有机无机杂化膜

合集下载

26994800_高性能疏松纳滤膜的制备研究进展

26994800_高性能疏松纳滤膜的制备研究进展

第42卷第5期2022年5月Vol.42No.5May ,2022工业水处理Industrial Water TreatmentDOI :10.19965/ki.iwt.2021-0361高性能疏松纳滤膜的制备研究进展樊华1,王一雯1,2,姜钦亮2,范敏2,桂双林2,韩飞2(1.南昌大学资源环境与化工学院,鄱阳湖环境与资源利用教育部重点实验室,江西南昌330031;2.江西省科学院能源研究所,江西南昌330096)[摘要]疏松纳滤(Loose nanofiltration ,LNF )是近几年发展迅速并得到大量研究的一种纳滤分离技术。

LNF 膜是一种具有纳滤(NF )和超滤(UF )边界孔径的膜,可以在较低的压力下应用且具有较高的选择性,应用前景广阔,尤其在生物质和废水资源化方面表现出明显的优势,是目前的研究热点之一。

介绍了近年来关于LNF 膜在运行机理、制备方法和应用范围等方面的研究进展;重点介绍了目前LNF 膜的制备方法,这些方法主要是通过提升膜表面的亲水性来提升膜的分离性能。

主要包括最基本的制备方法(相转化法、界面聚合法),以及在此基础上发展起来的贻贝启发沉积法、有机无机杂化法等,并阐述了根据不同的应用环境,针对性地采用不同方法所制得膜的性能特点及其优势。

由于不断提升的标准和越来越注重的资源循环需求,LNF 膜在资源回收和废水处理领域都展现出了不俗的表现。

最后结合LNF 膜近年来的研究进展,对其未来的研究方向和应用前景进行了展望,为未来疏松纳滤膜的性能提升和应用提供参考。

[关键词]疏松纳滤膜;相转化;界面聚合[中图分类号]X703;TQ028.8[文献标识码]A[文章编号]1005-829X(2022)05-0001-10Research progress of preparation of high performanceloose nanofiltration membranesFAN Hua 1,WANG Yiwen 1,2,JIANG Qinliang 2,FAN Min 2,GUI Shuanglin 2,HAN Fei 2(1.School of Resources ,Environmental &Chemical Engineering ,Nanchang University ,Key Laboratory ofPoyang Lake Environment and Resource Utilization ,Ministry of Education ,Nanchang 330031,China ;2.Energy Research Institute of Jiangxi Academy of Science ,Nanchang 330096,China )Abstract :Loose nanofiltration (LNF )is a nanofiltration separation technique that is developing rapidly and gettinga lot of research in recent years.Due to its high selectivity in nanofiltration and strong ability to operate under lower pressure ,LNF membrane ,a membrane with nanofiltration (NF )and ultrafiltration (UF )boundary apertures ,has be⁃come a research hot spot with broad application prospect.It exhibits distinct advantages in resource recovery frombiomass and wastewater.The recent developments of LNF membranes in terms of operating mechanism ,preparation methods ,and application scope were reviewed.The current preparation methods of LNF films were mainly intro⁃duced ,which was to improve the separation performance of membrane by improving the hydrophilicity of membrane surface.The most basic preparation methods of LNF membrane (phase transformation method ,interface polymeriza⁃tion method ),and the research progress of mussel inspired deposition method ,organic -inorganic hybrid method etc developed on the basis of these methods were mainly introduced.Also ,the performance characteristics and advan⁃tages of the films prepared by different methods according to different application environments were described.In terms of the application of LNF membranes ,due to the increasing standards and focus on the demand for resource re⁃cycling ,LNF membranes show excellent performance in the fields of resource recycling and wastewater treatment.In the end ,combined with the recent research progress ,the future research directions and application prospects of the LNF membranes were discussed.It provides reference for the performance improvement and future application[基金项目]国家自然科学基金项目(NSFC21567009);江西省科学院博士资助项目(2019-YYB-05);普惠制一类资助项目(2019-XTPH1-05)开放科学(资源服务)标识码(OSID ):专论与综述工业水处理2022-05,42(5)of porous nanofiltration membrane.Key words :loose nanofiltration membrane ;phase inversion ;interfacial polymerization膜分离技术,如超滤、纳滤和反渗透,由于能耗小、效率高、操作条件简单、运行成本低、易于产业化且对环境友好,已被广泛应用于污水处理、海水淡化等领域。

