超细粉体表面包覆和改性
表面改性

层材料的光,电,热,化学性能等来表征表面改性的效果。
纳米二氧化硅的表面改性
由于纳米二氧化硅的粒径小、比表面大、比表面能高 ,表面带有羟基,呈亲水性,所以能否发挥其在复合材料 中的作用关键在于它的分散和与聚合物的复合。当二氧化 硅表面未经改性,与聚合物共混、共聚或接枝时,纳米二 氧化硅容易团聚,与聚合物产生相分离或发生相反转。所 以,对其进行改性是解决纳米二氧化硅团聚,制备无机有 机纳米复合材料的重要步骤。 二氧化硅的表面未经改性,体系的粘度较大,经表面 改性后,即使二氧化硅的含量高达35%(质量分数)时, 体系的粘度仍适中。 加入改性二氧化硅的复合材料的存 储模量大约是未加改性剂的2倍,丙烯酸酯的粘弹性及耐 磨性随二氧化硅含量的增加而提高。但如果纳米二氧化硅 加入过量,也会导致体系粘度增加。一般在30%~35%.
应用:
广泛应用于机械工业、国防工业航空航天领域,通过表 面改性可以使材料性能提高,产品质量提高,降低企业成 本.在提高零部件的使用寿命和可靠性,提高产品质量,以 及节约材料,节约能源等方面都有着十分重要的意义。
工艺:
表面改性工艺依表面改性的方法、设备和粉体制备方 法而异。目前工业上应用的表面改性工艺主要有干法工 艺、湿法工艺、复合工艺三大类。
表面改性方法
到填料表面改性的工艺。 反应,对粉体颗粒表面进行包覆,使颗粒表面改性的方 法。
面形成一层和多层包覆膜,以改善粉体表面性质。
物理涂覆:利用高聚物或树脂等对材料表面进行处理以 达
化学包覆:利用有机物分子中的官能团与填料表面发生化学
沉淀反应:通过无机化合物在颗粒表面沉淀反应,在颗粒表
插层改性:利用层状结构的粉体颗粒晶体层之间结合力较弱
反应,并且烷氧基硅烷价格较高,在乳液聚合中易形成凝胶
二氧化硅包覆二氧化钛

目录摘要 (1)关键词 (1)1前言 (2)1.1 TiO2概况 (3)1.1.1 TiO2简介 (3)1.1.2 TiO2相关研究背景及意义 (4)1.2Sio2 的概述 (4)1.2.1简介 (4)2 溶胶-凝胶法制备TiO2粉体 (5)2.1溶胶-凝胶法制备TiO2粉体机理 (5)2.2实验部分 (5)2.2.1 主要试剂及仪器 (5)2.2.2 实验步骤 (6)2.3 结果与讨论 (7)2.3.1 TiO2/ SiO2粉体制备过程实验操作要点讨论 (7)3 SiO2并流中和法表面改性TiO2 (8)3.1主要试剂及仪器 (8)3.2实验步骤 (8)4 SiO2包覆TiO2粉体的性能研究 (9)4.1粒度分析 (9)4.2红外光谱分析 (10)4.3 XRD分析 (10)4.4TiO2/SiO2粉体光催化降解甲基橙溶液 (11)4.4.1 TiO2/SiO2粉体光催化降解甲基橙溶液机理 (11)4.4.2主要试剂及仪器 (13)4.4.3 实验步骤 (14)4.4.4不同pH环境对将光催化降解的影响 (14)4.4.5反应时间对光催化降解反应的影响 (15)4.4.6不同粉体用量对光催化降解反应的影响 (16)5结论 (17)主要参考资料 (18)致谢 (19)湖南人文科技学院毕业论文(设计)SiO2包覆TiO2粉体的制备与性能研究李恩龙指导老师王书媚(湖南人文科技学院化学与材料科学系湖南娄底417000)摘要:以钛酸丁酯为先驱物,乙醇为溶剂,醋酸为螯合剂,采用溶胶-凝胶法制备超细TiO2粉体,以SiO2包覆材料用并流中和法对纳米TiO2粒子进行表面改性。
采用红外光谱分析、激光粒度分析、XRD、紫外光谱仪对改性前后粉体的晶型和晶粒大小进行了表征并对改性效果进行评价。
