八年级上册——分式方程的实际应用题
八年级分式方程应用题集锦

八年级分式方程及应用题一、 分式方程知识点:含分式,并且分母中含未知数的方程——分式方程含分式,并且分母中含未知数的方程——分式方程 1) 1) 增根:分式方程的增根必须满足两个条件:增根:分式方程的增根必须满足两个条件:(1)增根是最简公分母为0;(;(22)增根是分式方程化成的整式方程的根。
)增根是分式方程化成的整式方程的根。
2)分式方程的解法:)分式方程的解法:(1)(1)能化简的先化简能化简的先化简(2)(2)方程两边同乘以最简公分母,化为整式方程;方程两边同乘以最简公分母,化为整式方程;(3)(3)解整式方程;解整式方程;(4)(4)验根.验根. 注:解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分,这样就产生了增根,因此分 式方程一定要验根。
分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0, 则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
3)列分式方程解实际问题)列分式方程解实际问题(1)步骤:审题—设未知数—列方程—解方程—检验—写出答案,检验时要注意从方程本身和实际问题两个方面进行检验。
两个方面进行检验。
(2)应用题基本类型;)应用题基本类型;a.a.行程问题:基本公式:路程行程问题:基本公式:路程==速度×时间速度×时间 而行程问题中又分相遇问题、追及问题.而行程问题中又分相遇问题、追及问题.b.b.数字问题数字问题 在数字问题中要掌握十进制数的表示法.在数字问题中要掌握十进制数的表示法.c.c.工程问题工程问题 基本公式:工作量基本公式:工作量==工时×工效.工时×工效.d. d. 顺水逆水问题顺水逆水问题 v v 顺水顺水=v =v 静水静水+v +v 水.水. v v 逆水逆水=v =v 静水静水-v -v 水.水. 二、对应练习题:1.1.下列各式中,是分式方程的是下列各式中,是分式方程的是( )A ( )A..x+y=5 B B..3252z y x-=+ C C..15x +=0 D D..x12.2.分式方程分式方程1321=-x 的解为(的解为())A .2=x B B..1=x C C..1-=x D D..2-=x 3.3.方程方程12a 12x x +=--可能产生的增根是可能产生的增根是 ( )A( )A..1 B 1 B..2 C 2 C..-1或2 D 2 D..1或2 4.若关于x 的方程1011m xx x --=--有增根,则m 的值是的值是( )( )A.A.3 3 B.B.2 2 C.C.1 1 D.1-5.要把分式方程xx 1423=-化为整式方程,方程两边需要同时乘以化为整式方程,方程两边需要同时乘以( ) ( )A .)2(2-x xB B..xC C..2-xD D..42-x 6.分式方程xx x -=+--23123的解是(的解是( ))A .2 B 2 B..1 C 1 C..-1 D -1 D..-27.7.解分式方程:解分式方程: (1)21211x x =-- ((2)22125=---xx ((3) 2111x x x x++=+三、分式方程应用题分类练习:1、行程问题:这类问题涉及到三个数量:路程、速度和时间。
八年级数学上册 分式方程及其应用(习题及答案)(人教版)

分式方程及其应用(习题)例题示范例1:解分式方程:11322x x x-=---. 【过程书写】 1(1)3(2)1136242x x x x x x =----=-+-+==解: 检验:把x =2代入原方程,不成立∴x =2是原分式方程的增根∴原分式方程无解例2:八年级(1)班学生周末乘汽车到游览区游览,游览区距学校120km .一部分学生乘慢车先行,出发0.5h 后,另一部分学生乘快车前往,结果他们同时到达游览区.已知快车的速度是慢车速度的1.2倍,求慢车的速度.【思路分析】列表梳理信息:【过程书写】解:设慢车的速度为x km/h ,则快车的速度为1.2x km/h ,由题意得,1201200.51.2x x =- 解得,x =40经检验:x =40是原方程的解,且符合题意答:慢车的速度是40km/h .巩固练习1. 下列关于x 的方程,其中不属于分式方程的是( )A .1a b a x a ++=B .xa b x b a +=-11 C .b x a a x 1-=+ D .1=-+++-nx m x m x n x2. 