MCS-51 单片机温度控制系统论文

合集下载

基于51单片机的温度控制系统设计论文

基于51单片机的温度控制系统设计论文

1引言1.1课题背景及意义当今时代,是一个信息化告诉发展的时代。

科学技术的发展速度越来越快,各种新技术层出不穷,被广泛的运用在各个方面。

其中农业就是一个重要的应用领域。

新技术的出现为农业的发展带来了新的动力,让农产品的产量得到增加的同时使用了更少的人力,使生产效率越来越高。

在一些地区,温室大棚得到了广泛的应用,使人们能够吃到许多原本在当前季节吃不到的水果与蔬菜。

但是,温室大棚技术在当前时代的发展水平还不够充足,现今的温室大棚基本为拱形结构,外部为薄膜等透光性较好的材料,这样做使得农作物能够获得较为充足的太阳光,有利于农产品的生长。

但是温度却得不到有效的控制,使得大棚内的温度或高或低,不利于蔬菜或水果的发育和有机物的积累,造成的结果就是大棚内的产物产量不高,从而使得市场上的价格偏高,不能让大棚内的食品成为每个人都有能力食用的产品,让人们不在期盼与尝试,这对于大棚农业的发展有百害而无一利。

为了解决这个不可避免的问题,本设计使用51单片机进行大棚内的温度控制,通过检测大棚内的温度实时调节以保持最佳温度,让大棚里的作物得到最好的生长环境,从而使得产量能够增加。

使用51单片机主要是由于当前单片机的发展与广泛使用,让单片机的价格不断下降,从而使用户得到最高的性价比。

1.2单片机在农业生产自动化中的应用现状由于人口增长、资源短缺和环境变化,经济发达国家和一些发展中国家都在研究21世纪农业可持续发展的问题。

将各种现代化高新技术应用于农业生产,在有限的自然条件下,通过人工建造的设施控制环境,提高农业自动化水平,于是产生了设施农业,这些设施大部分都是通过单片机进行控制的。

设施农业就是通过采用现代农业技术,改变自然环境,为种植业、养殖业以及产品的储藏保鲜等提供适当的环境条件,而在一定程度上摆脱对自然环境的依赖进行有效生产的农业。

设施农业以其技术含量高、品质高、效益高和集约化等优点,在国外发达国家得到了快速发展。

国外发达国家一直致力于把自动控制技术应用于设施农业中,即将自动化技术应用于农作物的耕种、施肥、灌溉、防治病虫害、收货的全过程,畜禽水产品等饲养全过程,以及农产品的加工、储藏和保鲜的全过程。

【精品】基于单片机温度控制系统毕业论文

【精品】基于单片机温度控制系统毕业论文

毕业论文(设计)题目:基于单片机的温度控制系统姓名:学号:专业:研究方向:指导教师:环境工程系二O一四年四月摘要近年来随着计算机在社会领域的渗透, 单片机的应用正在不断地走向深入,同时带动传统控制检测日新月益更新。

在实时检测和自动控制的单片机应用系统中,单片机往往是作为一个核心部件来使用,仅单片机方面知识是不够的,还应根据具体硬件结构,以及具体应用对象特点的软件结合,以作完善。

本文从硬件和软件两方面来讲述水温自动控制过程,在控制过程中主要应用AT89C51、ADC0809、LED显示器、LM324比较器,而主要是通过 DS18B20数字温度传感器采集环境温度,以单片机为核心控制部件,并通过四位数码管显示实时温度的一种数字温度计。

软件方面采用汇编语言来进行程序设计,使指令的执行速度快,节省存储空间。

为了便于扩展和更改,软件的设计采用模块化结构,使程序设计的逻辑关系更加简洁明了,使硬件在软件的控制下协调运作。

而系统的过程则是:首先,通过设置按键,设定恒温运行时的温度值,并且用数码管显示这个温度值.然后,在运行过程中将采样的温度模拟量送入A/D转换器中进行模拟-数字转换,再将转换后的数字量用数码管进行显示,最后用单片机来控制加热器,进行加热或停止加热,直到能在规定的温度下恒温加热。

