吉林省农安县九年级中考数学动点问题精选汇编(附答案)

合集下载

(中考数学)动点问题专题训练(含答案)

(中考数学)动点问题专题训练(含答案)

中考专题训练 动点问题例1. 如图, 在ABC ∆中,AB AC =,AD BC ⊥于点D ,10BC cm =,8AD cm =. 点P 从点B 出发, 在线段BC 上以每秒3cm 的速度向点C 匀速运动, 与此同时, 垂直于AD 的直线m 从底边BC 出发, 以每秒2cm 的速度沿DA 方向匀速平移, 分别交AB 、AC 、AD 于E 、F 、H ,当点P 到达点C 时, 点P 与直线m 同时停止运动, 设运动时间为t 秒(0)t >.(1) 当2t =时, 连接DE 、DF ,求证: 四边形AEDF 为菱形;(2) 在整个运动过程中, 所形成的PEF ∆的面积存在最大值, 当PEF ∆的面积最大时, 求线段BP 的长;(3) 是否存在某一时刻t ,使PEF ∆为直角三角形?若存在, 请求出此时刻t 的值;若不存在, 请说明理由 .【解答】(1) 证明: 当2t =时,4DH AH ==,则H 为AD 的中点, 如答图 1 所示 . 又EF AD ⊥ ,EF ∴为AD 的垂直平分线,AE DE ∴=,AF DF =.AB AC = ,AD BC ⊥于点D ,AD BC ∴⊥,B C ∠=∠.//EF BC ∴,AEF B ∴∠=∠,AFE C ∠=∠,AEF AFE ∴∠=∠,AE AF ∴=,AE AF DE DF ∴===,即四边形AEDF 为菱形 .(2) 解: 如答图 2 所示, 由 (1) 知//EF BC ,AEF ABC ∴∆∆∽, ∴EF AH BC AD =,即82108EF t -=,解得:5102EF t =-. 221155510(10)210(2)10(0)222223PEF S EF DH t t t t t t ∆==-=-+=--+<< , ∴当2t =秒时,PEF S ∆存在最大值, 最大值为210cm ,此时36BP t cm ==.(3) 解: 存在 . 理由如下:①若点E 为直角顶点, 如答图 3①所示,此时//PE AD ,2PE DH t ==,3BP t =.//PE AD ,∴PE BP AD BD =,即2385t t =,此比例式不成立, 故此种情形不存在; ②若点F 为直角顶点如答图 3②所示,此时//PF AD ,2PF DH t ==,3BP t =,103CP t =-.//PF AD ,∴PF CP AD CD =,即210385t t -=,解得4017t =;③若点P 为直角顶点,如答图③所示 .过点E 作EM BC ⊥于点M ,过点F 作FN BC ⊥于点N ,则2EM FN DH t ===,////EM FN AD .//EM AD ,∴EM BM AD BD =,即285t BM =,解得54BM t =, 57344PM BP BM t t t ∴=-=-=. 在Rt EMP ∆中, 由勾股定理得:2222227113(2)()416PE EM PM t t t =+=+=. //FN AD ,∴FN CN AD CD =,即285t CN =,解得54CN t =, 5171031044PN BC BP CN t t t ∴=--=--=-. 在Rt FNP ∆中, 由勾股定理得:22222217353(2)(10)85100416PF FN PN t t t t =+=+-=-+. 在Rt PEF ∆中, 由勾股定理得:222EF PE PF =+, 即:2225113353(10)()(85100)21616t t t t -=+-+ 化简得:21833508t t -=, 解得:280183t =或0t =(舍 去) 280183t ∴=. 综上所述, 当4017t =秒或280183t =秒时,PEF ∆为直角三角形 .例2. 如图, 在同一平面上, 两块斜边相等的直角三角板Rt ABC ∆和Rt ADC ∆拼在一起,使斜边AC 完全重合, 且顶点B ,D 分别在AC 的两旁,90ABC ADC ∠=∠=︒,30CAD ∠=︒,4AB BC cm ==(1) 填空:AD = )cm ,DC = ()cm(2) 点M ,N 分别从A 点,C 点同时以每秒1cm 的速度等速出发, 且分别在AD ,CB 上沿A D →,C B →方向运动, 当N 点运动到B 点时,M 、N 两点同时停止运动, 连接MN ,求当M 、N 点运动了x 秒时, 点N 到AD 的距离 (用 含x 的式子表示)(3) 在 (2) 的条件下, 取DC 中点P ,连接MP ,NP ,设PMN ∆的面积为2()y cm ,在整个运动过程中,PMN ∆的面积y 存在最大值, 请求出y 的最大值 .(参考数据sin 75︒=sin15︒=【解答】解: (1)90ABC ∠=︒ ,4AB BC cm ==,AC ∴===,90ADC ∠=︒ ,30CAD ∠=︒,12DC AC ∴==,AD ∴==;故答案为:,;(2) 过点N 作NE AD ⊥于E ,作NF DC ⊥,交DC 的延长线于F ,如图所示:则NE DF =,90ABC ADC ∠=∠=︒ ,AB BC =,30CAD ∠=︒,45ACB ∴∠=︒,60ACD ∠=︒,180456075NCF ∴∠=︒-︒-︒=︒,15FNC ∠=︒,sinFC FNCNC ∠=,NC x=,FC x∴=,NE DF x∴==+,∴点N到ADx+;(3)sinFN NCFNC ∠=,FN x∴=,P为DC的中点,PD CP∴==PF x∴=PMN∴∆的面积y=梯形MDFN的面积PMD-∆的面积PNF-∆的面积111)) 222x x x x=+-+--+2x x=+,即y是x的二次函数,0<,y∴有最大值,当x==时,y=.例3. 如图,BD 是正方形ABCD 的对角线,2BC =,边BC 在其所在的直线上平移, 将通过平移得到的线段记为PQ ,连接PA 、QD ,并过点Q 作QO BD ⊥,垂足为O ,连接OA 、OP .(1) 请直接写出线段BC 在平移过程中, 四边形APQD 是什么四边形?(2) 请判断OA 、OP 之间的数量关系和位置关系, 并加以证明;(3) 在平移变换过程中, 设OPB y S ∆=,(02)BP x x =……,求y 与x 之间的函数关系式,并求出y 的最大值 .【解答】(1) 四边形APQD 为平行四边形;(2)OA OP =,OA OP ⊥,理由如下:四边形ABCD 是正方形,AB BC PQ ∴==,45ABO OBQ ∠=∠=︒,OQ BD ⊥ ,45PQO ∴∠=︒,45ABO OBQ PQO ∴∠=∠=∠=︒,OB OQ ∴=,在AOB ∆和OPQ ∆中,AB PQABO PQO BO QO=⎧⎪∠=∠⎨⎪=⎩()AOB POQ SAS ∴∆≅∆,OA OP ∴=,AOB POQ ∠=∠,90AOP BOQ ∴∠=∠=︒,OA OP ∴⊥;(3) 如图, 过O 作OE BC ⊥于E .①如图 1 ,当P 点在B 点右侧时,则2BQ x =+,22x OE +=, 1222x y x +∴=⨯,即211(1)44y x =+-, 又02x ……,∴当2x =时,y 有最大值为 2 ;②如图 2 ,当P 点在B 点左侧时,则2BQ x =-,22x OE -=, 1222x y x -∴=⨯ ,即211(1)44y x =--+, 又02x ……,∴当1x =时,y 有最大值为14; 综上所述,∴当2x =时,y 有最大值为 2 .例4. 如图, 在平面直角坐标系中,O 为原点, 四边形ABCO 是矩形, 点A ,C 的坐标分别是(0,2)A 和C ,0),点D 是对角线AC 上一动点 (不 与A ,C 重合) ,连结BD ,作DE DB ⊥,交x 轴于点E ,以线段DE ,DB 为邻边作矩形BDEF .(1) 填空: 点B 的坐标为 ;(2) 是否存在这样的点D ,使得DEC ∆是等腰三角形?若存在, 请求出AD 的长度;若不存在, 请说明理由;(3)①求证:DE DB =; ②设AD x =,矩形BDEF 的面积为y ,求y 关于x 的函数关系式 (可 利用①的结论) ,并求出y 的最小值 .【解答】解: (1) 四边形AOCB 是矩形,2BC OA ∴==,OC AB ==90BCO BAO ∠=∠=︒,B ∴2).故答案为2).(2) 存在 . 理由如下:2OA = ,OC =,tan AO ACO OC ∠== , 30ACO ∴∠=︒,60ACB ∠=︒①如图 1 中, 当E 在线段CO 上时,DEC ∆是等腰三角形, 观察图象可知, 只有ED EC =,30DCE EDC ∴∠=∠=︒,60DBC BCD ∴∠=∠=︒,DBC ∴∆是等边三角形,2DC BC ∴==,在Rt AOC ∆中,30ACO ∠=︒ ,2OA =,24AC AO ∴==,422AD AC CD ∴=-=-=.∴当2AD =时,DEC ∆是等腰三角形 .②如图 2 中, 当E 在OC 的延长线上时,DCE ∆是等腰三角形, 只有CD CE =,15DBC DEC CDE ∠=∠=∠=︒,75ABD ADB ∴∠=∠=︒,AB AD ∴==,综上所述, 满足条件的AD 的值为 2 或(3)①如图 1 ,过点D 作MN AB ⊥交AB 于M ,交OC 于N ,(0,2)A 和C ,0),∴直线AC 的解析式为2y x =+,设(,2)D a +,2DN ∴=+,BM a =90BDE ∠=︒ ,90BDM NDE ∴∠+∠=︒,90BDM DBM ∠+∠=︒,DBM EDN ∴∠=∠,90BMD DNE ∠=∠=︒ ,BMD DNE ∴∆∆∽,∴DE DN BD BM ===②如图 2 中, 作DH AB ⊥于H .在Rt ADH ∆中,AD x = ,30DAH ACO ∠=∠=︒,1122DH AD x ∴==,AH x ==,BH x ∴=, 在Rt BDH ∆中,BD ==,DE ∴==, ∴矩形BDEF的面积为22612)y x x ==-+,即2y x =-+,23)y x ∴=-+,0>,3x ∴=时,y .例5. 已知Rt OAB ∆,90OAB ∠=︒,30ABO ∠=︒,斜边4OB =,将Rt OAB ∆绕点O 顺时针旋转60︒,如图 1 ,连接BC .(1) 填空:OBC ∠= 60 ︒;(2) 如图 1 ,连接AC ,作OP AC ⊥,垂足为P ,求OP 的长度;(3) 如图 2 ,点M ,N 同时从点O 出发, 在OCB ∆边上运动,M 沿O C B →→路径匀速运动,N 沿O B C →→路径匀速运动, 当两点相遇时运动停止, 已知点M 的运动速度为 1.5 单位/秒, 点N 的运动速度为 1 单位/秒, 设运动时间为x 秒,OMN ∆的面积为y ,求当x 为何值时y 取得最大值?最大值为多少?【解答】解: (1) 由旋转性质可知:OB OC =,60BOC ∠=︒,OBC ∴∆是等边三角形,60OBC ∴∠=︒.故答案为 60 .(2) 如图 1 中,4OB = ,30ABO ∠=︒,122OA OB ∴==,AB ==11222AOC S OA AB ∆∴==⨯⨯=BOC ∆ 是等边三角形,60OBC ∴∠=︒,90ABC ABO OBC ∠=∠+∠=︒,AC ∴==2AOC S OP AC ∆∴===.(3)①当803x <…时,M 在OC 上运动,N 在OB 上运动,此时过点N 作NE OC ⊥且交OC 于点E .则sin 60NE ON x =︒= ,11 1.522OMN S OM NE x x ∆∴==⨯ ,2y x ∴=.83x ∴=时,y 有最大值, 最大值=. ②当843x <…时,M 在BC 上运动,N 在OB 上运动 .作MH OB ⊥于H . 则8 1.5BM x =-,sin 60 1.5)MH BM x =︒=- ,212y ON MH x ∴=⨯⨯=+.当83x =时,y 取最大值,y < ③当4 4.8x <…时,M 、N 都在BC 上运动, 作OG BC ⊥于G .12 2.5MN x =-,OG AB ==,12y MN OG ∴== ,当4x =时,y 有最大值, 最大值=,综上所述,y 有最大值, .。