关键词:溶胶-凝胶法改性效果TiO2SiO2湖南人文科技学院毕业论文(设计) Study on Photocatalytic Properties ofTiO2/SiO 2PowdersLi EnlongTeacher Wang Shu-mei(Department of Chemistry and Material Science, Hunan Institute of Humanities,Science and Technology, Loudi, Hunan, 417000)Abstract: with butyl titanate as precursor, ethanol as solvent, acetic acid as chelating agent, was prepared by Sol - gel method of ultrafine titanium dioxide powder in Silicon dioxide coating material and stream and method of nano titanium dioxide particles surface modification. Using infrared spectrum analysis, laser particle size analysis, XRD, ultraviolet spectrometer of the modified powder crystal type and particle size were characterized and evaluated the effect of modified.Keywords : sol-gel modified effect Silicon dioxide Titania1前言纳米二氧化钛(TiO2)(有板钛型、锐钛型和金红石型3种晶体结构)是近年来发展较快的一种附加值很高的功能精细无机材料,因其具有粒径小,比表面积大,磁性强,光催化、吸收性能好,吸收紫外线能力强,表面活性大,热导性好,分散性好,以及良好的耐侯性、耐化学腐蚀性,抗紫外线能力强等特点,被广泛应用于感光材料、光催化剂、化妆品、食品包装材料、陶瓷添加剂、橡胶、塑料、皮革鞣制、高级轿车涂料等领域。
关于超微粉碎的一些常识

关于超微粉碎的一些常识什么是超微粉碎?超微粉碎,是指利用机械或流体动力的方法克服固体内部凝聚力使之破碎,从而将3毫米以上的物料颗粒粉碎至10-25微米的操作技术。
是20世纪70年代以后,为适应现代高新技术的发展而产生的一种物料加工高新技术。
超微细粉末是超微粉碎的最终产品,具有一般颗粒所没有的特殊理化性质,如良好的溶解性、分散性、吸附性、化学反应活性等。
因此超微细粉末已广泛应用于食品、化工、医药、化妆品农药、染料、涂料、电子及航空航天等许多领域上。
细度的概念细度是以颗粒的平均直径为单位来区别物料颗粒大小的单位,直径一毫米以上的以及1微米一下的粒度人们习惯用标准计量单位来表示,1毫米到100微米之间,人们习惯用“目”这个单位来表示,目数越高就是细度越高,粒径就越小。
100微米到1微米的范围内,人们两种习惯都有,两种标准混用,现将两种标准的对比表列于下:筛目\粒径对照参考表(U.S.SCREEN 目美国标准)筛目粒径筛目粒径筛目粒径(u m)(u m)(u m)54000120125*1000*12.5 102000140105125010 2084117088*1500*8.3 3059020074*2000*6.3 404202306225005 5029727053*4000*3.1 602503254450002.5 7021040039*6000*2.1 8017762520*8000*1.61.3100149800*15.610000注:注明*的数据为推算数,仅供参考在我们日常生活当中,面粉的细度大约是100目,淀粉大约是120目,一般的玉米面大约是60目,绿豆大约是5目,对于植物而言,超微粉碎所获得的细度,起码是面粉的3倍以上,一般情况是5-10倍,矿物类物料获得的细度是面粉的10-100倍。