--关键词:单片机系统;传感器;数据采集;模数转换器;温度目录摘要 (2)第1章绪论 (4)1.1选题背景 (4)1.2选题简介 (4)第2章系统零件理论基础 (5)2.1AT89C51单片机的介绍 (5)2.1.1 AT89C51单片机的特点 (5)2.1.2 AT89C51单片机的基本组成 (5)2.2系统功能的确定 (6)2.3 ADC0809的内部结构 (6)2.4 温度传感器 (7)第3章电路设计 (8)3.1单片机控制单元 (8)3.2系统结构框图 (9)3.3传感器及放大电路 (9)3.4模数转换部分 (10)3.4.1模数转换技术 (10)3.5调节执行单元 (11)3.6系统的原理图 (12)第4章软件设计 (13)4.1主程序流程图 (13)4.2中断子程序流程图 (14)4.3按键流程图 (15)4.4显示流程图 (16)4.5动态显示子程序 (16)4.6数据转换子程序 (18)第5章结论与展望 (19)参考文献 (20)第1章绪论1.1 选题背景在生产过程中,温度的控制是十分常见的。

温度控制系统设计毕业设计论文

温度控制系统设计毕业设计论文

目录第一章设计背景及设计意义 (2)第二章系统方案设计 (3)第三章硬件 (5)3.1 温度检测和变送器 (5)3.2 温度控制电路 (6)3.3 A/D转换电路 (7)3.4 报警电路 (8)3.5 看门狗电路 (8)3.6 显示电路 (10)3.7 电源电路 (12)第四章软件设计 (14)4.1软件实现方法 (14)4.2总体程序流程图 (15)4.3程序清单 (19)第五章设计感想 (29)第六章参考文献 (30)第七章附录 (31)7.1硬件清单 (31)7.2硬件布线图 (31)第一章设计背景及研究意义机械制造行业中,用于金属热处理的加热炉,需要消耗大量的电能,而且温度控制是纯滞后的一阶惯性环节。

现有企业多采用常规仪表加接触器的断续控制,随着科技进步和生产的发展,这类设备对温度的控制要求越来越高,除控温精度外,对温度上升速度及下降速度也提出了可控要求,显而易见常规控制难于满足这些工艺要求。

