直拉硅中氧沉淀的TEM研究

直拉硅中氧沉淀的TEM研究
直拉硅中氧沉淀的TEM研究

硅中氧、碳及其含量测定

硅中氧、碳及其含量测定 1.硅晶体中的氧 直拉硅单晶中不可避免地存在氧。尽管氧的含量不高,在百万分之二十(20ppma)左右,相当于硅晶体中直线距离不到40个硅原子有一个氧原子,它们的作用却不可忽视。硅中的氧,取决于它存在的量、分布和存在的方式,对硅中缺陷的形成和晶片的特性有重要的影响。因此,精确地测定和控制硅单晶中的氧含量是硅材料制造和器件加工中必不可少的环节,硅中氧含量是当今硅材料与器件制造业进行验收、工艺监控以及研究开发所必需掌握的关键数据。 直拉硅单晶中的氧是在晶体生长过程中由熔硅进入。而熔硅中的氧主要由石英坩埚的溶解而引入。高温下的熔硅会和它与接触的石英坩埚壁反应,使石英溶解,石英中的氧溶入熔硅。含氧的熔硅被强烈的对流搅拌,带至熔硅上部暴露的表面和生长晶体的界面附近。到达表面的氧以SiO的组成向气氛发散,被气流带走。到达生长界面的氧就进入生长中的晶体。在实际的生长系统中,由石英溶解进来的氧绝大部分被带到暴露的表面挥发走,只有很小部分(大约2%)进入硅晶体。 进入硅晶体的氧含量与上述过程中的每一个环节都有关,因此影响因素较多:原料多晶硅和吹扫气氩气的含氧量,石英坩埚材质和表面涂层,熔硅直径与深度的比例,石墨热场设计所决定的坩埚壁的温度,由坩埚和晶体转动所引起的对流,吹扫气流在炉内(特别是熔硅上部)流动的分布,以及外加磁场的方式,都可能对氧的引入,即晶片中氧的浓度及其分布,产生重要作用。在晶体生长过程中这些因素会发生变化,所以,晶体中不同部位的氧含量也会相应变化。 在高温下引入硅中的氧处于固溶体状态。随着晶体生长后的冷却,这些氧逐渐处于过饱和状态。这时,由于已处于固态,氧原子在硅晶格中的移动受到限制。如果高温下的历程不是太久的话,这些氧原子会保持这种过饱和状态,以填隙原子的形式存在于硅晶格中。通常由直拉法生产的硅晶片中的氧大多都是处于这种状态。 这种过饱和的氧处于一种不稳定的状态。硅晶格中处于填隙位置的氧原子引起临近的局部挤压应力。随着温度的上升,氧原子在硅晶格中的热振动逐渐加强,有了移动趋向增强。氧原子附近的局部应力就成了它们移动的推动力。氧原子的结合有利于缓解这种应力,于是就有了结合的倾向。有关氧原子结合的最早发现的一个现象就是热施主效应:含有氧的硅单晶在350-500℃之间(在450℃时最强)热处理几小时后,可发现n型样品的电阻率降低,p型样品电阻率升高(有时甚至转型),犹如产生了一定数量的施主。这种施主产生的速度和数量取决于晶体中氧的浓度、氧存在的状态、热处理的温度、时间以及处理前晶体的热历史。单晶中氧含量(严格地说应是位溶解的氧)越多,处理时间越久,产生的施主就越多,最多可达5×1016/cm3(对应电阻率0.5 cm )。这种施主在高温下不太稳定,在500℃以上进一步热处理时会消失。这种因氧而产生的施主叫做热施主。研究表明它们是氧原子聚集的初期,处于络合状态。

直拉硅单晶的氧和碳

直拉硅单晶的氧和碳 直拉硅单晶中的氧和碳是一类很重要的杂质,氧和碳在直拉单晶中,可能形成微沉淀,可能在微沉淀基础上形成微缺陷,严重影响单晶质量,影响大规模集成电路性能和制造。 氧原子在硅单晶中大部以间隙原子状态存在,成Si-O-Si状态或SiO 2和SiO 4 状态,熔点 时,氧在固态硅的溶解度为(2.75±0.15)×1018/cm3,在熔硅中的溶解度为(2.20±0.15)× 1018/cm3。直拉硅单晶的氧主要来源于多晶硅,它的含氧量一般为1016/cm3~1017/cm3数量级,而直拉单晶硅中的氧含量一般在6×1017/cm3~2×1018/cm3,可见,单晶生长过程中有大量的氧进入。 石英坩埚对硅单晶的氧沾污非常严重,在1420℃以上高温下,硅熔体和石英坩埚进行化学反应: Si(熔体)+SiO 2 (固体)=2SiO 反应结果,石英坩埚上生成一层固体一氧化硅,并不断溶解于熔硅中,生成一氧化硅气体也会溶解于熔硅,使熔硅氧浓度增高。 氩气氛下拉晶时,氩气中的氧会以不同形成溶入熔硅中,使硅单晶氧浓度增高。 直拉硅单晶一般单晶并没有部氧浓度高,尾部氧浓度低,单晶新面中心氧浓度高,边缘氧浓度低。硅单晶的这种氧浓度分布既受坩埚污染影响,也受拉晶时氧蒸发和氧分凝效应影响。坩埚中熔硅虽然离坩埚壁越近氧浓度越高,但在拉晶过程中,被单晶覆盖的熔硅氧不能蒸发,其余部分氧蒸发较快,在熔硅对流作用下,形成单晶中氧含量边缘高中心低的现象。氧在硅中的平衡分凝系数一般认为是1.25,这很容易解释硅单晶头部含氧高尾部含氧低的事实。但是,从硅氧二元相图看,氧在硅中的平衡分凝系数应该小于1,这和一般认为氧在硅中平衡分凝系数等于1.25相矛盾。氧在单晶中分布呈并没有部高尾部低现象可以这样解释: 由于多晶硅熔化时温度高,硅和石英坩埚(SiO 2 )反应激烈,大量的硅氧物进入熔硅,它们比重小,浮于熔硅上部,使得生长的单晶氧含量头部高,单晶在以后生长中,虽然硅和石英坩埚继续反应生成硅氧物进入熔硅,但由于温度较低反应缓慢,而且由于晶体和坩埚转动搅拌熔体中氧蒸发作用增强,使单晶尾部氧含量降低。另外由于目前都是测量硅中的间隙氧,不是全部氧,因此也会出现差异。总之,氧在硅单晶中行为复杂,一些现象还不甚清楚。目前对硅单晶中氧的作用认为既有害,也有利。氧在硅单晶中形成氧沉淀,产生微缺陷和氧条纹,影响单晶质量也可以利用硅单晶含氧高的特点制造某些大规模集成电路,化害为利。

