高一数学(人教A版)必修4能力提升:1-2-1 单位圆中的三角函数线
人教A版高中数学必修4第一章 三角函数1.3 三角函数的诱导公式教案

1.3(第一课时)诱导公式
教学目标:
1.借助单位圆的直观性探索正弦、余弦、正切的诱导公式,并掌握其应用;
2.经历由几何特征发现数量关系的学习过程,培养数形结合的分析问题能力;通过独立探讨公式,培养抽象概括能力;了解对称变换思想在研究数学问题中的应用,初步形成用对称变换思想思考问题的习惯。
3.揭示事物间的普遍联系规律,培养辨证唯物主义思想
教学重点:诱导公式(一)、(二)的探究、推导及利用诱导公式进行简单的三角函数式的求值、化简和恒等式的证明。
教学难点:在单位圆中对所讨论角与a角终边位置关系特点发现对称性提出研究方法
教学方法与学习指导策略建议
这一部分知识的学习,建议主要以师生互动为主。
多给学生一些感性认识,通过讨论、辨析获得对知识更深层次的理解。
教学过程:。
高中数学第一章三角函数1.2.2三角函数线练习(含解析)新人教A版必修4

高中数学第一章三角函数1.2.2三角函数线练习(含解析)新人教A版必修41.对于三角函数线,下列说法正确的是( )A.对任何角都能作出正弦线、余弦线和正切线B.有的角的正弦线、余弦线和正切线都不存在C.任何角的正弦线、正切线总是存在,但余弦线不一定存在D.任何角的正弦线、余弦线总是存在,但是正切线不一定存在答案 D解析当角的终边落在y轴上时,正切线不存在,但对任意角来说,正弦线、余弦线都存在.2.若角α的余弦线是单位长度的有向线段,那么角α的终边在( )A.y轴上 B.x轴上C.直线y=x上 D.直线y=-x上答案 B解析由题意得|cosα|=1,即cosα=±1,角α终边在x轴上,故选B.A.sin1>cos1>tan1 B.sin1>tan1>cos1C.tan1>sin1>cos1 D.tan1>cos1>sin1答案 C解析设1 rad角的终边与单位圆的交点为P(x,y),∵π4<1<π2,∴0<x<y<1,从而cos1<sin1<1<tan1.4.设a=sin(-1),b=cos(-1),c=tan(-1),则有( )A.a<b<c B.b<a<cC.c<a<b D.a<c<b答案 C解析作α=-1的正弦线、余弦线、正切线,可知:b=OM>0,a=MP<0,c=AT<0,且MP>AT.∴c<a<b.5.若α为第二象限角,则下列各式恒小于零的是( )A.sinα+cosα B.tanα+sinαC.cosα-tanα D.sinα-tanα答案 B解析如图,作出sinα,cosα,tanα的三角函数线.显然△OPM∽△OTA,且|MP|<|AT|.∵MP>0,AT<0,∴MP<-AT.∴MP+AT<0,即sinα+tanα<0.6.已知MP,OM,AT分别是75°角的正弦线、余弦线、正切线,则这三条线从小到大的排列顺序是________.答案OM<MP<AT解析如图,在单位圆中,∠POA=75°>45°,由图可以看出OM<MP<AT.7.利用三角函数线比较下列各组数的大小.(1)tan 4π3与tan 7π6;(2)cos 11π6与cos 5π3.解 (1)如图1所示,设点A 为单位圆与x 轴正半轴的交点,角4π3和角7π6的终边与单位圆的交点分别为P ,P ′,PO ,P ′O 的延长线与单位圆的过点A 的切线的交点分别为T ,T ′,则tan 4π3=AT ,tan 7π6=AT ′.由图可知AT >AT ′>0,所以tan 4π3>tan 7π6.(2)如图2所示,设角5π3和角11π6的终边与单位圆的交点分别为P ,P ′,过P ,P ′分别作x 轴的垂线,分别交x 轴于点M ,M ′,则cos 11π6=OM ′,cos 5π3=OM .由图可知0<OM <OM ′,所以cos 5π3<cos 11π6.答案 0,π4∪π2,5π4∪3π2,2π解析 由0≤θ<2π且tan θ≤1,利用三角函数线可得θ的取值范围是0,π4∪π2,5π4∪3π2,2π.9.在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合. (1)sin α≥32; (2)cos α≤-12;(3)tan α≥-1. 解 (1)作直线y =32交单位圆于A ,B 两点,连接OA ,OB ,则OA 与OB 围成的区域即为角α的终边的范围,故满足条件的角α的集合为α2k π+π3≤α≤2k π+2π3,k ∈Z .