动力电池基本参数

动力电池基本参数
动力电池基本参数

卷绕式锂离子电池设计规范

卷绕式锂离子电池设计规范 一、观察给定型号和客户需求 1、型号制定了电池的尺寸(以063048为例,尺寸为6.0×30×48mm) 2、客户要求的容量和电池的放电类别(动力型、高温型、普通型),通常而言电 池所能达到的容量一般为普通型>高温型>动力型(以便确定所需要的材料) 3、材料的选用: 3.1容量≥1000mAh的型号,如果客户无容量或高温要求的用正极CN55系列 3.2有高温要求的型号,正极材料必须使用Co系列,电解液必须用高温电解液 二、卷芯设计 1、容量设计 根据客户要求的最小容量来确定设计容量。 设计容量(mAh)= 要求的最小容量×设计系数=(长×2-刮粉)×宽÷10000×面密度×理论克容量 注:设计系数: 标称容量≤200mAh设计系数一般取1.10~1.20; 标称容量200<C≤350mAh设计系数一般取1.08±0.02; 标称容量C>350mAh设计系数一般取1.07±0.02。 2、卷针的设计 2.1 卷针的宽度 Wj=电芯的宽度-卷针厚度-电芯的厚度-1.7(根据实际情况而定) 2.2 卷针厚度 Tj由卷针的宽度决定,具体见卷针统计表。 3、包装膜尺寸设计 3.1包装膜膜腔长度的确定: 膜腔长度=成品高-顶封宽度(5mm) 3.2包装膜膜腔长度的确定: 膜腔宽度=成品宽-1.2mm 3.3 槽深的设计: 槽深H与电芯厚度的关系如下:H = T-α 其中: T —电芯的厚度; α—当型号为双坑电池时,α取0.2 当型号为单坑电池时,α取-0.2 3.4 包装袋长、宽尺寸的确定: 3.4.1 包装袋宽度: a. 厚度≤5mm的电池铝塑膜宽度为电池本体宽度+(45~50mm),取代5mm 的整数倍为规格; b. 厚度﹥5mm的电池铝塑膜宽度为电池本体宽度+(55~60mm),取代5mm 的整数倍为规格; 3.4.2包装袋长度: 铝塑膜长度=成品电池长度×2+10mm

电动汽车用锂离子动力蓄电池包和系统测试规程

电动汽车用锂离子动力电池包和系统测试规程 范围 本标准规定了电动汽车用锂离子动力电池包和系统基本性能、可靠性和安全性的测试方法。 本标准适用于高功率驱动用电动汽车锂离子动力电池包和电池系统。 规范性引用文件(其中的一部分) 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2423.4-2008 电工电子产品环境试验第2部分:试验方法试验Db 交变湿热(12h+12h循环)(IEC 60068-2-30:2005,IDT) GB/T 2423.43-2008 电工电子产品环境试验第2部分:试验方法振动、冲击和类似动力学试验样品的安装(IEC 60068-2-47:2005,IDT) GB/T 2423.56-2006 电工电子产品环境试验第2部分:试验方法试验Fh:宽带随机振动(数字控制)和导则(IEC 60068-2-64:1993,IDT) GB/T 18384.1-2001 电动汽车安全要求第1部分:车载储能装置(ISO/DIS 6469-1:2000,EQV)GB/T 18384.3-2001 电动汽车安全要求第3部分:人员触电防护(ISO/DIS 6469-3:2000,EQV)GB/T 19596-2004 电动汽车术语(ISO 8713:2002,NEQ) GB/T xxxx.1- xxxx 道路车辆电气及电子设备的环境条件和试验第1部分:一般规定(Road vehicles - Environmental conditions and testing for electrical and electronic equipment Part 1: General,MOD) GB/T xxxx.3- xxxx 道路车辆电气及电子设备的环境条件和试验第3部分:机械负荷(Road vehicles - Environmental conditions and testing for electrical and electronic equipment Part 3: Mechanical loads,MOD) GB/T xxxx.4- xxxx 道路车辆电气及电子设备的环境条件和试验第4部分:气候负荷(Road vehicles - Environmental conditions and testing for electrical and electronic equipment Part 4: Climatic loads,MOD) 术语和定义 1.1 蓄电池电子部件 采集或者同时监测蓄电池单体或模块的电和热数据的电子装置,必要时可以包括用于蓄电池单体均衡的电子部件。 注:蓄电池电子部件可以包括单体控制器。单体电池间的均衡可以由蓄电池电子部件控制,或者通过蓄电池控制单元控制。 1.2 蓄电池控制单元 battery control unit (BCU) 控制、管理、检测或计算电池系统的电和热相关的参数,并提供电池系统和其他车辆控制器通讯的电子装置。 1.3 1 / 20