吉林省农安县中考数学《计算 统计和证明》专项训练含答案

吉林省农安县中考数学《计算 统计和证明》专项训练含答案

中考数学计算、统计和证明专项训练(一)三、解答题16. (8分)先化简,再求值:,其中x 是不等式组的整数解、17. (9分)图1表示的是某综合商场今年1~5月的商品各月销售总额的情况,图2表示的是商场服装部...各月销售额占商场当月销售总额的百分比情况,来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,观察图1、图2,解答下列问题: (1)请您依照题中信息将图1中的统计图补充完整、 (2)商场服装部...5月份的销售额是多少万元?(3)小刚观察图2后认为,5月份商场服装部...的销售额比4月份减少了。

您同意他的看法不?请说明理由、 18. (9分)已知菱形ABCD 中,∠B =60°,点E 在边B C上,点F 在边CD 上、(1)如图1,若E 是BC 的中点,∠AEF =60°,求 证:BE =DF ;(2)如图2,若∠EA F=60°,求证:△A EF是等边 三角形、中考数学计算、统计和证明专项训练(二)三、解答题16. (8分)先化简:,然后从不等式组的解集中,选取一个您认为符合题意的x 的值代入求值、 17. (9分)小明参加班长竞选,需进行演讲答辩与民主测评,民主测评时一人一票,按“优秀、良好、一般"三选一投票、如图是7位评委对小明“演讲答辩”的评分统计图及全班50位同学民主测评票数统计图。

(1)求评委给小明演讲答辩分数的众数,以及民主测评为“良好"票数的扇形圆心角度数;(2)小明的综合得分是多少?(3)在竞选中,小亮的民主测评得分为82分,如果他的综合得分不小于小明的综合得分,那么他的演讲答辩得分至少是多少分?18. (9分)已知:如图,在四边形ABCD 中,∠ABC =90°,CD ⊥A D,AD 2+CD 2=2AB 2、(1)求证:AB=BC ;(2)当BE ⊥AD 于点E 时,试证明:BE =AE+CD、 中考数学计算、统计和证明专项训练(三)三、解答题16. (8分)(1)若方程组的解是,求的值。

初三数学中考动点问题复习含答案

初三数学中考动点问题复习含答案
1.求A、B两点的坐标;
2.设△OMN的面积为S,直线l运动时间为t秒(0≤t≤6),试求S与t的函数表达式;
3.在题(2)的条件下,t为何值时,S的面积最大?最大面积是多少?
直线l从y轴出发,沿x轴正方向运动与菱形OABC的两边相交有三种情况:
①0≤t≤2时,直线l与OA、OC两边相交(如图①).
点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D匀速运动,
同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,
设运动的时间为t秒.
(1)当P点在边AB上运动时,点Q的横坐标 (长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;
(1)求S关于t的函数关系式;
(2)求S的最大值.
201206-002.如图,在平面直角坐标系中,四边形OABC为菱形,点C的坐标为(4,0),∠AOC=60°, 垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线l与菱形OABC的两边分别交于点M、N(点M在点N的上方).
2012年中考数学动点问题
201206-001如图,在平行四边形ABCD中,AD=4cm,∠A=60°,BD⊥AD.一动点P从A出发,以每秒1cm的速度沿AD.
1.当点P运动2秒时,设直线PM与AD相交于点E,求△APE的面积;
2.当点P运动2秒时,另一动点Q也从A出发沿A→B的路线运动,且在AB上以每秒1cm的速度匀速运动,(当P、Q中的某一点到达终点,则两点都停止运动.)过Q作直线QN,使QN∥PM,设点Q运动的时间为t秒(0≤t≤8),直线PM与QN截平行四边形ABCD所得图形的面积为S(cm2).
007(09济南)如图,在梯形 中, 动点 从 点出发沿线段 以每秒2个单位长度的速度向终点 运动;动点 同时从 点出发沿线段 以每秒1个单位长度的速度向终点 运动.设运动的时间为 秒.

2024年九年级数学中考总复习—几何动点题专项练习

2024年九年级数学中考总复习—几何动点题专项练习

中考总复习—几何动点题专项练习1.如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,D是边AB的中点.动点P从点B出发以每秒4个单位长度的速度向终点A运动,当点P与点D不重合时,以PD为边构造Rt△PDQ,使∠PDQ=∠A,∠DPQ=90°,且点Q与点C在直线AB同侧.设点P的运动时间为t秒.(1)求AB的长.(2)当点Q落在边AC上时,求t的值.(3)在不添加辅助线的情况下,当图中存在全等三角形时,求△PDQ与△ABC重叠部分图形的面积. (4)取边AC的中点E,连结EQ.当EQ//AB时,直接写出t的值、2。

如图,在△ABC中,AB=AC=5,BC=6.点D是边BC上的一点(点D不与点B、C重合),作射线AD,在射线AD上取点P,使AP=BD,以AP为边作正方形 APMN,使点M和点C在直线AD同侧.(1)当点D是边BC的中点时,求AD的长;(2)当BD=4时,点D到直线AC的距离为____________(3)连结PN,当PN⊥AC时,求正方形 APMN的边长;(4)若点N到直线AC的距离是点M到直线AC距离的3倍,则CD的长为____________(写出一个即可)3.如图,在△ABC中,AB=BC=10,tanB=4/3,AD⊥BC于点D,点M为AD的中点,点P从点A出发沿折线AB-BC以每秒5个单位的速度向终点C运动(点P不与△ABC的顶点重合),作点P关于点M的对称点P,取线段BP的中点Q,作△PP'Q.设点P的运动时间为t秒(1)当点P在AB上时,连结P'D,求证P'D//AB;(2)当点P在AB上,且点P落在边AC上时,求t的值;(3)当∠PQP'=90°时,求PQ的长;(4)作△P'DM和△AQM,当△P'DM与△AQM相似时,直接写出t的值4.如图,在矩形ABCD中,AD=6,AB=3,点P为边AD上的动点,点Q为折线BA-AD上的动点,且AP=BQ,当点P不与点A重合时,过点Q作QM⊥PQ,交边BC于点M,连结PM,将△PQM绕点P沿逆时针方向旋转得到△PQ'M',使点Q'落在线段PM上.(1)当点Q与点A重合时,线段PM的长为______________;(2)当点Q在边AB上时,求证:△PQM是等腰直角三角形;(3)当线段AQ长为2时,求△PQM的面积;(4)当点M'落在边BC上时,直接写出线段AP的长5.如图,△ABC为等边三角形,AB=4√3,AD⊥BC于点D.点P在线段AD上运动,当点P不与点A、D重合时,过点P作AB的垂线交折线AC-CB于点E,交边AB于点F,以EF、FB为边作矩形EFBH.设线段AP的长为2x.(1)线段AD的长为___________-(2)当点E在线段CD上时,用含x的代数式表示线段DE的长,并直接写出x的取值范围;(3)作点E关于直线AD的对称点E',作直线HE'①当点E在边AC上时,若HE'//AD,求线段HE'的长;②当直线HE'将矩形 EFBH分成两部分图形的面积比为1:3时,直接写出x的值.6.已知矩形纸片ABCD中,AB=6cm,BC=8cm,点E从点B出发,沿BC做匀速运动,点E运动的同时,将AB 沿AE所在直线折叠,得到△AFE.(1)如图①,点E运动到BC中点时,AF落在矩形 ABCD内,则tan∠EAF=_________(2)如图②,点E运动到C处时,EF与AD交于点G,求证:△AFG≌△EDG:(3)点E运动过程中,AF恰好落在AD边上时,EF与BD的交点为K,请在图③中画出△AFE的示意图.①直接写出线段DK的长.②延伸:若点E到达C点后继续匀速沿CD运动,直至到达点D停止,设点E的速度为1cm/s,则点E沿B-C-D运动的整个过程中,直接写出△AEF能覆盖点K的时长(含边界).(4)设BE=n,当0<n<6时,直接写出点下到BC的距离d(用含n的式子表示)。

