实验六-用谐振腔微扰法测量介电常数

实验六-用谐振腔微扰法测量介电常数
实验六-用谐振腔微扰法测量介电常数

实验六-用谐振腔微扰法测量介电常数

北京邮电大学电磁场与微波测量实验报告

学院:电子工程学院

班级:

组员:

报告撰写人:

学号:

实验六用谐振腔微扰法测量介电常数

微波技术中广泛使用各种微波材料,其中包括电介质和铁氧体材料。微波介 质材料

的介电特性的测量,对于研究材料的微波特性和制作微波器件,获得材 料的结构信息以

促进新材料的研制,以及促进现代尖端技术 (吸收材料和微波遥 感)等都有重要意义。

一、 实验目的

1. 了解谐振腔的基本知识。

2. 学习用谐振腔法测量介质特性的原理和方法

二、 实验原理

本实验是采用反射式矩形谐振腔来测量微波介质特性的。 反射式谐振腔是把

一段标准矩形波导管的一端加上带有耦合孔的金属板,另一端加上封闭的金属 板,构成谐振腔,具有储能、选频等特性。

谐振条件:谐振腔发生谐振时,腔长必须是半个波导波长的整数倍,此时, 电磁波

在腔内连续反射,产生驻波。

谐振腔的有载品质因数 QL 由下式确定:

式中:fO 为腔的谐振频率,fl ,f2分别为半功率点频率。谐振腔的 高,谐振曲线越

窄,因此 Q 值的高低除了表示谐振腔效率的高低之外,还表示 频率选择性的好坏。 极化的过程中产生能量损失,因此,谐振腔的谐振频率和品质因数将会变化

Q L _fo_

厂f 2

图1反射式谐振腔谐振曲线图2微找法TEIOn模式矩形腔示意图

电介质在交变电场下,其介电常数&为复数,&和介电损耗正切tan S可由下列关系式表示:

tan ——

j, ,

其中:£,和£,,分别表示&的实部和虚部。

选择TEIOn (n为奇数)的谐振腔,将样品置于谐振腔内微波电场最强而磁场最弱处,

即x =a/ 2, z= I / 2处,且样品棒的轴向与y轴平行,如图2所示。

假设:

1. 样品棒的横向尺寸d(圆形的直径或正方形的边长)与棒长九相比小得多(一般

d/h<1/10), y方向的退磁场可以忽略。

2. 介质棒样品体积Vs远小于谐振腔体积V0,则可以认为除样品所在处的电磁场发生变化外,其余部分的电磁场保持不变,因此可以把样品看成一个微

扰,则样品中的电场与外电场相等。

这样根据谐振腔的微扰理论可得下列关系式

V o

丄4 V S

Q L V O

式中:fO,fs 分别为谐振腔放人样品前后的谐振频率,△

(1 /QL)为样品放 人前后谐振腔的有载品质因数的倒数的变化,即

QLO QLS 分别为放人样品前后的谐振腔有载品质因数。

三、实验装置

1. 微波信号源需工作在最佳等幅、扫描状态。

2. 晶体检波器接头最好是满足平方律检波的,这时检波电流表示相对功率 (I

X P)。

3. 检波指示器用来测量反射式谐振腔的输出功率,量程 0?100卩A 。

4. 微波的频率用波长表测量刻度,通过查表确定微波信号的频率。

5. 用晶体检波器测量微波信号时,为获得最高的检波效率,它都装有一可调短 路活

塞,调节其位置,可使检波管处于微波的波腹。改变微波频率时,也 应改变晶体检波器短路活塞位置,使检波管一直处于微波波腹的位置。

图17试验

1 —微波信号源

2 —隔离器

3 —衰减器4—波长表5 —测量线6 —测量线晶 体 7—选频放大器 8 —环形器9 —反射式谐振腔10 —隔离器11 —晶体检波 器

四、 实验内容

1. 按图接好各部件。注意:反射式谐振腔前必须加上带耦合孔的耦合片,

1

Q L i

Q LS 1 Q LO

接入隔离器及环形器时要注意其方向。

2. 开启微波信号源,选择“等幅”方式,预热30分钟。

3. 测量谐振腔的长度,根据公式计算它的谐振频率,一定要保证n为奇数

4?将检波晶体的输出接到电流表上,用电流表测量微波的大小,在计算的谐振频率附近微调微波频率,使谐振腔共振,用直读频率计测量共振频率。

5. 测量空腔的有载品质因数,注意:fl ,f2与fO的差别很小,约

0. 003GHz

6. 加载样品,重新寻找其谐振频率,测量其品质因数。

7. 测量介质棒及谐振腔的体积。

8. 计算介质棒的介电常数和介电损耗角正切。

五、实验数据(介质棒颜色为白色)

由样品谐振腔的长66mm宽22.86mm,高10.16mm可得

V0 =15329.000立方毫米

由样品半径0.7mm,高10.16mm可得

Vs=15.632立方毫米

由样品谐振频率以及半功率点频率可以计算出样品谐振腔的品质因

数(f0 =9257.0MHz f1 =9250.0MHz f2 =9266.0MHz )

Q_。L f\ = 587.6

f 1 f 2

样品插入后,由谐振频率以及半功率点频率可以计算出样品放入后的

品质因数(fs =9243.0MHz f1 =9236.0MHz f2 =9246.0MHz )

Q s f f s f=924.3

f 1 f 2

联立实验原理中的各式可求得介质棒的介电常数与介电损耗角正切。

j = 2.483+0.152j tan0.0612

六、思考题

1. 如何判断谐振腔是否谐振?

答:谐振腔发生谐振时,腔长必须是半个波导波长的整数倍,此时电磁波在腔内连续反射,产生驻波,可以用示波器观察出谐振时的驻波。若有,则发生了谐振。

2. 本实验中,谐振腔谐振时,为什么“必须是奇数”?