解分式方程2236111x x x +=+--分以下四步,其中错误的一步是( ) A .方程两边分式的最简公分母是(1)(1)x x -+B .方程两边都乘以(1)(1)x x -+,得整式方程2(1)3(1)6x x -++=C .解这个整式方程,得1x =D .原方程的解为1x =3. 张老师和李老师同时从学校出发,骑行15千米去县城购买书籍.已知张老师比李老师每小时多走1千米,结果比李老师早到半小时,则两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意可列方程为( )A .1515112x x -=+ B .1515112x x -=+ C .1515112x x -=- D .1515112x x -=-4. 若方程61(1)(1)1m x x x -=+--有增根,则m =_________.5. 如果解关于x 的分式方程1134x m x x +-=-+出现了增根,那么增根是___________.6. 解分式方程:(1)43(1)1x x x x +=--;(2)22(1)23422x x x x +=+--+;(3)23112x x x x -=+--;(4)11222x x x-=---.7. 某服装厂设计了一款新式夏装,想尽快制作8 800件投入市场.已知该服装厂有A ,B 两个制衣车间,A 车间每天加工的数量是B 车间的1.2倍.A ,B 两车间共同完成一半的生产任务后,A 车间因出现故障而停产,剩下的全部由B 车间单独完成,结果前后共用了20天完成全部生产任务.则A ,B 两车间每天分别能加工多少件该款夏装? 【思路分析】列表梳理信息:【过程书写】8.某商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求.商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但是单价贵了4元.商厦销售这种衬衫时每件定价都是58元,最后剩下150件按八折销售,很快售完.在这两笔生意中,商厦共盈利多少元?【思路分析】列表梳理信息:【过程书写】【参考答案】 巩固练习1. C2. D3. B4. 35.x=36.(1)x=2(2)43 x(3)无解(4)无解7.A车间每天能加工384件该款夏装B车间每天能加工320件该款夏装8.商厦共盈利90 260元。
初二数学上册分式方程的应用综合练习题

初二数学上册分式方程的应用综合练习题在初二数学的上册内容中,分式方程是一个重要的知识点。
分式方程的应用不仅在数学中有广泛的实际意义,也能提升学生的分析解决问题的能力。
以下是一些综合性的练习题,帮助学生更好地理解和应用分式方程。
1. 甲、乙两人一起做一件工作,甲单独完成这件工作需要8小时,乙单独完成需要10小时。
问他们一起完成这件工作需要多长时间?解答:设他们一起完成这件工作需要的时间为x小时。
甲和乙一小时共同完成的工作量是1/8 + 1/10 = 9/40,因此有方程式:1/8x + 1/10x = 1解这个方程得到:18/80x = 1,化简得到x = 80/18,约等于4.44小时。
2. 甲有100万元的资金,现在要分成甲乙两人,且甲的资金是乙的两倍。
问甲和乙两人分别得到多少资金?解答:设乙的资金为x万元,则甲的资金是2x万元。
根据题目所描述的情况,有方程式:x + 2x = 100解这个方程得到:3x = 100,化简得到x = 100/3,约等于33.33万元。
因此,甲得到的资金是2 * 33.33 = 66.66万元,乙得到的资金是33.33万元。
3. 设甲的年龄为x岁,乙比甲大5岁,那么他们两人的年龄总和是60岁。
问他们各自的年龄是多少?解答:设甲的年龄为x岁,则乙的年龄为(x + 5)岁。
根据题目所描述的情况,有方程式:x + (x + 5) = 60解这个方程得到:2x + 5 = 60,化简得到2x = 55,x = 55/2,约等于27.5岁。
因此,甲的年龄是27.5岁,乙的年龄是27.5 + 5 =32.5岁。
4. 甲、乙两人一起做一件工作,甲和乙一起工作的效率是甲单独工作的2倍。
如果甲单独完成这件工作需要6小时,那么乙单独完成这件工作需要多长时间?解答:设乙单独完成这件工作需要的时间为x小时。
题中已经说明甲和乙一起工作的效率是甲单独工作的2倍,即甲和乙一小时共同完成的工作量是3/6 = 1/2。
人教版 八年级上册数学 第十五章 分式实际应用题 综合复习(五)(含答案)