随着微电子技术及电力电子技术的发展,采用功能强、体积小、价格低的智能化温度控制装置控制加热炉已成为现实。

自动控制系统在各个领域尤其是工业领域中有着及其广泛的应用,温度控制是控制系统中最为常见的控制类型之一。

随着单片机技术的飞速发展,通过单片机对被控对象进行控制日益成为今后自动控制领域的一个重要发展方向。

在现代化的工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。

例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。

对工件的处理温度要求严格控制,计算机温度控制系统使温度控制指标得到了大幅度提高。

采用MCS-51单片机来对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。

因此,单片机对温度的控制问题是一个工业生产中经常会遇到的问题。

mcs-51单片机测温系统的设计

mcs-51单片机测温系统的设计
1.4课题设计的主要内容
本温度控制系统是一个闭环反馈控制系统,它用温度传感器将检测到的温度信号经放大,送入单片机中进行数据处理并显示当前温度值,用当前温度值与设定温度值进行比较。根据比较的结果得到控制信号用以控制继电器的通断,实现对加热器的控制。通过这种控制方式实现对保温箱的温度控制。本课题设计的内容主要包括硬件设计和软件设计两部分。系统功能由硬件和软件两大部分协调完成,硬件部分主要完成主机电路、数据采集电路、键盘显示电路、控制执行等电路的设计。软件程序编写主要用来实现对温度的检测、标度转换、LED显示、继电器控制等数据处理功能。
2系统总体方案设计
本次设计采用MCS-51单片机作为控制芯片,采用半导体集成温度传感器DS18B20采集温度信号。通过温度传感器将采集的温度信号转换成与之相对应的电信号,将模拟信号转换成数字信号送入到控制芯片进行数据处理。通过在芯片外围添加显示、控制等外围电路来实现对保温箱温度的实时检测和控制功能。
目前国内外的温度控制方式越来越趋向于智能化,温度测量首先是由温度传感器来实现的。测温仪器由温度传感器和信号处理两部分组成。温度测量的过程就是通过温度传感器将被测对象的温度值转换成电的或其它形式的信号,传递给信号处理电路进行信号处理转换成温度值显示出来。温度传感器随着温度变化而引起变化的物理参数有:膨胀、电阻、电容、热电动势,磁性能、频率、光学特性及热噪声等等。随着生产的发展,新型温度传感器还会不断出现,目前,国内外通用的温度传感器及测温仪大致有以下几种:热膨胀式温度计、电阻温度计、热电偶、辐射式测温仪表、石英温度传感器测温仪。
关键词单片机;传感器;温度检测;继电器
MCS-51 Microcontroller Temperature Measurement System Design

基于51单片机的温度控制系统设计与实现

基于51单片机的温度控制系统设计与实现

基于51单片机的温度控制系统设计与实现基于51单片机的温度控制系统设计与实现摘要:本文通过使用51单片机进行温度控制系统的设计与实现。

通过采集温度传感器的数据,通过控制电路对电热器进行控制,实现室内温度的控制和稳定。

设计过程中首先对硬件进行搭建和电路设计,然后进行软件编程和系统调试。

最终通过实验和测试验证了系统的稳定性和可靠性。

关键词:51单片机,温度控制系统,温度传感器,电热器,硬件搭建,软件编程,系统调试一、引言随着科技的不断发展与进步,智能家居控制系统得到了广泛应用。

其中,温度控制系统在居民生活中起到了重要作用。

温度控制系统能够根据室内实时温度调节电热器的工作状态,使室内温度保持在合适的范围内,提供舒适的居住环境。

现有的温度控制系统大多使用单片机来实现温度数据的采集和控制。

本文选择51单片机作为控制核心,设计并实现了基于51单片机的温度控制系统。

二、项目硬件设计1. 温度传感器模块温度传感器模块采用常见的DS18B20传感器。

该传感器具有高精度和可靠性,能够准确地测量环境温度,并将温度数据以数字信号的形式输出。

2. 控制电路设计控制电路设计包括电热器的电源供电控制和温度控制。

电热器供电通过继电器进行控制,通过51单片机的IO口控制继电器的开关状态,实现电热器的启动和停止。

温度控制部分则通过将温度传感器的数据与设定温度进行比较,根据差值控制继电器的状态,从而调节电热器的工作状态。

当实时温度大于设定温度时,继电器断电,电热器停止工作;当实时温度小于设定温度时,继电器通电,电热器开始工作。

3. 显示模块设计为了方便用户了解室内温度和系统工作状态,本设计添加了液晶显示模块。

通过51单片机的IO口控制液晶显示屏,实时显示当前室内温度和系统运行状态。

三、软件编程1. 数据采集与处理通过采集温度传感器的数据,可以得到当前室内温度的数值。

将采集到的温度数据进行处理,与设定的温度进行比较,得到差值。

2. 温度控制算法根据差值的大小,控制继电器的状态,从而实现对电热器的控制。

基于51单片机的水温控制系统设计毕业论文

基于51单片机的水温控制系统设计毕业论文

基于51单片机的水温控制系统设计毕业论文基于51单片机的水温控制系统设计毕业论文基于单片机的水温控制系统摘要水在人们日常生活和工业生产中有着必不可少的作用,在不同环境和不同的需求中,水温的变化也对我们的生活和工业生产有着重要的影响,为了满足人们在各个领域所需要的水温,水温控制系统在各个领域也应运而生。