气凝胶调研报告

气凝胶调研报告 1. 目的 了解气凝胶的基本信息、研究现状、应用现状以及国内相关厂家的信息,寻找其在功能玻璃上的应用。 2. 气凝胶概述 2.1 气凝胶的概念 凝胶(gel)指的是溶胶或溶液中的胶体粒子或高分子在一定条件下互相连接,形成空间网状结构,结构空隙中充满了液体作为分散介质的特殊分散体系[1]。 气凝胶(aerogel)指的是当凝胶脱去大部分溶剂,凝胶中液体含量比固体含量少得多,或者凝胶的空间网状结构中充满的介质是气体时,即湿凝胶中液体被气体取代同时保持网络结构,外表呈现固体状的物质称为气凝胶,一般又称为干凝胶(xerogel)[2]。但是从严格的定义上来讲,气凝胶与干凝胶并非同一概念。有文献指出,湿凝胶经过超临界干燥得到的是气凝胶,经过常压干燥得到的是干凝胶;气凝胶是块状结构,而干凝胶一般是粉体或者颗粒[3]。 图1 气凝胶 2.2 气凝胶的发展 气凝胶最早问世于1931年,由美国斯坦福大学的Samuel Stephens. Kistler[4]利用溶胶凝胶法结合超临界干燥技术水解水玻璃的方法制备出具有完整网络结构的硅气凝胶,同时研究了硅气凝胶的性质,并预言气凝胶在催化、隔热、玻璃和陶瓷等领域的应用,但是由于受到制备工艺的限制,并未得到人们的足够重视。1966年,J. B. Peri[5]利用硅脂经一步溶胶凝胶法制备出氧化硅气凝胶,推动了气凝胶的发展。1974年粒子物理学家Cantin[6]等首次报道了较SiO2气凝胶应用于切伦科夫探测器探测高能粒子。80年代,Tewari[7]对湿凝胶的干燥工作进行研究,推动了硅气凝胶的商业化过程。 国内最早于1955年,由同济大学波尔固体物理研究所对气凝胶展开研究。随后,清华大学、东华大学等高校也对气凝胶展开研究。 2.3 气凝胶的分类 按其组分,气凝胶可分为单组分气凝胶,如SiO2、Al2O3、TiO2、炭气凝胶(有机气凝胶炭化后得到)等;多组分气凝胶,如SiO2/Al2O3、SiO2/TiO2等。 目前研究最广泛、深入的气凝胶是单组分的SiO2气凝胶和炭气凝胶;其中以SiO2气凝胶的应用最为广泛[8];炭气凝胶由于制备工艺复杂、原料昂贵、生产周期长等,产业化困难、市场难以接受[3]。 2.4 SiO2气凝胶的性质

直拉硅单晶生长的现状与发展

直拉硅单晶生长的现状与发展 摘要:综述了制造集成电路(IC)用直拉硅单晶生长的现状与发展。对大直径生长用磁场拉晶技术,硅片中缺陷的控制与利用(缺陷工程),大直径硅中新型原生空位型缺陷,硅外延片与SOI片,太阳电池级硅单和大直径直拉硅生长的计算机模拟,硅熔体与物性研究等进行了论述。 关键词:直拉硅单晶;扩散控制;等效微重力;空洞型缺陷;光电子转换效率;硅熔体结构 前言 20世纪中叶晶体管、集成电路(IC)、半导体激光器的问世,导致了电子技术、光电子技术的革命,产生了半导体微电子学和半导体光电子学,使得计算机、通讯技术等发生了根本改变,有力地推动了当代信息(IT)产业的发展.应该强调的是这些重大变革都是以半导体硅材料的技术突破为基础的。2003年全世界多晶硅的消耗,达到了19 000 t,但作为一种功能材料,其性能应该是各向异性的.因此半导体硅大都应该制备成硅单晶,并加工成硅抛光片,方可制造I C 器件。 半导体硅片质量的提高,主要是瞄准集成电路制造的需要而进行的。1956年美国仙童公司的“CordonMoore”提出,IC芯片上晶体管的数目每隔18~24个月就要增加一倍,称作“摩尔”定律。30多年来事实证明,IC芯片特征尺寸(光刻线宽)不断缩小,微电子技术一直遵循“摩尔定律”发展。目前,0.25 μm、0.18μm线宽已进入产业化生产。这就意味着IC的集成度已达到108~109量级,可用于制造256MB的DRAM和速度达到1 000MHE的微处理芯片。目前正在研究开发0.12 μm到0.04μm的MOS器件,预计到2030年,将达到0.035μm 水平。微电子芯片技术将从目前器件级,发展到系统级,将一个系统功能集成在单个芯片上,实现片上系统(SOC)。 这样对半导体硅片的高纯度、高完整性、高均匀性以及硅片加工几何尺寸的精度、抛光片的颗粒数和金属杂质的沾污等,提出了愈来愈高的要求。 在IC芯片特征尺寸不断缩小的同时,芯片的几何尺寸却是增加的。为了减少周边损失以降低成本,硅片应向大直径发展。在人工晶体生长中,目前硅单晶尺寸最大。 当代直拉硅单晶正在向着高纯度、高完整性、高均匀性(三高)和大直径(一大)发展。 磁场直拉硅技术 硅单晶向大直径发展,投料量急剧增加。生长φ6″、φ8″、φ12″、φ16″硅单晶,相应的投料量应为60 kg、150 kg、300 kg、500 kg。大熔体严重的热对流,不但影响晶体质量,甚至会破坏单晶生长。热对流驱动力的大小,可用无量纲Raylieh数表征:

二氧化硅气凝胶的研究现状与应用(综述)解读

学 年 论 文 题目: SiO 2气凝胶的研究现状与应用 学 生: 房斯曼 学 号: 200902010204 院 (系):材料科学与工程学院 专 业: 材 料 化 学 指导教师: 李 翠 艳 2012年 6 月 1 日