第十五章分式实际应用题综合复习(五)1.第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G下载速度的15倍,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G与5G的下载速度分别是每秒多少兆?2.2020年1月份,为抗击新型冠状病毒,某药店计划购进一批甲、乙两种型号的口罩,已知一袋甲种口罩的进价与一袋乙种口罩的进价和为40元,用90元购进甲种口罩的袋数与用150元购进乙种口罩的袋数相同.(1)求每袋甲种、乙种口罩的进价分别是多少元?(2)该药店计划购进甲、乙两种口罩共480袋,其中甲种口罩的袋数少于乙种口罩袋数的,药店决定此次进货的总资金不超过10000元,求商场共有几种进货方案?3.某商场家电专柜购进一批甲,乙两种电器,甲种电器共用了10 350元,乙种电器共用了9 600元,甲种电器的件数是乙种电器的1.5倍,甲种电器每件的进价比乙种电器每件的进价少90元.(1)甲、乙两种电器各购进多少件?(2)商场购进两种电器后,按进价提高40%后标价销售,很快全部售完,求售完这批电器商场共获利多少元?4.疫情防控形势下,人们在外出时都应戴上口罩以保护自己免受新型冠状病毒感染.某药店用4000元购进若干包次性医用口罩,很快售完,该店又用7500元钱购进第二批这种口罩,所进的包数比第一批多50%,每包口罩的进价比第一批每包口罩的进价多0.5元,请解答下列问题:(1)求购进的第一批医用口罩有多少包?(2)政府采取措施,在这两批医用口罩的销售中,售价保持了一致,若售完这两批口罩的总利润不高于3500元钱,那么药店销售该口罩每包的最高售价是多少元?5.列分式方程解应用题:北京第一条地铁线路于1971年1月15日正式开通运营.截至2019年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2019 年地铁每小时客运量是2012年地铁每小时客运量的4倍,2019年客运240万人所用的时间比2012年客运240万人所用的时间少30小时,求2019年地铁每小时的客运量?6.某商场准备购进甲、乙两种商品进行销售,若每个甲商品的进价比每个乙商品的进价少2元,且用80元购进甲商品的数量与用100元购进乙商品的数量相同.(1)求每个甲、乙两种商品的进价分别是多少元?(2)若该商场购进甲商品的数量比乙商品的数量的3倍还少5个,且购进甲、乙两种商品的总数量不超过95个,则商场最多购进乙商品多少个?(3)在(2)的条件下,如果甲、乙两种商品的售价分别是12元/个和15元/个,且将购进的甲、乙两种商品全部售出后,可使销售两种商品的总利润超过380元,那么该商场购进甲、乙两种商品有哪几种方案?7.甲乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等.求甲、乙每小时各做多少个零件?8.列分式方程解应用题某校初二年级的甲、乙两个班的同学以班级为单位分别乘坐大巴车去某基地参加拓展活动,此基地距离该校90千米,甲班的甲车出发10分钟后,乙班的乙车才出发,为了比甲车早到5分钟,乙车的平均速度是甲车的平均速度的1.2倍,求乙车的平均速度.9.潮州旅游文化节开幕前,某凤凰茶叶公司预测今年凤凰茶叶能够畅销,就用32000元购进了一批凤凰茶叶,上市后很快脱销,茶叶公司又用68000元购进第二批凤凰茶叶,所购数量是第一批购进数量的2倍,但每千克凤凰茶叶进价多了10元.(1)该凤凰茶叶公司两次共购进这种凤凰茶叶多少千克?(2)如果这两批茶叶每千克的售价相同,且全部售完后总利润率不低于20%,那么每千克售价至少是多少元?10.城都地铁17号线正在建设汇总,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参加该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?参考答案1.解:设该地4G的下载速度是每秒x兆,则该地5G的下载速度是每秒15x兆,由题意得:﹣=140,解得:x=4,经检验:x=4是原分式方程的解,且符合题意,15×4=60,答:该地4G的下载速度是每秒4兆,则该地5G的下载速度是每秒60兆.2.解:(1)设甲种口罩进价x元/袋,则乙种口罩进价为(40﹣x)元/袋,依题意有=,解得x=15,经检验x=15是原方程的解,则40﹣x=25.故甲种口罩进价15元/袋,则乙种口罩进价为25元/袋;(2)设购进甲种口罩y袋,则购进乙种口罩(480﹣y)袋,依题意有,解得200≤y<204.因为y是整数,甲种口罩的袋数少于乙种口罩袋数,所以y取200,201,202,203,共有4种方案.3.