动力电池组及管理系统试验方案

动力电池组及管理系统试验方案 型号规格:非标 用途:用于电动汽车用氢镍电池的综合性能测试,在功率允许范围内,可以完成所有充放电项目的性能测试。 一、购置理由: 动力电池及管理技术已经成为制约电动汽车及混合动力汽车发展的瓶颈之一,动力电池台架通过容量测试试验、效率试验、循环工况试验、电池模型参数识别试验以及电池检测精度和荷电状态估计试验等,能够得到动力电池组的工作特性,确定其合理的工作范围,验证电池管理系统的电池检测精度和能量状态估计的准确性,为电池组装车后有效管理提供试验依据。本着提高效率,减轻工作强度,降低企业成本,便于对动力车辆电池动态应力循环工况测试的角度考虑,该方案拟运用迪卡龙电动车辆测试系统硬件设备EVT-500-500,BTS-600电池测试软件对电动汽车用氢镍电池的综合性能进行测试。 二、技术要求及设备选型情况 1.技术要求 1.1 主要技术指标 1.1.1 充电电流: 充电电流范围: 1.0~100A(尽可能靠上限); 电流分辨率:0.1A, 电流控制与测量精度:0.1A 1.1.2充电电压范围:0~500V(电位器调节,最大调节电压500V) 显示电压分辨率: 0.1V 电压控制测量精度:0.1V(硬件控制0.01V) 1.1.3充电容量:系统在充电过程中对电池的充电容量计算,误差≤±1.5%,测试电池组在不同温度、不同放电率下所能放出的能量。放电倍率一般为C/3、C/2、1C、2C、3C、4C等,其中C为电池组容量,温度根据电池使用环境要求,一般为-25°C、-10°C、0°C、25°C、50°C等。 1.1.4 充电通道及方式:160CH电池组充电通道,每个电池组充电通道,通过提供的专用插头,与电池组连接,独立地对电池组中的最多4枚12V单体电池进行充电。

动力电池管理系统硬件设计电路图

动力电池管理系统硬件设计电路图 电动汽车是指全部或部分由电机驱动的汽车。目前主要有纯电动汽车、混合电动车和燃料电池汽车3种类型。电动汽车目前常用的动力来自于铅酸电池、锂电池、镍氢电池等。 锂电池具有高电池单体电压、高比能量和高能量密度,是当前比能量最高的电池。但正是因为锂电池的能量密度比较高,当发生误用或滥用时,将会引起安全事故。而电池管理系统能够解决这一问题。当电池处在充电过压或者是放电欠压的情况下,管理系统能够自动切断充放电回路,其电量均衡的功能能够保证单节电池的压差维持在一个很小的范围内。此外,还具有过温、过流、剩余电量估测等功能。本文所设计的就是一种基于单片机的电池管理系统。 1电池管理系统硬件构成 针对系统的硬件电路,可分为MCU模块、检测模块、均衡模块。 1.1MCU模块 MCU是系统控制的核心。本文采用的MCU是M68HC08系列的GZ16型号的单片机。该系列所有的MCU均采用增强型M68HC08中央处理器(CP08)。该单片机具有以下特性: (1)8MHz内部总线频率;(2)16KB的内置FLASH存储器;(3)2个16位定时器接口模块;(4)支持1MHz~8MHz晶振的时钟发生器;(5)增强型串行通信接口(ESCI)模块。 1.2检测模块 检测模块中将对电压检测、电流检测和温度检测模块分别进行介绍。 1.2.1电压检测模块 本系统中,单片机将对电池组的整体电压和单节电压进行检测。对于电池组整体电压的检测有2种方法:(1)采用专用的电压检测模块,如霍尔电压传感器;(2)采用精密电阻构建电阻分压电路。采用专用的电压检测模块成本较高,而且还需要特定的电源,过程比较复杂。所以采用分压的电路进行检测。10串锰酸锂电池组电压变化的范围是28V~42V。采用3.9M?赘和300k?赘的电阻进行分压,采集出来的电压信号的变化范围是2V~3V,所对应的AD 转换结果为409和*。 对于单体电池的检测,主要采用飞电容技术。飞电容技术的原理图如图1所示[2],为电池组后4节的保护电路图,通过四通道的开关阵列可以将后4节电池的任意1节电池的电压采集到单片机中,单片机输出驱动信号,控制MOS管的导通和关断,从而对电池组的充电放电起到保护作用。

动力电池高压连接器(单芯)技术规范

目录 1 、目 的 ........................................................... . (2) 2 、适用范 围 ........................................................... (2) 3 、定 义 ........................................................... . (2) 4 、职责分 配 ........................................................... (2) 5 、流程 图 ........................................................ .. .. (2) 6 、程序内 容 ..................................................... ..... (2) 6.1 动力电池高压连接器技术参数要 求 (3) 6.1.1 高压连接器性能要 求 (4) 6.1.2 高压连接器技术参数要 求 (4) 6.2 高压连接器结构设计要 求 (5)

6.2.1 高压连接器插座中接触件与动力电池主电路连接端设计要求 (7) 6.2.2 高压连接器插座固定于箱体面设计要 求 (7) 6.2.3 高压连接器插座与插头连接触件设计要 求 (7) 6.2.4 高压连接器插件的绝缘防触摸设计要 求 (8) 6.2.5 高压连接器的保护壳体设计要 求 (8) 6.2.6 高压连接器的防呆设计要 求 (8) 6.2.7 高压连接器的防呆设计要 求 (8) 6.2.8 高压连接器的高压互锁设计要 求 (9) 6.2.9 高压连接器的温控互锁设计要 求 (9) 6.2.10 高压连接器的动力线缆设计要 求 (9) 6.2.11 高压连接器的互换性设计要 求 (9) 6.3 动力电池高压连接器检验标准要 求 (11) 6.4供应商送样承认要 求 (13) 7、相关文 件 ...........................................................