答:因为谐振腔发生谐振时,腔长必须是半个波导波长的整数倍,此时,电磁波才能在腔内连续反射,产生驻波。n是半个波导波长的倍数,n是奇数时才满足条件。

3. 若用传输式谐振腔如何测量介质的介电常数,可否画出实验装置。

答:实验装置:

卜隔离器q 隔會器」波长表?一可变袁减器屮——?精密衰诚霽一」专输式谐振腔

七、实验总结

本次实验操作并不容易,但是在之前小组的调试下,我们调试的很快很快就在示波器上显示了相应的波形,在实验的过程中,我们了解了关于谐振腔的相关的知识,由

于之前有过关于它的课程,让我们实验中上手很快,另外,我们也学习到了用谐振腔法测量介质特性的原理和方法,在有了相关理论的基础上进行了实践,让我们受益匪浅。

在实验的过程中,我们组员相互配合,很好的做到了分工明确,认真仔细,所以实验做得很快,在示波器显示的波形也相当的完美,插入介质之后的效果也相当的明显,在以后的实验中,我们要把良好的实验习惯延续下去,认真仔细,不忽略每一个细节,这样我们的实验效果会很明显,实验的效率也很高。

电介质的电学性能及测试方法

电介质材料的电性包括介电性、压电性、铁电性和热释电性等。 1介电性、 介质在外加电场时会产生感应电荷而削弱电场,介质中电场与原外加电场(真空中) 的比值即为相对介电常数,又称诱电率,与频率相关。介电常数是相对介电常数与真空中绝对介电常数乘积。 介电常数又称电容率或相对电容率,表征电介质或绝缘材料电性能的一个重要数据,常用ε表示。它是指在同一电容器中用同一物质为电介质和真空时的电容的比值,表示电介质在电场中贮存静电能的相对能力。对介电常数越小即某介质下的电容率越小,应该更不绝缘。来个极限假设,假设该介质为导体,此时电容就联通了,也就没有电容,电容率最小。介电常数是物质相对于真空来说增加电容器电容能力的度量。介电常数随分子偶极矩和可极化性的增大而增大。在化学中,介电常数是溶剂的一个重要性质,它表征溶剂对溶质分子溶剂化以及隔开离子的能力。介电常数大的溶剂,有较大隔开离子的能力,同时也具有较强的溶剂化能力。 科标检测介电常数检测标准如下: GB11297.11-1989热释电材料介电常数的测试方法 GB11310-1989压电陶瓷材料性能测试方法相对自由介电常数温度特性的测试 GB/T12636-1990微波介质基片复介电常数带状线测试方法 GB/T1693-2007硫化橡胶介电常数和介质损耗角正切值的测定方法 GB/T2951.51-2008电缆和光缆绝缘和护套材料通用试验方法第51部分:填充膏专用 试验方法滴点油分离低温脆性总酸值腐蚀性23℃时的介电常数23℃和100℃时的直 流电阻率 GB/T5597-1999固体电介质微波复介电常数的测试方法 GB/T7265.1-1987固体电介质微波复介电常数的测试方法微扰法 GB7265.2-1987固体电介质微波复介电常数的测试方法“开式腔”法 SJ/T10142-1991电介质材料微波复介电常数测试方法同轴线终端开路法 SJ/T10143-1991固体电介质微波复介电常数测试方法重入腔法 SJ/T11043-1996电子玻璃高频介质损耗和介电常数的测试方法 SJ/T1147-1993电容器用有机薄膜介质损耗角正切值和介电常数试验方法 SJ20512-1995微波大损耗固体材料复介电常数和复磁导率测试方法 SY/T6528-2002岩样介电常数测量方法 服务范围:老化测试、物理性能、电气性能、可靠性测试、阻燃检测等 介电性能 介电材料(又称电介质)是一类具有电极化能力的功能材料,它是以正负 电荷重心不重合的电极化方式来传递和储存电的作用。极化指在外加电场作用下,构成电介质材料的内部微观粒子,如原子,离子和分子这些微观粒子的正负电荷中心发生分离,并沿着外部电场的方向在一定的范围内做短距离移动,从而形成偶极子的过程。极化现象和频率密切相关,在特定的的频率范围主要有四种极化机制:电子极化(electronic polarization,1015Hz),离子极化(ionic polarization,1012~1013Hz),转向极化(orientation polarization,1011~1012Hz)和 空间电荷极化(space charge polarization,103Hz)。这些极化的基本形式又分为位 移极化和松弛极化,位移极化是弹性的,不需要消耗时间,也无能量消耗,如电子位移极化和离子位移极化。而松弛极化与质点的热运动密切相关,极化的建立

传感器实验报告 (2)

传感器实验报告(二) 自动化1204班蔡华轩 U201113712 吴昊 U201214545 实验七: 一、实验目的:了解电容式传感器结构及其特点。 二、基本原理:利用平板电容C=εA/d 和其它结构的关系式通过相应的结 构和测量电路可以选择ε、A、d 中三个参数中,保持二个参数不变,而 只改变其中一个参数,则可以有测谷物干燥度(ε变)测微小位移(变d)和测量液位(变A)等多种电容传感器。 三、需用器件与单元:电容传感器、电容传感器实验模板、测微头、相敏 检波、滤波模板、数显单元、直流稳压源。 四、实验步骤: 1、按图6-4 安装示意图将电容传感器装于电容传感器实验模板上。 2、将电容传感器连线插入电容传感器实验模板,实验线路见图7-1。图 7-1 电容传感器位移实验接线图 3、将电容传感器实验模板的输出端V01 与数显表单元Vi 相接(插入主控 箱Vi 孔),Rw 调节到中间位置。 4、接入±15V 电源,旋动测微头推进电容传感器动极板位置,每间隔0.2mm 图(7-1) 五、思考题: 试设计利用ε的变化测谷物湿度的传感器原理及结构,并叙述一 下在此设计中应考虑哪些因素? 答:原理:通过湿度对介电常数的影响从而影响电容的大小通过电压表现出来,建立起电压变化与湿度的关系从而起到湿度传感器的作用;结构:与电容传感器的结构答大体相同不同之处在于电容面板的面积应适当增大使测量灵敏度更好;设计时应考虑的因素还应包括测量误差,温度对测量的影响等

六:实验数据处理 由excle处理后得图线可知:系统灵敏度S=58.179 非线性误差δf=21.053/353=6.1% 实验八直流激励时霍尔式传感器位移特性实验 一、实验目的:了解霍尔式传感器原理与应用。 二、基本原理:霍尔式传感器是一种磁敏传感器,基于霍尔效应原理工作。 它将被测量的磁场变化(或以磁场为媒体)转换成电动势输出。 根据霍尔效应,霍尔电势UH=KHIB,当霍尔元件处在梯度磁场中 运动时,它就可以进行位移测量。图8-1 霍尔效应原理 三、需用器件与单元:霍尔传感器实验模板、霍尔传感器、直流源±4V、± 15V、测微头、数显单元。 四、实验步骤: 1、将霍尔传感器按图8-2 安装。霍尔传感器与实验模板的连接 按图8-3 进行。1、3 为电源±4V,2、4 为输出。图8-2 霍尔 传感器安装示意图 2、开启电源,调节测微头使霍尔片在磁钢中间位置再调节RW2 使数显表指示为零。