(2)作直线x =-12交单位圆于C ,D 两点,连接OC ,OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围.故满足条件的角α的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π+2π3≤α≤2k +4π3,k ∈Z.(3)在单位圆过点A (1,0)的切线上取AT =-1,连接OT ,OT 所在直线与单位圆交于P 1,P 2两点,则图中阴影部分即为角α终边的范围,所以α的取值集合是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪-π4+k π≤α<π2+k π,k ∈Z,如图.一、选择题1.已知α(0<α<2π)的正弦线与余弦线的长度相等,且方向相同,那么α的值为( ) A .5π4或7π4 B .π4或3π4C .π4或5π4D .π4或7π4答案 C解析 因为角α的正弦线与余弦线长度相等,方向相同,所以角α的终边在第一或第三象限,且角α的终边是象限的角平分线,又0<α<2π,所以α=π4或5π4,选C .2.若α是三角形的内角,且sin α+cos α=23,则这个三角形是( )A .等边三角形B .直角三角形C .锐角三角形D .钝角三角形 答案 D解析 当0<α≤π2时,由单位圆中的三角函数线知,sin α+cos α≥1,而sin α+cos α=23,∴α必为钝角. 3.如果π<θ<5π4,那么下列各式中正确的是( )A .cos θ<tan θ<sin θB .sin θ<cos θ<tan θC .tan θ<sin θ<cos θD .cos θ<sin θ<tan θ 答案 D解析 本题主要考查利用三角函数线比较三角函数值的大小.由于π<θ<5π4,如图所示,正弦线MP 、余弦线OM 、正切线AT ,由此容易得到cos θ<sin θ<0<tan θ,故选D .4.若0<α<2π,且sin α<32,cos α>12,则角α的取值范围是( ) A .⎝ ⎛⎭⎪⎫-π3,π3 B .⎝⎛⎭⎪⎫0,π3 C .⎝⎛⎭⎪⎫5π3,2π D .⎝ ⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫5π3,2π答案 D解析 由图1知当sin α<32时,α∈⎝ ⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫2π3,2π.由图2知当cos α>12时,α∈⎝ ⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫5π3,2π,∴α∈⎝ ⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫5π3,2π. 5.已知sin α>sin β,那么下列命题正确的是( ) A .若α,β是第一象限的角,则cos α>cos β B .若α,β是第二象限的角,则tan α>tan β C .若α,β是第三象限的角,则cos α>cos β D .若α,β是第四象限的角,则tan α>tan β 答案 D解析 解法一:(特殊值法)取α=60°,β=30°,满足sin α>sin β,此时cos α<cos β,所以A 不正确;取α=120°,β=150°,满足sin α>sin β,这时tan α<tan β,所以B 不正确;取α=210°,β=240°,满足sin α>sin β,这时cos α<cos β,所以C 不正确.解法二:如图,P 1,P 2为单位圆上的两点, 设P 1(x 1,y 1),P 2(x 2,y 2),且y 1>y 2.若α,β是第一象限角,又sin α>sin β, 则sin α=y 1,sin β=y 2,cos α=x 1,cos β=x 2. ∵y 1>y 2,∴α>β.∴cos α<cos β.∴A 不正确.若α,β是第二象限角,由图知P 1′(x 1′,y 1′),P 2′(x 2′,y 2′),其中sin α=y 1′,sin β=y 2′,则tan α-tan β=y 1′x 1′-y 2′x 2′=x 2′y 1′-x 1′y 2′x 1′x 2′. 