新型防雾涂料的研究进展及其最新应用

新型防雾涂料的研究进展及其最新应用

新型防雾涂料的研究进展孙雪娇,夏正斌,牛林,李伟( 华南理工大学化学与化工学院,广州510640)透明基材( 如玻璃、塑料等) 是人们日常生活、工作和生产中不可或缺的材料,但在其使用过程中常常会产生结雾现象,造成基质的透光率、反射率降低,影响视线,给人们的生活带来不便,甚至会发生危险。

防雾方法目前主要有电热法和使用防雾涂料,前者效果好但造价高,且应用局限性大,而防雾涂料因制备工艺简单、设备投资低、成本低而更具有生产实用价值。

防雾涂料是一种功能型涂料,用以减缓或防止雾化现象的产生。

防雾涂料有疏水型和亲水型2 种[1 -2],目前人们对亲水型防雾涂料的研究比较多。

通过疏水/亲水性能的提高还可以获得其他特殊功能,如耐腐蚀性能提高,还可使其具有自清洁功能[3],这不仅能大大方便人们的日常生活,而且能创造较大的经济效益。

目前对于防雾涂料及其制备工艺已有不少研究报道,却鲜有推广应用,原因主要在于防雾涂料的一些关键问题尚未完全解决,如防雾性能不理想、防雾膜强度低和耐久性差等[4 -5]。

如果能用现代涂料技术解决防雾涂料应用中出现的各种问题,将带来巨大的经济效益和社会效益。

1 防雾机理与方法空气中总是有相当量的水蒸汽存在,一旦具有一定分压的水蒸汽冷却到其露点时,水蒸汽便达到饱和并冷凝析出小水珠,小水珠粘附在透明基材表面就会出现雾化现象( 结雾) 。

这是由于小水珠的曲率半径不同,对光产生的漫反射不同。

在不透明基材表面看不到明显的雾化现象,但可以看到露珠般的大水珠,称为结露。

从雾化现象产生的原因来看,其雾化产生的条件可以简单地分为2 个方面: ①水汽和温差的存在。

只有当基材表面的温度低于一定湿度的水汽的露点时,空气中的水汽才能冷凝成水滴; ②基材表面的润湿性质。

从力学角度分析,雾化产生与否,取决于气液固三相之间的表面张力。

通过分析固液间的接触角可以判断基材表面的润湿性质。

为了防止基材表面的结雾,通常有两类方法: ①消除水汽或温差。

【国家自然科学基金】_有机-无机杂化_基金支持热词逐年推荐_【万方软件创新助手】_20140801

【国家自然科学基金】_有机-无机杂化_基金支持热词逐年推荐_【万方软件创新助手】_20140801

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
2008年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
推荐指数 4 3 3 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2009年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
杂多蓝 1 杂化过程 1 杂化超滤膜 1 杂化纤维 1 杂化材料 1 杂化 1 有机-无机杂化 1 有机 1 无机一有机杂化 1 无机-有机杂化材料 1 无机 1 新方法 1 形态 1 应用 1 复合材料 1 固定化酶 1 四电子还原 1 哌啶 1 合成 1 发光材料 1 原子力显微镜 1 半结晶 1 包埋法 1 功能性硅氧烷 1 制备方法 1 制备 1 光限幅 1 仿生矿化 1 仿生 1 二阶非线性光学 1 二阶非线性 1 中孔氧化硅 1 zro2 1 x射线荧光光谱 1 sus304不锈钢 1 poss 1 [bu4n][ni(pph3)2]pw11o39修饰电极 1 1,2-二(甲基二乙氧基硅基)乙烷 1