介电常数的测量

《大学物理》实验报告 学院: 专业: 姓名: 学号: 实验题目:介电常数的测量 实验目的:1.掌握固体、液体电介质相对介电常数的测量原理及方法 2.学习减小系统误差的实验方法 3.学习用线性回归处理数据的方法。 实验原理:用两块平行放置的金属电极构成一个平行板电容器,其电容量为: D S C ε= D 为极板间距,S 为极板面积,ε即为介电常数。材料不同ε也不同。在真空中的介电常数为 0ε,m F /1085.8120-?=ε。 考察一种电介质的介电常数,通常是看相对介电常数,即与真空介电常数相比的比值r ε。 如能测出平行板电容器在真空里的电容量C 1及充满介质时的电容量C 2,则介质的相对介电常数即为 1 2 r C C ε= 然而C 1、C 2的值很小,此时电极的边界效应、测量用的引线等引起的分布电容已不可忽略,这些因素将会引起很大的误差,该误差属系统误差。本实验用电桥法和频率法分别测出固体和液体的相对介电常数,并消除实验中的系统误差。 1. 用电桥法测量固体电介质相对介电常数 将平行板电容器与数字式交流电桥相连接,测出空气中的电容C 1和放入固体电介质后的电容C 2。 1101C C C C 分边++= 222C C C C 分边串++= 其中C 0是电极间以空气为介质、样品的面积为S 而计算出的电容量: D S C 00ε= C 边为样品面积以外电极间的电容量和边界电容之和,C 分为测量引线及测量系统等引起的分

布电容之和,放入样品时,样品没有充满电极之间,样品面积比极板面积小,厚度也比极板的间距小,因此由样品面积内介质层和空气层组成串联电容而成C 串,根据电容串联公式有: (D-t) εt S εεt S εεt D S εt S ε εD-t S εC r r r r +=+-? =0 0000串 当两次测量中电极间距D 为一定值,系统状态保持不变,则有21C C 边边=、21C C 分分=。 得:012C C C C +-=串 最终得固体介质相对介电常数:t) (D C S εt C ε r --?= 串0串 该结果中不再包含分布电容和边缘电容,也就是说运用该实验方法消除了由分布电容和边缘效应引入的系统误差。 2. 线性回归法测真空介电常数0ε 上述测量装置在不考虑边界效应的情况下,系统的总电容为:分0 0C D S εC += 保持系统分布电容不变,改变电容器的极板间距D ,不同的D 值,对应测出两极板间充满空气时的电容量C 。与线性函数的标准式BX A Y +=对比可得:C Y =,分C A =, 00S B ε=,D 1 X = ,其中S 0为平行板电容极板面积。用最小二乘法进行线性回归,求得分布电容C 分和真空介电常数0ε(空εε≈0)。 3.用频率法测定液体电介质的相对介电常数 所用电极是两个容量不相等并组合在一起的空气电容,电极在空气中的电容量分别为C 01和C 02,通过一个开关与测试仪相连,可分别接入电路中。测试仪中的电感L 与电极电容和分布电容等构成LC 振荡回路。振荡频率为: LC 2π1 f =,或 22 2 241f k Lf C ==π 其中分C C C 0+=。测试仪中电感L 一定,即式中k 为常数,则频率仅随电容C 的变 化而变化。当电极在空气中时接入电容C 01,相应的振荡频率为f 01 ,得:2012 01f k C C =+分, 接入电容C 02,相应的振荡频率为f 02 ,得:202 2 02f k C C =+分

介电常数测试仪的设计与制作实验报告

实验题目: 简易介电常数测试仪的设计与制作 实验目的: 了解多种测量介电常数的方法及其特点和适用范围,掌握替代法, 比较法和谐振法测固体电介质介电常数的原理和方法,用自己设计与制作的介电常数测试仪,测量压电陶瓷的介电常数。 实验原理: 介电体(又称电介质)最基本的物理性质是它的介电性,对介电性的研究不但在电介质材料的应用上具有重要意义,而且也是了解电介质的分子结构和激化机理的重要分析手段之一,探索高介电常数的电介质材料,对电子工业元器件的小型化有着重要的意义。介电常数(又称电容率)是反映材料特性的重要参量,电介质极化能力越强,其介电常数就越大。测量介电常数的方法很多,常用的有比较法,替代法,电桥法,谐振法,Q 表法,直流测量法和微波测量法等。各种方法各有特点和适用范围,因而要根据材料的性能,样品的形状和尺寸大小及所需测量的频率范围等选择适当的测量方法。 介质材料的介电常数一般采用相对介电常数r ε来表示,通常采用测量样品的电容量,经过计算求出r ε,它们满足如下关系: S Cd r 00εεεε== 式中ε为绝对介电常数,0ε为真空介电常数,m F /10 85.812 0-?=ε,S 为 样品的有效面积,d 为样品的厚度,C 为被测样品的电容量,通常取频率为kHz 1时的电容量C 。 一、替代法 替代法电路图如下所示,将待测电容X C (图中X R 是待测电容的介电损耗电

阻),限流电阻0R (取Ωk 1)、安培计与信号源组成一简单串联电路。合上开关1K ,调节信号源的频率和电压及限流电阻0R ,使安培计的读数在毫安范围恒定(并保持仪器最高的有效位数),记录读数X I 。将开关2K 打到B 点,让标准电容箱S C 和交流电阻箱S R 替代X C ,调节S C 和S R 值,使S I 接近X I 。多次变换开关2K 的位置(A , B 位),反复调节S C 和S R ,使X S I I =。假定X C 上的介电损耗电阻X R 与标准电容箱的介电损耗电阻S R 相接近(S X R R ≈),则有S X C C =。 二、比较法 比较法的电路图如下所示,假定S C 上的S R 与X R 接近(S X R R ≈),则测量X C 和S C 上的电压比 X S V V 即可求得X C : X S S X V V C C ?=(此时X V 可以不等于S V ) 三、谐振法