而y 1′>y 2′>0,x 2′<x 1′<0, ∴-x 2′>-x 1′>0,∴x 1′x 2′>0,x 2′y 1′-x 1′y 2′<0,即tan α<tan β.∴B 不正确.同理,C 不正确.故选D . 二、填空题6.若α是第一象限角,则sin2α,cos α2,tan α2中一定为正值的个数为________.答案 2解析 由α是第一象限角,得2k π<α<π2+2k π,k ∈Z ,所以k π<α2<π4+k π,k ∈Z ,所以α2是第一或第三象限角,则tan α2>0,cos α2的正负不确定;4k π<2α<π+4k π,k ∈Z ,2α的终边在x 轴上方,则sin2α>0.故一定为正值的个数为2.7.若0≤θ<2π,且不等式cos θ<sin θ和tan θ<sin θ成立,则角θ的取值范围是________.答案π2,π 解析 由三角函数线知,在[0,2π)内使cos θ<sin θ的角θ∈π4,5π4,使tan θ<sin θ的角θ∈π2,π∪3π2,2π,故θ的取值范围是π2,π.8.若函数f (x )的定义域是(-1,0),则函数f (sin x )的定义域是________. 答案 -π+2k π,-π2+2k π∪-π2+2k π,2k π(k ∈Z )解析 f (x )的定义域为(-1,0),则f (sin x )若有意义,需-1<sin x <0,利用三角函数线可知-π+2k π<x <2k π,且x ≠-π2+2k π(k ∈Z ).三、解答题9.比较下列各组数的大小:(1)sin1和sin π3;(2)cos 4π7和cos 5π7;(3)tan 9π8和tan 9π7;(4)sin π5和tan π5.解 (1)sin1<sin π3.如图1所示,sin1=MP <M ′P ′=sin π3.(2)cos 4π7>cos 5π7.如图2所示,cos 4π7=OM >OM ′=cos 5π7.(3)tan 9π8<tan 9π7.如图3所示,tan 9π8=AT <AT ′=tan 9π7.(4)sin π5<tan π5.如图4所示,sin π5=MP <AT =tan π5.10.设θ是第二象限角,试比较sin θ2,cos θ2,tan θ2的大小.解 ∵θ是第二象限角,∴2k π+π2<θ<2k π+π(k ∈Z ),故k π+π4<θ2<k π+π2(k∈Z ).作出θ2所在范围如图所示.当2k π+π4<θ2<2k π+π2(k ∈Z )时,cos θ2<sin θ2<tan θ2. 当2k π+5π4<θ2<2k π+3π2(k ∈Z )时,sin θ2<cos θ2<tan θ2.。
人教版A版高中数学必修4:正弦函数、余弦函数的图象_课件10

复习引入
sinα、cosα、tgα的几何意义.
想一想?
y
T
1P
o M 1A
x
正弦线MP 余弦线OM 正切线AT
三角问题
几何问题
讲授新课
函数 y sin x, x 0,2 图象的几何作法
P1
6
o1
M-11 A
y
1p1/
o
2
6
3
2
3
作法: (1) 等分 (2) 作正弦线 (3) 平移 (4) 连线
x
0
2
3
2
2
sinx
0
1
0
-1
0
1+sinx 1
2
1
0
1
(4)列表
x
0
2
cosx 1
0
-cosx -1
0
3
2
2
-1
0
1
1
0
-1
sin(2k +x)= sinx (k Z)
y y=sinx (xR)
1
2 0
-1
2 3 4 5
6 x
一、正弦函数的“五点画图法”
余弦曲线(平移得到) 余弦曲线(几何作法)
余弦曲线
y
1-
6
4
2
o
-1 -
2
4
6
x
-
-
因为终边相同的角的三角函数值相同,所以y=cosx的图象在……,
4,2 , 2 ,0, 0,2 , 2 ,4 , …与y=cosx,x∈[0,2π]的图象相同
高一数学必修4课件:3-1-2-1两角和与差的正弦、余弦

第三章
3.1 3.1.2 第1课时
成才之路 ·数学 ·人教A版 · 必修4
3.化简cos65° cos35° +sin65° sin35° 的结果( A.cos100° 3 C. 2 B.sin100° 1 D. 2
解答(1)可先用诱导公式再用两角和的正弦公式.(2)可提出2后 逆用两角和与差的正弦或余弦公式.
