机械设计第八章

合集下载

第八章蜗杆传动

第八章蜗杆传动

4、材料合理搭配(良好的减摩性、
蜗杆传动;
耐磨性)。
二、材料
对材料的要求:良好的耐磨性、减摩性、跑合性和抗 胶合能力; 足够的强度。
蜗 杆
一般:碳钢 (40,45),调质 高速重载:合金钢(20Cr, 40Cr,20CrMnTi), 表面淬火、渗碳淬火
蜗 轮
vs≥12m/s,高速重载,或重要的传动,铸造锡青铜— —耐磨性、抗胶合能力强;切削性好,但价格贵。
§1蜗杆传动概述
旋向: 右,左
头数: 单线、双线、多线 轴截面形状: 圆柱蜗杆、圆弧面蜗杆、锥蜗杆
齿形: 阿基米德、渐开线、法向直廓渐开线 (刀具加工位置的不同)
二、蜗杆传动的特点 ——兼有斜齿圆柱齿轮和螺旋传动的特点 1、传动比大且准确; 单线蜗杆:蜗杆转动一周,蜗轮转过一齿
i = n1 / n 2 = z2 / z1
三 、蜗杆传动的效率
1、啮合效率η1——蜗杆传动的主要效率 (近似用螺旋副的效率) η1=tan γ / tan(γ +ρv ) (蜗杆主动) 2、搅油效率η2——浸入油中的零件搅油时产生的损耗。 约0.99。 3、轴承效率η3——0.99~0.995(滚动轴承), 0.98~0.99(滑动轴承) 讨论: (1) λ ↑η1↑η↑, λ =45°, η达到最大,但λ ↑ 加工困难, 精度不易保证, λ ≤27°。 (2) z1 ↑ λ ↑η1↑η↑加工困难。
传递动力时:i=8~100(常用15~50)
蜗杆—— z1=(1~4) 齿轮——z1>17
传递运动时:i=几百~上千(单头,η↓)
2、传动平稳, 噪声小;
3、可以实现自锁; (理论上:当λ≤ρv,反行程自锁)
缺点:
1)制造成本高,加工困难。

机械设计基础第8章 带传动

机械设计基础第8章  带传动

第8章带传动带传动是一种常用的机械传动形式,它的主要作用是传递转矩和转速。

大部分带传动是依靠挠性传动带与带轮间的摩擦力来传递运动和动力的。

本章将对带传动的工作情况进行分析,并给出带传动的设计准则和计算方法。

着重讨论V带传动的设计计算,同时对同步带传动作了简介。

8.1 概述如图8.1所示,带传动一般是由主动轮1、从动轮2、紧套在两轮上的传动带3及机架4组成。

当原动机驱动带轮1(即主动轮)转动时,由于带与带轮间摩擦力的作用,使从动轮2一起转动,从而实现运动和动力的传递。

图8.1 带传动8.1.1 带传动的类型1.按传动原理分(1)摩擦带传动靠传动带与带轮间的摩擦力实现传动,如V带传动、平带传动等;(2)啮合带传动靠带内侧凸齿与带轮外缘上的齿槽相啮合实现传动,如同步带传动。

2.按用途分(1)传动带传递动力用;(2)输送带输送物品用。

本章仅讨论传动带。

3.按传动带的截面形状分(1)平带如图8.2 a)所示,平带的截面形状为矩形,内表面为工作面。

常用的平带有胶带、编织带和强力锦纶带等。

(2)V带V带的截面形状为梯形,两侧面为工作表面,如图8.2 b)所示。

传动时,V带与轮槽两侧面接触,在同样压紧力F Q的作用下,V带的摩擦力比平带大,传递功率也较大,且结构紧凑。

(3)多楔带如图8.3所示,它是在平带基体上由多根V带组成的传动带。

多楔带结构紧凑,可传递很大的功率。

(4)圆形带如图8.4所示,横截面为圆形,只适用于小功率传动。

(5)同步带带的截面为齿形,如图8.5所示。

同步带传动是靠传动带与带轮上的齿互相啮合来传递运动和动力,除保持了摩擦带传动的优点外,还具有传递功率大,传动比准确等优点,多用于要求传动平稳、传动精度较高的场合。