在植物性物料的粉碎细度达到面粉的2倍以上时,生物细胞开始破壁,内部有效成分大量溶出,生物利用率得以成倍提高,这就是现在人们常说的细胞破壁。
石英粉体表面疏水化改性及其研究进展

石英粉体表面疏水化改性及其讨论进展(石英)的重要成分是SiO2,是地球上储量丰富的矿产资源之一。
由于具有稳定的物理和化学性能、无毒、无味、无污染、强耐酸性、耐高温、高耐湿、良好的透光性、抗辐射、低膨胀、低应力等性能,除应用于陶瓷、玻纤、保温材料、耐火材料等,在塑料、橡胶、油漆涂料、电绝缘封装材料等领域作为填料广泛使用,以提高复合材料性能,降低成本。
改性原理和改性方法是改性技术的基础,改性剂的选择、工艺设备及掌控条件、产品检测方法在改性过程中尤为紧要。
1改性原理粉体(表面改性)的原理和方法是相互关联的,改性原理决议着改性的方法。
由于石英粉体表面的亲水性,很难与有机高分子材料相容,为此需对其表面进行改性,使其表面性质由亲水性变为疏水性,从而改善石英粉体粒子表面的浸润性,使粉体粒子在有机化合物中更简单分散。
当前对石英粉体表面改性技术要求越来越高,提高改性效果同时降低成本。
且在不同领域的应用中,对石英粉体的纯度、粒度、白度及改性后效果等有不同要求。
一般来说,石英粉体的颗粒越细,比表面积越大,表面活性羟基越多,越易进行化学反应,改性后效果更好。
现在关于纳米二氧化硅表面改性讨论报告越来越多。
陈颖敏等分别采纳硅烷偶联剂KH-570、BYK-163和钛酸酯偶联剂NDZ-201对纳米二氧化硅进行表面改性,结果表明,KH-570改性效果最好,用量为5%,反应30min,对丙烯酸聚氨酯防腐涂料的各项性能均有较大提高。
石英等硅酸盐矿物经机械粉碎后,新生表面上产生游离基或离子,在外界条件作用下,表面产生Si-OH,Si-O-Si和Si-OHH等几种基团,易与外来的官能团发生键合,达到改性目的,为表面改性供给了基础。
在改性过程中,温度,改性剂的选择、用量及处理方法,改性工艺等是影响改性效果的重要因素。
2改性方法及工艺2.1改性方法对石英粉体有机表面改性的方法很多,但仅靠物理吸附于石英粉体表面,不仅改性效果不好,易在搅拌、洗涤等过程中脱落,而且在应用中也无法过多加添产品性能。
氮化铝的表面改性方法

氮化铝的表面改性方法AlN粉体的表面改性技术有很多,基本原理为对粉体表面进行相应的物理吸附或化学处理,在AlN颗粒包覆或形成较薄反应层,阻止AlN粉末与水的水解反应。
主要方法有包覆改性法、表面化学改性法、热处理法等等。
1、包覆改性法包覆改性是一种应用时间较久的传统改性方法,是用无机化合物或有机化合物对AlN粉体表面进行包覆,对粒子的团聚起到减弱或屏蔽作用,而且由于包覆物产生了空间位阻斥力,使粒子再团聚十分困难,从而达到表面改性的目的。
用于包覆改性的改性剂有表面活性剂、无机物、超分散剂等。
a、表面活性剂法根据AlN粒子表面电荷的性质,采用加入阳离子或阴离子表面活性剂,改变粉体分散体系中气液、固液界面张力,在粉体表面形成碳氧链向外伸展的具有一定厚度的包覆层。
利用表面活性剂的亲水基团对固体的吸附性、化学反应活性及其降低表面张力的特性可以控制纳米粉体的亲水性、亲油性、表面活性,改变粉体的表面特性或赋予粉体新的性质。
具体体现在如下三方面:☞亲水基团与表面基团结合生成新结构,赋予粉体表面新的活性;☞降低粉体的表面能使其处于稳定状态;☞表面活性剂的亲油基团在表面形成空间位阻,防止粉体的再团聚,由此改善纳米粉体在不同介质中的分散性等。
示例:郭兴忠等人研究发现有机羧酸和聚乙二醇改性后的AlN粉末在水中浸泡48h后Al(OH)3相不明显,表明有机羧酸包裹在AlN粉末表面,阻碍了水分子向AlN粉体表面侵蚀。
b、无机包覆改性AlN粉末无机表面改性就是将无机化合物或金属通过一定的手段在其表面沉积,形成包覆膜,或者形成核一壳复合颗粒,改善表面性能。