材料的介电常数和磁导率的测量

无机材料的介电常数及磁导率的测定 一、实验目的 1. 掌握无机材料介电常数及磁导率的测试原理及测试方法。 2. 学会使用Agilent4991A 射频阻抗分析仪的各种功能及操作方法。 3. 分析影响介电常数和磁导率的的因素。 二、实验原理 1.介电性能 介电材料(又称电介质)是一类具有电极化能力的功能材料,它是以正负电荷重心不重合的电极化方式来传递和储存电的作用。极化指在外加电场作用下,构成电介质材料的内部微观粒子,如原子,离子和分子这些微观粒子的正负电荷中心发生分离,并沿着外部电场的方向在一定的范围内做短距离移动,从而形成偶极子的过程。极化现象和频率密切相关,在特定的的频率范围主要有四种极化机制:电子极化 (electronic polarization ,1015Hz),离子极化 (ionic polarization ,1012~1013Hz),转向极化 (orientation polarization ,1011~1012Hz)和空间电荷极化 (space charge polarization ,103Hz)。这些极化的基本形式又分为位移极化和松弛极化,位移极化是弹性的,不需要消耗时间,也无能量消耗,如电子位移极化和离子位移极化。而松弛极化与质点的热运动密切相关,极化的建立需要消耗一定的时间,也通常伴随有能量的消耗,如电子松弛极化和离子松弛极化。 相对介电常数(ε),简称为介电常数,是表征电介质材料介电性能的最重要的基本参数,它反映了电介质材料在电场作用下的极化程度。ε的数值等于以该材料为介质所作的电容器的电容量与以真空为介质所作的同样形状的电容器的电容量之比值。表达式如下: A Cd C C ?==001εε (1) 式中C 为含有电介质材料的电容器的电容量;C 0为相同情况下真空电容器的电容量;A 为电极极板面积;d 为电极间距离;ε0为真空介电常数,等于8.85×10-12 F/m 。 另外一个表征材料的介电性能的重要参数是介电损耗,一般用损耗角的正切(tanδ)表示。它是指材料在电场作用下,由于介质电导和介质极化的滞后效应

介电常数的测定 (4)

介电常数的测定 0419 PB04204051 刘畅畅 实验目的 了解多种测量介电常数的方法及其特点和适用范围,掌握替代法,比较法和谐振法测固体电介质介电常数的原理和方法,用自己设计与制作的介电常数测试仪,测量压电陶瓷的介电常数。 数据处理与分析 (一)原理:介质材料的介电常数一般采用相对介电常数r ε来表示,通常采用测量样品的电容量,经过计算求出r ε,它们满足如下关系: 00r Cd S εεεε= = 式中ε为绝对介电常数,0ε为真空介电常数,12 08.8510/F m ε-=?,S 为样品的有效面积,d 为样品的厚度,C 为被测样品的电容量,通常取频率为1kHz 时的电容量C 。 (二)实验过程及数据处理 压电陶瓷尺寸: 直径: 0.9524.7840.063D mm v mm == 厚度: 0.950.2720.043H mm v mm == 一.根据所给仪器、元件和用具,采用替代法设计一台简易的介电常数测试仪,测量压电陶瓷的介电常数r ε。 在实验中采用预习报告中的图()a 连接电路,该电路为待测电容Cx 、限流电阻0R 、安培计与信号源组成的简单串联电路。接入Cx ,调节信号源频率和电压及限流电阻0R ,使安培计读数在毫安范围内恒定(并保持仪器最高的有效位数),记下Ix 。再换接入Cs ,调节Cs 与Rs ,使Is 接近Ix 。若Cx 上的介电损耗电阻Rx 与标准电容箱的介电损耗电阻Rs 相接近,即Rx Rs ≈,则Cx Cs =。 测得的数据如下: 输出频率 1.0002~1.0003kHz 输出电压 20V

Ix=1.5860mA Is=1.5872mA Cs=0.0367F R=1000μΩ Is Ix ≈。此时Rx Rs ≈,有Cx Cs ≈。所以Cx = Cs = 0.0367 F μ。 63 212 2 2 30012 00.0367100.272102339.264024.784108.8510 3.1422r Cd CH C N m S D εεεεεπ------???=== = =?????????? ? ? ?? ?? 二.用比较法设计一台简易的介电常数测试仪,测量压电陶瓷的介电常数r ε。 在Rx Rs ≈的条件下,测量Cx 与Cs 上的电压比Vs Vx 即可求得Cx : Vs Cx Cs Vx =? (Vs 可以不等于Vx ) 测得的数据如下: 输出频率 1.0003~1.0004kHz 输出电压 20V Vx = 3.527V Vs = 3.531V Cs = 0.0367F R = 1000μΩ Rx Rs ≈。Cx 与Cs 上的电压比 3.5270.9988673.531 Vs Vx == 683.527 0.036710 3.6658103.531 Vs Cx Cs F Vx --∴=?=??=? 83 212 2 2 30012 0 3.6658100.272102336.586924.784108.8510 3.1422r Cd CH C N m S D εεεεεπ------???=== = =?????? ???? ? ? ?? ?? 三.用谐振法设计一台简易的介电常数测试仪,测量压电陶瓷的介电常数r ε。 由已知电感L (取1H ),电阻R (取1k Ω)和待测电容Cx 组成振荡电路,改变信号源频率使RLC 回路谐振,伏特计上指示最大,则电容可由下式求出: 22 14Cx f L π= 式中f 为频率,L 为已知电感,Cx 为待测电容。

大学物理实验-介电常数的测量

大学物理实验-介电常数的测量

介电常数的测定实验报告 数学系 周海明 PB05001015 2006-11-16 实验题目:介电常数的测定 实验目的:了解多种测量介电常数的方法及其特点和适用范围,掌握替代法,比较 法和谐振法测固体电介质介电常数的原理和方法,用自己设计与制作的介电常数测试仪,测量压电陶瓷的介电常数。 实验原理:介质材料的介电常数一般采用相对介电常数r ε来表示,通常采用测量样 品的电容量,经过计算求出r ε,它们满足如下关系:S Cd r 00εεεε== (1)。式中ε为绝对介电常数,0ε为真空介电常数,m F /10 85.812 0-?=ε,S 为样 品的有效面积,d 为样品的厚度,C 为被测样品的电容量,通常取频率为1kHz 时的电容量C 。 一、替代法 替代法参考电路如图1所示,将待测电容C x (图中R x 是待测电容的介电损耗电阻),限流电阻R 0(取1k Ω)、安培计与信号源组成一简单串联电路。合上开关K 1,调节信号源的频率和电压及限流电阻R 0,使安培计的读数在毫安范围恒定(并保持仪器最高的有效位数),记录读数I x 。将开关K 2打到B 点,让标准电容箱C s 和交流电阻箱R s 替代C x 调节C s 和R s 值,使I s 接近I x 。多次变换开关K 2的位置(A,B 位),反复调节C s 和R s ,使X S I I =。假定C x 上的介电损耗电阻R x 与标准电容箱的介电损耗电阻R s 相接近(s x R R ≈),则有