杂化聚合物合成及新材料

杂化聚合物合成及新材料

有机聚合物与无机两相间以弱相互作用结合 的杂化聚合物材料
• 这类杂化聚合物材料两相之间相互作用是 氢键、范德华力或亲水-憎水平衡。
• 最直接的合成路线:在预聚体存在下进行 无机前驱体的水解与缩合反应过程,只要 能保证凝胶形成和陈化干燥过程中不发生 相分离,就可获得光学透明的杂化聚合物 材料。
有机聚合物与无机两相间以共价键结合的杂 化聚合物材料
有机/无机杂化聚合物
• 无机材料:
高强度 高刚性 高硬度 光谱线较窄
应用于广泛的光、电、 磁等功能材料
• 有机材料
较好的韧性 易成型加工 电子光谱谱线宽
较少品种可能作光电磁等 功能材料
有机无机杂化聚合物材料
• 有机无机杂化聚合 物材料恰好实现了有 有机高分子材料和无 机材料的分子级复合, 具两类材料特点,从 而得到更优异的性能。
有机聚合物/复合氧化物杂化材料
其他的应用
粘合剂
化学/生化 传感器
抗划伤磨损的硬性涂料 聚合物材料、金属玻璃
表面的特殊涂层
杂化材料的应用
催化剂和 多孔支撑体、
吸附剂
光学,包括 线性和非线 性(NLO)光
学材料
作为聚电 解质材料用于
固态锂离子 电池,超电
容器等
杂化聚合物的合成
溶胶-凝胶法 sol-gel
烷氧基金属或元素化合物的水解过程 水解后的羟基化合物的缩合过程
以SI(OR)4有机硅醇盐为例作为sol-gel反应 前躯体,进行水解缩合反应。
• 溶胶-凝胶过程可以在酸性或碱性条件进行:
• 如:SI(OR)4在碱性催化条件下的,缩合速率比水 解速率快,最后形成浓的胶体粒子;而在酸性条 件下这一速率差别刚好相反,水解速率比缩合速 率快,结果形成高度分枝、低交联度的结构。

有机无机复合硅钢片绝缘涂料的制备工艺

有机无机复合硅钢片绝缘涂料的制备工艺

有机无机复合硅钢片绝缘涂料的制备工艺摘要:一种有机无机复合硅钢片绝缘涂料,其有机成膜物质由水性环氧树脂、水性有机硅树脂中的一种或几种按一定比例组成。

无机粘结剂由无铅低熔点玻粉、硅溶胶组成。

低熔点无铅玻璃粉在高温下的"二次成膜"作用可以有效提高涂层的耐热性、改善粉化现象。

该涂料因为有机、无机粘结剂的同时引入,既保证了低温下涂料的成膜性、耐冲击性、耐水性等性能,又保证了高温工作环境下的附着力和绝缘性,且涂料中不含铬酸盐等有毒成分,使用安全,由该涂料所制得的涂层具有良好的电绝缘性、耐腐蚀性,耐高温性和附着力强等特点。

关键词:有机无机复合;硅钢片;绝缘涂料;水性树脂1 前言:硅钢片涂层不仅要求有良好的绝缘能力,而且还要求涂层在高温条件下不脱落失效,国内外电工钢涂层分三大类,有机涂层、版无机涂层和无机涂层。

有机涂层不能满足高温的要求逐渐被淘汰;无机涂层本身对涂覆工艺和涂覆设备有很高的要求,有其一定的局限性。

半无机涂层具有良好的冲片性和附着性而受到广泛的关注和应用,而目前国内传统的半无机涂料配方中含有剧毒的铬酸盐,这不仅影响我国电子产品的市场竞争力,同时也对人体产生严重的危害,给环境造成严重的污染,给我国带来比较严重的环境问题。