这是利用物理或化学吸附的原理。
使包覆材料均匀附着到被包覆对象上,形成连续完整的包覆层,使改性粉体表面呈现出包覆材料的性质。
c、超分散剂超分散剂在两亲结构上与传统的表面活性剂类似,但以锚固基团和溶剂化链取代了表面活性剂的亲水基和亲油基。
锚固基团能通过离子键、共价键、氢键及范德华力等相互作用以单点或多点锚固的形式牢固吸附于粒子表面,其溶剂化链则可以通过选用不同的聚合单体或改变共聚单体配比来调节它与分散介质的相容性,同时还可以通过增加溶剂化链的摩尔质量以保证它在颗粒表面形成足够的空间厚度。
包覆结构复相陶瓷粉体制备工艺浅析

工业技术科技创新导报 Science and Technology Innovation Herald114表面包覆改性技术是一种物理改性,它是依靠化学键作用、静电作用、过饱和度和吸附层的媒介作用以及自组装技术等将引入的无机或有机物与内核粒子连接起来,形成包覆结构的复合粒子。
对超细粉体采用恰当的表面包覆加工,不仅使其在物理、化学性质等方面得到较大改善;并且能够提高颗粒与其他物质之间的物理相容性和化学相容性,利于拓宽其在工业各领域的应用范围。
1 包覆机理分析1.1 库仑静电引力理论利用包覆剂与基体带有相反的电荷,在静电库仑力的作用下,包覆剂吸附在基体表面以形成包覆结构。
Homol a 等[1]采用此方法制备了S i O 2包覆γ-Fe 2O 3,当p H<6时,γ-Fe 2O 3溶液Zet a电位ζ>0,而SiO 2溶液在pH>3时,其ζ<0。
也即pH在3~6的范围内,γ-Fe 2O 3带正电荷,SiO 2带负电荷,依靠库仑引力使SiO 2沉积到γ-Fe 2O 3表面形成包覆体。
1.2 过饱和理论在某一固定pH值下,当溶液中存在异相物质时,若溶液浓度达到过饱和,极易在异相颗粒表面形核以形成包覆层[2]。
在非均相体系中,新相在母相上成核、生长,自身成核(即均相成核)体系所需要的表面自由能的增量大于体系表面自由能的增量,因此分子在异相界面的成核与生长比体系中的均相成核更快。
1.3 化学键理论通过化学反应使基体与包覆体之间形成化学结合,从而形成致密结合的包覆层[2]。
通过这种包覆方法得到的粉体,包覆层与基体之间结合一般很牢固,不易脱落,但需要基体表面需要具备一定的官能团。
2 包覆工艺分析通过对粉体进行适当的表面工艺处理,可以改善颗粒的分散性和表面活性,从而使颗粒表面获得新的物理、化学、力学性能。
目前,表面包覆的制备方法有如下几种。
2.1 机械混合法通过压缩、剪切、摩擦、延伸、弯曲、冲击等手段对粉体进行机械处理,使粉体表面活化能提高,粉体表面活化点与改性剂发生物理、化学反应,从而使改性剂均匀分布在粉体颗粒外表面,各种组分相互渗入和扩散,形成包覆[2]。
JSC,NTC401对超细氧化铝粉体表面改性的比较研究

理【。国 内外 的研究表 明 ,钛酸 酯偶联剂对无机粉 体的 l 】
改性 效果很好 , 但不 同的偶联剂的改性 效果不同,因此对
无机填料表面改性技术关键在于选择合适的偶联剂 引 。 本文研究 了两种钛 酸酯偶联 剂 J C和 N C 0 S T 4 1对超 细 氧 化铝粉体 改性作用 , 比较 了它们对 氧化铝粉体表 面 并
波数 附近 仅 出现 烷基 特征 吸 收 ,表 明水解反 应 比较 完
3 结果 与讨论
31 浸 润实验结 果 . 分别称取 一定量的改性后 的氧化 铝超 细粉体样 品, 加入盛有 一定量蒸馏 水的烧 杯 中,观察 效果 。多次重复
浸 润实验 结果如表 1 所示 。
全 ;J C改性粉体 的红外光 谱在 2 2 .8c S 9 9 m 波数 处 出 2
J C S
— —
— —
— —
— —
— —
注: “” 表 示 “ 景水 ” + 表 示 “ 全 亲 水” - 不 ;“ ” 完 .