SiO2气凝胶的研究现状与应用 材化092 班###指导老师:李## (陕西科技大学材料科学与工程学院陕西西安710021) 摘要:本文从二氧化硅的研究历史和现状出发,从制备方法、干燥工艺、性能与应用领域等方面综述了二氧化硅气凝胶的研究进展,并对二氧化硅气凝胶的发展前景进行了展望。 关键词:二氧化硅气凝胶,制备,干燥,应用 Current Research and Applications of Silica Abstract: The article reviewed the latest development and the history of the research of silica aerogel, summarized the progress of the silica aerogel research in the aspects of preparation methods, drying technologies, properties and current application. And the article also looks forward to the development prospect of silica aerogel. Keywords: silica aerogel, preparation, drying, application 0 前言 二氧化硅气凝胶是在保持胶体骨架结构完整的情况下,将胶体内溶剂干燥后的产物,它问世于1931年,美国科学家首先由斯坦福大学的S.S.Kistler制得了二氧化硅气凝胶。1966年J.B.Peri利用硅酯经一步溶胶—凝胶法制备出氧化硅气凝胶,从而使材料的密度更低,进一步推动了气凝胶研究的进展。1974年粒子物理学家Cantin等首次报道了将1700升和1000升的氧化硅气凝胶应用于两个Cerenkov探测器。此后,硅气凝胶作为隔热材料又成功地应用于双面窗HJ。1985年Tewari使用二氧化碳为超临界干燥介质,成功地进行了湿凝胶的干燥,推动了硅气凝胶的商业化进程。 随着人们对二氧化硅气凝胶研究的深入,气凝胶制备及应用有了许多新的发展。本文从二氧化硅现有的制备方法和二氧化硅气凝胶的性能出发,查阅各方资料,指出了不同的制备条件对二氧化硅气凝胶性能的影响以及各种方法的优点及待改进的地方,总结了二氧化硅气凝胶的各种优异的性能以及在各个领域的应用。并且对二氧化硅气凝胶的发展进行的展望。 1 SiO2气凝胶的制备工艺 目前,二氧化硅气凝胶的主要制备方法就是通过溶胶凝胶方法先得到SiO2凝胶,再经过干燥可得到二氧化硅气凝胶。溶胶凝胶制备二氧化硅凝胶因为受到很多因素的影响,在不同的制备因素下所得到的气凝胶性能会有所影响。

浅析单晶硅的生产现状

浅析单晶硅的生产现状 发表时间:2018-07-23T16:41:02.197Z 来源:《知识-力量》2018年8月上作者:高磊刘佳佳[导读] 本文综述了制造光伏电池和集成电路用单晶硅的特点,对直拉法生长单晶硅的基本原理及生产工艺进行论述,并且分析了直拉法单晶生长过程中的主要杂质及其来源。(郑州大学,河南郑州 450001) 摘要:本文综述了制造光伏电池和集成电路用单晶硅的特点,对直拉法生长单晶硅的基本原理及生产工艺进行论述,并且分析了直拉法单晶生长过程中的主要杂质及其来源。关键词:单晶硅直拉法生产工艺前言 单晶硅属于立方晶系,金刚石结构,是一种性能优良的半导体材料。应用于制作晶体管、微处理器、存储器、模拟电路等,其中90%的半导体器件和集成电路都是用硅单晶制作的。目前,单晶硅在太阳能光伏电池和集成电路中的应用最为广泛。 随着电子通讯行业和太阳能光伏产业的快速发展,半导体工业也随之迅猛发展。到目前为止,太阳能光电工业基本上是建立在硅材料基础之上的,以硅材料为主的半导体专用材料在国民经济、军事工业中的地位非常重要,全世界的半导体器件中有95 % 以上是用硅材料制成。其中单晶硅则是半导体器件的核心材料,单晶硅属于立方晶系,具有类似金刚石的结构,硬度大,在较宽的温度范围内,都能够稳定地工作,其热稳定性和电学性能非常好。硅材料的优点及用途决定了它是目前最重要、产量最大、发展最快、用途最广泛的一种半导体材料。因此,单晶硅制备工艺发展迅速,产量大幅增加。 1单晶硅生产工艺 当前制备单晶硅主要有两种技术,根据晶体生长方式不同,可分为悬浮区熔法和直拉法。这两种方法制备的单晶硅具有不同的特性和不同的器件应用领域,区熔单晶硅主要应用于大功率器件方面,而直拉单晶硅主要应用于微电子集成电路和太阳能电池方面,是单晶硅的主体。 区熔法:在整个制备单晶硅的过程中,不需要使用石英坩埚支撑,高温的硅并没有和任何其它物质接触,因而很容易保持高纯度。这种方法制备的单晶硅氧含量低,但是不容易生长出较大直径的硅单晶。 直拉法:也被简称为CZ 法,现已成为制备单晶硅材料最为重要的方法之一。CZ法是将原料装在一个石英坩埚中,外面用石墨加热器进行加热,当原料被加热器熔化后,将籽晶插入熔体之中,在合适的温度下,边转动边提拉,即可获得所需单晶。直拉法的优点是:可以方便地观察晶体生长过程、晶体生长时内部热应力小、可以方便地使用“缩颈”工艺,降低位错密度,成品率高、方便的控制温度梯度、有较快的生长效率。 直拉法生长单晶的具体工艺过程包括装料、化料、熔接、引晶、放肩、转肩、等径生长和收尾这几个阶段: 1.装料:根据所设计的投料量,将块状多晶硅料装入石英坩埚内并放入到单晶炉中。在此阶段有两个问题需要特别注意: 投料量和熔料温度,避免在化料过程中产生不利的问题,例如挂边、破裂。 2.抽真空:将单晶炉内的空气抽出,真空合格后充入保护气体氩气。 3.化料:打开功率进行加热,使炉体上升到1500℃左右。熔硅时,应注意炉内真空度的变化,一般来说,在流动气氛下或在减压下熔硅比较稳定。熔硅温度升到1000℃时应转动坩埚,使坩埚各部受热均匀。 4.熔接:当硅料全部溶化,调整加热功率以控制熔体的温度。待熔体稳定后,降下籽晶至离液面3-5mm 距离,使籽晶预热,以减少籽晶与溶硅的温度差,从而减少籽晶与溶硅接触时在籽晶中产生的热应力。预热充分后的籽晶则可以继续下降与液面进行熔接,同时籽晶保持一定的旋转速度。 5.引晶:为排除籽晶在熔接时由于受热冲击而产生的位错延伸到晶体中,需要控制籽晶生长出一段长为100mm左右、直径为3~5mm的细颈,在引晶过程中需注意两个关键因素:坩埚的位置和液面温度。 6.放肩:为使得晶体直径达到制备要求的尺寸,进行放肩。引晶完成后,将拉速降低,同时降低功率开始放肩。放肩角一般控制在140°至160°之间,需适当调整放肩速度,保持圆滑光亮的放肩表面。放肩过程可通过降低拉速或者降低温度实现。 7.转肩:当放肩过程达到目标直径时,要对它的生长进行控制,通过提高拉晶速度进行转肩,使肩近似直角,进入等直径的纵向生长。 8.等径:当晶棒长到一定长度,就可以对其直径进行等径控制,以确保单晶棒直径的上下一致。等径过程在整个拉晶工艺中占用时间最多也是最重的阶段,这个阶段的工艺直接决定了单晶硅棒的质量。不仅要控制好晶体的直径,更为重要的是保持晶体的无错位生长。 9.收尾:在晶体生长接近尾声时,生长速度再次加快,同时升高硅熔体的温度,使得晶体的直径不断缩小,形成一个圆锥形,最终晶体离开液面,单晶硅生长完成。收尾的作用是防止位错反延。 10.停炉:当单晶硅与液面脱离后,不能立刻把晶棒升高,而是缓慢降低加热器功率直至为零,仍保持氩气的正常流通直至完全冷却,以防止空气对单晶硅表面的氧化。 2直拉单晶中存在的主要杂质目前,在直拉单晶硅中,主要杂质是氧和碳。 (1)单晶硅中的氧杂质在CZ法生长中,氧是直拉单晶硅中的主要杂质,氧不可避免地掺入硅单晶。其途径是在硅的熔点(1420℃)附近,熔硅与石英坩埚作用,生成sio进入硅熔体,溶解的氧经由熔体的对流和扩散传输到晶体和熔体的界面或自由表面。熔体中的部分氧在熔体自由表面蒸发,而余下的氧则通过晶体和熔体界面分凝而渗入晶体内。在实际直拉单晶硅中,氧浓度的表现为头部高、尾部低,在收尾处氧浓度有所上升,同时,氧浓度从单晶硅的中心部位到边缘是逐渐降低的。这是受晶体生长工艺变化的影响。 (2)单晶中的碳杂质