电动汽车用动力蓄电池技术要求及试验方法

《电动客车安全要求》 征求意见稿编制说明 一、工作简况 1、任务来源 为引导和规范我国电动客车产业健康可持续发展,提高电动客车安全技术水平,落实工业和信息化部建设符合电动客车特点的整车、电池、电机、高压线束等系统的安全条件及测试评价标准体系的要求,全国汽车标准化技术委员会于2016年8月启动了本强标的立项和编制工作。 2、主要工作过程 根据有关部门对电动客车安全标准制定工作的要求,全国汽车标准化技术委员会电动车辆分技术委员会组织成立“电动客车安全要求工作组”(以下简称工作组),系统开展电动客车安全要求标准的制定工作。 (1)GB《电动客车安全要求》于2016年底完成立项(计划号20160968-Q-339),2016年12月29日在南充电动汽车整车标准工作组会议上组建了标准制定的核心工作组,启动了强标制定工作,并由起草组代表介绍了标准的背景、编制思路、以及与相关标准的协调性关系。 (2) 2017年2月-3月,基于已开始执行的《电动客车安全技术条件》(工信部装[2016]377号,以下简称《条件》)的工作基础,工作组向电动客车行业主要企业、检测机构等16家单位征求《条件》的实施情况反馈与强制性国标制定建议。 (3) 2017年4月18日,工作组在重庆组织召开标准制定讨论会,会议对《条件》制定情况进行了回顾,对收集到的《条件》执行情况进行了分析讨论。根据讨论结果,针对共性问题形成了专项征求意见表。 (4) 2017年5月-6月,工作组根据重庆会议讨论结果向行业进行强标制定专项意见征求意见。 (5) 2017年6月6日,在株洲召开工作组会议,会议对专项征求意见期间收集的反馈意见进行研究讨论。 (6)2017年6月-10月,工作组依据意见反馈情况和会议讨论结果进行标

动力电池自动化测试系统总体方案

动力电池自动化测试系统 总体方案 湖北德普电气股份有限公司(、3276513)

第一部分:模组来料OCV检测系统方案一、简述 本系统首先导入模组出厂数据到本地数据库,测试时通过条码扫描枪读取电池包的条码信息,按照预设好的测试方案,通过CAN总线读取BMS的电池OCV信息,并将电池OCV信息与出厂数据进行比对,按照预设的条件进行产品合格判定。并把相关信息记录在数据库中,同时将不合格结果进行标签打印。 二、组成 模组来料OCV检测系统主要由以下设备组成,系统原理框图如图1所示。 1)研华工控机 2)Honeywell条码扫描枪 3)NI PCI CAN通讯卡 4)明纬开关电源 5)NI PCI I/O板卡 6)Zebra标签打印机 7)扫描枪伺服系统 8)附属组件 图1 模组来料OCV检测系统原理框图

三、功能实现技术方案 图2 来料OCV检测系统示意 模组来料OCV检测系统由工控机通过软件进行设备集成。用户登录后,根据权限编写测试流程,测试流程包含扫描枪伺服系统的控制、DBC文件的选择、不合格条件的设定等,并将测试流程与条码进行模糊绑定。 在进行具体测试过程中,当完成线束连接后,可以点击启动按钮,模组来料OCV 检测系统自动按照测试方案驱动扫描枪伺服系统,扫描枪到预设位置后读取相应的条形码填入对应位置。条形码读取完毕后自动从数据库中搜索电池的相应出厂OCV值,并根据DBC文件,自动通过PCI CAN通讯卡读取并解析相应的电池OCV信息,按照预设的判定条件进行结果判定。完成测试后,将不合格的测试结果按照预设格式进行打印。同时出于满足手动调试的需要,所有的操作均可以单步手动操作。 工控机内安装PCI接口的CAN通讯卡、I/O板卡。工控机通过PCI I/O板卡控制的接触器对BMS上电、下电控制。工控机通过PCI CAN通讯卡与BMS进行通讯,完成数据的读取与解析。按照功能划分,软件具备如下功能: 3.1人机界面 提供用户的登入登出、新用户的建立、管理等功能。软件提供了测试流程的编辑、检查、载入等功能。并提供测试方案的启动、停止、暂停、回复等按钮,用于测试流程控制。软件提供了电池条码信息、接触器状态、BMS信息、测试流程的状态等信息。界面大致如下: 图3 模组来料测试系统主界面示意图 3.2测试流程控制 软件能根据预先编制好的测试方案,按照用户的命令启动测试方案,并能按照测试方案自动的执行测试流程,并完成结果判定。

特斯拉电动汽车动力电池管理系统解析(苍松书屋)