图8.2 平带和V带图8.3 多楔带图8.4 圆形带图8.5 同步带8.1.2 带传动的特点和应用带传动属于挠性传动,传动平稳,噪声小,可缓冲吸振。

过载时,带会在带轮上打滑,从而起到保护其他传动件免受损坏的作用。

机械设计8—滑动轴承

机械设计8—滑动轴承

3. 许用油膜厚度[h] ] 在其他条件不变的情况下, 在其他条件不变的情况下,外载荷 F↑,动压润滑轴承的 ↑ hmin↓ ,轴承、轴颈表面的微观凸峰可能直接接触,而不能实现 轴承、轴颈表面的微观凸峰可能直接接触, 液体润滑。 液体润滑。 显然,要想实现液体润滑,应满足如下条件: 显然,要想实现液体润滑,应满足如下条件: hmin ≥ [h]= S ( Rz1 + Rz2 ) ] 式中: 式中: S — 安全因数 , S ≥2,一般可取 S=2 一般可取 RZ1,RZ2 —轴颈和轴承孔表面粗糙度,µm 轴颈和轴承孔表面粗糙度, 轴颈和轴承孔表面粗糙度
特点
应用
2.极大型的、极微型的、极简单的场合;如自动化办公设备等。 极大型的、极微型的、极简单的场合;如自动化办公设备等。 极大型的 3.结构上要求剖分的场合;如曲轴用轴承。 结构上要求剖分的场合; 结构上要求剖分的场合 如曲轴用轴承。 4.受冲击与振动的场合;如轧钢机。 受冲击与振动的场合;如轧钢机。 受冲击与振动的场合
ψ = δ /r → δ = ψ . r =0.001x60 = 0.06mm x χ = 1-[h]/δ = 1 -9.6x10-3/0.06 = 0.84 - ] x
查表12-7,B/d = 108/120=0.9 得到 , / 查表 /
χ
Cp
0.80 3.067
0.85 4.459
插值计算:Cp = 4.181
§8-2 径向滑动轴承的主要类型
一、整体式 结构简单,成本低, 间隙无法 结构简单,成本低,但间隙无法 补偿,且只能从轴端装入, 补偿,且只能从轴端装入,适用 低速、轻载或间歇工作的场合。 低速、轻载或间歇工作的场合。 无法用于曲轴。 无法用于曲轴。 二、对开式(剖分式) 对开式(剖分式)

《机械设计基础》(贾磊)课件 第8章 带传动

《机械设计基础》(贾磊)课件 第8章 带传动
:::::《机械设计基础》:::::
8.2.2 V带轮的材料、结构及轮槽 尺寸
V带轮的结构尺寸可以查设计手册,也可以按下面的经验公式确定。 d1=(1.8~2)d,D0=0.5(D1+d1)
d0=(0.2~0.3)(D1-d1),C΄=(1/7-1/4B)S h2=0.8h1,b1=0.4h1,b2=0.8b1,f=0.2h1,f1=0.2h2
在带传动中,起传递作用的拉力是紧边与松边的拉力之差,称为有效 拉力,用F表示。其表达式为
F=F1-F2 有效拉力的值等于带与带轮之间接触面上摩擦力的总和,于是可得带 传动所传递的功率为
P Fv 1000
:::::《机械设计基础》:::::
8.3.1 带传动的工作情况分析
带传动的紧边拉力与松边拉力的关系可以用欧拉公式表示为
L=(1.5~2)d(当B<1.5d时,L=B)
:::::《机械设计基础》:::::
8.2.2 V带轮的材料、结构及轮槽 尺寸
3.V带轮的轮槽尺寸
V带轮轮槽的横截面及其各部分尺寸如表8-4所示。
注意: V带两侧间的夹角(楔角)为40°,但V带弯曲时,V带的下部会膨胀
,使得弯曲的V带的楔角小于槽轮的轮槽角。为了使皮带与槽轮侧面保持 接触良好,应使轮槽角小于楔角,国标规定V带轮的轮槽角为32°、34°、 36°、38°。
在工程实际中,带的实际工作条件与上述特定条件不同,所以应对P0 加以修正。因此,实际工作条件下单根V带的基本额定功率[P0]为
[P0]=(P0+ΔP0)KαKL
:::::《机械设计基础》:::::
8.3.2 V带的设计计算
2.带传动的设计步骤与参数的选择
(1)确定计算功率
计算功率是指根据传递的额定功率,并考虑载荷性质以及每天工作运 转时间的长短等因素的影响而确定的,即