第三章
3.1 3.1.2 第1课时
成才之路 ·数学 ·人教A版 · 必修4
[解析]
(1)sin14° cos16° +sin76° cos74°
=sin14° cos16° +cos14° sin16° 1 =sin(14° +16° )=sin30° 2 =
第三章
三角恒等变换
成才之路 ·数学 ·人教A版 · 必修4
第三章
第1课时 两角和与差的正弦、余弦
第三章
三角恒等变换
成才之路 ·数学 ·人教A版 · 必修4
课前自主预习 随堂应用练习 思路方法技巧 课后强化作业 名师辨误做答
第三章
3.1 3.1.2 第1课时
成才之路 ·数学 ·人教A版 · 必修4
第三章
3.1 3.1.2 第1课时
成才之路 ·数学 ·人教A版 · 必修4
自主预习 阅读教材P128-131回答下列问题. 和角、差角公式如下表:
第三章
3.1 3.1.2 第1课时
成才之路 ·数学 ·人教A版 · 必修4
名称
公式
简记 S(α-β) C(α-β) S(a+β) C(α+β)
差的正弦 sin(α-β)= sinαcosβ-cosαsinβ 差的余弦 cos(α-β)=cosαcosβ+sinαsinβ 和的正弦 sin(α+β)= sinαcosβ+cosαsinβ 和的余弦 cos(α+β)= cosαcosβ-sinαsinβ
高一数学知识点总结大全(最新版)

高一数学知识点总结大全(最新版)要想学好数学,大量做题是必可避免的,熟练地掌握各种题型,这样才能有效的提高数学成绩。
今天小编在这给大家整理了高一数学知识点总结大全(最新版),接下来随着小编一起来看看吧!高一数学知识点总结第一章三角函数1.1任意角和弧度制1.2任意角的三角函数——阅读与思考三角形与天文学1.3三角函数的诱导公式1.4三角函数的图像与性质——探究与发现函数y=Asin(ωX+φ)及函数y=Acos(ωx+φ)的周期探究与发现利用单位圆中的三角函数线研究正弦函数、余弦函数的性质信息技术应用利用正切线画函数y=tanX,X∈(—2π,2π )的图像1.5函数y=Asin(ωX+φ)的图像——阅读与思考振幅、周期、频率、相位1.6三角函数模型的简单应用小结复习参考题第二章平面向量2.1平面向量的实际背景及基本概念——阅读与思考向量及向量符号的由来2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示2.4平面向量的数量积2.5平面向量应用举例——阅读与思考向量的运算(运算律)与图形性质小结复习参考题第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式——信息技术应用利用信息技术制作三角函数表3.2简单的三角恒等变换复习参考题1.正角:按逆时针方向旋转形成的角叫做正角。
按边旋转的方向分零角:如果一条射线没有作任何旋转,我们称它形成了一个零角。
角负角:按顺时针方向旋转形成的角叫做负角。
的第一象限角{α|k2360°<α<90°+k2360°,k∈Z}分第二象限角{α|90°+k2360°<α<180°+k2360°,k∈Z}类第三象限角{α|180°+k2360°<α<270°+k2360°,k∈Z}第四象限角{α|270°+k2360°<α<360°+k2360°,k∈Z}或{α|-90°+k2360°<α<k2360°,k∈z}(象间角):当角的终边与坐标轴重合时叫轴上角,它不属于任何一个象限.2.终边相同角的表示:所有与角α终边相同的角,连同角α在内,可构成一个集合s={β|β=α+k2360°,k∈z}即任一与角α终边相同的角,都可以表示成角α与整个周角的和。
单位圆与三角函数

的取值集合.
2k
6
或
=2k
5
6
,k
Z
普通高中课程标准实验教科书人教B版必修4 基本初等函数(Ⅱ)
评价量规
23
同学们,你做到了吗?
数形结合
三
小
角
小
函
单
数
位
线
圆
显
藏
真
乾
容
坤
25
P
T
普通高中课程标准实验教科书人教B版必修4 基本初等函数(Ⅱ)
反馈演练
23
2、(提升题)设 a sin(530 ),b cos(530 ) ,c tan(530) , 则有( )
A. a b c
B. b a c
C. c a b
D. a c b
3、(拓展题)已知sin
1 2,求角
普通高中课程标准实验教科书人教B版必修4 基本初等函数(Ⅱ)
拓展研究
20
学生分组合作,运用本节知识解决下列问题: 观察角的终边在各位置的情形,结合三角函数线和已
学知识,你还能发现什么规律?得出哪些结论?请说明你 的观点和理由. y
1-
y sin x
-
o
π 6
π 3
π 2
2π 3
5π 6
π
7 6
4π 3
sin MP
普通高中课程标准实验教科书人教B版必修4 基本初等函数(Ⅱ)
概念形成
11
正弦线、余弦线
y P
OM x
y
M
O
x
P
如图所示,与单位圆有关的有向线段(轴上向量)MP, OM
分别叫做角 的正弦线、余弦线.