特斯拉电动汽车动力电池管理系统解析 1. Tesla目前推出了两款电动汽车,Roadster和Model S,目前我收集到的Roadster 的资料较多,因此本回答重点分析的是Roadster的电池管理系统。 2. 电池管理系统(Battery Management System, BMS)的主要任务是保证电池组工作在安全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。BMS的主要功能有电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等。我的主要研究方向是电池的热管理系统,因此本回答分析的是电池热管理系统 (Battery Thermal Management System, BTMS). 1. 热管理系统的重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。首先,锂离子电池的温度水平直接影响其使用中的能量与功率性能。温度较低时,电池的可用容量将迅速发生衰减,在过低温度下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部析锂并进而引发短路。其次,锂离子电池的热相关问题直接影响电池的安全性。生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件,威胁到车辆驾乘人员的生命安全。另外,锂离子电池的工作或存放温度影响其使用寿命。电池的适宜温度约在10~30°C之间,过高或过低的温度都将引起电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命,增加用户的总拥有成本。 电池热管理系统是应对电池的热相关问题,保证动力电池使用性能、安全性和寿命的关键技术之一。热管理系统的主要功能包括:1)在电池温度较高时进行有效散热,防止产生热失控事故;2)在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性能和安全性;3)减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电池过快衰减,降低电池组整体寿命。 2. Tesla Roadster的电池热管理系统 Tesla Motors公司的Roadster纯电动汽车采用了液冷式电池热管理系统。车载电池组由6831节18650型锂离子电池组成,其中每69节并联为一组(brick),再将9组串联为一层(sheet),最后串联堆叠11层构成。电池热管理系统的冷却液为50%水与50%乙二醇混合物。

动力电池系统技术规范

密级:项目内部 动力电池系统技术规范项目代号: 文件编号: 编写:时间: 校核:时间: 批准:时间: 天津易鼎丰动力科技有限公司 1.文件范围 本文件规范了XX公司XX车型所用XX动力电池必须满足的技术性能要求。 2.术语定义和及产品执行标准 .术语定义 电动汽车(electricvehicle,EV):指以车载能源为动力,由电动机驱动的汽车; 电芯(cell):一个单一的电化学电池最小的功能单元; 模组(module):指由多个电芯的并联组装集合体,是一个单一的机电单元; 电池组(batterypack):由一个或多个模组连接组成的单一机械总成; 电池管理系统(batterymanagementsystem,BMS):指任何通过监控充电电池的状态、计算二次数据并报告该等数据、保护该等充电电池、设置报警信号、与设备中的其他子系统进行电子通信、控制充电电池内部的环境或平衡该等充电电池或环境等方式来管理该等充电电池的电子设备,包括软件、硬件和运算法则; 动力电池系统(batterysystem):动力电池系统是指由动力电池组、电池箱体、电池管理系

统、电器元件及高低压连接器等组成的总成部件,功能为接收和储存由车载充电机、发电机、制动能量回收装置或外置充电装置提供的高压直流电,并且为电驱动系统及电辅助系统提供高压直流电; 整车控制器(vehiclecontrollerunit):检测控制电动汽车系统电路的控制器; 高电压(HighVoltage,HV):特指电动汽车200VDC以上高压系统; 低电压(LowVoltage,LV):指任何信号或功率型能量低于50VDC,本文中特指整车12VDC电源系统; 荷电状态(state-of-charge,SOC):电池放电后剩余容量与全荷电容量的百分比; 寿命初始(BeginningOfLife,BOL):指动力电池系统刚交付使用的状态; 寿命终止(EndOfLife,EOL):动力电池系统能量降低到初始能量的80%,或者实时峰值 功率低于初始峰值功率的85%时,视为寿命终止; 电磁兼容性(Electro-MagneticCompatibility,EMC):在同一电子环境中,两种或多种电子 设备能互不干扰进行正常工作的能力; 高低压互锁(HighVoltageInter-Lock,HVIL):特指低压断电时,通过低压信号控制能够 同时将高压回路切断; CAN(ControllerAreaNetwork):控制器局域网; DFMEA(FailureModeandEffectsAnalysis):设计故障模式及失效分析; MTBF(MeanTimeBetweenFailure):平均无故障时间; 额定容量:在25℃±2℃下,以1I1(A)电流恒电流充电至动力电池系统总电压或最高单体 电压达到规定电压值,以恒定电压充电至电流小于(A)时停止充电,休眠10分钟后,以1I1(A)电流放电达到规定的终止电压时停止放电,整个测试过程放出的容量为额定容量,单位为Ah; 额定能量:在25℃±2℃下,以1I1(A)电流恒电流充电至动力电池系统总电压达到或最高 单体电压达到规定电压值,以恒定电压充电至电流小于时停止充电,休眠10分钟后,以1I1(A)电流放电达到规定的终止电压时停止放电,整个测试过程放出的能量为额定能量,(Wh),此值可由电压-容量曲线的覆盖面积积分得到; 可用能量:在25±2℃、-5±2℃两种温度条件下,按照《动力电池可用能量测试规范》分 别做NEDC测试,动力电池系统在放电率允许的范围内实际放出的电量的平均值。 额定电压:额定能量除以额定容量,标定为额定电压; 峰值功率:本项目峰值功率标定为XXkW。 产品执行标准 表1.产品执行标准 备注:未经特殊说明,本规范中涉及到的术语定义、检测方法、判断标准等都以上述标准为准。