初中数学吉林十年中考动点问题

初中数学吉林十年中考动点问题

初中数学吉林十年中考动点问题1.(2006•吉林)如图,正方形ABCD的边长为2cm,在对称中心O处有一钉子.动点P,Q同时从点A出发,点P沿A⇒B⇒C方向以每秒2cm的速度运动,到点C停止,点Q沿A⇒D方向以每秒1cm的速度运动,到点D停止.P,Q两点用一条可伸缩的细橡皮筋连接,设x秒后橡皮筋扫过的面积为ycm2.(1)当0≤x≤1时,求y与x之间的函数关系式;(2)当橡皮筋刚好触及钉子时,求x值;(3)当1≤x≤2时,求y与x之间的函数关系式,并写出橡皮筋从触及钉子到运动停止时∠POQ的变化范围;(4)当0≤x≤2时,请在给出的直角坐标系中画出y与x之间的函数图象.2.(2006•吉林)如图,在边长为8厘米的正方形ABCD内,贴上一个边长为4厘米的正方形AEFG,正方形ABCD未被盖住的部分为多边形EBCDGF.动点P从点B出发,沿B⇒C⇒D 方向以1厘米/秒速度运动,到点D停止,连接PA,PE.设点P运动x秒后,△APE与多边形EBCDGF重叠部分的面积为y厘米2.(1)当x=5时,求y的值;(2)当x=10时,求y的值;(3)求y与x之间的函数关系式;(4)在给出的直角坐标系中画出y与x之间的函数图象.3.(2007•吉林)如图①,在边长为8cm正方形ABCD中,E,F是对角线AC上的两个动点,它们分别从点A,点C同时出发,沿对角线以1cm/s同速度运动,过E作EH垂直AC交的直角边于H;过F作FG垂直AC交Rt△ACD的直角边于G,连接HG,EB.设HE,EF,FG,GH围成的图形面积为S1,AE,EB,BA围成的图形面积为S2(这里规定:线段的面积为0).E到达C,F到达A停止.若E的运动时间为xs,解答下列问题:(1)当0<x<8时,直接写出以E,F,G,H为顶点的四边形是什么四边形,并求x为何值时,S1=S2.(2)①若y是S1与S2的和,求y与x之间的函数关系式.(图②为备用图)②求y的最大值.4.(2008•吉林)如图①,在长为6厘米,宽为3厘米的矩形PQMN中,有两张边长分别为二厘米和一厘米的正方形纸片ABCD和EFGH,且BC且在PQ上,PB=1厘米,PF=厘米,从初始时刻开始,纸片ABCD沿PQ以2厘米每秒的速度向右平移,同时纸片EFGH沿PN 以1厘米每秒的速度向上平移,当C点与Q点重合时,两张图片同时停止移动,设平移时间为t秒时,(如图②),纸片ABCD扫过的面积为S1,纸片EFGH扫过的面积为S2,AP,PG,GA所围成的图形面积为S(这里规定线段面积为零,扫过的面积含纸片面积).解答下列问题:(1)当t=时,PG=,PA=时,PA PG+GA(填=或≠);(2)求S与t之间的关系式;(3)请探索是否存在t值(t>),使S1+S2=4S+5.若存在,求出t值;若不存在,说明理由.5.(2009•吉林)如图所示,菱形ABCD的边长为6厘米,∠B=60度.从初始时刻开始,点P、Q同时从A点出发,点P以1厘米/秒的速度沿A→C→B的方向运动,点Q以2厘米/秒的速度沿A→B→C→D的方向运动,当点Q运动到D点时,P、Q两点同时停止运动,设P、Q运动的时间为x秒时,△APQ与△ABC重叠部分的面积为y平方厘米(这里规定:点和线段是面积为0的三角形),解答下列问题:(1)点P、Q从出发到相遇所用时间是秒;(2)点P、Q从开始运动到停止的过程中,当△APQ是等边三角形时x的值是秒;(3)求y与x之间的函数关系式.6.(2010•吉林)如图,在等腰梯形ABCD中,AD∥BC,AE⊥BC于点E.DF⊥BC于点F.AD=2cm,BC=6cm,AE=4cm.点P、Q分别在线段AE、DF上,顺次连接B、P、Q、C,线段BP、PQ、QC、CB所围成的封闭图形记为M,若点P在线段AE上运动时,点Q 也随之在线段DF上运动,使图形M的形状发生改变,但面积始终为10cm2,设EP=xcm,FQ=ycm.解答下列问题:(1)直接写出当x=3时y的值;(2)求y与x之间的函数关系式,并写出自变量x的取值范围;(3)当x取何值时,图形M成为等腰梯形?图形M成为三角形?(4)直接写出线段PQ在运动过程中所能扫过的区域的面积.7.(2011•吉林)如图,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于点E,AD=8cm,BC=4cm,AB=5cm.从初始时刻开始,动点P,Q 分别从点A,B同时出发,运动速度均为1cm/s,动点P沿A﹣B﹣﹣C﹣﹣E的方向运动,到点E停止;动点Q沿B﹣﹣C﹣﹣E ﹣﹣D的方向运动,到点D停止,设运动时间为xs,△PAQ的面积为ycm2,(这里规定:线段是面积为0的三角形)解答下列问题:(1)当x=2s时,y=cm2;当x=s时,y=cm2.(2)当5≤x≤14 时,求y与x之间的函数关系式.(3)当动点P在线段BC上运动时,求出S梯形ABCD时x的值.(4)直接写出在整个运动过程中,使PQ与四边形ABCE的对角线平行的所有x的值.8.(2012•吉林)如图,在△ABC中,∠A=90°,AB=2cm,AC=4cm.动点P从点A出发,沿AB方向以1cm/s的速度向点B运动,动点Q从点B同时出发,沿BA方向以1cm/s的速度向点A运动.当点P到达点B时,P,Q两点同时停止运动,以AP为一边向上作正方形APDE,过点Q作QF∥BC,交AC于点F.设点P的运动时间为ts,正方形和梯形重合部分的面积为Scm2.(1)当t=s时,点P与点Q重合;(2)当t=s时,点D在QF上;(3)当点P在Q,B两点之间(不包括Q,B两点)时,求S与t之间的函数关系式.9.(2013•吉林)如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.点D、E、F分别是边AB、BC、AC的中点,连接DE、DF,动点P,Q分别从点A、B同时出发,运动速度均为1cm/s,点P沿A→F→D的方向运动到点D停止;点Q沿BC的方向运动,当点P 停止运动时,点Q也停止运动.在运动过程中,过点Q作BC的垂线交AB于点M,以点P,M,Q为顶点作平行四边形PMQN.设平行四边形边形PMQN与矩形FDEC重叠部分的面积为y(cm2)(这里规定线段是面积为0有几何图形),点P运动的时间为x(s)(1)当点P运动到点F时,CQ=cm;(2)在点P从点F运动到点D的过程中,某一时刻,点P落在MQ上,求此时BQ的长度;(3)当点P在线段FD上运动时,求y与x之间的函数关系式.10.(2014•吉林)如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=6cm,BD=8cm,动点P,Q分别从点B,D同时出发,运动速度均为1cm/s,点P沿B→C→D运动,到点D 停止,点Q沿D→O→B运动,到点O停止1s后继续运动,到点B停止,连接AP,AQ,PQ.设△APQ的面积为y(cm2)(这里规定:线段是面积0的几何图形),点P的运动时间为x(s).(1)填空:AB=cm,AB与CD之间的距离为cm;(2)当4≤x≤10时,求y与x之间的函数解析式;(3)直接写出在整个运动过程中,使PQ与菱形ABCD一边平行的所有x的值.11.(2015•吉林)两个三角板ABC,DEF,按如图所示的位置摆放,点B与点D重合,边AB与边DE在同一条直线上(假设图形中所有的点,线都在同一平面内).其中,∠C=∠DEF=90°,∠ABC=∠F=30°,AC=DE=6cm.现固定三角板DEF,将三角板ABC沿射线DE 方向平移,当点C落在边EF上时停止运动.设三角板平移的距离为x(cm),两个三角板重叠部分的面积为y(cm2).(1)当点C落在边EF上时,x=cm;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)设边BC的中点为点M,边DF的中点为点N.直接写出在三角板平移过程中,点M 与点N之间距离的最小值.12.(2006•长春)如图,在平面直角坐标系中,两个函数y=x,y=﹣x+6的图象交于点A.动点P从点O开始沿OA方向以每秒1个单位的速度运动,作PQ∥x轴交直线BC于点Q,以PQ为一边向下作正方形PQMN,设它与△OAB重叠部分的面积为S.(1)求点A的坐标.(2)试求出点P在线段OA上运动时,S与运动时间t(秒)的关系式.