普通高中课程标准实验教科书人教B版必修4 基本初等函数(Ⅱ)
高中数学必修4三角函数常考题型:三角函数线及其应用(2021年整理)
高中数学必修4三角函数常考题型:三角函数线及其应用(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学必修4三角函数常考题型:三角函数线及其应用(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学必修4三角函数常考题型:三角函数线及其应用(word版可编辑修改)的全部内容。
三角函数线及其应用【知识梳理】1.有向线段带有方向的线段叫做有向线段.2.三角函数线图示正弦线α的终边与单位圆交于P,过P作PM垂直于x轴,有向线段MP即为正弦线余弦线有向线段OM即为余弦线正切线过A(1,0)作x轴的垂线,交α的终边或其终边的反向延长线于T,有向线段AT即为正切线题型一、三角函数线的作法【例1】作出错误!的正弦线、余弦线和正切线.[解] 角错误!的终边(如图)与单位圆的交点为P。
作PM垂直于x轴,垂足为M,过A(1,0)作单位圆的切线AT,与错误!的终边的反向延长线交于点T,则错误!的正弦线为MP,余弦线为OM,正切线为AT。
【类题通法】三角函数线的画法(1)作正弦线、余弦线时,首先找到角的终边与单位圆的交点,然后过此交点作x轴的垂线,得到垂足,从而得正弦线和余弦线.(2)作正切线时,应从A(1,0)点引单位圆的切线,交角的终边或终边的反向延长线于一点T,即可得到正切线AT.【对点训练】作出-错误!的正弦线、余弦线和正切线.解:如图所示,-错误!的正弦线为MP,余弦线为OM,正切线为AT。
题型二、利用三角函数线比较大小【例2】分别比较sin错误!与sin错误!;cos错误!与cos错误!;tan错误!与tan错误!的大小.[解]在直角坐标系中作单位圆如图所示.以x轴非负半轴为始边作错误!的终边与单位圆交于P点,作PM⊥Ox,垂足为M.由单位圆与Ox正方向的交点A作Ox的垂线与OP的反向延长线交于T点,则sin错误!=MP,cos错误!=OM,tan错误!=AT.同理,可作出错误!的正弦线、余弦线和正切线,sin错误!=M′P′,cos 错误!=OM′,tan错误!=AT′。
(经典讲义)高一数学下必修四第一章三角函数
高一数学下必修四第一章三角函数第一讲:三角函数(1)⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k kαα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k kαα⋅+<<⋅+∈Z第三象限角的集合为{}360180360270,k k kαα⋅+<<⋅+∈Z第四象限角的集合为{}360270360360,k k kαα⋅+<<⋅+∈Z终边在x轴上的角的集合为{}180,k kαα=⋅∈Z终边在y轴上的角的集合为{}18090,k kαα=⋅+∈Z终边在坐标轴上的角的集合为{}90,k kαα=⋅∈Z3、与角α终边相同的角的集合为{}360,k kββα=⋅+∈Z4、已知α是第几象限角,确定()*nnα∈N所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在的区域.5、长度等于半径长的弧所对的圆心角叫做1弧度.6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l rα=.7、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈⎪⎝⎭.8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin y r α=,cos x rα=,()tan 0yx xα=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT 12、同角三角函数的基本关系:()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.13、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=.()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.14、函数sin y x =的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.函数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移ϕω个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象. 函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ.函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()max min 12y y A =-,()max min 12y y B =+,()21122x x x x T=-<. 15、正弦函数、余弦函数和正切函数的图象与性质:sin y x =cos y x =tan y x =图象定义R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭问题1各是第几象限角问题:已知α角是第三象限角,则2α,2问题21.有向线段:坐标轴是规定了方向的直线,那么与之平行的线段亦可规定方向。