s x C C =。 另一种参考电路如图2所示,将标准电容箱C s 调到极小值,双刀双掷开关K 2扳到AA ’,测量C x 上的电压V x 值;再将K 2扳到BB ’,调节C s 让C s 上的电压V S 接近V x 。将开关K 2来回扳到AA ’和BB ’位,不断调节C s 和R s 值,使伏特计上的读数不变,即X S V V =,若s x R R ≈,则有 s x C C =。 二、比较法 当待测的电容量较小时,用替代法测量,标准可变电容箱的有效位数损失太大,可采用比较法。此时电路引入的参量少,测量精度与标准电容箱的精度密切相关,考虑到C s 和R s 均是十进制旋钮调节,故无法真正调到 X S V V =,所以用比较法只能部分修正电压差带来的误 差。比较法的参考电路如图3所示,假定C s 上的R x 与R s 接近(s x R R ≈),则测量C x 和C s 上的电压比V s /V x 即可求得C x :X S s x V V C C /?=。 三、谐振法 谐振法测量电容的原理图见图4,由已知电感L (取1H ),电阻R (取1k Ω)和待测电容C x 组成振荡电路,改变信号 源频率使RLC 回路谐振,伏特计上指示最大,则电容可由下式求出: L f C X 2241 π= (2)。式中f 为频率,L 为已知电感,C x 为待测电容。为减小 误差,这时可采用谐振替代法来解决。 谐振替代法参考电路如图5所示,将电感器的一端与待测电容C x 串联,调节频率f 使电路达到谐振,此时电容上的电压达到极大值,固定频率f 0,用标准电容箱C s 代替C x ,调节C s 使电路达到谐振,电容上的电压再次达到极大值,此时s x C C =。

大学物理实验介电常数的测量的讲义

固体与液体介电常数的测量 一、实验目的: 运用比较法粗测固体电介质的介电常数,运用比较法法测量固体的介电常数,谐振法测量固体与液体的介电常数(以及液体的磁导率),学习其测量方法及其物理意义,练习示波器的使用。 二、实验原理: 介质材料的介电常数一般采用相对介电常数εr 来表示,通常采用测量样品的电容量,经过计算求出εr ,它们满足如下关系: S Cd r 00εεεε== 式中ε为绝对介电常数,ε0为真空介电常数,m F /1085.8120 -?=ε,S 为样品的有 效面积,d 为样品的厚度,C 为被测样品的电容量,通常取频率为1kHz 时的电容量C 。 替代法: 替代法的电路图如下图所示。此时电路测量精度与标准电容箱的精度密切相关。实际测量时,取R=1000欧姆,我们用双踪示波器观察,调节电容箱和电阻箱的值,使两个信号相位相同, 电压相同,此时标准电容箱的容值即为待测电容的容值。

谐振法: 1、交流谐振电路: 在由电容和电感组成的LC 电路中,若给电容器充电,就可在电路中产生简谐形式的自由电振荡。若电路中存在交变信号源,不断地给电路补充能量,使振荡得以持续进行,形成受迫振动,则回路中将出现一种新的现象——交流谐振现象。RLC 串联谐振电路如下图所示: 图一:RLC 串联谐振电路 其中电源和电阻两端接双踪示波器。 电阻R 、电容C 和电感L 串联电路中的电流与电阻两端的电压是同相位的,但超前于电 容C 两端的电压2π ,落后于电感两端的电压2π ,如图二。 图二:电阻R 、电容C 和电感L 的电压矢量图 电路总阻抗:Z = = L V → -R V →

大学物理实验-介电常数的测量

介电常数的测定实验报告 数学系 周海明 PB05001015 2006-11-16 实验题目:介电常数的测定 实验目的:了解多种测量介电常数的方法及其特点和适用范围,掌握替代法,比 较法和谐振法测固体电介质介电常数的原理和方法,用自己设计与制作的介电常数测试仪,测量压电陶瓷的介电常数。 实验原理:介质材料的介电常数一般采用相对介电常数r ε来表示,通常采用测量 样品的电容量,经过计算求出r ε,它们满足如下关系:S Cd r 00εεεε== (1)。式中ε为绝对介电常数,0ε为真空介电常数, m F /1085.8120-?=ε,S 为样品的有效面积,d 为样品的厚度,C 为被测 样品的电容量,通常取频率为1kHz 时的电容量C 。 一、替代法 替代法参考电路如图1所示,将待测电容C x (图中R x 是待测电容的介电损耗电阻),限流电阻R 0(取1k Ω)、安培计与信号源组成一简单串联电路。合上开关K 1,调节信号源的频率和电压及限流电阻R 0,使安培计的读数在毫安范围恒定(并保持仪器最高的有效位数),记录读数I x 。将开关K 2打到B 点,让标准电容箱C s 和交流电阻箱R s 替代C x 调节C s 和R s 值,使I s 接近I x 。多次变换开关K 2的位置(A,B 位),反复调节C s 和R s ,使X S I I =。假定C x 上的介电损耗电阻R x 与标准电容箱的介电损耗电阻R s 相接近(s x R R ≈),则有s x C C =。

另一种参考电路如图2所示,将标准电容箱C s 调到极小值,双刀双掷开关K 2扳到AA ’,测量C x 上的电压V x 值;再将K 2扳到BB ’,调节C s 让C s 上的电压V S 接近V x 。将开关K 2来回扳到AA ’和BB ’位,不断调节C s 和R s 值,使伏特计上的读数不变,即X S V V =,若 s x R R ≈,则有s x C C =。 二、比较法 当待测的电容量较小时,用替代法测量,标准可变电容箱的有效位数损失太大,可采用比较法。此时电路引入的参量少,测量精度与标准电容箱的精度密切相关,考虑到C s 和R s 均是十进制旋钮调节,故无法真正调到X S V V =,所以用比较法只能部分修正电压差带来的误差。比较法的参考电路如图3所示,假定C s 上的R x 与R s 接近(s x R R ≈),则测量C x 和C s 上的电压比V s /V x 即可求得C x :X S s x V V C C /?=。 三、谐振法 谐振法测量电容的原理图见图4,由已知电感L (取 1H ),电阻R (取1k Ω)和待测电容C x 组成振荡电路,改变信号源频率使RLC 回路谐振,伏特计上指示最大,则电容可由下式求出:L f C X 2241 π= (2)。式中f 为频率,L 为已知电感,C x 为待测电容。为减小误差,这时可采用谐振替代法来解决。 谐振替代法参考电路如图5所示,将电感器的一端与待测电容C x 串联,调节频率f 使电路达到谐振,此时电容上的电压达到极大值,固定频率f 0,用标准电容箱C s 代替C x ,调节C s 使电路达到谐振,电容上的电压再次达到极大值,此时s x C C =。

3.静电实验研究 实验报告

静电实验研究实验报告 【实验目的】 1、掌握静电的特点分析静电演示实验成功的关键。 2、掌握静电学的主要实验的演示方法掌握韦氏起电机和范德格拉夫起电机的构 造及使用方法。 3、加深对静电现象及其原理的理解。 【实验器材】静电计 韦氏起电机、范德格拉夫起电机、验电器、验电羽、金属网、尖形布电器、平行板电容器、枕形导体、球形导体、起点盘及静电除尘装置、绝缘体等。 【仪器介绍】一、验电器 验电器是用来检验物质是否带电的仪器。验 电器的结构如图1所示 验电器的工作原理是当带电物质接触金属球 时就会有很少的带电粒子传到验电器上面金属箔 就会张开。验电器金属箔张开的角度和物质带电 量的大小成正比。 利用验电器判断物质所带电量正负的方法很简单先将一个物体与球接触再将另一个物体与 球接触张角变大表明两物体带同种电荷张角变小或张角先变小后变大表明两物体带异号电荷。 二、静电计 将验电器装上刻度盘与金属底座就构成了一个静电计静电计的示意图如右图 静电计可以测量