(3)在(2)的条件下,S是否有最大值若有,求出t为何值时,S有最大值,并求出最大值;若没有,请说明理由.(4)若点P经过点A后继续按原方向、原速度运动,当正方形PQMN与△OAB重叠部分面积最大时,运动时间t满足的条件是.13.(2006•长春)如图1,正方形ABCD的顶点A,B的坐标分别为(0,10),(8,4),顶点C,D在第一象限.点P从点A出发,沿正方形按逆时针方向运动,同时,点Q从点E (4,0)出发,沿x轴正方向以相同速度运动.当点P到达点C时,P,Q两点同时停止运动.设运动时间为t(s).(1)求正方形ABCD的边长;(2)当点P在AB边上运动时,△OPQ的面积S(平方单位)与时间t(s)之间的函数图象为抛物线的一部分(如图2所示),求P,Q两点的运动速度;(3)求(2)中面积S(平方单位)与时间t(s)的函数解析式及面积S取最大值时点P的坐标;(4)若点P,Q保持(2)中的速度不变,则点P沿着AB边运动时,∠OPQ的大小随着时间t的增大而增大;沿着BC边运动时,∠OPQ的大小随着时间t的增大而减小.当点P沿着这两边运动时,能使∠OPQ=90°吗?若能,直接写出这样的点P的个数;若不能,直接写不能.14.(2007•长春)如图,在平面直角坐标系中,直线y=﹣x+b(b>0)分别交x轴,y轴于A,B两点,以OA,OB为边作矩形OACB,D为BC的中点.以M(4,0),N(8,0)为斜边端点作等腰直角三角形PMN,点P在第一象限,设矩形OACB与△PMN重叠部分的面积为S.(1)求点P的坐标.(2)当b值由小到大变化时,求S与b的函数关系式.(3)若在直线y=﹣x+b(b>0)上存在点Q,使∠OQM等于90°,请直接写出b的取值范围.(4)在b值的变化过程中,若△PCD为等腰三角形,请直接写出所有符合条件的b值.15.(2008•长春)如图,在直角坐标系中,四边形OABC为矩形,A(8,0),C(0,6),点M是OA的中点,P、Q两点同时从点M出发,点P沿x轴向右运动;点Q沿x轴先向左运动至原点O后,再向右运动到点M停止,点P随之停止运动.P、Q两点运动的速度均为每秒1个单位.以PQ为一边向上作正方形PRLQ.设点P的运动时间为t(秒),正方形PRLQ与矩形OABC重叠部分(阴影部分)的面积为S(平方单位).(1)用含t的代数式表示点P的坐标;(2)分别求当t=1,t=5时,线段PQ的长;(3)求S与t之间的函数关系式;(4)连接AC.当正方形PRLQ与△ABC的重叠部分为三角形时,直接写出t的取值范围.16.(2009•长春)如图,直线y=﹣x+6分别与x轴、y轴交于A、B两点;直线y=x与AB交于点C,与过点A且平行于y轴的直线交于点D.点E从点A出发,以每秒1个单位的速度沿x轴向左运动.过点E作x轴的垂线,分别交直线AB、OD于P、Q两点,以PQ为边向右作正方形PQMN.设正方形PQMN与△ACD重叠部分(阴影部分)的面积为S(平方单位),点E的运动时间为t(秒).(1)求点C的坐标.(2)当0<t<5时,求S与t之间的函数关系式.(3)求(2)中S的最大值.(4)当t>0时,直接写出点(4,)在正方形PQMN内部时t的取值范围.参考公式:二次函数y=ax2+bx+c图象的顶点坐标为().17.(2010•长春)如图1,在平面直角坐标系中,等腰直角△AOB的斜边OB在x轴上,顶点A的坐标为(3,3),AD为斜边上的高,抛物线y=ax2+2x与直线y=x交于点O,C,点C的横坐标为6,点P在x轴的正半轴上,过点P作PE∥y轴.交射线OA于点E.设点P的横坐标为m,以A,B,D,E为顶点的四边形的面积为S.(1)求OA所在直线的解析式.(2)求a的值.(3)当m≠3时,求S与m的函数关系式.(4)如图2,设直线PE交射线OC于点R,交抛物线于点Q,以RQ为一边,在RQ的右侧作矩形RQMN,其中RN=.直接写出矩形RQMN与△AOB重叠部分为轴对称图形时m 的取值范围.18.(2011•长春)如图,∠C=90°,点A、B在∠C的两边上,CA=30,CB=20,连接AB.点P从点B出发,以每秒4个单位长度的速度沿BC方向运动,到点C停止.当点P与B、C 两点不重合时,作PD丄BC交AB于D,作DE丄AC于E,F为射线CB上一点,且∠CEF=∠ABC.设点P的运动时间为x(秒).(1)用含有x的代数式表示CE的长.(2)求点F与点B重合时x的值.(3)当点F在线段CB上时,设四边形DECP与四边形DEFB重叠部分图形的面积为y(平方单位).求y与x之间的函数关系式.(4)当x为某个值时,沿PD将以D、E、F、B为顶点的四边形剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的x 值.19.(2012•长春)如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm.D、E分别为边AB、BC的中点,连接DE.点P从点A出发,沿折线AD﹣DE﹣EB运动,到点B停止.点P在线段AD上以cm/s的速度运动,在折线DE﹣EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M在线段AQ上.设点P的运动时间为t(s).(1)当点P在线段DE上运动时,线段DP的长为cm(用含t的代数式表示).(2)当点N落在AB边上时,求t的值.(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.(4)连接CD,当点N与点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s的速度沿M﹣N﹣M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P在线段EB上运动时,点H始终在线段MN的中点处,直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围.20.(2013•长春)如图①,在▱ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B﹣A﹣D﹣A运动,沿B﹣A运动时的速度为每秒13个单位长度,沿A﹣D﹣A运动时的速度为每秒8个单位长度.点Q从点B出发沿BC方向运动,速度为每秒5个单位长度.P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.(1)当点P沿A﹣D﹣A运动时,求AP的长(用含t的代数式表示).(2)连结AQ,在点P沿B﹣A﹣D运动过程中,当点P与点B、点A不重合时,记△APQ 的面积为S.求S与t之间的函数关系式.(3)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B﹣A﹣D﹣A运动过程中,当线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值.(4)设点C、D关于直线PQ的对称点分别为C′、D′,直接写出C′D′∥BC时t的值.21.(2014•长春)如图,在矩形ABCD中,AB=4,BC=3,点O为对角线BD的中点,点P 从点A出发,沿折线AD﹣DO﹣OC以每秒1个单位长度的速度向终点C运动,当点P与点A不重合时,过点P作PQ⊥AB于点Q,以PQ为边向右作正方形PQMN,设正方形PQMN 与△ABD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).(1)求点N落在BD上时t的值;(2)直接写出点O在正方形PQMN内部时t的取值范围;(3)当点P在折线AD﹣DO上运动时,求S与t之间的函数关系式;(4)直接写出直线DN平分△BCD面积时t的值.22.(2015•长春)如图,在等边△ABC中,AB=6,AD⊥BC于点D.点P在边AB上运动,过点P作PE∥BC,与边AC交于点E,连结ED,以PE、ED为邻边作▱PEDF.设▱PEDF 与△ABC重叠部分图形的面积为y,线段AP的长为x(0<x<6).(1)求线段PE的长.(用含x的代数式表示)(2)当四边形PEDF为菱形时,求x的值.(3)求y与x之间的函数关系式.(4)设点A关于直线PE的对称点为点A′,当线段A′B的垂直平分线与直线AD相交时,设其交点为Q,当点P与点Q位于直线BC同侧(不包括点Q在直线BC上)时,直接写出x的取值范围.。