随着社会的发展,科技的进步,智能化已经是温控系统发展的主流方向,小到人们生活中的饮水机,大到工业生产中的大型水温加热控制设备等各种水温控制系统发展以趋于成熟。

传统靠人工控制的温度,湿度,液位等信号的测压、力控系统,外围电路比较复杂,测量精度较低,分辨率不高,需进行温度校正;并且他们的体积较大适用不方便,在工业生产中也可能应为各种认为的失误发生意外,针对此问题,本系统设计的目的就是实现一种可连续高精度持续调温的温度控制系统,它应用广泛,功能强大,操作简单,便于携带,是一款既实用又廉价的控制系统。

温度检测控制系统在工业生产中主要职责是对温度进行严格的监测,在温度发生变化不符合规定温度时,系统报警提示并做出相应的温度调整措施,以使得生产能够顺利进行,节省了大量的人工,产品的质量也得到充分的保障,同时也避免了各种潜在意外的发生。

从而提高企业的生产效率。

本系统以89C51单片机为核心,扩展外围控制电路,检测变送电路,按键电路,显示电路,复位电路,时钟电路,电源电路,报警电路;本系统的整体运行过程为:通过按键电路设定理想水温范围,实时水温通过检测变送电路模检测,并将检测到的物理量转化成电信号,然后放大电信号并将模拟量同过A/D 转换为单片机识别的数字量发送给单片机。

单片机系统将实时温度与设定温度进行对比,并通过显示电路将实时温度显示出来,如果实时温度大于设定的最高温度或者低于设定的最低温度一定时间,单片机将触发报警电路对过温或者低温进行警报,同时触发控制电路对水温的控制做出适当的调整,确保水温出在理想的温度值,满足需求。

单片机温度控制系统研究论文(全文)

- 1 - 单片机温度操纵系统研究论文(全文) 一、单片机温度操纵系统的组成及工作原理 在工业生产和日常生活中,对温度操纵系统的要求,主要是保证温度在一定温度范围内变化,稳定性好,不振荡,对系统的快速性要求不高。以下简单分析了单片机温度操纵系统设计过程及实现方法。现场温度经温度传感器采样后变换为模拟电压信号,经低通滤波滤掉干扰信号后送放大器,信号放大后送模/数转换器转换为数字信号送单片机,单片机根据输入的温度操纵范围通过继电器操纵加热设备完成温度的操纵。本系统的测温范围为0℃~99℃,启动单片机温度操纵系统后首先按下第一个按键开始最低温度的设置,这时数码管显示温度数值,每隔一秒温度数值增加一度,当满足用户温度设置最低值时再按一下第一个按键完成最低温度的设置,依次类推通过第二个按键完成最高温度的设置。然后温度检测系统根据用户设定的温度范围完成一定范围的温度操纵。 二、温度检测的设计 系统测温采纳AD590温度传感器,AD590是美国模拟器件公司生产的单片集成两端感温电流源。它的主要特性如下: 1、流过器件的电流(mA)等于器件所处环境的热力学温度(开尔文)度数;即:,式中:Ir—流过器件(AD590)的电流,单位为mA;T—热力学温度,单位为K。 2、AD590的测温范围为-55℃~+150℃; - 2 -

3、AD590的电源电压范围为4V~30V; 4、输出电阻为710MW; 5、精度高。 AD590温度传感器输出信号经放大电路放大10倍,再送入模/数转换器ADC0804,转换后送单片机。根据AD590温度传感器特性以及放大10倍后的电压值与现场温度的比较发现,实际温度转换后送入单片机的值与按键输入数值之间有一定的差值,模/数转换器送入单片机的数值是按键输入值得2.5倍。由于单片机不能进行小数乘法运算,所以先对按键输入进行乘5,然后根据运算结果及程序状态字的状态再进行循环右移一位,如果溢出标志位为低电平时直接对累加器进行一次带进位循环右移,如果溢出标志位为高电平时,先对进位标准位CY位置为高电平,然后再进行一次带进位循环右移,通过上述操作使按键输入的温度值与模/数转换器送入单片机的温度值相统一。 三、具体电路连接如图所示 四、软件编程 单片机温度操纵系统由硬件和软件组成,上述硬件原理图搭建完成上电之后,我们还不能实现对温度的操纵,需要给单片机编写程序,下面给出了温度操纵系统的编程方法。 五、结语: 本文给出了用单片机在0℃~99℃之间,通过用户设置温度上限、下限值来实现一定范围内温度的操纵;给出了温度操纵系- 3 -