随着人们环保意识的增强,环保要求的日益严格,传统溶剂型硅钢片漆产生的有机溶剂挥发而带来的安全与污染问题逐渐显现。

尤其是欧盟ROHS指令的颁布和实施,无铬环保,无毒、少污染的涂层日益成为绝缘涂层研究开发的热点和研制方向。

有机无机复合硅钢片绝缘涂料技术的研究,应用于大型电机、变压器中硅钢片表面的防护,具有良好的绝缘性能、防护性能及加工性能等应用性能。

这是一种有机、无机复合而成的硅钢片用绝缘涂料。

利用有机无机之间的协同作用,在烘烤后形成一种有机无机杂化薄膜,该涂层具有附着力好,高温退火后绝缘性能保持良好和耐热性好的特点,且该涂料不含铬酸盐、不含苯等对人体有害物质,生产和使用中不污染环境,目前国内硅钢片漆采用的有机涂层,漆膜厚度大,烧损实验泄漏电流大,很难满足更高的使用要求,而国外进口硅钢片漆价格昂贵,生产成本高,因此研制这种无机有机复合硅钢片绝缘漆既满足了市场需要,又符合国家政策和绿色环保要求。

分子筛膜的制备及其在去除重金属废水中的应用研究

分子筛膜的制备及其在去除重金属废水中的应用研究

分子筛膜的制备及其在去除重金属废水中的应用研究随着工业的发展和城市化进程的加快,重金属废水的排放量越来越大,严重危害着生态环境和人类健康。

有效解决重金属废水污染问题,已成为当下亟待解决的难题。

分子筛膜作为一种新型的膜材料,具有高选择性、高通量和高稳定性等特点,因此被广泛用于分离、过滤和提纯等领域。

本文将着重介绍分子筛膜的制备方法以及其在去除重金属废水中的应用研究。

一、分子筛膜的制备方法1. 溶剂挥发法溶剂挥发法是一种简单、易于操作的分子筛膜制备方法。

其基本原理是将分子筛颗粒与有机溶剂混合,形成混合溶液,然后将混合溶液倒置于玻璃片或陶瓷片上,待溶剂挥发后形成分子筛膜。

2. 溶胶-凝胶法溶胶-凝胶法是一种复杂的分子筛膜制备方法,其主要原理是通过溶胶-凝胶过程使分子筛颗粒结合成膜。

该方法需要严格控制溶胶和凝胶的组成、浓度和pH值等参数,以保证分子筛颗粒能够形成有机-无机复合材料,并同时保持分子筛的内部结构。

3. 水热法水热法也是一种较为常用的分子筛膜制备方法。

其基本原理是将分子筛颗粒与有机硅化合物混合,通过水热反应将分子筛颗粒结合成膜。

该方法可以通过控制温度、时间和反应液体的pH值等参数,来调整分子筛膜的厚度和孔径大小等性能特点。

二、分子筛膜在去除重金属废水中的应用研究分子筛膜作为一种高效、可选择性和稳定的膜材料,已经开始被广泛应用于废水处理领域。

下面将重点介绍分子筛膜在去除重金属废水中的应用研究。

1. 去除铅污染废水铅是一种有毒的金属元素,其污染会给人类带来严重的危害。

研究发现,采用银(Ⅰ)离子交换制备的ZR-101分子筛膜在去除重污染铅废水中具有良好的应用前景,可以将水中铅离子的浓度降至国家标准以下。

2. 去除镉污染废水镉也是一种有毒的金属元素,同样会对人体造成严重的危害。

研究发现,采用多孔型Y分子筛制备的膜,在去除重金属废水中也有一定的应用价值。

该分子筛膜可以通过孔径的选择性作用,将水中大多数重金属离子和有机物去除,有效提高水的质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【关键词】 多壁碳纳米管; 功能化; 有机/无机杂化膜; 界面聚合; 超滤; 反渗透; 渗透汽化;