实用型硅单晶中氧、碳含量自动测量系统

仪晶评丌实用型硅单晶中氧、碳含量自动测量系统 李光乎李静王良汝琼娜何秀坤 (信息产业部电子第四十六研究所天津55信箱300192) 武惠忠杨学军 (北京第二光学仪器厂北京100015) 摘要实用型硅单晶中氧、碳含量自动测量分析软件是WQF系列傅立叶变换红外光谱仪的中 文显示专用软件,主要用于硅单晶(直拉硅、区熔硅)中氧、碳含量测量。 关键词硅中氧碳合量自动测量傅里叶变换红外光谱 1引言 红外吸收法测定硅单晶中氧、碳含量是一种快速、无损的测试方法。测量标准对样品厚度和样品表面有严格的规定,以保证测量的准确性。标准中规定对于测氧,区熔硅单晶厚度为5~lOmm,直拉硅单晶厚度为2mm;对于测量碳,硅单晶厚度均为2mm;样品表面必须是双面抛光。这样,一方面造成材料的浪费,~方面测量条件必须严格满足才能保证测量的准确性,使实际材料工艺生产过程的氧、碳含量在线检测复杂化,影响测量数据快速地反馈给生产。 本文论述的硅单晶中氧、碳含量自动测量系统在Win98环境下运行,界面直观、操作简单,中文显示,测量硅中氧、碳含量只需约4分钟,而且,试样只要求经双面研磨/单面抛光即可,厚度范围为1。5~3.5mm。本测量系统在常温下测硅中氧、碳含量精度为±20%。 2测量系统组成 2.1硬件 2.1.1WOF-—410型FTm仪器一台 2.1.2PIII微机一台 2.2测量系统软件 2.2.1主菜单 共有6个功能模块:文件模块、设置模块、显示模块、工具模块、输出模块、帮助模块,主菜单示意图如图l所示: (1)文件模块:该模块实现对文件的管理功能,主要有5项功能:新建、打开、复制、删除、退出。在该项模块的窗口中,用户可以看到测量样品的综合信息(样品名称、规格型号、样品厚度、测量单位名称、测量日期、硅单晶中氧、碳含量测量结果、样品的测量光谱图)。 图1主菜单示意图 (2)设置模块:该项模块实现对测量条件的设置功能,主要有4项功能:一个样品、多个样品、氧、碳含量测量模式选择、系统参数设置。在该项模块的窗口中,用户可通过计算机来控制仪器的状态,设置好测量前的各项实验条件,进行一个样品或多个样品的同时测量。 (3)显示模块:该项模块实现显示测量样品的光谱和仪器当前的状态,主要有4项功能:谱线窗口显示选择、背景、光谱文件浏览、仪器参数。用户在该模块窗口中,通过选择存储的样品光谱文件来显示所有的测量谱图,还可以显示出仪器当前状态下的测量参数供用户监控仪器。 (4)工具模块:该模块有5项功能:数据转换、测量背景、测量参样吸光度、测量样品吸光度、 37  万方数据

直拉单晶硅相关知识汇总

直拉单晶硅国标相关知识汇总 参考标准: 硅单晶GB/T12962-2005 硅片径向电阻率变化测定方法GB/T11073 硅单晶电阻率的测量GB/T1551-2009 代位碳原子含量红外吸收测量方法GB/T1558-2009 光电衰减法测硅和锗体内少子寿命测定GB/T1553-2009 红外吸收光谱测量硅晶体中间隙氧GB/T1557-2006 非本征半导体材料导电类型测试方法GB/T1550 1. 径向电阻率变化 1)定义:晶片中心点与偏离中心的某一点或若干对称分布的设定点(晶片半径的1/2处或靠晶片边缘处)的电阻率之间的差值。差值与中心值的百分数即为径向电阻率变化。 2)测量方法:GB/T11073规定径向电阻率变化的测量方法为:用四探针法测量硅片中心点和设定点的电阻率。按以下公式计算:RV=(ρM-ρC)/ρM×100% 其中:ρM为硅片中心点处测得的两次电阻率的平均值。 ρC为硅片半径中点或距边缘6mm处,90°间隔4点电阻率的平均值。 3)国标对径向电阻率变化的要求:GB/T12962-2005规定掺杂硼元素的P 型单晶(直径为200mm的)电阻率范围为:0.0025~60Ω·cm。 其径向电阻率变化为:0.0025~0.1Ω·cm ≤12% 0.1~60Ω·cm ≤5% 2. O、C含量 GB/T12962-2005规定直拉硅单晶的间隙氧含量应小于 1.8×1018a/cm3 (36ppma),具体指标应根据客户要求而定。其测定的依据标准为:GB/T1557-2006。 替位碳含量应小于 5.0×1016a/cm3 (1ppma),其测定的依据标准为:GB/T1558-2009 利用红外吸收光谱测量间隙氧的有效范围从 1.0×1016a/cm3到硅中间隙氧的最大固溶度。 3.少子寿命 GB/T1553-2009规定用光电导衰减法不能测量硅单晶抛光片的少子寿命。本方法测量硅单晶的少子寿命单个实验室测量的精密度为±20%。 本方法可以测的最低寿命值为10μs,而最高可测寿命值主要取决于试样的尺寸和抛光的表面。所要求的试样尺寸和最高可测寿命值如下:

纳米氧化硅材料调研报告

纳米氧化硅材料 调研报告

纳米氧化硅材料研究 前言 纳米氧化硅(纳米白炭黑)作为国内最早实现规模化生产的纳米材料,具有诸多常规材料所不具备的奇异特性,因而受到了科技界与企业界的广泛关注。纳米氧化硅为具有颗粒尺寸小、微孔多、比表面积大、表面羟基含量高、紫外线、可见光及红外线反射能力强等特点。特别是随着产品表面处理工艺的完善,纳米颗粒的软团聚程度明显降低,与有机高分子材料的相容性好,极大地拓宽了产品的应用领域。

目录 一、纳米氧化硅的性质 (1) 二、纳米二氧化硅的制备 (2) 三、纳米材料的应用 (6) 四、纳米氧化硅的局限与危害 (11) 五、总结 (12) 六、参考文献 (13)

一、纳米氧化硅的性质 纳米氧化硅的粒径只有几十纳米具有很高的硬度和很好的稳定性,其熔、沸点也很高,具有良好的化学惰性和热力稳定性。 经透射电子显微镜观测,纳米氧化硅的原始颗粒尺寸平均为10nm 左右;经动态激光粒度分析仪检测,纳米氧化硅颗粒粒径集中在10-20nm之间,分布范围很窄;经BET法测试分析,纳米氧化硅的比表面积高达640m2/g(即1克纳米粉体摊开后的表面积近似于1亩地大小),其表面存在大量的不饱和残键及不同键合状态的羟基,因表面欠氧而偏离了稳态的硅氧结构,所以该材料具有高反应活性。 纳米氧化硅的产品为人工合成物无定形白色流动性粉末,具有各种比表面积和容积严格的粒度分布。本产品是一种白色、松散、无定形、无毒、无味、无嗅,无污染的非金属氧化物。其原生粒径介于7~80nm之间,比表面积一般大于100m2/g。由于其纳米效应,在材料中表现出卓越的补强、增稠、触变、绝缘、消光、防流挂等性质,因而广泛的应用于橡胶、塑料、涂料、胶粘剂、密封胶等高分子工业领域。例如: (1)陶瓷领域:可以提高陶瓷制品的韧性、光洁度; (2)人造莫来石:具有高的导热特性和良好的力学性能,是电子工业封装材料的最佳原材料之一; (3)橡胶改性:通过控制SiO?的颗粒尺寸,以制备抗紫外辐射的橡胶、红外反射橡胶、高绝缘性橡胶等; (4)粘结剂:纳米SiO?小颗粒形成网络结构,抑制胶体流动,固化速率快,提高粘结效果,同时增加了胶的密封特性; (5)涂料:利用纳米SiO?透明性和对紫外光的吸收特性; (6)功能纤维添加剂:制造红外屏蔽人造纤维、抗紫外线辐照人造纤维、高介电绝缘性能优越的纤维等; (7)塑料改性:用作塑料的补强剂,使塑料变得很致密,提高了薄膜的透明度、强度和韧性,大大提高防水性能; (8)抗油漆老化添加剂:提高各类油漆的抗老化性能和光洁度; (9)高级研磨介质:制成抛光液用于硅片等电子材料表面研磨或抛光。

直拉法大直径硅单晶

大直径直拉单晶技术 摘要:随着国内大直径直拉单晶技术的发展,一些原先在小直径单晶中并未引起重视的问题,对大直径单晶生长的负面影响日渐显现。大直径单晶对其生长环境有很高的稳定性要求。本文就其中真空度的稳定和气流控制的优化两个方面,提出了改进方案,以提高大直径单晶生长的成晶率和内在品质。 关键字:直拉法;大直径单晶;真空稳定性;气流控制 1 引言 半导体技术的日新月异促使了硅单晶生长技术向大直径方向发展。目前,国内大直径直拉单晶制造的规模化生产刚刚起步,许多技术尚处在摸索阶段。生长无位错的大直径单晶,要求其生长环境有很高的稳定性。这使得一些破坏单晶生长稳定性的因素,在原先小直径单晶生长中影响不大,但是对大直径单晶生长的负面影响却日渐显现。 在直拉单晶生长过程中,炉体内的气体气流由上至下贯穿单晶生长的区域,及时地带走由于高温而产生出来的硅氧化物和杂质挥发物。因此,维持单晶炉体内真空值的稳定性,不受外界因素的影响,同时使保护气体有合理的气流走向,迅速带走杂质,已经成为目前半导体材料制造行业领域改进设备,提高成晶率的重要课题。 2 真空度的稳定性控制 高纯氩气从单晶炉顶部注入,底部由真空泵将气体抽出,炉内的真空值保持动态平衡(一般在20Torr左右)。但由于种种外界因素的影响,这个平衡往往会受到破坏,使真空值在较大幅度内变化,特别在大直径单晶生长中的影响尤为明显。 2.1 影响真空度不稳定的因素 其一,一般设备中,氩气的进气流量是由转子流量计控制的。转子流量计是通过改变通气孔径的大小来控制气体的流量。它的缺点就是气流量势必随着进气口压力的改变而改变。实际生产中,气源压力不可避免地会受到环境温度和贮罐内氩气存量的影响。 其二,真空泵是抽真空的动力设备。在拉晶过程中,由于炉内高温而挥发出来的杂质和硅氧化物会被吸收到真空泵油中,与泵油混合在一起。随着工作时间的增长,真空泵油的粘稠度会不断增大,导致抽真空的效率降低。到一定程度,真空泵必须定期更换泵油。另外,真空泵油的温度也是影响抽真空效率的因素。 2.2 改进方案 针对上面提出的两个问题,首先从氩气进气系统入手,为了保证进气速度恒定,我们用质量流量控制器(MFC)代替转子流量计。质量流量控制器能精确地测量和控制气体的流量,它的测量技术是基于美国一个专利(美国专利号NOS.4464932、4679585)。质量流量控制器检测的是气体的“质量流”,它只受气体自身三个特性的影响(热容量、密度、分子结构),对于某种确定的气体,上面三个参数都是确定的。因此,MFC的测量精度不受气体的温度、压力等外在因素的影响,能在20~200SLPM的范围内达到高于1.0%的控制精度,响应时间小于2s。 其次,考虑真空抽速的控制。我们在单晶炉与真空泵的管道上增加了步进蝶阀。采用步进蝶阀目的是通过改变抽气通道的孔径来调节真空抽速。这是一个闭环的控制系统,由数字真空表实时检出炉内的真空压力,把该真空值与设定真空值比较,当炉内真空值偏高,就逐渐开大步进蝶阀,提高抽气速度,降低真空值至设定点。反之,若炉内真空值偏低,则关小步进蝶阀,减小抽气速度。采用这样闭环系统,可以使单晶炉内真空值相当稳定,避免外界因素的干扰。 3 气流的优化控制