高一数学必修4三角函数的定义讲义
三角函数的定义知识梳理1、任意角三角函数的定义(1)单位圆:在直角坐标系中,以原点O 为圆心,以单位长度为半径的圆称为单位圆. (2)单位圆中任意角的三角函数的定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么y 叫做α的正弦,记作sin α,即sin α=y ;x 叫做α的余弦,记作cos α,即cos α=x ;y x 叫做α的正切,记作tan α,即tan α=yx (x ≠0).2、三角函数正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,它们统称为三角函数.3、三角函数的定义域三角函数 定义域 sin α R cos α Rtan α⎩⎨⎧⎭⎬⎫α⎪⎪α≠π2+k π,k ∈Z 4、三角函数值的符号5、终边相同的角的同一三角函数的值(1)终边相同的角的同一三角函数的值相等.(2)公式:sin(α+k ·2π)=sin_α,cos(α+k ·2π)=cos_α,tan(α+k ·2π)=tan_α,其中k ∈Z .例题精讲题型一、三角函数的定义及应用例1、(1)若角α的终边经过点P (5,-12),则sin α=________,cos α=________,tan α=________. (2)已知角α的终边落在直线3x +y =0上,求sin α,cos α,tan α的值.利用三角函数的定义求值的策略(1)已知角α的终边在直线上求α的三角函数值时,常用的解题方法有以下两种:法一:先利用直线与单位圆相交,求出交点坐标,然后利用三角函数的定义求出相应的三角函数值. 法二:注意到角的终边为射线,所以应分两种情况来处理,取射线上任一点坐标(a ,b ),则对应角的正弦值sinα=b a 2+b 2,余弦值cos α=a a 2+b 2,正切值tan α=ba .(2)当角的终边上的点的坐标以参数的形式给出时,要根据问题的实际情况对参数进行分类讨论.变式训练已知角α的终边过点P (12,a ),且tan α=512,求sin α+cos α的值.题型二、三角函数值符号的运用例2、(1)若sin αtan α<0,且cos αtan α<0,则角α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角(2)判断下列各式的符号:①sin 105°·cos 230°; ②cos 3·tan ⎝⎛⎭⎫-2π3.三角函数值的符号规律(1)当角θ为第一象限角时,sin θ>0,cos θ>0或sin θ>0,tan θ>0或cos θ>0,tan θ>0,反之也成立; (2)当角θ为第二象限角时,sin θ>0,cos θ<0或sin θ>0,tan θ<0或cos θ<0,tan θ<0,反之也成立; (3)当角θ为第三象限角时,sin θ<0,cos θ<0或sin θ<0,tan θ>0或cos θ<0,tan θ>0,反之也成立; (4)当角θ为第四象限角时,sin θ<0,cos θ>0或sin θ<0,tan θ<0或cos θ>0,tan θ<0,反之也成立.变式训练若sin 2α>0,且cos α<0,试确定α终边所在的象限.题型三、诱导公式一的应用例3、计算下列各式的值:(1)sin(-1 395°)cos 1 110°+cos(-1 020°)sin 750°; (2)sin ⎝⎛⎭⎫-11π6+cos 12π5·tan 4π.变式训练求下列各式的值:(1)sin 25π3+tan ⎝⎛⎭⎫-15π4; (2)sin 810°+cos 360°-tan 1 125°.课堂小测1、若三角形的两内角α,β满足sin αcos β<0,则此三角形必为( )A .锐角三角形B .钝角三角形C .直角三角形D .以上三种情况都可能2、若角α的终边过点(2sin 30°,-2cos 30°),则sin α的值等于( )A.12 B .-12 C .-32 D .-33 3、sin ⎝⎛⎭⎫-196π=________. 4、已知角θ的顶点为坐标原点,始边为x 轴的非负半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________.5、化简下列各式:(1)a cos 180°+b sin 90°+c tan 0°; (2)p 2cos 360°+q 2sin 450°-2pq cos 0°; (3)a 2sin π2-b 2cos π+ab sin 2π-ab cos 3π2.