有机-无机杂化膜的研究进展 1. 简介 传统的有机膜具有柔韧性良好、透气性高、密度低的优点,但是它们的耐溶剂性、耐腐蚀、耐温度性都较差,而单纯的无机膜虽然强度高、耐腐蚀、耐溶剂、耐高温,但比较脆,不易加工,因而制备一种兼具有两者优点的膜是目前研究的热点。有机-无机杂化膜在有机网络中引入无机质点,改善网络结构,增强了膜的机械性能,提高了热稳定性,改善和修饰膜的孔结构和分布,提高膜的渗透性和分离选择性。 2. 有机-无机杂化膜的结构

有机-无机杂化膜按结构可分为3大类:(1)有机相和无机相间以共价键结合的杂化膜,图1;(2)有机相和无机相间以范德华力或氢键结合的杂化膜,图2,膜从结构上可以分为在有机基质内分散着无机纳米微粒和在无机基质中添加纳米高分子微粒;(3)有机改性的陶瓷膜,图3。 谈纳米管自问世以来因其卓越的性能而备受关注。将碳纳米管与聚合物复合从而提高聚合物3.有机-无机杂化膜的制备方法 制备有机-无机杂化膜的方法包括:溶液-凝胶法、纳米微粒与高分子直接共混法、原位聚合法等。这里重点介绍前两种方法。 (1)溶胶-凝胶法(sol-gel) 溶胶-凝胶法是将无机前驱体溶于水或有机溶剂中形成均匀的溶液,通过水解、缩合反应生成粒子粒径为纳米级的溶胶,再经干燥转变为凝胶。 用溶胶-凝胶法制备的杂化膜内部有机和无机相易发生分离,不易得到均质膜。当无机组分均匀的分散在有机网络中,且两者间存在一定的相互作用时,易得到透明均质膜。这种相互作用可以是氢键也可以是化学键,组分间的化学键可以是M-C、M-O-Si-C或M-L(L为有机配体如多羟基配体,有机羧酸等)。引入化学键有两者方法:一是选用包含有功能性基团的烷氧基硅氧烷单体作为无机前驱体;二是加入偶联剂对有机高聚物进行改性,选用三官能团的硅氧烷,更易得到均质膜。 (2)共混法 该方法是高分子可以以溶液形式、乳业形式、熔融形式等与纳米无机微粒共混。共混法操作方便、工艺简单。用此方法得到的杂化膜中,纳米微粒空间分布参数难以确定,纳米微粒分布不均匀,易团聚,通过对纳米微粒做表面改性或加入增溶剂进行改性。 Genne等人将粒径约为1微米的二氧化锆(ZrO2)掺入聚砜(PSF)中发现:当掺入少量ZrO2(10-20wt%)时,膜的表面形成小孔,渗透性很低;当ZrO2达到40%时,膜的表层形成均匀且高空隙率的结构,平均孔径约为10nm,但膜的渗透性依然不高;如果进一步增加ZrO2,膜的表层结构和孔隙率不变,但膜的渗透性随着无机组分含量的升高而增强。Wara等人在醋酸纤维素膜中加入陶瓷氧化铝(Al2O3)颗粒,虽然Al2O3的掺杂不影响表层的孔隙率,但是对膜的微孔结构有影响:当Al2O3含量较低时。在致密高聚物膜下形成了大孔(孔径约为15微米);但随着Al2O3含量增加,逐渐形成了均一的微孔网状结构。