【CN109734413A】一种改性二氧化硅粉体二氧化硅纳米纤维复合气凝胶材料及其制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910202661.5 (22)申请日 2019.03.18 (71)申请人 黄金龙 地址 102200 北京市昌平区西三旗上奥世 纪中心6-5-101 (72)发明人 黄金龙  (74)专利代理机构 泰州地益专利事务所 32108 代理人 骆震洲 (51)Int.Cl. C04B 30/02(2006.01) (54)发明名称 一种改性二氧化硅粉体/二氧化硅纳米纤维 复合气凝胶材料及其制备方法 (57)摘要 本发明提供了改性二氧化硅粉体/二氧化硅 纳米纤维交叉梯度复合气凝胶材料及其制备方 法。所述的改性二氧化硅粉体/二氧化硅纳米纤 维交叉梯度复合气凝胶材料,其特征在于,二氧 化硅纳米纤维作为气凝胶的三维立体框架结构, 单根纳米纤维间形成的空隙内部均匀的填充有 改性的纳米二氧化硅粉体,整块复合材料在厚度 上分成三层不同纳米二氧化硅粉体填充密度,二 氧化硅纳米纤维形成的三维立体框架使其具有 良好的压缩回弹性及强度。所得三维立体二氧化 硅粉体/二氧化硅纳米纤维气凝胶材料的体积密 度为10~1000mg/cm 3,平均孔径为0.05~1000μ m,拉伸强度为20~50kPa,压缩回弹率≥85%。所 得气凝胶材料内部结构为二氧化硅粉体均匀分 散在二氧化硅纤维形成的三维框架的网孔中,纤 维间相互交错贯穿形成孔隙,提高该气凝胶材料 的力学强度的同时,赋予了其高孔隙率、小孔径结构,使其在隔热保暖、吸音降噪等领域有广阔 的应用前景。权利要求书2页 说明书4页CN 109734413 A 2019.05.10 C N 109734413 A

位错介绍

直拉单晶硅中的位错 1.简介 尽管单晶硅石晶格最为完整的人工晶体,但是,依然存在晶格缺陷。 晶体硅的缺陷有多种类型。按照缺陷的结构分类,直拉单晶硅中主要存在点缺陷、位错、层错和微缺陷; 按照晶体生长和加工过程分类,可以分为晶体原生缺陷和二次诱生缺陷。原生缺陷是指晶体生长过程中引入的缺陷,对于直拉单晶硅而言,主要有点缺陷、位错和微缺陷;而二次诱生缺陷是指在硅片或器件加工过程中引入的缺陷,除点缺陷和位错以外,层错是主要可能引入的晶体缺陷。 对于太阳电池用直拉单晶硅,点缺陷的性能研究很少,其对太阳电池性能的影响不得而知;而普通硅太阳电池工艺的热处理步骤远少于集成电路,所以工艺诱生的层错也比较少。显然,在太阳电池用直拉单晶硅中,位错是主要的晶体缺陷。 直拉单晶硅位错的引入可以有三种途径。 一是在晶体生长时,由于籽晶的热冲击,会在晶体中引入原生位错。这种位错一旦产生,会从晶体的头部向尾部延伸,甚至能达到晶体的底部。但是,如果采用控制良好的“缩颈”技术,位错可以在引晶阶段排出晶体硅,所以,集成电路用直拉单晶硅已经能够做到没有热冲击产生的位错。另外,在晶体生长过程中,如果热场不稳定,产生热冲击,也能从固液界面处产生位错,延伸进入晶体硅。对于太阳电池用直拉单晶硅,因为晶体生长速度快,有时有可能会有热冲击位错产生。如果位错密度控制在一定范围内,对太阳电池的效率影响较小;否则,制备出的太阳电池效率就很低了。 二是在晶体滚圆、切片等加工工艺中,由于硅片表面存在机械损伤层,也会引入位错,在随后的热加工过程中,也可能延伸进入硅片体内。 三是热应力引入位错,这是由于在硅片的热加工过程中,由于硅片中心部位和边缘温度的不均匀分布,有可能导致位错的产生。 位错对太阳电池的效率有明显的负面作用,位错可以导致漏电流、p-n结软击穿,导致太阳电池效率的降低。所以,在直拉单晶硅的制备、加工和太阳电池的制造过程中应尽力避免位错的产生和增加。

单晶硅、多晶硅“氧碳含量测试仪”说明书

WQF-520型FTIR硅中氧、碳含量 测量分析系统 使用说明书 信息部电子第四十六所

WQF-520型FTIR硅中氧、碳含量测量分析系统使用说明书 一、仪器的规格与性能(由北京瑞利分析仪器公司提供) 1.1、波数范围7000cm-1~400cm-1 1.2、分辩率1.0 cm-1 1.3、波数准确度优于所设分辨率的1/2 1.4、透过率重复性0.5%T 二、测量条件 2.1、样品 2.1.1、试样 经双面研磨/单面抛光/双面抛光(机械/化学抛光)硅晶片均可。一般测量时,试样需用金刚砂305#粗磨和303#细磨,以致双面平行,表面无划痕,并且试样在1300 cm-1~900 cm-1范围内基线透过率不低于20%。 要求试样在室温下电阻率>0.1Ω.cm,试样的厚度范围为2.00mm—3.00mm。 2.1.2、参样 参样的厚度约为2.00mm,双面抛光呈镜面,并且参样中的氧、碳含量均小于1×1016cm-3。 2.2、测量精密度及检测下限 2.2.1、本方法在常温下测碳含量精密度为±20%,检测下限为1.0×1016 cm-3。对于低碳含量样品,多个实验室测量碳含量精密度,按照“硅中代位碳含量的红外吸收测量方法”国家标准(GB/T 1558-1997)为: +0.6*1016 SSD=0.134 N C 式中:SSD—试样的标准偏差,cm-3; —碳含量,cm-3 。 N C 2.2.2、本方法在常温下测氧含量分两种情况: (1) CZ-Si(直拉硅)中氧含量精密度为±10%。 (2) FZ-Si(区熔硅)中氧含量精密度为±20%,检测下限为1×1016 cm-3。符合“硅晶体中间隙氧含量的红外吸收测量方法”国家标准(GB/T 1557-89)的要求。 三、测量系统组成 3.1、硬件 3.1.1、正常运行的WQF-520型FTIR仪器一台。 3.1.2、通用微型计算机一台。 3.2、软件 测量分析软件光盘1张。 四、测量系统软件的功能介绍 4.1、主界面 进入Win窗口,点中窗口中的快捷方式“硅中氧、碳含量测量分析”图标,双击鼠标左键,启动自动测量系统,进入主界面(见图1)。