机械原理3D版课件-第8章 齿轮机构及其设计

机械原理3D版课件-第8章 齿轮机构及其设计
4. 齿顶高系数ha*和顶隙系数c*
齿顶高系数ha* :正常齿制ha*= 1,短齿制ha*= 0.8 。 顶隙系数c*:正常齿制c*= 0.25,短齿制c*= 0.3。
ha ham
hf (ha c )m
h ha hf (2ha c )m
§8-4 渐开线标准齿轮的基本参数和几何尺寸
三、几何尺寸 表8-4渐开线标准直齿圆柱齿轮几何尺寸公式
啮合终止点B1 —— 啮合线N1N2 与主动轮齿顶圆的交点。
线段B1B2 ——实际啮合线段。 啮合线N1N2 —— 理论啮合线段。 N1、N2 —— 啮合极限点。
图8-14齿轮重合度
§8-5 渐开线直齿圆柱齿轮的啮合传动
重合度——实际啮合线段与法向齿距的比值,用εa 表示。
a
B1B2 pb
连续传动条件—— 重合度大于或等于 1
重合度的计算
a
1 2π
z1tan a1
tan
z2 tan a2
tan
影响重合度的因素:
a) ε与模数m无关;
b) 齿数z越多,ε 越大; c) z趋于∞时,εmax=1.981; d) 啮合角α‘ 越小,ε越大;
e) 齿顶高系数ha*越大,ε越大。
图8-14齿轮重合度
图8-15 齿轮重合 度与齿轮啮合区段
图8-2渐开线的形成
二、 渐开线的特性
1. 发生线沿基圆滚过的长度,等于基圆上被 滚过的圆弧长。
2. 渐开线上任意点的法线恒与其基圆相切。发生 线与基圆的切点B就是渐开线在K 点的曲率中心,
线段KB是渐开线在K点的曲率半径。
3. 基圆内无渐开线。 4. 渐开线的形状取决于基圆的大小。
§8-3 渐开线齿廓及其啮合特性

机械设计复习题(八)

机械设计复习题(八)

4
13.666 m s 60 1000 60 1000 F v 1000 P 1000 4.82 由 P ec 得Fec 352.7 N 1000 v 13.666 F e fv 1 e fv 1 由 Fec 2 F0 fv 得F0 ec fv 551.6 N e 1 2 e 1 F 352.7 F1 F0 ec 551.6 727.95 N 2 2 F 352.7 F2 F0 ec 551.6 375 25 N 2 2 2、解: 1)D 点上带速大于带轮圆周速度; 2)A、C 点上带速等于带轮圆周速度; 3)B 点上带速小于带轮圆周速度。
3
1、A;2、B;3、B;4、A;5、B;6、A;7、A;8、C;9、D;10、C;11、B; 12、B;13、A;14、D;15、B;16、A;17、D 四、简答题 1、 (1)带是弹性体,当带受拉时将产生弹性伸长。拉力越大,伸长量越大;拉力 较小,伸长量也小。带刚绕入主动带轮时,带速与主动轮的圆周速度相等。当带 随着主动轮由紧边转至松边过程中,带所受的拉力逐渐减少,带逐渐收缩,带沿 主动带轮的表面产生向后的爬行现象,这种现象称为带的弹性滑动。 (2)当带传递的外载荷增大时,要求有效拉力随之增大。当有效拉力达到一定 数值时, 带与小带轮轮槽接触面间的摩擦力总和将达到极限值。若外载荷超过这 个极限值,带将沿整个接触弧滑动,这种现象称为打滑。 2、因为带传动具有缓冲吸振,传动平稳,噪声小的特点。正常运行的条件是带 和带轮间不发生打滑,带在一定限度内不发生疲劳损坏。 3、 (1)v 带工作一段时间后,就会由于塑性变形而松弛,有效拉力降低,为了保 证带传动的正常工作,应定期张紧。 (2)滑道式定期张紧、摆架式定期张紧、利用自身重量的自动张紧、调位式内 张紧轮张紧等。 4、传动带是弹性体,受到拉力后会产生弹性伸长,伸长量随拉力大小的变化而 改变。带由紧边绕过主动轮进入松边时,带的拉力由 F1 减小为 F2,其弹性伸长 量也由 δ1 减小为 δ2 。这说明带在绕过带轮的过程中,相对于轮面向后收缩了 (δ1-δ2) ,带与带轮轮面间出现局部相对滑动,导致带的速度逐步小于主动轮的 圆周速度, 这种由于带的弹性变形而产生的带与带轮间的滑动称为弹性滑动。弹 性滑动和打滑是两个截然不同的概念。打滑是指过载引起的全面滑动,是可以避 免的。而弹性滑动是由于拉力差引起的,只要传递圆周力,就必然会发生弹性滑 动,所以弹性滑动是不可以避免的。 5、当中心距不能调节时,可采用张紧轮将带张紧。张紧轮一般应放在松边内侧, 使带只受单向弯曲。同时张紧轮还应尽量靠近大轮,以免过分影响带在小轮上的 包角。 6、带传动的失效形式有打滑和疲劳破坏。设计准则:在保证带传动不打滑的条 件下,具有一定的疲劳强度和寿命。设计 V 带传动时发现 V 带根数过多,可采 用:改选带的截型,重新计算来解决。 7、张紧力 F0 越大,则带传动的承载能力就越大,但同时带中所受的拉应力也越 大,从而降低带的寿命;张紧力越小,虽可减小带中的拉应力,提高带的寿命, 但带传动的承载能力会降低。 五、分析计算题 1、解:

齿轮传动机械设计

选择齿数z1,z2=uz1;
选择齿宽系数d
确定主要参数: 中心距a——圆整 模数m——取标准值 反求齿数z1、z2
根据材料硬度确定设计准则 (按?设计;按?校核)
计算小、大齿轮的各许用应力 [σH1]、 [σH2]、 [σF1] 、[σF2]
计算主要尺寸:d1=mz1 (满足设计条件)d2=mz2 …
机械设计 (8)
第八章 齿轮传动
概述 齿轮传动的失效形式和设计准则 标准直齿圆柱齿轮的强度计算 齿轮的材料和许用应力 斜齿圆柱齿轮传动 圆锥齿轮传动
齿轮的结构设计
§8.1 概 述
一、齿轮传动的主要特点:
传动效率高 可达99%。在常用的机械传动中,齿轮传动的效率最高;
结构紧凑 与带传动、链传动相比,在同样的使用条件下,齿轮传动所需
Fn
αF
F2 hF
弯曲力矩: M K Fn cosF hF
30˚ 30˚
危险截面的弯曲截面系数:W
bS
2 F
6
SF rb
弯曲应力:
F
M W
6KFnhF cos F
bS
2 F
O
∵ Fn
Ft
cos
F
6KFt hF cos F
bS
2 F
cos
§8.3 标准直齿圆柱齿轮强度计算
弯曲应力: F
6KFt hF cos F
径向力:Fr
Ft
tan
2T1 d1
tan
d1——小齿轮节圆直径
径向力方向:指向各自轮心
法向力:Fn
Ft
cos
2T1
d1 cos
§8.3 标准直齿圆柱齿轮强度计算
二、轮齿的计算载荷

机械设计基础讲义第八章蜗杆传动

(a )圆柱蜗杆传动 (b )环面蜗杆传动 (c )锥面蜗杆传动图8.2 蜗杆传动的类型机械设计基础讲义第八章蜗杆传动具体内容 蜗杆传动特点与类型;蜗杆传动的基本参数与几何尺寸计算;蜗杆传动的效率、热平衡计算及润滑;蜗杆传动受力分析与计算载荷;蜗杆传动失效形式与设计准则;蜗杆传动材料与许用应力;蜗杆强度计算;蜗杆刚度计算;蜗杆传动的结构设计。

重点 蜗杆传动的基本参数与几何尺寸计算;蜗杆传动受力分析;蜗杆强度计算;蜗杆刚度计算。

难点 蜗杆传动受力分析。

第一节 蜗杆传动的特点与类型蜗杆传动由蜗杆与蜗轮构成(图8.1),用于传递交错轴之间的运动与动力,通常两轴间的交错角︒=∑90。

通常蜗杆1为主动件,蜗轮2为从动件。

一、蜗杆传动的特点1、优点传动比大;工作平稳,噪声低,结构紧凑;在一定条件下可实现自锁。

2、缺点发热大,磨损严重,传动效率低(通常为0.7~0.9);蜗轮齿圈常使用铜合金制造,成本高。

二、蜗杆传动的类型根据蜗杆形状的不一致,蜗杆传动可分为圆杆蜗杆传动、环面蜗杆传动与锥面蜗杆传动三种类型,如图8.2所示。

图8.1 蜗杆传动 1-蜗杆,2-蜗轮根据加工方法不一致,圆柱蜗杆传动又分为阿基米德蜗杆传动(ZA型)、法向直廓蜗杆传动(ZN型)、渐开线蜗杆传动(ZI型)与圆弧圆柱蜗杆传动(ZC型)等。

前三种称之普通圆柱蜗杆传动,见图8.3所示。

(a)阿基米德蜗杆(b)法向直廓蜗杆(c)渐开线蜗杆图8.3 普通蜗杆的类型第二节圆柱蜗杆传动的基本参数与几何尺寸计算在普通圆柱蜗杆传动中,阿基米德蜗杆传动制造简单,在机械传动中应用广泛,而且也是认识其他类型蜗杆传动的基础,故本节将以阿基米德蜗杆传动为例,介绍蜗杆传动的一些基本知识与设计计算问题。