基于51单片机的温度控制系统【范本模板】

毕业论文设计基于51单片机的温度控制系统摘要在日常生活中温度在我们身边无时不在,温度的控制和应用在各个领域都有重要的作用。

很多行业中都有大量的用电加热设备,和温度控制设备,如用于报警的温度自动报警系统,热处理的加热炉,用于融化金属的坩锅电阻炉及各种不同用途的温度箱等,这些都采用单片机技术,利用单片机语言程序对它们进行控制。

而单片机技术具有控制和操作使用方便、结构简单便于修改和维护、灵活性大且具有一定的智能性等特点,可以精确的控制技术标准,提高了温控指标,也大大的提高了产品的质量和性能。

由于单片机技术的优点突出,智能化温度控制技术正被广泛地采用.本文介绍了基于单片机AT89C51 的温度控制系统的设计方案与软硬件实现。

采用温度传感器DS18B20 采集温度数据,7段数码管显示温度数据,按键设置温度上下限,当温度低于设定的下限时,点亮绿色发光二极管,当温度高于设定的上限时,点亮红色发光二极管.给出了系统总体框架、程序流程图和Protel 原理图,并在硬件平台上实现了所设计功能。

关键词:单片机温度控制系统温度传感器AbstractIn daily life, the temperature in our side the ever-present,the control of the temperature and the application in various fields all have important role。

Many industry there are a large number of electric heating equipment, and the temperature control equipment, such as used for alarm automatic temperature alarm systems, heat treatment furnace,used to melt metal crucible resistance furnace, and all kinds of different USES of temperature box and so on, these using single chip microcomputer,using single chip computer language program to control them。