气凝胶的制备

气凝胶具有超轻、低密度、纳米微孔,特征是,具有超细蜂窝孔尺寸和多孔结构,由相互连接的聚合链连接而成。孔径一般低于 100 nm,气凝胶颗粒尺寸通常小于 20nm。它可以由无机材料(如二氧化硅、氧化铝等),有机材料(如聚酰亚胺、碳等),或混合材料(如凝胶玻璃等)而制得。 气凝胶是世界上最轻的固体材料,因其颜色呈现出淡蓝色,因此也被称为“蓝烟”,也有人将其称为“固体空气”。这也被列入了基尼斯世界纪录。复合气凝胶密胺海绵气凝胶毯具有柔软﹑易裁剪﹑密度小、防火阻燃﹑绿色环保等特性,其可替代玻璃纤维制品、石棉保温毡、硅酸盐纤维制品等不环保、保温性能差的传统柔性保温材料。 气凝胶的结构特征是拥有高通透性的圆筒形多分枝纳米多孔三位网络结构,拥有极高孔洞率、极低的密度、高比表面积、超高孔体积率,其体密度在0.003-0.500 g/cm-3范围内可调。(空气的密度为0.00129 g/cm-3)。 气凝胶最初是由S.Kistler命名,由于他采用超临界干燥方法成功制备了二氧化硅气凝胶,故将气凝胶定义为:湿凝胶经超临界干燥所得到的材料,称之为

气凝胶。在90年代中后期,随着常压干燥技术的出现和发展,90年代中后期普遍接受的气凝胶的定义是:不论采用何种干燥方法,只要是将湿凝胶中的液体被气体所取代,同时凝胶的网络结构基本保留不变,这样所得的材料都称为气凝胶。 气凝胶的制备通常由溶胶凝胶过程和超临界干燥处理构成。在溶胶凝胶过程中,通过控制溶液的水解和缩聚反应条件,在溶体内形成不同结构的纳米团簇,团簇之间的相互粘连形成凝胶体,而在凝胶体的固态骨架周围则充满化学反应后剩余的液态试剂。 为了防止凝胶干燥过程中微孔洞内的表面张力导致材料结构的破坏,采用超临界干燥工艺处理,把凝胶置于压力容器中加温升压,使凝胶内的液体发生相变成超临界态的流体,气液界面消失,表面张力不复存在,此时将这种超临界流体从压力容器中释放,即可得到多孔、无序、具有纳米量级连续网络结构的低密度气凝胶材料。

直拉单晶工艺常识

直拉单晶工艺常识 硅的固态密度:2.33克/㎝,液态密度2.54克/㎝,呈灰色金属光泽,性质较脆,切割时易断裂,比重较小,硬度较大,属于非金属,是极为重要的半导体元素,液态时其表面张力较大,从液态到固态时体积膨胀较多。 氧在硅晶体中的分布是不均匀的,一般头部含量高,尾部含量低,晶体中心部位含量高,边缘含量低。 碳在晶体中的分布是中心部位低,边缘部位高。 电阻率:单位面积材料对于两平行平面垂直通过电流的阻力, 晶向:一簇晶列的取向。 母合金:生产上常常将掺杂纯元素“稀释”成硅熔体叫做母合金。 偏度:晶体自然中轴线与晶向之间的夹角度数。 空穴:半导体价带结构中一种流动的空位,其作用就像一具具有正效质量的正电子荷一样。 迁移率:载流子在单位电场强度作用下的平均漂移速度。 载流子:固体中一种能传输电荷的载体,又称电载流。

少数载流子寿命:在光电作用下,非平衡少数载流子由产生到复合存在的平均时间。 杂质分凝:在结晶过程中,由于杂质偏析,出现杂质分配现象叫杂质分凝。 扩散:物质内部热运动导致原子或分子迁移的过程。 热对流:液体或气体流过固体表面时,由于固体对液体或气体分子有吸附与摩擦作用,于是从固态表面带发挥或给于固体以热,这种传递热的方式叫热对流。 热应力:是压缩力,也可以叫拉伸力,要看液体中心部位对边缘部分的相对收缩或膨胀而定,大小取决于晶体的温场分布。 温度梯度:只温度在某方向的变化率用DT/DR表示,指某点的温度T在R方向的变化率,在一定距离内某方向的温度相差越大,单位距离内温度变化越大,温度梯度也越大,反之越小。 对石英坩埚的质量要求:1.外观检查:无损伤,无裂纹,无明显划痕,无气泡,无杂质点,100%透明;2.耐高温:在1600℃下经16小时后不变形,不失透,经1500℃硅液作用下无白点;3.纯度:sio 299.99%-99.999%,其中硼含量小于10ppm;4.直径公差±1.5mm;5.高度公差±1mm。