中考数学动点问题(含答案)

中考数学动点问题(含答案)

中考数学之 动点问题一、选择题:1. 如图,在矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△ABC 的面积是( )94xyOPDA 、10B 、16C 、18D 、20 二、填空题:1. 如上右图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE 、AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ.以下五个结论:①AD=BE ;②PQ ∥AE ;③AP=BQ ;④DE=DP ;⑤∠AOB=60°. 恒成立的结论有_______________________(把你认为正确的序号都填上)。

三、解答题:1.(2008年大连)如图12,直角梯形ABCD 中,AB ∥CD ,∠A = 90°,CD = 3,AD = 4,tan B = 2,过点C 作CH ⊥AB ,垂足为H .点P 为线段AD 上一动点,直线PM ∥AB ,交BC 、C H 于点M 、Q .以PM 为斜边向右作等腰Rt △PMN ,直线MN 交直线AB 于点E ,直线PN 交直线A B 于点F .设PD 的长为x ,EF 的长为y . ⑴求PM 的长(用x 表示);⑵求y 与x 的函数关系式及自变量x 的取值范围(图13为备用图); ⑶当点E 在线段AH 上时,求x 的取值范围(图14为备用图).Q POBED CA图 13图 14图 12HBCDHBCDHM QP DCBA2.(2008年福建宁德)如图1,在Rt △ABC 中,∠C =90°,BC =8厘米,点D 在AC 上,CD =3厘米.点P 、Q 分别由A 、C 两点同时出发,点P 沿AC 方向向点C 匀速移动,速度为每秒k 厘米,行完AC 全程用时8秒;点Q 沿CB 方向向点B 匀速移动,速度为每秒1厘米.设运动的时间为x 秒()80<x<,△DCQ 的面积为y 1平方厘米,△PCQ 的面积为y 2平方厘米.⑴求y 1与x 的函数关系,并在图2中画出y 1的图象;⑵如图2,y 2的图象是抛物线的一部分,其顶点坐标是(4,12),求点P 的速度及AC 的长;⑶在图2中,点G 是x 轴正半轴上一点(0<OG <6=,过G 作EF 垂直于x 轴,分别交y 1、y2于点E、F.①说出线段EF的长在图1中所表示的实际意义;②当0<x<6时,求线段EF长的最大值.3.(2008年白银)如图,在平面直角坐标系中,四边形OABC 是矩形,点B 的坐标为(4,3).平行于对角线AC 的直线m 从原点O 出发,沿x 轴正方向以每秒1个单位长度的速度运动,设直线m 与矩形OABC 的两边..分别交于点M 、N ,直线m 运动的时间为t (秒). (1) 点A 的坐标是__________,点C 的坐标是__________; (2) 当t= 秒或秒时,MN=21AC ; (3) 设△OMN 的面积为S ,求S 与t 的函数关系式;(4) 探求(3)中得到的函数S 有没有最大值?若有,求出最大值;若没有,要说明理由.图1C Q → BDAP ↓ 图2G 2 4 6 8 10 1210 86 4 2 yOx参考答案一、选择 A二、填空:(1)(2)(3)(5) 三、解答:2、解:⑴∵CD CQ S DCQ ⋅⋅=∆21,CD =3,CQ =x ,∴x y 231=. 图象如图所示.⑵方法一:CP CQ S PCQ ⋅⋅=∆21,CP =8k -xk ,CQ =x , ∴()kx kx x kx k y 42182122+-=⋅-⨯=.∵抛物线顶点坐标是(4,12),∴12444212=⋅+⋅-k k . 解得23=k .则点P 的速度每秒23厘米,AC =12厘米.方法二:观察图象知,当x=4时,△PCQ 面积为12. 此时PC =AC -AP =8k -4k =4k ,CQ =4.∴由CP CQ S PCQ ⋅⋅=∆21,得12244=⨯k .解得23=k . 则点P 的速度每秒23厘米,AC =12厘米.方法三:设y 2的图象所在抛物线的解析式是c bx ax y ++=2. ∵图象过(0,0),(4,12),(8,0),∴⎪⎩⎪⎨⎧=++=++=.0864124160c b a c b a c ,, 解得 ⎪⎪⎩⎪⎪⎨⎧==-=.0643c b a ,, ∴x x y 64322+-=. ①∵CP CQ S PCQ ⋅⋅=∆21,CP =8k -xk ,CQ =x ,∴kx kx y 42122+-=. ②比较①②得23=k .则点P 的速度每秒23厘米,AC =12厘米.⑶①观察图象,知线段的长EF =y 2-y 1,表示△PCQ 与△DCQ 的面积差(或△PDQ 面积).②由⑵得 x x y 64322+-=.(方法二,x x x x y 643232382122+-=⋅⎪⎭⎫ ⎝⎛-⨯⨯=)∵EF =y 2-y 1, ∴EF =x x x x x 29432364322+-=-+-, ∵二次项系数小于0,∴在60<x<范围,当3=x 时,427=EF 最大. 3、解:(1)(4,0),(0,3); ··················· 2分 (2) 2,6; ····························· 4分 (3) 当0<t≤4时,OM =t . 由△OMN ∽△OAC ,得OCONOA OM =, ∴ ON =t 43,S=283t . ··········· 6分 当4<t <8时,如图,∵ OD =t ,∴ AD = t-4. 方法一:由△DAM ∽△AOC ,可得AM =)4(43-t ,∴ BM =6-t 43. ·········· 7分 由△BMN ∽△BAC ,可得BN =BM 34=8-t ,∴ CN =t-4. ··········· 8分S=矩形OABC 的面积-Rt△OAM 的面积- Rt△MBN 的面积- Rt△NCO 的面积=12-)4(23-t -21(8-t )(6-t 43)-)4(23-t =t t 3832+-. ·························· 10分方法二:易知四边形ADNC 是平行四边形,∴ CN =AD =t-4,BN =8-t . ·········· 7分 由△BMN ∽△BAC ,可得BM =BN 43=6-t 43,∴ AM =)4(43-t . ······ 8分 以下同方法一. (4) 有最大值.方法一: 当0<t≤4时,∵ 抛物线S=283t 的开口向上,在对称轴t=0的右边, S 随t 的增大而增大, ∴ 当t=4时,S 可取到最大值2483⨯=6; ·············· 11分当4<t<8时,∵ 抛物线S=t t 3832+-的开口向下,它的顶点是(4,6),∴ S<6. 综上,当t=4时,S 有最大值6. ··················· 12分 方法二:∵ S=22304833488t t t t t ⎧<⎪⎪⎨⎪-+<<⎪⎩,≤,∴ 当0<t <8时,画出S 与t 的函数关系图像,如图所示. ······· 11分 显然,当t=4时,S 有最大值6. ·················· 12分说明:只有当第(3)问解答正确时,第(4)问只回答“有最大值”无其它步骤,可给1分;否则,不给分.。

中考数学总复习《(特殊)平行四边形的动点问题》专题训练(附答案)