32 活 化指数 的测定 .
分别称 取一定量 的改性后 的氧 化铝超细粉 体样 品, 加 入盛有 一定量蒸 馏水 的烧 杯 中,充分搅 拌并静 置 1 h 以上 ,然后将沉 降于烧 杯底部 的物料分 离,干燥 后称 重 ( ) W1。用原样质量减 去其沉 降部分质 量,即可得 到样 品中漂 浮部分 的质 量 ( —W ) Wl 2 。通 过计 算可得 出活化 指 数 R t: 1
维普资讯
助
能
妨
许
20 年增刊 ( ) 07 3 卷 8
JC,NT 4 1 S C 0 对超细氧 化铝粉 体表 面改性 的 比较 研 究
无机纳米粉体的团聚与表面改性

表 断键引起的原子能量远高于内部原子的能量, 容 易使颗粒表而原子扩散到栩邻颗粒表而并与其对应 的原 子键 合 , 成稳 固的 化学 键 , 形 从而 形 成 永 久性 的
硬 团聚【 。
在不同介质 中的分散性 、 纳米粒子的表面反应活性 、 纳米粒子的表面结构等… 2 陈东丹等【用二乙醇胺 、 ~。 1 1 1 . I 聚丙烯酸钠 、 十二烷基苯磺酸钠 、 聚乙二醇等四种表
用无机物作改性剂, 无机物与纳米粒子表而不发
维普资讯
第 2 拳第 期 7
20 0 6年 3月
陶瓷 学报
J OURNAL OF CERAM I CS
Vo. , 1 127No. M a .0o r2 6
文 章编 号 :00 2 7 (0 6 0 - 1 50 10 - 2 8 2 0 )1- 3 - 4 0
水 阶段 。
拓宽其应用领域。随着粉体制备技术的发展 , 人们已
经成功制备出各种纳米粉体 ,制备方法 日 趋多样化 , 如: 化学气相沉积法 、 等离子体法 、 物理气相沉积法 、
沉淀法 、 微乳液法 、 溶胶 一凝胶法 、 高能球磨法等 , 许 多己实现了_ k T  ̄生产 。 A 此外 , 对不 同分散介质 、 不同
无机 纳米 粉体 的 团聚 与表 面 改性
王 宝利 朱 振 峰
( 西科技 大 学材料科 学 与工程 学 院 , 阳 :10 1 陕 成 728 )
摘 要
综述 了纳米粉体 团聚 的原因 , 了表面改性的方法 , 介绍 如包覆 法、 表面化学改性 、 胶囊化改性 以及其它表面改性方 法。 同时对表
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
改性方法
• 表面物理改性:超细粉体的表面物理改性 一般是指不用表面修饰剂而对超微粉体实 施表面改性的方法,包括电磁波、中子流 、α粒子、β粒子等的辐照处理、超声处理 、热处理、电化学处理、等离子体处理等 ,是很常用的超微粉体表面改性方法。
• 表面化学改性:超微粉体的表面化学改性 是指在原来单一组分的基元物质表面上, 均匀地引入一种或者是多种其他组分的物 质,以改变原来基元的基本性质的方法。 • 常见的有:表面吸附包覆改性、化学反应 包覆改性、微乳液法、胶囊化改性和化学 镀法等。
超细粉体表面特性
• 超细粉体表面的润湿性 • 超细粉体的表面电性 (颗粒与其他介质接触时,表面会有电荷转 移,这种转移往往正负电荷数量不一致, 从而产生电势差。) • 超细粉体的表面能
超细粉体表面改性
• 表面改性是指采用物理或化学方法对固体 颗粒进行表面处理,即根据应用需要有目 的地改变颗粒表面物理化学性质与表面形 态结构工艺。
Abstract
• The electrochemical properties of MmNi5type metal hydride powders produced by gas atomization were improved by acid surface modification. FIB specimen preparation followed by FEthe surface structure before/after surface modification. The original oxide layer of the surface was removed and a nickel rich layer was formed by acid treatment.