解:(1)设乙种电器购进x件,则甲种电器购进1.5x件,根据题意得:,解得:x=30,经检验,x=30是原方程的解,且符合题意,∴1.5x=45.答:甲种电器购进45件,乙种电器购进30件.(2)(10350+9600)×40%=7980(元).答:售完这批电器商场共获利7980元.4.(1)设购进的第一批医用口罩有x包,则=﹣0.5.解得:x=2000.经检验x=2000是原方程的根并符合实际意义.答:购进的第一批医用口罩有2000包;(2)设药店销售该口罩每包的售价是y元,则由题意得:[2000+2000(1+50%)]y﹣4000﹣7500≤3500.解得:y≤3.答:药店销售该口罩每包的最高售价是3元.5.解:设2002年地铁每小时客运量x万人,则2017年地铁每小时客运量4x万人,由题意得,解得x=6,经检验x=6是分式方程的解,答:2017年每小时客运量24万人.6.解:(1)设每件乙种商品的进价为x元,则每件甲种商品的进价为(x﹣2)元,根据题意,得=,解得:x=10,经检验,x=10是原方程的根,每件甲种商品的进价为:10﹣2=8.答:每件甲种商品的进价为8元,每件乙种商品件的进价为10元.(2)设购进乙种商品y个,则购进甲种商品(3y﹣5)个.由题意得:3y﹣5+y≤95.解得y≤25.答:商场最多购进乙商品25个;(3)由(2)知,(12﹣8)(3y﹣5)+(15﹣10)y>380,解得:y≥23.∵y为整数,y≤25,∴y=24或25.∴共有2种方案.方案一:购进甲种商品67个,乙商品件24个;方案二:购进甲种商品70个,乙种商品25个.7.解:设乙每小时做x个零件,甲每小时做(x+6)个零件,根据题意得:,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴x+6=18.答:乙每小时做12个零件,甲每小时做18个零件.8.解:设甲车的平均速度是x千米/时,则乙车的平均速度是1.2x千米/时,根据题意,得=+,解得x=60.经检验,x=60是原方程的解,此时1.2x=72.答:乙车的平均速度是72千米/时.9.解:(1)设凤凰茶叶公司公司第一次购x千克茶叶,则第二次购进2x千克茶叶,根据题意得:﹣=10,解得:x=200,经检验,x=200是原方程的根,且符合题意,∴2x+x=2×200+200=600.答:凤凰茶叶公司两次共购进这种凤凰茶叶600千克.(2)设每千克茶叶售价y元,根据题意得:600y﹣32000﹣68000≥(32000+68000)×20%,解得:y≥200.答:每千克茶叶的售价至少是200元.10.解:(1)设乙队单独施工,需要x天才能完成该项工程,∵甲队单独施工30天完成该项工程的,∴甲队单独施工180天完成该项工程,根据题意可得:+15(+)=1,解得:x=20,检验得:x=20是原方程的根,答:乙队单独施工,需要20天才能完成该项工程;(2)设乙队参与施工y天才能完成该项工程,根据题意可得:×36+y×≥1,解得:y≥16,答:乙队至少施工16天才能完成该项工程.。
人教版八年级上册数学-分式方程+分式应用题专练60题

分式方程+分式应用题专练60题一.解答题(共60小题)1.先化简,再求值:,其中a﹣b=6.2.先化简再求值,,其中a=1.3.先化简,再求值:,其中﹣1≤x<2且x为整数.请你选一个合适的x值代入求值.4.先化简,再求值:(1),其中;(2)÷(a+2+),其中a是使不等式成立的正整数.5.先化简,然后从﹣1,0,1,2中选取一个合适的数作为x的值代入求值.6.先化简,再求值:,其中m2+3m=﹣1.7.已知实数a满足,求的值.8.先化简(1﹣a+)÷,再从不等式﹣2<a<2中选择一个适当的整数,代入求值.9.先化简,后求值:,其中x=﹣5.10.先化简,再求代数式的值,其中.11.化简求值:,已知m2﹣3m﹣4=0.12.先化简,再求值:,其中.13.先化简,再从﹣1,0,1,2中选择一个适当的数作为a的值代入求值.14.先化简:,再从﹣3,﹣1,1,3中选取一个使原式有意义的数代入求值.15.化简:,并在﹣1,0,2中选一个合适的数作为a的值代入求值.16.先化简,再求值:,从a=2,a=3中取一个a的值代入计算出结果.17.先化简,再求值:,其中x=3.18.先化简,再求值:(2﹣)÷,其中x=﹣3.19.(1)化简:;(2)化简并求值:,其中.20.先化简,再求值:,然后从﹣1,0,1,2四个数中选择一个恰当的数代入求值.21.解方程:(1);(2).22.解方程:(1);(2).23.解方程:(1)=5.