电动汽车动力电池及管理系统试卷A

广东文理职业学院刘鹏2018-2019学年度第一学期 期末考试试题(A卷) (考试时间: 90 分钟) 考试科目动力电池及管理适用班级:新能源汽车一班 一、单项选择题(每小题2分,共计30分) (题目正文:宋体,五号,行距20磅) 1. 燃料电池采用的燃料是()。 A.汽油; B.柴油; C.乙醇; D.氢气 2.燃料电池汽车的效率能达到以上()。 A.30%; B.40%; C.50%; D. 60% 3.在最适合汽车使用的燃料电池()。 A.质子交换膜燃料电池; B.磷酸燃料电池; C.熔融碳酸盐燃料电池对; D.固态氧化物燃料电池。 4.世界上第一家实现商品化销售的燃料电池汽车生产厂家是()。 A.丰田; B.通用; C.奔驰; D.本田。 5.蓄电池组中,标称电压为12V的单体电池端电压压差应小于()mV。 A.100; B.120; C.150; D.200 6.在25°C下,蓄电池组由32节单体蓄电池组成(单体标称电压为12V),则其浮充电电压应约为() A. 384V; B. 432V; C. 450V; D. 472V 7.在蓄电池管理系统中,由()把整流电压变成交流电压。 A.整流器; B.逆变器; C.充电器 8.在蓄电池管理系统中,,由()把直流电压变成交流电压。 A.整流器; B.逆变器; C.充电器; D.交流调压器 9. 15.2020年中国电池制造的能量密度要达到()。 A. 300wh/kg;A. 400wh/kg;A. 500wh/kg 10.用电流表测量电流,应将电流表和被测电流的电路或负载()。 A.串联; B.并联; C.怎么连接都可以。 11.用电压表测量电压,应将电压表和被测电压的电路或负载()。 A.串联; B.并联; C.怎么连接都可以。 12.万用表使用完毕后,应将选择开关放在()。 A.电阻档; B.交流电压最高档; C.直流电流档。 13.三相桥式整流电路,在交流电的一个周期内,每个整流元件的导通角为()。 A. 180度; B. 120度; C. 60度 14.单相整流电路中,二极承受的反向电压的最大值出现在二极管()。 A.截止时; B.由截止转导通时; C.导通时; D.由导通转截止时 15.燃料电池汽车的效率能达到以上()。 A. 30%; B. 40%; C. 50%; D. 60%。 系 别 : 专 业 班 别 : 姓 名 : 学 号 : … … … … … … ○ … … … 密 … … … ○ … … … … 封 … … ○ … … … … 线 … … ○ … … … … … … ○ … …

电动汽车用磷酸铁锂动力电池的制作及性能测试_英文_概要

ISSN 1674-8484CN 11-5904/U 汽车安全与节能学报, 2011年, 第2卷第1期J Automotive Safety and Energy, 2011, Vol. 2 No. 1Manufacture and Performance Tests of Lithium Iron Phosphate Batteries Used as Electric Vehicle Power ZHANG Guoqing, ZHANG Lei, RAO Zhonghao, LI Yong (Faculty of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China Abstract: Owing to the outstanding electrochemical performance, the LiFePO 4 power batteries could be used on electric vehicles and hybrid electric vehicles. A kind of LiFePO 4 power batteries, Cylindrical 26650, was manufactured from commercialized LiFePO 4, graphite and electrolyte. To get batteries with good high-current performance, the optimal content of conductive agent was studied and determined at 8% of mass fraction. The electrochemical properties of the batteries were investigated. The batteries had high discharging voltage platform and capacity even at high discharge current. When discharged at 30 C current, they could give out 91.1% of rated capacity. Moreover, they could be fast charged to 80% of rated capacity in ten minutes. The capacity retention rate after 2 000 cycles at 1 C current was 79.9%. Discharge tests at - 20 ℃ and 45 ℃ also showed impressive performance. The battery voltage, resistance and capaci ty varied little after vibration test. Through the safety tests of nail, no in ? ammation or explosion occurred. Key words: hybrid and electric vehicles; power batteries; lithium iron phosphate; lithium ion batteries; 电动汽车用磷酸铁锂动力电池的制作及性能测试 张国庆、张磊、饶忠浩、李雍