• 偶联剂具有两性结构,其分子中的一部分 基团可与粉体表面的各种化学官能团反应 ,形成强有力的化学键。另一部分基团则 与有机高聚物发生某些反应或物理缠结, 从而将两种性质差异很大的材料牢固地结 合起来,使无机填料和有机高聚物之间产 生具有特殊功能的“分子桥”。 • 接枝聚合改性通过调节表面聚合改性单体 的配比,进行控制共聚物层及其无机粒子 界面层的结构和性质。
• 可以根据改性途径和赋予的改性产物功能 分为三个方面:
• 第一,有机改性剂在颗粒表面的覆盖,以 提高无机粉体在有机基体中的分散性和界 面结合强度; • 第二,通过化学沉积或机械力化学作用将 固体小颗粒(子颗粒)或均一物质膜在较 大颗粒表面(母颗粒)均匀包覆形成复合 颗粒,从而赋予复合颗粒新的功能; • 第三,采用高能电晕放电、紫外线照射或 等离子辐射等方法在颗粒表面形成不饱和 程度大的电子层或化学键,从而提高颗粒 表面活性以及与其他物质的界面结合程度。
K. Yanagimoto a,∗, K. Majimab, S. Sunada b, T. Sawadaa
a Sanyo Special Steel Co. Ltd., 672-8677 Himeji, Japan b Faculty of Engineering, Toyama University, 930-8555 Toyama, Japan
• The structure of the nickel rich surface differed with the treatment conditions. For acetic acid treated powder prepared in heated solution, a nanocrystalline nickel layer was formed at the surface. In the absence of any auxiliary conductivity additives, discharge capacity of this powder was improved to 254 mAh/g versus 52 mAh/g for non-treated powder and 62 mAh/g for hydrochloric acid treated powder.
• 静电分散作用:通过表面改性使颗粒的荷 电量增大;通过表面改性改变颗粒表面性 质,消除液桥力的影响。 • 降低纳米粉体的团聚度、提高其流动性
合金粉末真空雾化设备
Effects of surface modification on surface structure and electrochemical properties of Mm(Ni,Co,Mn,Al)5.0 alloy powder
超细粉体表面包覆与改性
• 超细粉体表面是指表面的一个或几个原子 层,有时指厚度达几微米的表面层。表面 是体相结构的终止,表面向外的一侧没有 近邻原子,表面原子有一部分化学键形成 悬空键。 • 超微粉体内部的三维周期势场在表面中断 ,表面原子的电子状态也和体内不同,然 而表面不是体相结构的简单终止。由于超 微粉体表面有悬空键,因而有剩余成键能 力。为了使表面能降低,所有超微粉体的 表面原子都会离开它们原来在体相中应占 的位置而进入新的平衡位置,发生弛豫和 重构。因此导致颗粒表面有很高的活性。
表面改性目的
• 改变颗粒表面的晶体结构(表面无定形化)、 溶解性能、化学吸附和反应活性(增加表面 的活性点或活性基点)等。
• 具体:
• 超声波利用超声空化时产生的局部高温、 高压或强冲击波和微射流等,较大幅度地 弱化超微粒子间的超微作用能,有效地防 止超微粒子团聚而使之充分分散。 • 辐照技术将高能射线与物质相互作用时, 在极短的时间内即把自身的能量传递给介 质,使介质发生电离和激发等变化。 • 采用等离子体方法处理无机粉体,使表面 引入活性基团或使表面包覆聚合物,提高 与聚合物的黏合性、改善聚合物填充体系 的力学性能。