中考数学总复习《(特殊)平行四边形的动点问题》专题训练(附答案)学校:___________班级:___________姓名:___________考号:___________1.已知,矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长;(2)如图2,动点P 、Q 分别从A 、C 两点同时出发,沿△AFB 和△CDE 各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.②若点P 、Q 的运动路程分别为a 、b (单位:cm ,ab ≠0),已知A 、C 、P 、Q 四点为顶点的四边形是平行四边形,求a 与b 满足的数量关系式.2.(1)如图1,点P 为矩形ABCD 对角线BD 上一点,过点P 作//EF BC ,分别交AB 、CD 于点E 、F .若2BE =,PF=6,AEP △的面积为1S ,CFP 的面积为2S ,则12S S +=________;(2)如图2,点P 为ABCD 内一点(点P 不在BD 上),点E 、F 、G 、H 分别为各边的中点.设四边形AEPH 的面积为1S ,四边形PFCG 的面积为2S (其中21S S >),求PBD △的面积(用含1S 、S的代数式表示);2(3)如图3,点P为ABCD内一点(点P不在BD上)过点P作//EF AD,HG//AB与各边分别相交于点E、F、G、H设四边形AEPH的面积为1S,四边形PGCF的面积为2S(其中21),S S求PBD△的面积(用含1S、2S的代数式表示);(4)如图4 点A B C D把O四等分.请你在圆内选一点P(点P不在AC BD 上)设PB PC BC围成的封闭图形的面积为1S PA PD AD围成的封闭图形的面积为2S PBD△的面积为3S PAC△的面积为4S.根据你选的点P的位置直接写出一个含有1S2S3S4S的等式(写出一种情况即可).3.已知直线y=x+4与x轴y轴分别交于A B两点∠ABC=60°BC与x轴交于点C.(1)试确定直线BC的解析式.(2)若动点P从A点出发沿AC向点C运动(不与A C重合)同时动点Q从C点出发沿CBA向点A运动(不与C A重合) 动点P的运动速度是每秒1个单位长度动点Q的运动速度是每秒2个单位长度.设△APQ的面积为S P点的运动时间为t秒求S与t的函数关系式并写出自变量的取值范围.(3)在(2)的条件下当△APQ的面积最大时y轴上有一点M 平面内是否存在一点N 使以A Q M N为顶点的四边形为菱形?若存在请直接写出N点的坐标;若不存在请说明理由.4.如图在等腰梯形ABCD中AB∥DC AB=8cm CD=2cm AD=6cm.点P 从点A出发以2cm/s的速度沿AB向终点B运动;点Q从点C出发以1cm/s的速度沿CD DA向终点A运动(P Q两点中有一个点运动到终点时所有运动即终止).设P Q同时出发并运动了t秒.(1)当PQ将梯形ABCD分成两个直角梯形时求t的值;(2)试问是否存在这样的t 使四边形PBCQ的面积是梯形ABCD面积的一半?若存在求出这样的t的值若不存在请说明理由.5.如图在平面直角坐标系中以坐标原点O为圆心2为半径画⊙O P是⊙O上一动点且P在第一象限内过点P作⊙O的切线与轴相交于点A与轴相交于点B.(1)点P在运动时线段AB的长度也在发生变化请写出线段AB长度的最小值并说明理由;(2)在⊙O上是否存在一点Q使得以Q O A P为顶点的四边形时平行四边形?若存在请求出Q点的坐标;若不存在请说明理由.6.如图已知长方形ABCD中AD=6cm AB=4cm 点E为AD的中点.若点P在线段AB上以1cm/s的速度由点A向点B运动同时点Q在线段BC上由点B向点C运动.(1)若点Q的运动速度与点P的运动速度相等经过1秒后△AEP与△BPQ是否全等请说明理由并判断此时线段PE和线段PQ的位置关系;(2)若点Q的运动速度与点P的运动速度相等运动时间为t秒设△PEQ的面积为Scm2请用t的代数式表示S;(3)若点Q的运动速度与点P的运动速度不相等当点Q的运动速度为多少时能够使△AEP与△BPQ全等?7.如图长方形ABCD中5cm,8cm==现有一动点P从A出发以2cm/s的速度沿AB BC----返回到点A停止设点P运动的时间为t秒.长方形的边A B C D At=时BP=___________cm;(1)当2(2)当t为何值时连接,,△是等腰三角形;CP DP CDP(3)Q为AD边上的点且6DQ=P与Q不重合当t为何值时以长方形的两个顶点及点P为顶点的三角形与DCQ全等.8.如图平行四边形ABCD中6cmB∠︒G是CD的中点E是BC==60AB=8cm边AD上的动点EG的延长线与BC的延长线交于点F连接CE DF.(1)求证:四边形CEDF是平行四边形;(2)①AE=______时四边形CEDF是矩形;②AE=______时四边形CEDF是菱形.9.在平面直角坐标系中点A在第一象限AB⊥x轴于点B AC⊥y轴于点C已知点B(b0)C(0 c)其中b c满足|b﹣8|6+-=0.c(1)直接写出点A坐标.(2)如图2 点D从点O出发以每秒1个单位的速度沿y轴正方向运动同时点E从点A出发以每秒2个单位的速度沿射线BA运动过点E作GE⊥y轴于点G设运动时间为t 秒当S四边形AEGC<S△DEG时求t的取值范围.(3)如图3 将线段BC平移使点B的对应点M恰好落在y轴负半轴上点C的对应点为N连接BN交y轴于点P当OM=4OP时求点M的坐标.10.如图在平面直角坐标系中点A B的坐标分别是(﹣4 0)(0 8)动点P从点O出发沿x轴正方向以每秒1个单位的速度运动同时动点C从点B出发沿12.在四边形ABCD中//,90,10cm,8cm∠=︒===点P从点A出发沿折线AB CD BCD AB AD BCABCD方向以3cm/s的速度匀速运动;点Q从点D出发沿线段DC方向以2cm/s的速度匀速运动.已知两点同时出发当一个点到达终点时另一点也停止运动设运动时间为()s t.(1)求CD的长;(2)当四边形PBQD为平行四边形时求四边形PBQD的周长;(3)在点P Q的运动过程中是否存在某一时刻使得BPQ的面积为220cm若存在请求出所有满足条件的t的值;若不存在请说明理由.13.在平面直角坐标系中矩形OABC的边OA任x轴上OC在y轴上B(4 3)点M从点A开始以每秒1个单位长度的速度沿AB→BC→CO运动设△AOM的面积为S 点M运动的时间为t.(1)当0<t<3时AM=当7<t<10时OM=;(用t的代数式表示)(2)当△AOM为等腰三角形时t=;(3)当7<t<10时求S关于t的函数关系式;(4)当S=4时求t的值.14.如图1 在平面直角坐标系中正方形OABC的边长为6 点A C分别在x y 正半轴上点B在第一象限.点P是x正半轴上的一动点且OP=t连结PC将线段PC绕点P顺时针旋转90度至PQ连结CQ取CQ中点M.(1)当t=2时求Q与M的坐标;(2)如图2 连结AM以AM AP为邻边构造平行四边形APNM.记平行四边形APNM 的面积为S.①用含t的代数式表示S(0<t<6).②当N落在△CPQ的直角边上时求∠CPA的度数;(3)在(2)的条件下连结AQ记△AMQ的面积为S'若S=S'则t=(直接写出答案).15.如图平面直角坐标系中矩形OABC的顶点B的坐标为(7 5)顶点A C 分别在x轴y轴上点D的坐标为(0 1)过点D的直线与矩形OABC的边BC交于点G 且点G不与点C重合以DG为一边作菱形DEFG 点E在矩形OABC的边OA 上设直线DG的函数表达式为y=kx+b(1)当CG=OD时求直线DG的函数表达式;(2)当点E的坐标为(5 0)时求直线DG的函数表达式;(3)连接BF 设△FBG的面积为S CG的长为a 请直接写出S与a的函数表达式及自变量a 的取值范围.16.如图 在四边形ABCD 中 //AD BC 3AD = 5DC = 42AB = 45B ∠=︒ 动点M 从点B 出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从点C 出发沿线段CD 以每秒1个单位长度的速度向终点D 运动 设运动的时间为s t .(1)求BC 的长.(2)当//MN AB 时 求t 的值(3)试探究:t 为何值时 MNC ∆为等腰三角形?参考答案:1.(1)证明:∵四边形ABCD 是矩形∴AD ∥BC∴∠CAD =∠ACB ∠AEF =∠CFE∵EF 垂直平分AC 垂足为O∴OA =OC∴△AOE ≌△COF∴OE =OF∴四边形AFCE 为平行四边形又∵EF ⊥AC∴四边形AFCE 为菱形设菱形的边长AF =CF =x cm 则BF =(8﹣x )cm在Rt △ABF 中 AB =4cm由勾股定理得42+(8﹣x )2=x 2解得x =5iii )如图3 当P 点在AB 上 Q 点在CD 上时 AP =CQ 即12﹣a =b 得a +b =12. 综上所述 a 与b 满足的数量关系式是a +b =12(ab ≠0).2.(1)过P 点作AB∥MN∵S 矩形AEPM +S 矩形DFPM =S 矩形CFPN +S 矩形DFPM =S 矩形ABCD -S 矩形BEPN又∵11,,22AEP CFP AEPM CFPN SS S S ==矩形矩形 ∴1==26=62AEP CFP S S ⨯⨯, ∴1212.S S +=(2)如图 连接PA PC在APB △中 因为点E 是AB 中点可设APE BPE S S a ==同理 ,,BPF CPF CPG DFG DPH APH S S b S S c S S d ======所以APE APH CPF AEPH PFCG CPG S S SS a b d S S c =+++=++++四边形四边形 BPE BPF DPH DPH EDFP HPGD S S S S S S a b c d +=+++=+++四边形四边形.所以12EBFP HPGD AEPH PFCG S S S S S S +++=+四边形四边形四边形四边形所以1212ABD ABCD SS S S ==+ 所以1DPH APH S S S a ==-. ()()()1121121PBD ABD BPE PDH S S S S S S S S a S a S S =-++=+-++-=-.(3)易证四边形EBGP 四边形HPFD 是平行四边形.EBP SHPD S .()()121211122222ABD ABCD EBF HPD EBP HPD SS S S S S S S S S ==+++=+++ ()()12112FBD ABD EBP HPD S S S S S S S =-++=-. (4)试题解析:(1)由已知得A 点坐标(﹣4﹐0) B 点坐标(0﹐43﹚ ∵OB=3OA ∴∠BAO=60° ∵∠ABC=60° ∴△ABC 是等边三角形 ∵O C=OA=4 ∴C 点坐标﹙4 0﹚ 设直线BC 解析式为y kx b =+∴ ∴直线BC 的解析式为343y x =-+; ﹙2﹚当P 点在AO 之间运动时 作QH⊥x 轴 ∵QH CQ OB CB= ∴2843QH t = ∴QH=3t ∴S △APQ =AP•QH=132t t ⋅=232t ﹙0<t≤4﹚ 同理可得S △APQ =t·﹙833t -﹚=23432t t -+﹙4≤t<8﹚∴223(04)2{343?