单片机温度控制系统的设计毕业设计论文

单片机温度控制系统的设计毕业设计论文摘要:本文设计了一种基于单片机的温度控制系统,旨在实现对温度的准确测量和控制。

系统采用温度传感器作为温度检测元件,通过单片机对温度进行采样和处理,然后根据预设的温度范围,控制风扇的启停,以达到调节室内温度的目的。

实验结果表明,该系统能够准确地测量温度并进行有效的控制。

关键词:单片机;温度控制系统;温度传感器;风扇1.引言温度控制是一种常见的自动化控制方法,广泛应用于工业、农业、医疗等领域。

温度控制系统通过对温度的测量和调节,实现了对环境温度的精确控制。

单片机作为一种微型计算机,具有体积小、功耗低、可编程性强等优点,被广泛应用于温度控制系统中。

2.系统设计系统由温度传感器、单片机和风扇组成。

温度传感器将实时温度传递给单片机,单片机根据设定的温度范围进行判断,并控制风扇的启停。

3.硬件设计(1)温度传感器选型采用数字温度传感器DS18B20,该传感器具有精度高、体积小、抗干扰能力强等特点。

(2)单片机选型采用AT89C52单片机,该单片机具有较高的性能和稳定性,适合于温度控制应用。

(3)风扇选型根据室内温度控制要求,选用功率适中的风扇,并设计驱动电路。

4.软件设计(1)温度测量通过单片机与温度传感器进行通信,实时获取温度数据,并进行精确测量。

(2)温度控制根据设定的温度范围,单片机判断当前温度是否在合理范围内,如果超出范围,则控制风扇启停,达到温度调节的目的。

5.实验结果通过实验,温度控制系统能够准确地测量室内温度,并根据设定的温度范围进行有效的控制。

系统响应速度快,温度波动范围小,能够满足实际应用需求。

6.结论本文设计了一种基于单片机的温度控制系统,并进行了实验验证。

实验结果表明,该系统能够准确地测量温度并进行有效的控制,具有一定的实用性和应用价值。

未来可以进一步优化系统性能,提高温度控制的精确度和稳定性。

[1]张三.基于单片机的温度控制系统设计[D].大学。

[2]李四.单片机在温度控制中的应用[J].仪器仪表学报。

基于MCS-51单片机的的温度控制系统

第1章概述随着单片机技术的不断发展,单片机在日用电子产品中的应用越来越广泛,广泛应用于冰箱、空调器、粮仓等日常生活中温度的测量和控制。

传统的温度计有反应速度慢、读数麻烦、测量精度不高、误差大等缺点,本课程利用集成温度传感器DS18B20设计并制作了一款基于STC89C52的两位数码管显示的数字温度计,其电路简单,软硬件结构模块化,易于实现。

目前温度计的发展很快,从原始的玻璃管温度计发展到了现在的热电阻温度计、热电偶温度计、数字温度计、电子温度计等等。

目前的温度计中传感器是它的重要组成部分,它的精度灵敏度基本决定了温度计的精度、测量范围、控制范围和用途等。

传感器应用极其广泛,目前已经研制出多种新型传感器[1]。

通过“数字温度计的设计”的设计过程,结合所学的课程,掌握目前自动化仪表的一般设计要求、工程设计方法、开发及设计工具的使用方法,通过这一设计实践过程,锻炼学生的动手能力和分析、解决问题的能力;积累经验,培养按部就班、一丝不苟的工作和对所学知识的综合应用能力。

1.1 单片机的发展概况单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。

概括的讲:一块芯片就成了一台计算机。

它的体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。

同时,学习使用单片机了解计算机原理与结构的最佳选择[2]。

可以说,二十世纪跨越了三个“电”的时代,即电气时代、电子时代和现已进入的电脑时代。

不过,这种电脑,通常是指个人计算机,简称PC机。

它由主机、键盘、显示器等组成)。

还有一类计算机,大多数人却不怎么熟悉。

这种计算机就是把智能赋予各种机械的单片机(亦称微控制器)。

顾名思义,这种计算机的最小系统只用了一片集成电路,即可进行简单运算和控制。

因为它体积小,通常都藏在被控机械的“肚子”里。

它在整个装置中,起着有如人类头脑的作用,它出了毛病,整个装置就瘫痪了。

现在,这种单片机的使用领域已十分广泛,如智能仪表、实时工控、通讯设备、导航系统、家用电器等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MCS-51 单片机温度控制系统 学院:信息工程与自动化学院 专业:通信工程 班级: 姓名: 学号: 日期:2014年6月10日 成绩: 课程设计概述 1、设计题目: 基于MCS-51单片机的温度控制系统 2、设计意义: 在现代化的工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。 采用MCS-51单片机来对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。单片机以其功能强、体积小、可靠性高、造价低和开发周期短等优点,为自动化和各个测控领域中广泛应用的器件,在工业生产中称为必不可少的器件,尤其是在日常生活中发挥的作用也越来越大。因此,单片机对温度的控制问题是一个工业生产中经常会遇到的问题。 3、设计任务 本设计以上述问题为出发点,设计实现了一个温度实时测量、显示、控制系统。完成一个低成本、低价格、功能齐全、及温度测量、温度显示、温度控制于一体的单片机温度控制系统。包括硬件电路和主要的控制算法。 研究的关键问题是:炉温的精确测量;双向可控硅控制的温度控制电路设计;温度控制算法的选择(本设计采用PID控制算法);以及温度标度转换、数字滤波炉温采样等软件设计。 4、设计内容 (1)对炉温的温度检测和升温、恒温控制。 (2)显示检测温度值。 (3)当超越上限或下限时自动报警。 (4)设定和修改要保持的温度值。 基于MCS-51单片机的温度控制系统 摘 要 单片机在检测和控制系统中得到了广泛的应用,温度是一个系统经常需要测量、控制和保持的量,而温度是一个模拟量,不能直接与单片机交换信息,采用适当的技术将模拟的温度量转化为数字量在原理上虽然不困难但成本较高,还会遇到其它方面的问题。因此对单片机温度控制系统的研究有重要目的和意义。 本文主要介绍了以MCS-51系列单片机8031、AD574、8155、可控硅、LM311等芯片组成的温度检测电路,模/数转换电路,键盘/LED显示电路,报警电路,信号放大电路;在描述了外围硬件电路的同时,还做了大量的软件工作,包括数据处理软件,PID控制算法。本设计有效的提高了控制系统的实时性和控制精度大大改善了炉温控制的自动化程度,具有较高的实用价值。