动力镍氢电池设计规范

动力镍氢电池设计规范 1、适用范围 本规范适用于常规应用的金属氢化物镍单体蓄电池的设计,包括结构设计、性能设计、成本设计和工艺设计等方面。 参考标准: QC/T744-2006 电动道路车辆用金属氢化物镍蓄电池 企业标准动力(功率)型密封金属氢化物镍蓄电池(草案) 2、单体电池设计准则 (1)必须满足用户要求或相关标准; (2)必须满足批量化生产要求; (3)必须满足生产设备及工艺要求; (4)在允许的尺寸、重量范围内进行结构和工艺设计,使其满足整机系统的用电要求; (5)在满足性能的前提下,尽量降低成本。 3、电池零部件的设计与选择 电池零部件包括单体电池应用的金属部件和非金属部件等。零部件的设计与选择除特殊要求外,应选择标准件或通用件。 3.1极柱的设计与选择 3.1.1极柱材料 冷拉圆钢11-35/45 极柱表面应镀镍,镀镍层厚度为30~50μm 3.1.2极柱结构 采用双叉式极柱,极耳与极柱的连接采用点焊式连接方式。极耳和叉的重合面积应占极柱叉一个表面的70%以上。极柱两叉之间的距离应根据极组厚度进行设计,使极耳焊接后最外侧极片和中间极片的极耳受力、弯曲等一致。 3.1.3极柱直径 针对不同的应用和电池,选用不同直径的极柱,使用过程中各极柱承受的电流按如下选择:(材料为铁)

容许电流的计算方法: IFe2=(C·ρ密度·S2·ΔT)/(ρ电阻率·t) C为材料比热,Fe为0.4501J/gK,Cu为0.378 J/gK; ρ密度为材料密度,Fe为7.874g/cm3,Cu为8.96 g/cm3; S为极柱截面积,单位mm; ΔT为要控制的温升(绝热条件),初步设定控制为50℃; ρ电阻为材料电阻率,Fe为0.0978Ωmm2/m,Cu为0.01637Ωmm2/m; t为电流持续时间,连续按3600s计算,间歇按30s计算,启动按10s计算。 3.1.4极柱高度 根据电池选用的另部件(如绝缘垫、螺母、电池盖、红蓝垫圈、大垫圈、螺母等)以及电池组合应用的连接部件(垫圈、跨接片、螺母等)来确定极柱高度,电池模块组合后极柱不得高出组合用螺母上端2mm。 3.2螺母的设计与选择 螺母选择GB6173与极柱相配套的标准件。 螺母表面应镀镍,镀镍层厚度为3~5μm(不锈钢螺母不镀镍) 3.3密封圈的设计与选择 材料:三元乙丙橡胶EP35 或E740-75 选用标准: a.125℃22h压缩永久变形小于20%; b.绝缘电阻500V大于2MΩ; c.120℃70h耐碱测试总重量变化小于±1%;

动力电池充放电效率测试方法及特性

电动汽车能量流研究需要考虑电池充放电效率的影响,然而目前针对不同充放电模式下的充放电效率研究并不充分,实验方法、测试系统与分析结果仍不具备普遍适用性。因此,本文提出了一种电动汽车充放电效率表征方法和试验方法,并搭建了测试台架系统;在此基础上,针对某款电动汽车动力电池,定量研究了不同充电模式、放电工况下充放电效率的变化规律,从而为整车能量流研究提供了一种有效的动力电池充放电效率测试方法,接下来就为大家详细的讲解一下希望对大家有所帮助。 1 动力电池及其充放电效率 动力电池是电动汽车的能量来源,锂离子电池以其高能量密度和功率密度、长循环寿命、低自放电率等优势,成为电动汽车的首选动力电池;其中,磷酸铁锂电池(LiFePO4)和三元锂离子电池(NCA、NMC)等具有更高的安全性能,因此广泛应用于电动汽车领域。图1 所示为锂离子电池的基本结构与工作原理示意图,其充放电过程是通过Li+在正负极柱之间嵌入和脱出实现的。 2 实验平台和测试方法 实验平台结构包含试验箱、电池模拟器、12V 开关电源、冷却循环水机、上位机等试验仪器及设备。其中,动力电池系统在实验过程中放置于试验箱内,由高压线连接至电池模拟器,通过控制电池模拟器的功率及电流方向,实现动力电

池不同模式下的充放电;同时电池充放电数据通过CAN 总线进行通讯,并上传至上位机系统。实验过程中,电池模拟器及电池管理系统BMS 实时检测动力电池组总电压、单体电压、电池组温度等参数并设置保护措施,从而保证实验过程电池处于安全工作状态。 3 实验及结果分析 实验用动力电池系统采用三元电芯作为单体电池,整体模块标称能量为46kwh。充放电过程中,设置系统总电压、单体电压、温度等参数的安全范围;一旦检测到参数超出上下限安全阈值,将电池模拟器输出电流设置为0,并切断电池模拟器与动力电池系统的连接。 实验过程中,分别采用2.6kw 慢充、6.6kw 定功率充电、快充、1/3C 标准充电(15.3kw)以及1C 充电(46kw)对电池包进行充电,并通过变功率、45kw、6.5kw 、14.9kw 以及28.4kw 等效模拟车辆NEDC 工况、1C 放电、60km/h 等速、90km/h 等速、120km/h 等5 种驾驶工况。 杭州固恒能源科技有限公司从事于新能源汽车后市场领域,专注于动力电池的应用以及循环利用等方面的研发、生产、销售,并提供全套检测维护解决方案的高新技术企业。产品涉及动力电池检测与维护、数据监测与存储、电池模组级单体电池的高效分选以及成组、储能管理系统等设备领域,客户遍及国内各动力电池厂家,新能源汽车厂家、梯次利用回收企业以及储能应用等企业。