(48)2t t S t t t <≤=-+≤<; (3)存在 如图当Q 与B 重合时 四边形AMNQ 为菱形 此时N 坐标为(4 0) 其它类似还有(﹣4 8)或(﹣4 ﹣8)或(﹣4 ).4.(1)53(2)存在 使四边形PBCQ 的面积是梯形ABCD 面积的一半.(1)过D 作DE⊥AB 于E 过C 作CF⊥AB 于F 通过Rt ADE Rt BCF ∆≅∆ 得AE BF = 若四边形APQD 是直角梯形 则四边形DEPQ 为矩形 通过AP AE EP =+ 代入t 值 即可求解(2)假设当时 通过点Q 在CD 上或在AD 上 两种情况进行讨论求解5.(1)线段AB 长度的最小值为4理由如下:连接OP如图② 设四边形APQO 为平行四边形因为OQ PA ∥ 90APO ︒∠=所以90POQ ︒∠= 又因为OP OQ =所以45PQO ︒∠= 因为PQ OA ∥所以PQ y ⊥轴.设PQ y ⊥轴于点H在Rt △OHQ 中 根据2,45OQ HQO ︒=∠= 得Q 点坐标为(2,2-)所以符合条件的点Q 的坐标为(2,2-)或(2,2-).6.(1)∵长方形ABCD∴∠A =∠B =90°∵点E 为AD 的中点 AD =6cm∴AE =3cm又∵P 和Q 的速度相等可得出AP =BQ =1cm BP =3 ∴AE =BP在△AEP 和△BQP 中∴y=xy 3=4-y⎧⎨⎩ 解得:x=1y=1⎧⎨⎩ (舍去). 综上所述,点Q 的运动速度为32cm /s 时能使两三角形全等.7.(1)1(2)54t =或4或232 (3) 3.5t = 5.5或10(1)解:动点P 的速度是2cm/s∴当2t =时 224AP =⨯=∵5cm AB =∴BP =1cm ;(2)解:①当点P 在AB 上时 CDP △是等腰三角形∴PD CP =在长方形ABCD 中 ,90AD BC A B =∠=∠=︒∴()HL DAP CBP ≌∴AP BP =∴1522AP AB ==∵动点P 的速度是2cm/s∵90D5DP CD == 2AB CB CD t ++=∴要使一个三角形与DCQ 全等①当点P运动到1P时16△≌△DCQ CDPCP DQ==此时1∴点P的路程为:1527AB BP+=+=∴72 3.5t=÷=;②当点P运动到2P时26△≌△CDQ ABPBP DQ==此时2∴点P的路程为:25611+=+=AB BP∴112 5.5t=÷=③当点P运动到3P时35△≌△CDQ BAP==此时3AP DQ∴点P的路程为:3585220AB BC CD DP+++=+++=∴20210t=÷=④当点P运动到4P时即P与Q重合时46△≌△CDQ CDPDP DQ==此时4∴点P的路程为:4585624+++=+++=AB BC CD DPt=÷=此结果舍去不符合题意∴24212综上所述t的值可以是: 3.5t= 5.5或10.8.(1)四边形ABCD是平行四边形∥∴BC AD∴∠=∠FCG EDGG是CD的中点∴=CG DG△中在CFG△和DEGCFG∴≅(ASA)DEGFG EG∴=又CG DG=∴四边形CEDF是平行四边形.2)①当5AE=如图过60B∠=12BM∴=5AE=DE AD∴=在MBA△BM DEB=⎧⎪∠=∠⎨⎪(SAS)MBA EDC∴≅CED AMB∴∠=∠四边形CEDF是平行四边形∴平行四边形CEDF②当2AE cm =时 四边形CEDF 是菱形 理由如下:四边形ABCD 是平行四边形8AD ∴= 6CD AB == 60CDE B ∠=∠=︒2AE =6DE AD AE ∴=-=DE CD ∴=CDE ∴∆是等边三角形CE DE ∴=四边形CEDF 是平行四边形∴平行四边形CEDF 是菱形故答案为:2;9.(1)解:∵|b ﹣8|6c +-=0∴b -8=0 c -6=0∴b =8 c =6∵B (b 0) C (0 c )∴B (8 0) C (0 6)又∵AB ⊥x 轴 AC ⊥y 轴∴A (8 6);(2)∵AB ⊥x 轴 AC ⊥y 轴 GE ⊥y 轴∴四边形AEGC 是矩形设运动时间为t 秒∴OD =t AE =2t DG =6+2t-t =6+t∴S 四边形AEGC =8×2t =16t S △DEG =12×(6+t )×8=4t +242∵OM=4OP∴-m=-4×62m解得m=-12综上所述m的值为-4或-12.10.(1)∵点A B的坐标分别是(﹣4 0)(0 8)∴OA=4 OB=8∵点C运动到线段OB的中点∴OC=BC=12OB=4∵动点C从点B出发沿射线BO方向以每秒2个单位的速度运动∴2t=4解之:t=2;∵PE=OA=4 动点P从点O出发沿x轴正方向以每秒1个单位的速度运动∴OE=OP+PE=t+4=2+4=6∴点E(6 0)(2)证明:∵四边形PCOD是平行四边形∴OC=PD OC∥PD当点C在y轴的负半轴上时③如果点M在DE上时24163(3)22t tt--=++解得423t=+④当N在CE上时28(3)8214tt tt-⋅++-=-+解得12t=综上分析可得满足条件的t的值为:t1=28﹣16 3t2=2 t3=4+2 3t4=12.11.(1) ()30D,,()1,3E;(2)933022933222572222t tS t tt t⎧⎛⎫-+≤≤⎪⎪⎝⎭⎪⎪⎛⎫=-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-≤⎪ ⎪⎝⎭⎩<(3)198s解:(1)3922y x=-+当y=0时39=022x-+则x=3 即点()30D,当y=3时39=322x-+则x=1 故点()1,3E故:()30D,,()1,3E;(2)如图1 ①当点P在OD段时此时0≤t<32119()2223233S PD OC t t=⨯⨯=⨯-⨯=-+;②当点P在点D时此时t=32此时三角形不存在0S=;''6ADP BEP S S -=-30232t t ⎛⎫≤≤ ⎪⎝⎭⎫<≤⎪;即当点P 在边AB 上运动 且PD PE +的值最小时 运动时间t 为198s . 12.(1)16cm ;(2)(8813)cm +;(3)53t =秒或395秒 解:(1)如图1过A 作AM DC ⊥于M在四边形ABCD 中 //AB CD 90BCD ∠=︒//AM BC ∴∴四边形AMCB 是矩形10AB AD cm == 8BC cm =8AM BC cm ∴== 10CM AB cm ==在Rt AMD ∆中 由勾股定理得:6DM cm =10616CD DM CM cm cm cm =+=+=;(2)如图2当四边形PBQD 是平行四边形时 PB DQ =即1032t t -=解得2t =此时4DQ = 12CQ = 22413BQ BC CQ =+=所以()28813PBQD C BQ DQ =+=+;1003t 14(102BPQ BP BC ==解得53t =;P 在BC 上时 63t1(32BP CQ t =此方程没有实数解;CD 上时:在点Q 的右侧54(34PQ BC =6< 不合题意若P 在Q 的左侧 如图6 即3485t <14(534)202BPQ S PQ BC t ∆==-= 解得395t =; 综上所述 当53t =秒或395秒时 BPQ ∆的面积为220cm . 13.(1)t 10-t ;(2)5;(3)S =20-2t ;(4)2或8. 解:(1)当0<t <3时 点M 在线段AB 上 即AM =t 当7<t <10时 点M 在线段OC 上 OM =10-t故填:t 10-t ;(2)∵四边形ABCO 是矩形 B (4 3)∴OA =BC =4 AB =OC =3∵△AOM 为等腰三角形∴只有当MA =MO 此时点M 在线段BC 上 CM =BM =2 ∴t =3+2=5故填:5;(3)∵当7<t <10时 点M 在线段OC 上∴114(10)20222S OA OM t t =⋅⋅=⨯⨯-=-;(4)①当点M 在线段AB 上时 4=12×4t 解得t =2;②当点M 在线段BC 上时 S =6 不符合题意;当点M 在线段OC 上时 4=20-2t 解得t =8.∴OD =OP +PD =8∴Q (8 2)∵M 是CQ 的中点 C (0 6)∴M (4 4);(2)①∵△COP ≌△PDQ∴OP =OQ =t OC =PD =6∴OD =t +6∴Q (t +6 t )∵C (0 6)∴M (62t + 62t +) 当0<t <6时 S =AP ×y M =(6﹣t )×62t +=2362t -; ②分两种情况:a 当N 在PC 上时 连接OB PM 如图2﹣1所示:∵点M 的横 纵坐标相等∴点M 在对角线BD 上∵四边形OABC 是正方形∴OC =OA ∠COM =∠AOM∴∠MPA =12(180°﹣45°)=67.5° ∴∠CPA =67.5﹣45=22.5°;综上所述 当点N 在△CPQ 的直角边上时 ∠CPA 的度数为112.5°或22.5°;(3)过点M 作MH ⊥x 轴于点H 过点Q 作QG ⊥x 轴于点G∵AMQ AHM AGQ MHGQ S S S S =--△△△梯形∴S '=12(62t ++t )•62t +﹣12(6﹣62t +)•62t +﹣12t •t =3t ①当0<t <6时 即点AP 在点A 左侧时 如图3所示:∵S =S '∴2362t -=3t 解得:t =﹣3+35 或t =﹣3﹣35(舍去);②当t >6时 即点P 在点A 右侧时 如图4所示:S =AP ×y M =(t ﹣6)×62t +=2362t - ∵S =S '将D (0 1)G (10 5)代入y=kx+b 得:1105b k b =⎧⎪⎨+=⎪⎩解得:21051k b ⎧=⎪⎨⎪=⎩∴当CG=OD 时 直线DG 的函数表达式为y=2105x+1.(3)设DG 交x 轴于点P 过点F 作FM⊥x 轴于点M 延长MF 交BC 于点N 如图所示.∵DG∥EF∴∠FEM=∠GPO.∵BC∥OA∴∠DGC=∠GPO=∠FEM.在△DCG 和△FME 中90DCG FME DGC FEMDG FE⎧∠=∠=⎪∠=∠⎨⎪=⎩ ∴△DCG≌△FME(AAS )∴FM=DC=4.∵MN⊥x 轴∴四边形OMNC 为矩形在Rt△CDH 中 由勾股定理可得: HC=22543-=∴BC=BK+KH+HC=4+3+3=10;(2)如图② 过D 作DG∥AB 交BC 于G 点 则四边形ADGB 为平行四边形 ∴BG=AD=3∴GC=BC−BC=10−3=7由题意得 当M N 运动t 秒后 CN=t CM=10−2t∵AB∥DG MN∥AB∴DG∥MN∴∠NMC=∠DGC又∵∠C=∠C∴△MNC ~△GDC∴CN CM CD CG=, ∴10257tt -=解得t=5017; (3)第一种情况:当NC=MC 时 如图③22∵∠C=∠C∠MFC=∠DHC=90°∴△MFC~△DHC∴FC MCHC DC=即:1 102253tt-=解得:t=6017;综上所述当t=103t=258或t=6017时△MNC为等腰三角形.。