一、蜗杆传动的基本参数通过蜗杆轴线并垂直于蜗杆轴线的平面称之中间平面,见图6.4。

在中间平面内,蜗杆与蜗轮的啮合相当于齿条与齿轮的啮合。

因此,设计圆柱蜗杆传动时,均取中间平面上的参数与几何尺寸作为基准。

机械原理 第八章 平面四杆机构设计


2. 平面四杆机构的运动特性 (1)急回运动和行程速度变化系数 K (2)压力角和传动角 (3)死点 (4)运动连续性
压力角和传动角
压力角:受力方向与速度方向所夹锐角。 压力角:受力方向与速度方向所夹锐角。
压力角—— 主动件曲柄通过连杆作用于从动件摇杆上的力F的作用 压力角 线与其作用点的速度方向之间所夹锐角,称为机构的压力角α。 传动角—— 机构在某位置时,其连杆与从动杆之间所夹的锐角γ, 传动角 称为机构在该位置时的传动角。 传动角:连杆与从动杆所夹锐角。 传动角:连杆与从动杆所夹锐角。
第八章 平面连杆机构及其设计
§8-1 连杆机构及其传动特点 §8-2 平面四杆机构的类型和应用 §8-3 平面四杆机构的基本知识 §8-4 平面四杆机构的设计
第八章 平面连杆机构及其设计
§8-1 连杆机构及其传动特点
• 1. 应用实例 四足机器人 • 2. 例8-1 飞机起落架 炉门机构 牛头刨床
第二章
机构的结构分析
§8-3 平面四杆机构的基本知识
2. 平面四杆机构的运动特性 (1)急回运动和行程速度变化系数 K (2)压力角和传动角 (3)死点 (4)运动连续性
急回运动和行程速度变化系数 K
1. 急回运动 —— 当连杆机构的主动件为等速回转时,从动件空回行程的平 均速度大于其工作行程的平均速度,这种运动称为急回运动。 2. 行程速比系数 K ——用来衡量急回运动的程度。
克服死点的方法: 克服死点的方法: 1)利用安装飞轮加大惯性的方法,借惯性作用使机构闯过死点。 2)采用将两组以上的同样机构组合使用,且使各组机构的死点位 置相互错开排列的方法。 死点的应用 例8-10 飞机起落架收放机构 例8-11 折叠式桌的折叠机构
第八章 平面连杆机构及其设计

机械设计基础 第七版 第8章 蜗杆传动

1 蜗杆传动的主要参数及其选择
(4)蜗杆分度圆直径d1和直径系数q 在切制蜗轮轮齿时,所用滚刀的直径和齿形参数必须与该蜗轮相啮合 的蜗杆一致。 而蜗杆分度圆直径d1不仅与模数有关,还随z1/tanλ的数值而变化。即 使m相同,也会有许多不同直径的蜗杆。 为了限制滚刀的数目以及便于滚刀的标准化,对于每一种模数的蜗杆, 国家标准制定了蜗杆分度圆直径d1的标准值,并把d1 与m的比值称为蜗杆 直径系数q,即
对开式蜗杆传动,通常以保证齿根弯曲疲劳强度作为主要 设计准则。当蜗杆直径较小而跨距较大时,还应作蜗杆轴的刚 度验算。
8.2.2 蜗杆传动的常用材料及选择
蜗杆一般用碳钢或合金钢制成。高速重载蜗杆常用低碳合金 钢,如15Cr、20Cr、20CrMnTi等,经渗碳淬火,表面硬度56~ 62HRC。 中速中载蜗杆可用优质碳素钢或合金结构钢,如45、 40Cr等。经表面淬火,表面硬度40~55HRC。
8.1.2 蜗杆传动的基本参数和尺寸
通过蜗杆轴线并垂直于蜗轮轴 线的剖面称为中间平面。
该平面为蜗杆的轴面或为蜗轮 的端面。
在中间平面内蜗杆与蜗轮的啮 合相当于渐开线齿轮与齿条的啮合。 因此,该平面内的参数为标准值。
阿基米德蜗杆传动
8.1.2 蜗杆传动的基本参数和尺寸
1 蜗杆传动的主要参数及其选择
第8章 蜗杆传动
8.1 蜗杆传动的类型、特点、参数和尺寸 8.2 蜗杆传动的失效形式、设计准则和常用材料 8.3 蜗杆传动的受力分析及强度计算 8.4 蜗杆传动的效率、润滑和热平衡计算 8.5 蜗杆和蜗轮的结构 8.6 蜗杆传动的安装与维护
8.1 蜗杆传动的类型、特点、参数和尺寸
学习要点
•掌握蜗杆传动的类型、特点、基本参数及正确啮合条件。 •掌握蜗杆直径系数的概念及几何尺寸计算。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档