4.有机-无机杂化膜在燃料电池中的应用 质子传导膜可以应用在许多能量技术设备上,如燃料电池、电解水、分离氢、传感器及其他电化学装置上。但是高分子质子传导膜热稳定性差、操作温度狭窄。 Honma等人通过sol-gel法在70℃通氮气条件下制备了PEO分子量200-2000的PEO/SiO2杂化膜。杂化膜具有较好的热稳定性,在低温湿条件下质子电导率较低,随温度的升高,电导率增加,在90℃达到10-3S/cm,160℃增湿条件下可得到10-4的质子电导率。加入十二烷基磷酸盐的杂化膜在100℃以上表现出良好的电导性。在后来的研究中,Honma等通过sol-gel法制备了杂化聚电解质膜。首先通过异氰酸根偶联剂将聚环氧乙烷、聚环氧丙烷、聚环氧丁烷和烷氧基硅烷相连形成改性的杂化前驱体,在经过水解、缩合得到的有机-无机杂材料,同时在膜液中加入磷钨酸(PWA)和碳酸异丙酯(PC),从而制得杂化膜。对杂化膜进行加热处理发现当PWA和PC含量较高时,由PEO60值得的膜在140℃下分解,由PTMO250值得的膜有最好的耐酸耐热性。同时发现PTMO分子量越高热稳定性越差。当温度高于80℃,在增湿条件下,膜的电导率提高,在饱和湿度下可得到最大的电导率。 此外,有机-无机杂化膜由于其优良的特性可以用在许多领域,包括分离气体、纳滤和超滤、分离金属离子、酶反应和涂料等方面。

的力学、电学及其它性能,具有广泛的研究和实际应用前景,尤其是将碳纳米管添加到高聚物中制备成膜,利用其独特的一维管状结构和超疏水能力,可以提高传统分离膜对复杂体系的分离效果。获得到结构完整,性能优良的碳纳米管/聚合物分离膜,首先需要提高碳纳米管在聚合物基体中的分散性。通过对碳纳米管改性接枝活性基团,提高界面相容性可使整个体系保持稳定,发挥混合杂化膜中碳纳米管的独特性能。本论文针对上述目标,采用不同功能化方法提高原始碳纳米管的纯度、稳定性和分散性,然后将功能化的碳纳米管与几种聚合物材料分别进行复合,分别制备超滤、反渗透和渗透汽化膜,研究添加碳纳米管后膜分离性能的变化。主要包括以下四个方面的内容:(1)原始多壁碳纳米管(multi-walled carbon nanotube)的纯化及表面功能化。首先采用在硫酸/硝酸组成的混酸中超声处理以纯化碳纳

米管。针对不同聚合物的结构特点采用两种不同的方法对纯化碳纳米管进行功能化以提高成膜后的性能:一是利用5-异氰酸酯-异酞酰氯(5-isocyanato-isophthaloyl chloride, ICIC)与碳纳米管反应实现多壁碳纳米管表面酰氯化;二是利用丁二酸酐过氧化物(diisobutyryl peroxide)与碳纳米管反应实现碳纳米管表面的羧酸化。通过功能化改性后,极大的提高了多壁碳纳米管在水中和各种有机溶剂中的分散性,也显著提高其在各种聚合物基质中的分散能力和界面相容性。(2)碳纳米管/聚砜超滤杂化膜的制备及性能研究。将表面酰氯化的碳纳米管与聚砜基质共混,采用相转化的方法制备得到表面孔径约为30 nm的超滤膜。通过扫描电镜(SEM)和透射电镜(TEM)观察膜表面和截面结构;采用元素分析(XPS),红外光谱(IR)及接触角对膜表面的化学成分和亲疏水性分析。以纯水和聚乙二醇(PEG,分子量20000)为原料液分别测试超滤膜的通量和截留性能,结果表明,碳纳米管的加入改善了膜的微结构并提高了膜表面的亲水性,纯水通量由原来的40 L/m2-h上升到180 L/m2·h,分离性能得到显著增强。另外,通过对BSA蛋白质分子的静态吸附实验,证明加入碳纳米管的聚砜超滤膜可以有效降低蛋白质引起的膜污染。(3)碳纳米管/壳聚糖渗透汽化复合膜的制备及性能研究。将表面羧酸化的碳纳米管与壳聚糖共混制备得到表面致密的渗透汽化复合膜。通过SEM和TEM观察到膜的形貌以及碳纳米管在壳聚糖中的分散状况;通过红外光谱和X射线衍射(XRD)比较了混有碳纳米管的壳聚糖复合膜和纯壳聚糖复合膜结构的差异。通过