同步练习1、25πsin6等于( )A .12 B .2 C .12- D .2-2、若角α的终边经过点34,55P ⎛⎫- ⎪⎝⎭,则sin tan αα⋅=( )A .1615 B .1615- C .1516D .1516- 3、利用余弦线比较cos1,πcos 3,cos 1.5的大小关系是( ) A .πcos1cos cos1.53<< B .πcos1cos1.5cos 3<< C .πcos1coscos1.53>> D .πcos1.5cos1cos 3>> 4、如图,在单位圆中角α的正弦线、正切线完全正确的是( ) A .正弦线PM ,正切线A T '' B .正弦线MP ,正切线A T '' C .正弦线MP ,正切线ATD .正弦线PM ,正切线AT5、角α的终边经过点(),4P b -且3cos 5α=-,则b 的值为( ) A .3 B .3- C .3± D .5 6、已知x 为终边不在坐标轴上的角,则函数()|sin |cos |tan |sin |cos |tan x x x x f x x x=++的值域是( ) A .{}3,1,1,3-- B .{}3,1-- C .{}1,3 D .{}1,3- 7、在[]0,2π上,满足3sin 2x ≥的x 的取值范围为( ) A .π0,3⎡⎤⎢⎥⎣⎦B .π2π,33⎡⎤⎢⎥⎣⎦ C .π2π,63⎡⎤⎢⎥⎣⎦ D .5π,π6⎡⎤⎢⎥⎣⎦8、若θ为第一象限角,则能确定为正值的是 ( ) A .sin2θB .cos2θC .tan2θD .cos 2θ9、已知α的终边经过点()36,2a a -+,且sin 0,cos 0,αα>≤则α的取值范围为________.10、若角α的终边与直线3y x =重合且sin 0α<,又(),P m n 是α终边上一点,且10OP =,则m n -=_____. 11、已知点()sin cos ,tan P ααα-在第一象限,则在[]0,2π内α的取值范围为__________. 12、(1)23π17πcos tan 34⎛⎫-+ ⎪⎝⎭; (2)sin 630tan 1 125tan 765cos 540︒+︒+︒+︒.13、当π0,2α⎛⎫∈ ⎪⎝⎭时,求证:sin tan ααα<<.14、已知角α的终边落在直线2y x =上,求sin α,cos α,tan α的值.。
高一数学人教A版必修4课件:1.4.1正弦函数、余弦函数的图象
且x≠2kπ(k∈Z).
∴所求函数的定义域为 x∈[2kπ-π2,2kπ)∪(2kπ,2kπ+π2),k∈Z.
明目标、知重点
1234
(2)求函数y=lg sin(cos x)的定义域. 解 由sin(cos x)>0⇒2kπ<cos x<2kπ+π(k∈Z). 又∵-1≤cos x≤1, ∴0<cos x≤1.
明目标、知重点
例1 利用“五点法”作出函数y=1-sin x(0≤x≤2π)的简图. 解 (1)取值列表:
x
0
π 2
π
3π 2
2π
sin x
0
1
0
-1
0
1-sin x
1
0
1
2
1
明目标、知重点
(2)描点连线,如图所示.
明目标、知重点
反思与感悟 作正弦、余弦曲线要理解几何法作图,掌握五点 法作图.“五点”即y=sin x或y=cos x的图象在[0,2π]内的最高 点、最低点和与x轴的交点.“五点法”是作简图的常用方法.
第一章 三角函数
§1.4 三角函数的图象与性质
内容 索引
01 明目标
知重点
填要点记疑点
02
03
探要点 究所然
当堂测 查疑缺
04
明目标、知重点
明目标、知重点
1.了解利用单位圆中的正弦线画正弦曲线的方法. 2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法, 能用“五点法”作出简单的正弦、余弦曲线. 3.理解正弦曲线与余弦曲线之间的联系.
明目标、知重点
填要点·记疑点 1.正弦曲线、余弦曲线 正弦函数y=sin x(x∈R)和余弦函数y=cos x(x∈R)的图象 分别叫 正弦 曲线和 余弦 曲线.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
能 力 提 升
一、选择题
1.已知的正弦线为MP,正切线为AT,则有( )
11π
6
A.MP与AT的方向相同 B.|MP|=|AT|
C.MP>0,AT<0 D.MP<0,AT>0
[答案] A
[解析] 三角函数线的方向和三角函数值的符号是一致的.MP
=sin<0,AT=tan<0.
11π611π
6
2.已知α角的正弦线与y轴正方向相同,余弦线与x轴正方向
相反,但它们的长度相等,则( )
A.sinα+cosα=0 B.sinα-cosα=0
C.tanα=0 D.sinα=tanα
[答案] A
3.若<α<,则下列不等式正确的是( )
π4π
2
A.sinα>cosα>tanα B.cosα>tanα>sinα
C.sinα>tanα>cosα D.tanα>sinα>cosα
[答案] D
4.y=的定义域为( )
sinx
+
lgcosx
tanx
A.