带点物质的电势。将带点物质连接到小球上显示的就是对于地面的电势。将两个物体分别接于金属球和底座测得的就是两物体的电势差。 三、 起电机 1、 韦氏起电机韦氏起电机是实验室常用的起电 机示意图如下 图 1 验电器示意图 图 2 静电计 图 3 韦氏起电机示意图

韦氏起电机是利用静电感应原理制作的它靠莱顿瓶积累电荷。当积累的电荷达到一定的数量两个金属球就会放电。 2、范德格拉夫起电机 图4 范德格拉夫起电机 范德格拉夫起电机是利用橡胶皮带将负电荷从内部不断的运送到电极上使电机所带的电荷越来越多电势也越来越高。理论上对地电位可以达到无穷大。 【实验内容】 实验一演示感应起电 1、摩擦起电 两种物质相互摩擦电子在力的作用下会从一个物体转移到另一个物体两个物体就会带异号电荷。 丝绸摩擦玻璃棒带正电。毛皮摩擦橡胶棒带负电。 带电玻璃棒接触验电器验电器有张角。带电橡胶棒接触验电器张角闭合。 可见两个带异号电荷。 2、感应起电 将带电物体靠近导体由于同性相斥异性相吸导体靠近带点物质的部分会带异号电荷远离的部分带同种电荷。 将带电玻璃棒靠近验电器验电器有张角可见感应起电。将一个接地的导线接触验电器验电器的张角闭合。将导线离开验电器玻璃棒也远离验电器验电器又有张角表明验电器带电。接地的导线使验电器上与玻璃棒同号的电荷传到地上验电器上就只有与玻璃棒异号的电荷。这时拿带电橡胶棒接触验电器验电器张角闭合。

介电常数的测量

实验七 介电常数的测量 ε和损耗角tgδ的温度和频率特性,可以获取物质内部 测量物质在交变电场中介电常数 r 结构的重要信息。DP—5型介电谱仪内置带有锁相环(PLL)的宽范围正弦频率合成信号源和由乘法器、同步积分器、移相器等组成的锁定放大测量电路,具有弱信号检测和网络分析的功能。对填充介质的平行板电容器的激励信号的正交分量(实部和虚部)进行比较、分离、测量,检测介电频率谱和温度谱。作为大学物理实验的内容,具有测量精度高、方法新颖、知识性和实用性强等特点。 [目的要求] ε和损耗角tgδ的温度和频率特性。 1.学习用介电谱仪测量物质在交变电场中介电常数 r 2.了解带有锁相环(PLL)的正弦频率合成信号源和锁定放大测量电路的原理和结构。 3.掌握对信号的正交分量(实部和虚部)进行比较、分离、测量的方法。 [实验原理] 图1测量原理图 原理如图1所示.置于平板电极之间的样品,在正弦型信号的激励下,等效于电阻R和电容C的并联网络。其中电阻R是用来模拟样品在极化过程中由于极化滞后于外场的变化所引起的能量损失。若极板的面积为A,间距为d,则: R=d/Aσ, C=εA/d, tgδ=1/ωRC=σ/ωε 式中ε=εoεr,εo为真空介电常量,σ为与介电极化机制有关的交流电导率。设网络的复阻抗为Z,其实部为Z’,虚部为Z″,样品上激励电压为Vs(基准信号),通过样品的电流由运放ICl转化为电压Vz:(样品信号),用V’s,V″s和V″z分别表示其实部和虚部,则有:Vz=RnVs/Z, σ=K(V’sV’z+V″sV″z), ωε=K(V’sV″z-V″sV’z) tgδ=(V’sV’z+V″sV″z)/ (V’sV″z-V″sV’z) 式中K=d/ARn(V’sV’s+V″sV″s)。 电压的实部和虚部通过开关型乘法器IC2和π/2移相器IC3实现分离后测量。IC2的作用是将被测正弦信号Vz(或Vs)与同频率的相关参考方波Vr相乘。本系统测量时通过移相微调电路使Vr和vs同相位,即Vs的虚部V″s=O,测量公式简化为: σ=K’V’z, ωε=K’V″z, tgδ=V’z/V″z

介电常数实验报告

基础实验物理报告 学院专业: 实验名称 介电常数实验报告姓名班级 学号 一、实验原理 二、实验设备 三、实验内容 四、实验结果

一、实验原理 介电常数是电介质的一个材料特征参数。 用两块平行放置的金属电极构成一个平行板电容器,其电容量为: S C D D 为极板间距, S 为极板面积,ε即为介电常数。材料不同ε也不同。在真空中的介电常数为 0 ,08. 851012 F / m 。 考察一种电介质的介电常数,通常是看相对介电常数,即与真空介电常数相比的比值 r 。 如能测出平行板电容器在真空里的电容量C1及充满介质时的电容量C2,则介质的相对介电常数即为 ε r C 2 C 1 然而 C1、 C2的值很小,此时电极的边界效应、测量用的引线等引起的分布电容已不可 忽略,这些因素将会引起很大的误差,该误差属系统误差。本实验用电桥法和频率法分别测出固体和液体的相对介电常数,并消除实验中的系统误差。 1.用电桥法测量固体电介质相对介电常数 将平行板电容器与数字式交流电桥相连接,测出空气中的电容C1和放入固体电介质后的电容C2。 C 1 C 0 C 边1 C 分1 C 2 C 串C 边 2 C 分 2 其中 C0是电极间以空气为介质、样品的面积为S 而计算出的电容量: C 00 S D C 边为样品面积以外电极间的电容量和边界电容之和, C 分为测量引线及测量系统等引起的分 布电容之和,放入样品时,样品没有充满电极之间,样品面积比极板面积小,厚度也比极板的间距小,因此由样品面积内介质层和空气层组成串联电容而成C 串 ,根据电容串联公式有: ε0 Sεrε0S C 串D-t t εrε0 S ε0 Sεrε0S t εr(D-t) D t t

