备总体尺寸及管口尺寸和方位。

(2)机械强度设计:是在工艺设计的基础上,进行强度、刚度和稳定性设计和校核计算, 对设备的内、外附件进行选型和结构设计计算,最后绘制设备的装配图和零部件图。

3.课程设计说明书按学校“课程设计工作规范”中的“统一书写格式”撰写,具体包括:1)目录;2)摘要;3)通过工艺计算和生产经验确定设备的结构型式;4)设备总体尺寸及管口尺寸和方位;5)在工艺设计的基础上,进行强度、刚度和稳定性设计和校核计算;6)对设备的内、外附件进行选型和结构设计计算;7)绘制设备的装配图和零部件图8)总结与展望;(设计过程的总结,还有没有改进和完善的地方);9)课程设计的心得体会(至少500字);10)参考文献(不少于5篇);11)附录。

四、课程设计进程安排序号设计各阶段内容地点起止日期1 指导老师就课程设计内容、设计要求、进度安排、评分标准等做具体介绍。

学生确定选题,明确设计要求,查阅与设计有关的资料。

24002014年11月10日至2014年11月14日2 撰写课程设计说明书,进行工艺计算、绘制设备的装配图和零部件图。

图书馆2014年11月17日至2014年11月21日3 课程设计初稿的修订,上交课程设计说明书。

图书馆2014年11月24日至2014年11月28日4 课程设计进行答辩24002014年12月1日至2014年12月5日五、应收集的资料及主要参考文献(1)董大勤,袁凤隐,《压力容器设计手册》化学工业出版社;(2)丁伯民、黄正林,《化工容器》,化学工业出版社出版;(3)徐英、杨一凡、朱萍,《球罐和大型储罐》,化学工业出版社;(4)帅健、丁桂杰,《管道及储罐强度设计》,石油工业出版社。

(5)TSG R0004-2009《固定式压力容器安全技术监察规程》。

指导教师:(签名)年月日系部主任:(签名)年月日教学院长:(签名)年月日摘要部件球罐是一种工业使用储存介质的压力容器,作为一种有效的,经济的压力容器而广泛应用。

球罐具有占地少,受力情况好、承压能力高,分片运输到现场安装成形、容积的大小基本不受运输限制等其它压力容器无可比拟的优点。

在石油、化工、城市燃气、冶金等领域广泛用于存储气体和液化气体。

球罐的大型化是一个复杂的系统工程,它涉及到多个学科和技术领域。

本文针对1160m3丙烷气球罐设计、制造中的几个关键技术——球罐选材、结构设计和强度校核等方面进行了研究,完成了如下工作:查阅有关球罐设计的文献,在系统了解球罐结构设计及制造方法的基础上,完成文献综述的撰写;对球罐选材进行分析比较,最终确定采用16MnR;对球罐进行工艺结构设计和尺寸计算,根据GB12337-2010《钢制球形储罐》对球罐进行结构与强度设计计算;进行球罐图纸绘制,完成球罐装配图及各主要零图。

AbstractSpherical tankis astoragemediumindustrial useof pressure vessels, as an effective, economicalandwidely usedpressure vessel. Sphericalwith asmall footprint, the force ofgood, high-pressure capability, transportationto the siteinstallationsliceshape, sizelargely unaffected bytransportcapacityconstraintsand otherpressure vesselsunparalleledadvantages.Inpetroleum, chemical,city gas, metallurgyand other fieldswidelyused to storegasandliquefied gases.Thelarge-scaletankisacomplicated systematic project, which involves multipledisciplines andtechnical fields.In this paper,1160m3balloonpropanetankdesign and manufactureof severalkey technologies-tankmaterial selection, structural design andstrength check ofother aspects ofthe study, completethe followingtasks:access to thetankdesignliterature, in thesystematic understanding of theballtankdesignandmanufacturing methods, based on the literature reviewcompletedwriting; analysis and comparisonof thespherical tankselection, and ultimately determine the use of16MnR;theprocessoftankdesignandsizing,according toGB12337-2010 "steel spherical tank"structural and strengthofspherical tankdesign calculations; forsphericaldrawings, assembly drawingsand thecompletion ofthe maincomponentssphericalmap.目录设计任务书..........................................................................摘要 (Ⅰ)第1章绪论 (1)第2章设计参数确定及材料选择....................................................第3章结构设计.....................................................................第4章壁厚计算和强度校核...........................................................第5章球罐受力分析....................................................................................................................第6章强度及稳定性校核............................................................................................................主要参考文献........................................................................附录..............................................................................结束语 (25)图纸(球罐装配图A2)教师评分表第 1 章绪论1.1球罐的特点球罐是生产实际中应用比较广泛的压力容器。

与圆筒形储罐相比,球罐的优点是:(1)当二者容积相同时,其表面积最小;(2)当压力和直径相同时,其壁厚仅为圆筒形罐的一半左右;当直径和壁厚相同时,其承压能力约为圆筒形罐的两倍,因而它可大量节省钢材,减少占地面积,适于制造中压容器。

采用球罐,可大幅度减少钢材的消耗,一般可节省钢材30%~45%;此外,球罐占地面积较小,基础工程量小,可节省土地面积。

但另一方面,球罐壳体为双向曲面,制造、焊接和组装要求很严,检验工作量大,所以现场组装比较困难,对焊工的技术要求高,制造成本也高。

球罐为大容量、承压的球形储存容器,广泛应用于石油、化工、冶金等部门,它可以用来作为液化石油气、液化天然气、丙烷、丙烯、丁烯、液氧、液氨、液氮及其他低沸点介质的储存容器。

也可作为压缩气体(空气、氧气、氮气、城市煤气)的储罐。

在炼油厂、石油化工厂、城市燃气供应部门都有广泛应用。

1.2球罐分类球罐绝大多数为单层球壳。

低温低压下贮存液化气体时则采用双重球壳,两层球壳间填以绝热材料。

采用最广泛的为单层圆球型球罐。

球壳是由多块压制成球面的球瓣组焊而成。

球罐的支撑结构最常见的为赤道正切式,其次为对称式、裙座式、半埋地式和盆式。

椭球型球罐通常用于常温下贮存饱和蒸气压比大气压稍高的、挥发性强的液态烃(如汽油等),操作压力为0.12~0.3MPa,容积一般在500~6000m3范围内。

更大容积时,应采用复式椭球型球罐。

相关文档
最新文档