关键词:单片机,PID算法 ,温度采样,温度控制 引言 单片机对温度的控制问题是一个工业生产中经常会遇到的问题,本论文以此问题为出发点,设计实现了温度实时测量、显示、控制系统。本设计方案具有较高的测量精度,更加适合对温度精度要求较高的化工生产、电力工程等行业,并希望通过本设计得到举一反三和触类旁通的效果。 一、系统总体构成 1、系统的主要功能: (1)对炉温的温度检测和升温、恒温控制。(2)显示检测温度值。(3)当超越上限或下限时自动报警。(4)设定和修改要保持的温度值。 2、系统的工作流程 (1)先接通电源,然后将开关打到开的位置,六段数码管显示器就自动显示出当前温度,并且显示出设置温度的缺省值000000。此时继电器不工作。 (2)按下F1按键,温度控制系统进入温度控制点的设制。这个时候,显示设置温度的数码管闪烁。 此时可以通过键盘输入预设置的温度。当按下“确定”按键的时候,单片机就会根据所写入的程序,对系统进行控制。当设置的温度高于当前的温度时,单片机通过可控硅控制极上触发脉冲控制加热电路连通。温度慢慢升高;当设置的温度低于当前的温度时,单片机通过可控硅控制极上触发脉冲控制加热电路断开,温度慢慢下降;就这样通过温度芯片的反馈信息,实现水的温度保持在设置温度上,从而达到自动控制温度的功能。

3、系统的主要技术指标 测温范围 :0℃-1000℃ 温度分辨率:±0.5VLED 显示位数:6

4、系统的总体结构 系统的硬件电路有温度检测、信号放大、A/D转换、键盘接口、LED显示、单稳态触发电路、可控硅控制电路等部分组成,系统结构图见图2.1。

图 2.1 系统框图 二、 温度控制系统的硬件设计

1、温度测量放大电路 采用OOP07运放组成低漂移高精度前置放大器,对几十微伏变化信号测量比较精确,其放大倍数与 3RF/2RF成正比,可根据需要设计。其中OP07的1、4、5端与1RW构成调零电路。再接一级有运放741构成的续接放大器就可将毫伏级信号放大到需要的幅度,放大倍

数可自己设定,741的1、4、5端与2RW构成调零电路。741的输出送给后面的模数转换电路。具体接法如图3.1

炉温采样点 温度传感器 滤波信号放大 AD转换

单 片 机 系 统 (8031)

双向可控硅 光耦驱动

过零脉冲提取计时

电炉

220V~ LED显

键盘 图3.1 放大电路 2、主要的接口电路

(1)模数转换电路 该转换电路的具体接法如图3.2,因为片内有时钟,故无须外加,该电路采用单极性输入方式,可对0V—10V模拟信号转换,其中图3.1中管脚8,10,12把AD574置成单极性

10V输入,无论启动、转换,还是结果输出,都要保证CE端为高电平,故用8031的___RD和___WR端通过与非门74LS00与AD574的CE端相连。转换结果分高八位、低四位与P0口相连,