膜在乙醇和水中的溶胀实验,考察了膜中碳纳米管含量对乙醇和水在膜中溶解系数和扩散系数的影响,与Fick定律推导出的理论扩散系数进行比较,证实膜中的碳纳米管更有利于提高水分子的扩散速率。最后将膜应用与渗透汽化实验中,考察料液温度和碳纳米管含量对分离性能的影响,结果表明,含碳纳米管的混合膜可以降低分子穿透膜的活化能,从而大幅度地提高水通量和膜的总通量及其他分离性能。(4)碳纳米管/聚酰胺反渗透复合膜的制备及性能研究。首先考察界面聚合反应条件对以间苯二胺(MPD)和均苯三甲酰氯(TMC)为单体的反渗透复合膜性能的影响,并经过单因素和正交实验优化膜制备条件。研究了向水相中添加相转移催化剂和小分子醇类后对反渗透复合膜性能的影响,合理的解释了相转移催化剂和小分子醇作为水相添加剂能提高复合膜通量的原因。随后,将羧酸化的碳纳米管分散到MPD水溶液中制备得到碳纳米管/聚酰胺反渗透复合膜。SEM、TEM的表征结果证明:加入碳纳米管后膜表面比纯聚酰胺膜粗糙,而且加入碳纳米管后由于微相分离会造成膜的分离层出现微小的空隙,降低了膜表面的致密程度。另外,碳纳米管/聚酰胺复合膜的表面更亲水,表面的电负性也大于纯的聚酰胺复合膜。与纯聚酰胺复合膜分离性能相比,碳纳米管/聚酰胺反渗透复合膜对纯水和盐溶液的渗透通量增加近一倍,同时,膜抗污染性和耐氧化性也得到了一定的提高,对活性氯的耐受力提高到3000 ppm·h。综上所述,本论文所制备的含碳纳米管有机/无机复合膜比单纯的有机高分子膜在结构和性能上有明显提高,该膜制备方法为制备高性能杂化膜提供了新的思路从分子水平上认识高分子膜、高分子-有机杂化膜、高分子-无机杂化膜的物理化学性质和渗透物分子在这些膜内的扩散特性对设计具有特定性质和功能的渗透蒸发膜具有重要意义。本文首先建立了聚二甲基硅氧烷(PDMS)、高苯基含量的聚甲基双苯基硅氧烷(PMPhS)、高分子-有机杂化膜(PDMS-杯芳烃(CA)、PDMS-环糊精(CD))、高分子-无机杂化膜(PDMS-石墨(CG)、PDMS-二氧化硅(SiO2))的模型,通过分子动力学模拟研究了膜的物理化学性质(溶解度参数、高分子链运动性、自由体积)和渗透物分子(苯、水)在膜内的扩散性质。对于PMPhS膜,溶解度参数的计算结果显示随着膜中苯基含量的增加,PMPhS膜表现出更强的亲苯性。自由体积的计算结果表明随着苯基含量的增加,膜的自由体积分数减小,这主要是由于高分子链段的刚性增加所致。同时,苯的扩散系数较水分子的扩散系数的增加更为显著,因此苯基含量的增加能够同时强化硅橡胶膜对苯的吸附能力和苯在膜中的扩散速率,提高了膜的分离性能。对高分子-有机杂化膜,实验表明CA引入PDMS后,膜的通量和分离因子表现出了“反常”的变化,即渗透通量和分离因子同时在1wt% CA含量时出现最低值,3wt% CA含量时出现最高值。本文利用分子动力学模拟技

术从分子水平上解释这种现象,计算结果和实验结果吻合良好。模拟结果表明,高分子链的运动性和自由体积与PDMS和CA之间的相互作用密切相关。苯/水在无限稀释和饱和状态下的扩散系数表现出了相同的变化趋势,并且扩散系数的大小不仅与自由体积相关,还与扩散

相关文档
最新文档