纳米二氧化硅气凝胶简介

二氧化硅气凝胶简介 气凝胶(aerogels)通常是指以纳米量级超微颗粒相互聚集构成纳米多孔网络结构,并在网络孔隙中充满气态分散介质的轻质纳米固态材料。气凝胶是一种固体,但是99%都是由气体构成,外观看起来像云一样。气凝胶因其半透明的色彩和超轻重量,有时也被称为“固态烟”或“冻住的烟”。最常见的气凝胶为二氧化硅气凝胶。SiO2气凝胶是一种防热隔热性能非常优秀的轻质纳米多孔非晶固体材料,其孔隙率高达80-99.8%,孔洞的典型尺寸为1-100 nm,比表面积为200-1000 m2/g,而密度可低达3 kg/m3,室温导热系数可低达0.012 W/(m?k)。正是由于这些特点使气凝胶材料在热学、声学、光学、微电子、粒子探测方面有很广阔的应用潜力。 一、气凝胶发展历史早在1931年,Steven.S.Kistler就开始研究气凝胶。他最初采用的方法是用硅酸钠水溶液进行酸性浓缩,用超临界水再溶解二氧化硅,用乙醇交换孔隙中的水后,利用超临界流体干燥技术制成了最初的真正意义上的气凝胶。这种材料的特点是透明、低密度、高孔隙率。但受当时科研手段的限制,这种材料的研制并没有引起科学界的重视。上世纪七十年代,在法国政府的支持下,Stanislaus Teichner在寻找一种用于存储氧和火箭燃料的多孔材料的过程中,找到一种新的合成方法,即把溶胶- 凝胶化学方法用于二氧化硅气凝胶的制备中。这种方法推动了气凝胶科学的发展。此后,气凝胶科学和技术得到了快速发展。1983年Arlon Hunt 在Berkeley 实验室发现可用更安全、更廉价的二氧化硅气凝胶制作方法。与此同时,微结构材料研究小组发现可用具有更低临界温度和临界压力的二氧化碳超临界流体取代乙醇作为超临界干燥的流体,使得超临界干燥技术得以向实用化阶段迈进。八十年代后期,Larry Hrubesh 领导的研究者在Lawrence Livermore National Laboratory (LLNL) 制备了世界上最轻的二氧化硅气凝胶,密度是0.003 g/cm 3,仅有空气的3倍。不久之后,Rick Pekala(LLNL) 制备了有机气凝胶,包括间苯二酚-甲醛气凝胶、三聚氰胺-甲醛气凝胶。间苯二酚-甲醛气凝胶能够被热解得到纯碳气凝胶,该方法开创了气凝胶研究的新领域。进入九十年代以后,对于气凝胶领域的研究更为深入。据不完全统计,近年来在各类杂志上有关气凝胶的文章以达三千多篇。美国的Science 杂志把气凝胶列为十大热门科学之一。我国同济大学波耳固体物理研

直拉法单晶硅生长技术的现状

直拉法单晶硅生长技术的现状 摘要 综述了制造集成电路(IC)用直拉硅单晶生长的现状与发展。对大直径生长用磁场拉晶技术,硅片中缺陷的控制与利用(缺陷工程),大直径硅中新型原生空位型缺陷,硅外延片与SOI片,太阳电池级硅单和大直径直拉硅生长的计算机模拟,硅熔体与物性研究等进行了论述。 关键词:直拉硅单晶;扩散控制;等效微重力;空洞型缺陷;光电子转换效率;硅熔体结构 一、光伏产业的发展趋势,及对硅材料的前景要求,直拉法单晶硅生长技术是现在主流生长技术之一 光伏产业,是一种利用太阳能电池直接把光能转换为电能的环保型新能源产业。由于从太阳光能转换成电能的光电转换装置,是利用半导体器件的“光生伏打效应”原理进行光电转换的,因此把与太阳能发电系统构成链条关系的产业称为光伏产业。光伏产业的链条,包括:硅矿-硅矿石(石英砂)-工业硅(也称金属硅)-多晶硅、单晶硅-晶圆或多晶硅切片-太阳能电池-组件-发电系统。工业硅的纯度,一般为98-99.99%;太阳能级硅的纯度,一般要求在6N级即99.9999%以上。 与其他常规能源相比,光伏发电具有明显的优越性:一是高度的清洁性,发电过程中无损耗、无废物、无废气、无噪音、无毒害、无污染,不会导致“温室效应”和全球性气候变化;二是绝对的安全性,利用太阳能发电,对人、动物、植物无任何伤害或损害;三是普遍的实用性,不需开采和运输,使用方便,凡是有太阳照射的地方就能实现光伏发电,可广泛用于通信。交通、海事、军事等各个领域,上至航天器,下至家用电器,大到兆瓦级电站,小到玩具,都能运行光

伏发电;四是资源的充足性,太阳能是一种取之不尽用之不竭的自然能源。据计算,仅一秒钟发出的能量就相当于1.3亿亿吨标准煤燃烧时所放出的热量。而到达地球表面的太阳能,大约相当于目前全世界所有发电能力总和的20万倍。地球每天接收的太阳能,相当于全球一年所消耗的总能量的200倍。人类只要利用太阳每天光照的5%,就可以解决和满足全球所需能源。正因为如此,加上由于传统的化石能源是不可再生资源,越来越接近枯竭,世界各国越来越达成必须加快发展新的替代能源的共识,从而加大了政策扶持的力度,世界光伏产业呈现出蓬勃发展的势头,光伏产业正在向大批量生产和规模化应用发展,其运用几乎遍及所有用电领域。 从整体来看,世界各国对太阳能光伏发电的政策扶持力度在逐年加大。各国的补贴政策主要分为两类:一类是对安装光伏系统直接进行补贴,如日本;另一类是对光伏发电的上网电价进行设定,如德国、西班牙等国。而美国加利福尼亚州,则是将两种政策混合执行。 光伏科技的进步,使光电转换效率不断提高、光能发电成本不断降低。技术进步是降低光伏发电成本,提高光能利用效率、促进光伏产业和市场发展的重要因素。几十年来围绕着降低成本的各种研究开发项工作取得了显著成就,表现在电池效率不断提高。硅片厚度持续降低、产业化技术不断改进等方面,对降低光伏发电成本起到了决定性的作用。 多晶硅是太阳能电池必不可少的基础材料,其占到太阳能电池成本的80%,每生产1兆瓦太阳能电池需要12-14吨多晶硅。多晶硅主要采用化学提纯、物理提纯两种方法进行生产,其中化学提纯方法主要有西门子法(气象沉淀反应法)、硅烷热分解法、流态化床法,物理提纯方法主要有区域熔化提纯法(FZ)、定向凝固多晶硅锭法(筹造法)等等。 二、直拉法单晶生长技术的机械设备 上海汉虹的FT-CZ2008A、FT-CZ2208AE、FT-CZ2208A,西安理工大学的TDR80A-ZJS、TDR80B-ZJS、TDR80C-ZJS、TDR85A-ZJS、TDR95A-ZJS、TDR112A-ZJS,美国KAYEXCG3000、CG6000、KAYEX100PV、KAYEX120PV、KEYEX150,Vision300型,投料量分别为30kg、60kg、100kg、120kg、150kg、300kg,以及其他厂家的

相关文档
最新文档