射频实验一实验报告

实验一 匹配网络的设计与仿真 一、实验目的 1. 掌握阻抗匹配、共轭匹配的原理 2. 掌握集总元件L 型阻抗抗匹配网络的匹配机理 3. 掌握并(串)联单支节调配器、λ/4阻抗变换器匹配机理 4. 了解ADS 软件的主要功能特点 5. 掌握Smith 原图的构成及在阻抗匹配中的应用 6. 了解微带线的基本结构 二、实验原理 信号源的输出功率取决于U s 、R s 和R L 。在信号源给定的情况下,输出功率取决于负载电阻与信号源内阻之比k 。当R L =R s 时可获得最大输出功率,此时为阻抗匹配状态。无论负载电阻大于还是小于信号源内阻,都不可能使负载获得最大功率,且两个电阻值偏差越大,输出功率越小。 1.共轭匹配 2 2 2 ()s o L L s L U P I R R R R ==+2,s L s i s U R kR P R ==2(1) o i k P P k =+

时,源输出功率最大,称作共轭匹配。此时需在负载和信号源之间加一个阻抗变换网络 ,将负载阻抗变换为信号源阻抗的共轭。 2.阻抗匹配 λ/4阻抗变换器 三、用T 型匹配网络设计阻抗匹配网络 要求:源阻抗(480-j 732) Ohm ,频率400MHz ,负载Z L =(20+j ×100) Ohm 1.原理图 2.采用T 型匹配网络匹配过程 * g Z =L Z ≠

3.匹配结果 4.相应的电路

5.仿真结果 四、设计微带单枝短截线匹配电路 要求:源阻抗(480-j732) Ohm,频率400MHz,负载Z L=(69+j×81) Ohm 微带线板材参数: 相对介电常数:2.65

介电常数测量

测量介电常数的方法探究 班级: 姓名: 序号: 学号: 学院:

测量介电常数的方法探究 介电常数应用在科技的方方面面,但是如何测得介电常数以保证需要呢,本文就几种主流测量方法进行了探究。 主流的测量介电常数的方法即空间波法和探针法。 空间波法:空间波法是一种介电常数的实地检测法。用该方法测量介电常数时,可以将测量仪器拿到被测物所在位置进行无损的实地测量,可获得最接近微波遥感真实值的介电常数。 微波遥感的典型目标,如土壤、沙地岩石、水体、冰雪、各类作物、各类草地、森林等,当其表面统计粗糙度远远小于所使用的波长时可用菲涅尔反射系数描述其介电常数与观测角之间的关系: R ∥ =(cosθ- εr?sin2θ)/(cosθ+ εr?sin2θ)(1) R ⊥ =(εr cosθ- εr?sin2θ)/(εr cosθ+ εr?sin2θ)(2) 其中εr为目标物的相对介电常数,R ∥为水平极化反射系数,R ⊥ 为垂直极化反 射系数,θ为入射角。只要测得以上参数,经过绝对定标或者相对定标后,通过数学运算就可以反演得到介电常数。 空间波测量介电常数是利用菲涅尔反射定律进行的,要求所用波长大于被测目标的统计粗糙度,在粗糙度大时会影响精度,这时必须引入粗糙度修正量。可以利用加大观测角以提高粗糙表面物的测量精度,从实际中,对土壤、草丛、冰的测量结果看是比较好的。 探针法:在探针法实地测量介质介电常数时,探针的位置一般有两种:即全部没入待测介质中和探针位于空气和介质构成的接触面上。在两种情况下,样品的介电常数都可以通过在非谐振时测量的反射波、传输波或者谐振时测量的谐振频率和3dB带宽等参数来反演得到。 探针法测量介电常数,可以使用的探针有:单极振子、波导和同轴线等。相对于其他探针,单极振子的结构简单,测量方便,且可以获得相对比较精确地测量结果,是目前探针法实地测量介电常数研究中的一个热点。 单极振子:用单极振子探针法测量介电常数主要是通过测量反射系数ρ、 天线的输入阻抗Z n (或导纳Y)、S参数、天线谐振长度h r 和激励电阻抗R r 或谐 振频率f s 和3dB带宽的变化等来反眼。这些放发根据原理和测量值的不同可以 分为反射法、传输发和谐振法。 波导探针:微波可以穿透介质并且在不连续点产生的反射波与介质的电特性有关,由此发展了许多使用微波非破坏性技术来测量材料在微波频率的电磁性质。现有一种在8-12GHz频率范围内使用一个边缘开端矩形波导探针同时测材料的复介电常数和导磁率的技术。在该技术中,由非连续接触面的边界条件,得到了关于未知孔径电厂的两个积分等式(EFLE`s)。假定探针孔径中的总电场不仅包 括TE 10 模,而且还有无限的高阶模式,由矩量法可以解决EFLE`s。当孔径的电厂精确决定之后,其他相关的系数如主模下探针的输入导纳和反射系数等,都可以计算出来,从而很容易得到介质的介电常数。

华理大物实验报告

1实验名称 电桥法测中、低值电阻 一.目的和要求 1.掌握用平衡电桥法测量电阻的原理和方法; 2.学会自搭电桥,且用交换法测量电阻来减小和修正系统误差; 3.学会使用QJ-23型惠斯登电桥测量中值电阻的方法; 4.学会使用QJ-42型凯尔文双臂电桥测量低值电阻的方法; 二.实验原理 直流平衡电桥的基本电路如下图所示。 图中B A R R ,称为比率臂,Rs 为可调的标准电阻,称为比较臂,Rx 为待测电阻。在电路的对角线(称为桥路)接点BC 之间接入直流检流计,作为平衡指示器,用以比较这两点的电位。调节Rs 的大小,当检流计指零时,B ,C 两点电位相等AB AC U U =;BD CD U U = ,即B B A A R I R I =;S S X X R I R I =。因为检流计中无电流,所以X A I I =,S B I I =,得到电桥平衡条件 Rs R R Rx B A =。 三.实验仪器 直流电源,检流计,可变电阻箱,待测电阻,元器件插座板,QJ24a 型惠斯登直流电桥,QJ42型凯尔文双臂电桥,四端接线箱,螺旋测微计 四.实验方法 1.按实验原理图接好电路; 2.根据先粗调后细调的原则,用反向逐次逼近法调节,使电桥逐步趋向平衡。在调节过程中,先接上高值电阻R m ,防止过大电流损坏检流计。当电桥接近平衡时,合上K G 以提高桥路的灵敏度,进一步细调; 3.用箱式惠斯登电桥测量电阻时,所选取的比例臂应使有效数字最多。