中考数学总复习《与相似有关的动点问题》集锦(含答案)

与相似有关的动点问题一 、解答题1.如图,在梯形ABCD中,=3,5,45oAD BC AD DC AB B ==∠=∥,.动点M 从B点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动,设运动的时间为t 秒. (1)求BC 的长;(2)当MN AB ∥时,求t 的值;(3)试探究:t 为何值时,MNC △为等腰三角形.2.如图,在矩形ABCD 中,126AB BC ==,,点P 沿AB 边从点A 开始向点B 以2/秒的速度移动,点Q 沿DA 边以1/秒的速度从点D 开始移动,如果P Q ,同时出发,用t (秒)表示移动的时间(06)t ≤≤. ⑴ 当t 为何值时,QAP ∆为等腰直角三角形?⑵ 求四边形QAPC 面积,提出一个与计算结果相关的正确结论. ⑶ 当t 为何值时,以点Q A P ,,为顶点的三角形与ABC ∆相似.3.如图,矩形ABCD 中,3AD =厘米,AB a =厘米(3a >).动点M N ,同时从B 点出发,分别沿B A →,B C →运动,速度是1厘米/秒.过M 作直线垂直于AB ,分别交AN ,CD 于P Q ,.当点N 到达终点C 时,点M 也随之停止运动.设运动时间为t 秒.⑴若4a =厘米,1t =秒,则PM =______厘米;MBQPD CBA⑵若5a =厘米,求时间t ,使PNB PAD △∽△,并求出它们的相似比; ⑶若在运动过程中,存在某时刻使梯形PMBN 与梯形PQDA 的面积相等,求a 的取值范围;⑷是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN ,梯形PQDA ,梯形PQCN 的面积都相等?若存在,求a 的值;若不存在,请说明理由.4.ABC ∆中,90C ∠=︒,60A ∠=︒,2cm AC =.长为1cm 的线段MN 在ABC ∆的边AB上沿AB 方向以1cm/s 的速度向点B 运动(运动前点M 与点A 重合).过M N ,分别作AB 的垂线交直角边于P ,Q 两点,线段MN 运动的时间为ts . (1)若AMP ∆的面积为y ,写出y 与t 的函数关系式(写出自变量t 的取值范围);(2)线段MN 运动过程中,四边形MNQP 有可能成为矩形吗?若有可能,求出此时的值;若不可能,说明理由;(3)t 为何值时,以C ,P ,Q 为顶点的三角形与ABC ∆相似?5.如图,ABC ∆中,39085AC C BC AB ∠=︒==,,,点P 从B 出发,沿BC 方向以2/s 的速度移动,点Q 从C 出发,沿CA 方向也以1/s 的速度移动,若P Q ,分别从B C ,出发,经过多少时间CPQ ∆与CBA ∆相似?P N NMQDC BAQPMDCBAt N M QPBAC QPCBA与相似有关的动点问题答案解析一 、解答题1.(1)过,A D 两点向BC 边做垂线,根据勾股定理可求得:10BC =.(2)过D 点作DG AB ∥交AB 于G 点,如图1,则3,7,BG AD GC MN DG ===∥ 当,M N 运动t 秒时,,102CN t CM t ==-由MNC GDC △∽△得CN CMCD CG=,即10257t t -=,解得:5017t =. (3)当NC MC =时,如图2,则102t t =-,解得:103t =. 当MN NC =时,如图3,过点N 作NE MC ⊥于E ,过点D 作,DH BC ⊥于H ,由NEC DHC △∽△,得NC CE DC HC =,即553t t -=,解得:258t =. 当MN MC =时,如图4,过点M 作MF CN ⊥于F ,则1122FC NC t ==,由MFC DHC △∽△,得FC MC HC DC =,即1102335tt -=,解得:607t =.综上所述当t=103或258或6017时MNC △为等腰三角形 2.⑴ 当QAP ∆为等腰直角三角形时,AP AQ =,∴26t t =-,2t =⑵11(6)12263622QAC APC QAPC S S S t t ∆∆=+=-⨯+⨯⨯=四边形,即四边形QAPC 的面积为定值. ⑶分2种情况 ①当APQ BAC ∆∆∽时,2AP BA AQ BC ==,即226tt =-,解得3t =. 图4图3图2图1DABC FN MH H E M ND GCBAND BAN MGDCBA② 当AQP BAC ∆∆∽时,2AQ BA AP BC ==,即622t t -=,解得65t =. 综上当3t =或65时,以点Q A P ,,为顶点的三角形与ABC ∆相似. 3.⑴ 34PM =,⑵ 2t =,使PNB PAD △∽△,相似比为3:2 ⑶ ∵PM AB CB AB AMP ABC ∠=∠⊥,⊥,,AMP ABC △∽△,∴PM AM BN AB =即PM a t t a -=,∵()t a t PM a-=, ∵(1)3t a QM a-=-当梯形PMBN 与梯形PQDA 的面积相等,即()()22QP AD DQ MP BN BM++=()33(1)()22t a t t a a t t t a a -⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭==化简得66a t a =+, ∵3t ≤,∴636aa+≤,则6a ≤,∴36a <≤, ⑷ ∵36a <≤时,梯形PMBN 与梯形PQDA 的面积相等 ∴梯形PQCN 的面积与梯形PMBN 的面积相等即可,则CN PM = ∴()3t a t t a-=-,把66at a=+代入,解之得a =±a = 所以,存在a,当a =PMBN 与梯形PQDA 的面积、梯形PQCN 的面积相等.4.⑴当点P 在AC 上时,∵AM t =,∴tg60PM AM =⋅︒=.∴()21012y t t =≤≤. 当点P 在BC上时,)tan304PM BM t =⋅︒=-.)()214132y t t t =-=≤≤. ⑵∵2AC =,∴4AB =.∴413BN AB AM MN t t =--=--=-.∴)tan303QN BN t =⋅︒-.由条件知,若四边形MNQP 为矩形,需PM QN =)3t =-, ∴34t =.∴当34t s =时,四边形MNQP 为矩形.⑶ 由⑵知,当34t s =时,四边形MNQP 为矩形,此时PQ AB ∥, ∴PQC ABC ∆∆∽.除此之外,当30CPQ B ∠=∠=︒时,QPC ABC ∆∆∽,此时tan 30CQ CP =︒ ∵1cos602AM AP =︒=,∴22AP AM t ==.∴22CP t =-.∵cos30BN BQ =︒=,∴)3BQ t ==-.又∵BC =,∴)3CQ t =-=.∵322t =-12t =.∴当12t s =或34s 时,以C P Q ,,为顶点的三角形与ABC ∆相似. 5.∵39085AC C BC AB ∠=︒==,,,设35AC k AB k ==,, ∴222AC BC AB +=,即222(3)8(5)k k +=,解得2k =(负值已舍去) ∴6AC =设经过s t 后CPQ ∆与CBA ∆相似.此时282BP t PC t CQ t ==-=,, 本题需分两种情况: ⑴ 当CAB CQP ∆∆∽时,CQ CP CA CB =,即8268t t-=,解得 2.4t = ⑵ 当CAB CPQ ∆∆∽时,CQ CP CB CA =,即8286t t -=,解得3211t =.32 11秒时,CPQ∆与CBA∆相似综上,当 2.4t=秒或。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【改编中考】——初中数学动点问题集之一
【问题100】
( 浙江杭州市中考试题改编)如图,已知四边形ABCD为正方形,边长AB=6,点E
在是AB上一动点(不能与A、B两点重合),过点E作EF⊥AB交对角线AC于点F,
连结DF。
(1)当AE=2时,求△CDF的面积;
(2)当△ADF是等腰三角形时,求AE的长;
(3)当△ADF与△AEF的面积之比是3:2时,求CF的长。

F
C

BDA
E

【问题101】
(湖南常德市中考试题改编)如图,已知正方形ABCD和等腰直角△AEF共一个顶

点A,且AB=4,AE=EF=2,∠AEF=90°,若等腰直角△AEF可以绕点A旋转360°,
连接FC,H是FC的中点,连接EH.
(1)当顶点E在边AD上时,则EH=_________;
(2)当点A、E、C三点在一直线上时,则EH=___________.

E
H
F

CD

B
A
【问题102】
(山东枣庄市中考试题改编)如图,在△ABC中,∠C=90°,AC=BC=22,将△
ABC绕点A逆时针旋转到△ADE的位置,旋转角度是α°(0°<α<360°).
(1)当A、B、C、D四个点恰好是平行四边形的四个顶点时,则∠
BAD=____________°
(2)当△ABE是等边三角形时,则BD=________;

D
E
B

C
A
【问题103】
(黑龙江绥化市中考试题改编)在矩形ABCD中,AB=4 , BC=34,点P是直线
BC一动点,若将△ABP沿AP折叠,使点B落在平面上的点E处,连结AE、PE。
(1)当A、E、C三点在一直线上时,则BP=__________;
(2)当P、E、D三点在一直线上时,则BP=__________.

E
D

CAB
P
【问题104】
(新疆中考试题改编)如图,四边形ABCD为菱形,且BD=AB=4,点P为对角线BD
上的一个动点,作∠PAQ=60°交CB的延长线于Q点,连结PQ.
(1)求证△APQ是等边三角形;
(2)求四边形AQBP面积;

(3)且△APQ的面积是33,则BP=__________.

QDCAB
P
【问题105】
(山东日照市中考试题改编)如图,在正方形ABCD中,AB=22,E、F是射线
AC上两点,且∠EDF=45°,将△ADE绕点D逆时针旋转90°后,得到△DCP,连
接FP.
(1)求证:△DEF≅△DPF;
(2)若CF=1,求AE的长.

F
P
DCA

B
E
【问题106】
(江苏连云港市中考试题改编)如图,两个等腰直角△ABC和△CDE,AC=BC=22,

CD=CE=2,∠ACB=∠DCE=90°,现把等腰直角△CDE绕直角顶
点C旋转一周,连结AE和BD相交于点O.
(1)求证:AE=BD,AE⊥BD
(2)当B、D、E三点在一直线上时,则AE=___________.

E
D
A

B

C
【问题107】
(吉林长春市中考试题改编)如图,在菱形ABCD中,对角线AC与BD相交于点O,

AB=34,∠BAD=60°.点E是边AB上的一动点(不能与A、B两点重合),过点E
作EF⊥AD于点F,作EG∥AD交AC于点G,过点G作GH⊥ AD交AD(或AD的延
长线)于点H,得到矩形EFHG.

(1)求EGEF =______;(2)当DH=3时,则矩形EFHG的面积是________.

H
F
G
O

CBD

A
E
【问题108】
(北京海淀区中考模拟试题改编)如图,在△ABC中,AB=AC=32,D是直线BC
边上一动点,以AD为边作等腰△ADE,使AE=AD,若∠BAC+∠DAE=180°,
设∠BAC=m°
(1)∠ABC+∠ADE=______°;
(2)当m=90°时,求证:BD=CE;
(3)当m=120°时,若A、C、D、E四个点构成平行四边形时,求它的面积。

E

C
A

B
D

【问题109】
(山东东营市中考试题改编)如图,△AEF是等腰直角三角形,∠EAF=90°,

AE=AF=22,四边形ABCD是正方形,AB=4,现把等腰直角△AEF绕点A旋转m°
(0°≤m≤360°)连结BE、DF。
(1)问BE与DF有什么关系:________________;
(2)当B、E、F三点在一直线上时,则DF=___________,∠ADF=_____________°

E
F
C

B
D

A
【问题110】
(江苏扬州市中考试题改编)如图,AC为矩形ABCD的对角线,将边AB沿AE折
叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.
(1)求证:四边形AECF是平行四边形;
(2)若四边形AECF是菱形时,求AB与BC的数量关系

N
M
F

EDCAB
问题100答案:
(1)12
(2)3或32
(3)22

问题101答案:
(1)22-1
(2)5或1252

问题102答案:
(1)45°或135°
(2)23-2或23+2

问题103答案:

(1)433或43
(2)43-42或43+42
问题104答案:
(2)43
(3)设BQ=x,则BP=4-x,

高PH=4-x()23
由APQ的面积是33得到:
BPQ的面积是3

所以:4-x()x43=3
从而:x2-4x+4=0
得x=2,所以:BP=2

问题105答案:
(2)设AE=x,
第一种情况:

12+x2=3-x()
2
,得AE=x=

4

3

第二种情况

12+x2=5-x()
2
,得AE=x=

12

5

问题106答案:
(2)7+1或7-1
问题107答案:

(1)EFEG=
3
2

(2)63或5033

问题108答案:
(1)90°
(3)23或63

问题109答案:
(1)BE=DF,BE⊥DF
(2)23-2或23+2,30°

相关文档
最新文档