动力电池设计规范

议的各方研究是否可使用这些文件的最新版本。 次设计开发。 凡是不注日期的文件, 其最新版本适用于本 GB/T 18384.1-2001 GB/T 18384.2-2001 GB/T 18384.3-2001 GB/T 18385 -2005 电动汽车安全要求 电动汽车安全要求 电动汽车安全要求 电动汽车动力性能 第 1 部分:车载储能装置 第 2 部分:功能安全和故障保护 第 3 部分:人员触电 试验方法 GB/T 18386 -2005 电动汽车能量消耗率和续驶里程 试验方法 GB/T 18388 -2005 GB/T 18487.1-2001 GB/T 18487.2-2001 GB/T 18487.3-2001 电动汽车定型试验规程 电动车辆传导充电系统 电动车辆传导充电系统 电动车辆传导充电系统 一般要求 电动车辆与交流 / 直流电源的连接要求 电动车辆与交流 /直流充电机 (站) GB/T 17619-1998 机动车电子电器组件的电磁辐射抗扰性限值和测量方法 GB/T 18387-2008 电动车辆的电磁场辐射强度的限值和测量方法 带宽9KHz ?30MHz 1 综述 电动车的的电池就好比汽车油箱里的汽油。 它是由小块单元电池通过串并联方式级联后, 通过BMS 勺管理,将电能传递到高压配电盒,然后分配给驱动电机和各个高压模块 (DC/DC 、 空调压缩机、PTC 等)。电池管理系统(BMS )采用的是一个主控制器 (BMU )和多个下一级电池 采集模块 (LECU )组成模块化动力电池管理系统, 是一种具有有效节省电池电能、 提高车辆安 全性、实现充放电均衡和降低运行成本功能的电池管理系统模式。 高压控制系统的预充电及正负极高压继电器均由 BMS 控制,设置了充电控制继电器, 增 加高压充电时的安全性 。 2 设计标准 F 列文件为本次 MAOO-ME1O0设计整改参考标准。凡是注日期的文件,其随后所有的修 改单(不包括勘误的内容 )或修订版均不适用于本次设计开发, 然而,鼓励根据本文件达成协 QC/T 743-2006 电动汽车用锂离子蓄电池 QC/T 413-2002 汽车电气设备基本技术条件 ISO 11898-1-2003 道路车辆 控制面网络 (CAN ) 第 1 部分:数据链接层和物理信号 ISO 11898-2-2003 道路车辆 控制器局域网 (CAN ) 第 2部分:高速媒体访问单元 ISO7637-2 道路车辆由传导和耦合引起的电骚扰(电源线瞬态传到干扰抗绕性试验) ISO11452-2 道路车辆窄带辐射的电磁能量产生的电干扰的部件试验方法 (吸波屏蔽外 壳) 3 动力电池的标准 动力电池设计方案

动力电池重要全参数定义及测量计算方法

动力电池重要参数定义及测量计算方法 1.概述 本文档的编写主要是为了方便公司内部研发人员更加快速清楚地认识电池的一些重要特性参数及其测量计算方法。主要包括动力电池的荷电状态SOC,电池健康状态SOH,内阻R等。 此文档主要参考了动力电池的国家标准与行业标准,以及网上的一些权威资料信息,同时结合自身工作经验整合编写而成。 2.电池荷电状态SOC及估算方法 2.1 电池荷电状态SOC的定义 电池的荷电状态SOC被用来反映电池的剩余电量情况,其定义为当前可用容量占初始容量的百分比(国标)。 美国先进电池联合会(USABC)的《电动汽车电池实验手册》中将SOC定义如下:在指定的放电倍率下,电池剩余电量与等同条件下额定容量的比值。 SOC=Q O/Q N 日本本田公司的电动汽车(EV Plus)定义SOC如下: SOC = 剩余容量/(额定容量-容量衰减因子) 其中剩余容量=额定容量-净放电量-自放电量-温度补偿 动力电池的剩余电量是影响电动汽车的续驶里程和行驶性能的主要因素,准确的SOC估算可以提高电池的能量效率,延长电池的使用寿命,从而保证电动汽车更好的行驶,同时SOC也是作为电池充放