{
x|2kπ≤x≤2kπ
+
π
2
}
B.
{
x|2kπ
π
2
}
C.
{x|2kπ
{
x|2kπ-π2
π
2
}
[答案] B
[解析] ∵Error!,
∴2kπ
2
5.(能力拔高题)已知cosα≤sinα,那么角α的终边落在第一象
限内的范围是( )
A.(0,]
π
4
B.[,)
π4π
2
C.[2kπ+,2kπ+),k∈Z
π4π
2
D.(2kπ,2kπ+],k∈Z 如图(2),OP、OQ分别为角α、β的终边,MP>NQ, 二、填空题 [答案] {x|2kπ- [解析] 如图所示,OM是角x的余弦线,则有cosx=OM>0, ∴2kπ- 9.已知点P(tanα,sinα-cosα)在第一象限,且0≤α≤2π,则 [答案] ∪ [解析] ∵点P在第一象限, 由(1)知0<α<或π<α<,(3) 由(3)、(4)得α∈∪. 三、解答题 (1)sin与sin;(2)tan与tan. 如图,射线OP1、OP2分别表示角、的终边,其中P1、P 2π34π 5 为点Q1、Q2,过点A(1,0)作x轴的垂线分别与角、的终边的反 向延长线交于点T1、T2,则Q1P1、Q2P2是角、的正弦线, AT1、AT2是、的正切线.于是,有向线段Q1P1>Q2P 2π34π 5 所以sin>sin,tan 11.求下列函数的定义域: [解析] 如图(1). ∵2cosx-1≥0,∴cosx≥. ∴函数定义域为(k∈Z). (2)如图(2). ∴函数定义域为∪Error!,Error!(k∈ Z),即(k∈Z). , ∴sin
π
4
[答案] C
[解析] 如图所示,由余弦线长度|OM|不大于正弦线长度|MP|
可知,角α的终边落在图中的阴影区域,故选C.
6.已知sinα>sinβ,那么下列命题成立的是( )
A.若α、β是第一象限角,则cosα>cosβ
B.若α、β是第二象限角,则tanα>tanβ
C.若α、β是第三象限角,则cosα>cosβ
D.若α、β是第四象限角,则tanα>tanβ
[答案] D
[解析] 如图(1),α、β的终边分别为OP、OQ,sinα=MP>NQ
=sinβ,此时OM
∴AC
sinα>sinβ,∴ON>OM,即cosβ>cosα,故C错,∴选D.
7.已知tanx=1,则x=________.
[答案] x=+kπ(k∈Z)
π
4
8.不等式cosx>0的解集是________.
2
∴OM的方向向右.
∴角x的终边在y轴的右方.
2
角α的取值范围是______________________.
(
π4,π2)(π,5π
4
)
∴Error!
π23π
2
由(2)知sinα>cosα,
作出三角函数线知,在[0,2π]内满足sinα>cosα的
α∈,(4)
(
π4,5π
4
)
(
π4,π2)(π,5π
4
)
10.利用三角函数线比较下列各组数的大小:
2π34π52π34π
5
[解析]
2
是终边与单位圆的交点,过点P1、P2分别作x轴的垂线,垂足分别
2π34π
5
2π34π
5
2
,
AT1
,
5
(1)y=; (2)y=lg(3-4sin2x).
2cosx-1
1
2
[-π3+2kπ,π3+2kπ]
∵3-4sin
2x>0,∴sin2
x<,∴-
43232
(-π3+2kπ,π3+2kπ)
(-π3+kπ,π3+kπ)
12.利用单位圆和三角函数线证明:若α为锐角,则
(1)sinα+cosα>1;
(2)sin2α+cos2α=1.
[证明] 如图,记角α的两边与单位圆的交点分别为点A,P,
过点P作PM⊥x轴于点M,则sinα=MP,cosα=OM.
(1)在Rt△OMP中,MP+OM>OP,∴sinα+cosα>1.
(2)在Rt△OMP中,MP
2+OM2=OP2
2α+cos2
α=1.