五.数据记录与分析 (0.0010.002) S RS R m ?±+ 仪 =,其中 S R是电阻箱示值,m是所用转盘个数,RS σ ? ' = X R= X R σ= 所以 2 297.80.1 X R=±Ω, 3 1995.40.8 X R=±Ω 2.不同比例臂对测量结果的影响 3.用箱式惠斯登电桥测量电阻 4.用开尔文电桥测量低值电阻 铜棒平均直径d=3.975mm(多次测量取平均)(末读数-初读数) 电阻 2 4 R L L S d ρρ π ==,由下图中的拟合直线得出斜率00609 .0 4 2 = = d k π ρ ,则电阻率 () m k d ? Ω ? = ? ? ? = =- - 8 2 3 2 10 56 .7 4 10 975 .3 00609 .0 142 .3 4 π ρ

介电常数实验报告

基础实验物理报告学院专业:

一、实验原理 介电常数是电介质的一个材料特征参数。 用两块平行放置的金属电极构成一个平行板电容器,其电容量为: z S C = D D 为极板间距,S 为极板面积,£即为介电常数。材料不同£也不同。在真空中的介电常数为 12 ;0 , ;0 =8.85 10 …F / m 。 考察一种电介质的介电常数,通常是看相对介电常数,即与真空介电常数相比的比值 汀。 如能测出平行板电容器在真空里的电容量 C i 及充满介质时的电容量 C 2,则介质的相对 介电常数即为 C i 然而C i 、C 2的值很小,此时电极的边界效应、测量用的引线等引起的分布电容已不可 忽略,这些因素将会引起很大的误差,该误差属系统误差。本实验用电桥法和频率法分别测 出固体和液体的相对介电常数,并消除实验中的系统误差。 1. 用电桥法测量固体电介质相对介电 常数 将平行板电容器与数字式交流电桥相连接,测出空气中的电容 C i 和放入固体电介质后的电 容C 2。 C 边为样品面积以外电极间的电容量和边界电容之和, C 分为测量引线及测量系统等引起的分 布电容之和,放入样品时,样品没有充满电极之间, 样品面积比极板面积小, 厚度也比极板 的间距小,因此由样品面积内介质层和空气层组成串联电容而成 C 串,根据电容串联公式有: £r C i 其中Co 是电极间以空气为介质、样品的面积为 S 而计算出的电容量: C o ;0 S 交流电桥

£ 0S£r£ 0 S D-t> t £0S£r£0 S C串= £ r £ S t紀 3) D -t t

当两次测量中电极间距 D 为一定值,系统状态保持不变,则有 C 边^C 边2、C 分?,=C 分2 C 串t £ 0 S-C 串(D - t ) 也就是说运用该实验方法消除了由分布电容和边缘 2. 线性回归法测真空介电常数 ;0 £ S 上述测量装置在不考虑边界效应的情况下,系统的总电容为: C = 0 0 ■ C 分 D 保持系统分布电容不变,改变电容器的极板间距 D ,不同的D 值,对应测出两极板间充满 空气时的电容量 C 。与线性函数的标准式 Y = A BX 对比可得:Y =C , A 二C 分, B = oS 0 , X = 1,其中S o 为平行板电容极板面积。用最小二乘法进行线性回归,求得 D 分布电容C 分和真空介电常数 p ( ;0 := 空)。 3 ?用频率法测定液体电介质的相对介电常数 所用电极是两个容量不相等并组合在一起的空气电容,电极在空气中的电容量分别为 C01和C02,通过一个开关与测试仪相连,可分别接入电路中。测试仪中的电感 L 容和分布电容等构成 LC 振荡回路。振荡频率为: 其中C ^C o C 分。测试仪中电感 L 一定,即式中k 为常数,则频率仅随电容 最终得固体介质相对介电常数: 该结果中不再包含分布电容和边缘电容, 效应引入的系统误差。 与电极电 ——,或 2 n LC 2 2 4 二 2 Lf 2 C 的变 化而变化。当电极在空气中时接入电容 C 01,相应的振荡频率为 轴,得:C 01 C 分 k 2 f 2 ' 01 接入电容C 02,相应的振荡频率为f 02 ,得:C 02 C 分 k 2 f ; 实验中保证不变,则有 C 02 -C 01 k 2 ■2 f 。2 k 。当电极在液体中时,相应的有: £ r (C 02 -'C 01 k 2 )=2 f 2 k 2 2 f l

平行板谐振法测量微波介质介电常数性能(实验报告)

平行板谐振法测量微波介质介电常数性能 一.平行板谐振法测试原理 图 i Post Resonance Technique 实验测试装置如图i ,测试样品为圆柱状,放置在两个平行的金属板中,微波功率通过由样品和两个平行金属板组成的腔体耦合。输入和输出通过两个天线耦合。在某一频率下,该腔体的阻抗达到最小,即产生谐振,此时穿过的功率最大。该腔体的谐振特性可以通过一个矢量网络分析仪来得到直观显示。 实际测量中,常用TE011模来确定样品的介电性质。因为本测试装置可以在矢量网络分析仪上产生许多不同模式的谐振峰,本实验采用011T E 谐振模式(处于第二低的谐振频率处,最低的谐振频率是111H E 模式)。 本实验主要讨论介电常数的测量,至于电解质损耗和辐射损耗不做讨论。采用本测试方法的主要优势是 需要测量的参数有,样品厚度L 、样品直径D (D=2a )和谐振频率0f 电介常数可以通过以下公式计算得到: ()2 22 0012r ci c k k λεπ?? =++ ??? (1) 2 2 200212co k L λπλ?????? =-?? ? ????????? (2) ()() () 0000110()ci c c ci ci c J k a k a K k a J k a k a K k a =- (3) 00 c f λ= (4) 其中, J 和k 分别为第一类Bessel 函数和修正Bessel 函数,通过(3)可以求出ci k (采用数值方法,matlab 程序见附录) 二.实验过程 测量的参数如下: L = 8.01mm, D = 14.06mm f0 = 4.421401GHz 根据(1)--(4)式,可以求出r ε值,计算的值如下: 0λ=68 mm 0c k =381.20 ci k =426.34 r ε=39.14 计算过程见附录。 三.讨论 本实验并未讨论损耗角及品质因数的测量,随之的辐射损耗及电损耗并未讨论。采用此方法,不能精确测量平行板的表面阻抗[1],损耗角的测量也不准确;其次,样品的尺寸要求较大,若对于单晶体,很难制造[1]。可参考文献[2],有具体的改进方法。本方案的主要优势是计算的公式较完善,且很可靠。也因此,此方案仍被采用。 参考文献 [1] Sheen J 2005 Study of microwave dielectric properties measurements by various resonance techniques Measurement 37 123-30 [2] Sheen J 2008 A dielectric resonator method of measuring dielectric properties of low loss materials in the microwave region IOP Science Measurement Science and Technology 附录 %***************************************************** %******************* Post Resonance Technique *********** %*****************“微波测量之特别培养实验课”******** % Author:高永振 Date :2012-5-3 clear all; format long; % 实验的基本参数

相关文档
最新文档