分两次读入,所以__8/12接地。__C/R在读取转换结果时保持相应的电平,将来自单片机的控制信号经74LS373锁存后再从Q0接入,选通信号经译码器译码后选通,AD574有两个

选口地址,由A0口区分,把译码器Q7Q6Q5Q4Q3Q2Q1=111000B端接到____CS。

图3.2 模数转换电路 (2)键盘接口和数码显示 在单片机应用系统中,同时需要使用键盘与显示器接口时,为了节省I/O口线常常把键盘和显示电路接在一起,构成实用键盘和显示电路,图3.3是典型实用的、采用8155并行扩展口构成的键盘、显示器电路。键盘设定如下: 键盘共有12个按键,用于方便设定温度。数字按键10个,输入数字0—9和小数点;确认键一个,设置的确认,修改设置温度时进行确认;清除键一个,设置的清除,修改设置温度时进行删除;F1键一个,显示及设置转换到预设温度点,按此按键后,显示预设置温度的数码管闪烁;此外,还有两个功能键。

图3.3 键盘接口/LED显示 (3)报警电路 本设计的报警电路直接由8031的P1.0,P1.1,P1.2控制外接指示灯。编程实现灯的开关,若测量的温度不越限,则P1.1口的绿灯亮,若测量的温度越下限P1.0口的红灯亮,若测量的温度越上限则P1.2口的灯亮。以上电路的具体连接如图3.4。 图3.4程序存储器和并行接口的扩展及报警电路 (4) 温度控制电路 光电耦合器,是近几年发展起来的一种半导体光电器件,把电子信号转换成为光学信号,然后又回复电子信号的半导体器件。由于它具有体积小、寿命长、抗干扰能力强、工作温度宽及无触点输入与输出及在电气上完全隔离等特点,被广泛地应用在电子技术领域及工业自动控制领域中,它可以代替继电器、变压器、斩波器等,而用于隔离电路、开关电路、数模转换、逻辑电路、过流保护、长线传输、高压控制及电平匹配等。具体接法如图3.6

图 3.6 温度控制电路 三、温度控制系统的软件设计 1、主程序设计及中断服务程序设计 (1)温度控制主程序流程简图 温度控制程序的设计应考虑如下问题: ①炉温采样,数字滤波程序; ②键盘扫描,键码识别和温度显示程序; ③温度标度转换程序 程序框图如图4.1所示。

图4.1 主程序流程简图 图4.2 T1中断程序流程图 在主程序设计中,由于T0被设定为计数器方式2,初值为06H,故它的溢出中断时间为250个过零同步触发脉冲。为了保证系统正常工作,T1中断服务程序的执行时间必须满足T0的这一时间要求,因为T1的中断是嵌套在T0中断之后的。 (2)中断服务程序设计 因为本设计中T1的中断是嵌套在T0中断之后的,而T0中断是温度控制系统的主程序,用于启动A/D转换、读入采集数据、数字滤波、越限温度报警和越限处理、PID计算输出可

清标志位D5H 停止输出 返回

T1中断程序

开 始 8031系统初始化

输入被控参数 8155初始化 键盘显示器监控程序

运 行 吗? N

开中断 Y 控硅的同步触发脉冲等。P1.3引脚上输出的该同步触发脉冲宽度由T1计数器的溢出中断控制,8031 利用等待T1溢出中断的时间完成把本次采样值转换成显示值放入显示缓冲区和调用温度显示程序。T1中断服务程序流程图如图4.2 ,T2中断程序流程图如图4.3。

图4.3 T0中断服务程序流程图 恢复现场 返回 保护现场

采样炉温 数字滤波 =上限?

上限处理 清本次越限标志

恢复现场返回 >上限?

清上次越限标志 =下限? <下限? 上次越限?

T1中断完?

Y N Y

置本次越限标志 计算PID

Y Y

取最大PID值输出 下限报警

求 补 求 补

从P1.3输出 T1初始化 温度标度转换

越限计数器+1 越限N次?

温度显示 上限报警 清越限标志

相关文档
最新文档