电控制和电池均衡的重要依据。 实际应用中,我们需要根据电池的可测量值如电压电流结合电池内外界影响因素(温度、寿命等)来实现电池SOC的估算算法。但是SOC受自身内部工作环境和外界多方面因素而呈非线性特性,所以要实现良好的SOC估算算法必须克服这些问题。目前,国内外在电池SOC估算上已经部分实现并运用到工程上,如安时法、内阻法、开路电压法等。这些算法共同特点是易于实现,但是对实际工况中的内外界影响因素缺乏考虑而导致适应性差,难以满足BMS对估算精度不断提高的要求。所以在考虑SOC受到多种因素影响后,一些较为复杂的算法被提出,例如:卡尔曼滤波算法、神经网络算法、模糊估计算法等新型算法,相比于之前的传统算法其计算量大,但精度更高,其中卡尔曼滤波在计算精度和适应性上都有很好的表现。 2.2几种SOC估算算法简介 (1)安时法 安时法又被称为电流积分法,也是计算电池SOC的基础。假设当前电池SOC初始值为SOC0,在经过t时间的充电或放电后SOC为: Q0是电池的额定容量,i(t)是电池充放电电流(放电为正)。 事实上,SOC定义为电池的荷电状态,而电池荷电状态就是电池电流的积分,所以理论上讲安时法是最准确的。同时,它也易于实现,只需测量电池充放电电流和时间,而在实际工程应用时,采用离散化计算公式如下:

动力电池管理系统(BMS)的核心技术【深度解析】

动力电池管理系统(BMS)的核心技术 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 什么是BMS的核心技术? BMS系统通常包括检测模块与运算控制模块。 检测是指测量电芯的电压、电流和温度以及电池组的电压,然后将这些信号传给运算模块进行处理发出指令。所以运算控制模块是BMS的大脑。控制模块一般包括硬件、基础软件、运行时环境(RTE)和应用软件。其中最核心的部分——应用软件。对于用Simulink 开发的环境的一般分为两部分:电池状态的估算算法和故障诊断以及保护。

状态估算包括SOC(State Of Charge)、SOP(State Of Power)、SOH(Stateof Health)以及均衡和热管理。 电池状态估算通常是估算SOC、SOP和SOH。SOC (荷电状态)简单的说就是电池还剩下多少电;SOC 是BMS中最重要的参数,因为其他一切都是以SOC为基础的,所以它的精度和鲁棒性(也叫纠错能力)极其重要。如果没有精确的SOC,加再多的保护功能也无法使BMS正常工作,因为电池会经常处于被保护状态,更无法延长电池的寿命。此外,SOC的估算精度也是十分重要的。精度越高,对于相同容量的电池,可以有更高的续航里程。所以,高精度的SOC估算可以有效地降低所需要的电池成本。比如克莱斯勒的菲亚特500e BEV,可以一直放电SOC=5%。成为当时续航里程最长的电动车。下图是一个算法鲁棒性的例子。电池是磷酸铁锂电池。它的SOCvs OCV曲线在SOC从70%到95%区间大约只变化2-3mV。而电压传感器的测量误差就有3-4mV。在这种情况下,我们有意让初始SOC有20%的误差,看看算法能不能够把这20%的误差纠正过来。如果没有纠错功能,SOC会按照SOCI的曲线走。算法输出的SOC是CombinedSOC也即是图中的蓝色实线。CalculatedSOC是根据最后的验证结果反推回去的真正SOC。 SOP是下一时刻比如下一个2秒、10秒、30秒以及持续的大电流的时候电池能够提供的最大的放电和被充电的功率。当然,这里面还应该考虑到持续的大电流对保险丝的影响。 SOP的精确估算可以最大限度地提高电池的利用效率。比如在刹车时可以尽量多的吸收回馈的能量而不伤害电池。在加速时可以提供更大的功率获得更大的加速度而不伤害电池。同时也可以保证车在行驶过程中不会因为欠压或者过流保护而失去动力即使

动力蓄电池及管理系统

第二章 02 动力蓄电池及管理系统

一、动力电池主要性能指标 1.电压 (1)端电压。 (2)标称电压。 (3)开路电压。 (4)工作电压。 (5)充电终止电压。 (6)放电终止电压。

一、动力电池主要性能指标 2.容量 (1)额定容量。 (2)n小时率容量。 (3)理论容量。 (4)实际容量。 (5)荷电状态。 3.内阻 电池的内阻是指电流流过电池内部时所受到的阻力,一般是蓄电池中电解质、正负极群、隔板等电阻的总和。电池内阻越大,电池自身消耗掉的能量越多,电池的使用效率越低。

一、动力电池主要性能指标 4.能量 (1)总能量。 (2)理论能量。 (3)实际能量。 (4)比能量。 (5)能量密度。 (6)充电能量。 5.功率 (1)比功率 (2)功率密度

一、动力电池主要性能指标 6.输出效率 (1)容量效率。 (2)能量效率。 7.自放电率 自放电率是指电池在存放期间容量的下降率,即电池无负荷时自身放电使容量损失的速度,它表示蓄电池搁置后容量变化的特性。 8.放电倍率 电池放电电流的大小常用“放电倍率”表示,即电池的放电倍率用放电时间表示或者说以一定的放电电流放完额定容量所需的小时数来表示,由此可见,放电时间越短,即放电倍率越高,则放电电流越大。

9.使用寿命 一、动力电池主要性能指标 电池类型质量能量密度 (W·h/kg)质量功率密度 (W/kg) 能量效率 (%) 循环寿命 (次) 铅酸电池35~50150~40080500~1000镍镉电池30~50100~150751000~2000镍氢电池60~80200~400701000~1500锂离子电池100~200200~350>901500~3000

相关文档
最新文档