(2)=0.24.解分式方程(1)..25.解下列方程(1);(2).26.解方程:(1);(2).27.解下列分式方程:(1);(2).28.解方程:(1);(2).29.解分式方程:(1);(2).30.解方程:(1);(2).31.为加快公共领域充电基础设施建设,某停车场计划购买A,B两种型号的充电桩.已知A型充电桩比B型充电桩的单价少0.3万元,且用18万元购买A型充电桩与用24万元购买B型充电桩的数量相等.求A,B两种型号充电桩的单价各是多少万元?32.列分式方程解应用题:2022年10月16日,习总书记在中国共产党第二十次全国代表大会上的报告中提出:“积极稳妥推进碳达峰碳中和”.某公司积极响应节能减排号召,决定采购新能源A型和B型两款汽车,已知每辆A型汽车的进价是每辆B 型汽车的进价的1.5倍,若用1500万元购进A型汽车的数量比1200万元购进B型汽车的数量少10辆.求A型和B型汽车的进价分别为每辆多少万元?33.某超市用5000元购进一批新品种苹果进行试销,由于销售状况良好,超市又调拨11000元资金第二次购进该品种苹果.但第二次的进货价比试销时每千克多了0.5元,第二次购进苹果数量是试销时的2倍.(1)设试销时该品种苹果的进货价是x元,则试销时购进苹果数量为千克?(用含x 的式子表示)(2)列分式方程求试销时该品种苹果的进货价是多少元?34.山地自行车越来越受中学生的喜爱一家店经营的某型号山地自行车,今年七月份销售额为22500元,八月份每辆车售价比七月份每辆车售价提高100元,若销售的数量与上一月销售的数量相同,则销售额是25000元.(1)求八月份每辆车售价是多少元?(2)为了促销,九月份每辆车售价比八月份每辆车售价降低了15%销售,该店仍可获利25%,求每辆山地自行车的进价是多少元?35.节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求汽车行驶中每千米用电费用是多少元?甲、乙两地的距离是多少千米?(2)若汽车从甲地到乙地采用油电混合动力行驶,要使行驶总费用不超过60元,求至少需要用电行驶多少千米?36.小明妈妈在批发市场购买某种海鲜销售,第一次用3000元购进一批,并以每千克40元的价格出售,很快售完.由于海鲜捕获量减少,第二次购买时,每千克的进价比第一次提高了20%,用3240元所购买的海鲜质量比第一次少了10千克,此次以每千克50元售出30千克后,因销售情况不佳,且海鲜不易保存,小明妈妈为减少损失,便降价50%售完剩余的海鲜.(1)求第一次购进的海鲜的进价.(2)在这两次销售中,小明妈妈总体上是盈利还是亏损?盈利或亏损了多少元?37.多多果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,由于水果畅销,很快售完,第二次用1430元购买了一批水果,每千克的进价比第一次提高了10%,所购买的水果的数量比第一次多20千克,求第一次购买水果的进价是每千克多少元?38.昭通苹果和天麻美味可口,小明在昆明某超市购买1市斤昭通苹果和2市斤小草坝天麻需要支付105元,购买3市斤昭通苹果和5市斤小草坝天麻需要265元.(1)1市斤昭通苹果和1市斤小草坝天麻的单价分别是多少元?(2)昆明到昭通的距离大约350km,以前超市老板都会亲自去往昭通选果,但今年的疫情原因,只能选择专车托运,以前花240元进购的苹果现在要花300元,进货单价比原来贵了1元,原来1市斤苹果进货单价为多少?39.成都大运会期间,某网店直接从工厂购进A、B两款文创纪念品,已知A、B两款纪念品的进价分别为30元/个、25元/个.(1)网店第一次用1400元购进A、B两款纪念品共50个,求A款纪念品购进的个数;(2)大运会临近结束时,网店打算把A款纪念品降价20%销售,则降价后销售A款纪念品要获得销售额800元,比按照原价销售要多卖4个才能获得同样多的销售额,求A款纪念品降价以前的售价.40.某商场计划购进一批篮球和足球,其中篮球的单价比足球的单价多30元,已知用360元购进的足球和用480元购进的篮球数量相等.(1)问篮球和足球的单价各是多少元?(2)若篮球售价为每个150元,足球售价为每个110元,商场售出足球的数量比篮球数量的三分之一还多10个,且获利超过1300元,问篮球最少要卖多少个?(3)若篮球售价为每个150元,足球售价为每个110元,商场计划用不超过10350元购进两种球共100个,其中篮球不少于40个,问商场有几种进货方案?哪种方案商场获利最大?41.某校学生利用双休时间去距学校10km的岳阳植物园去游玩,部分学生骑自行车从学校先出发,过了20min后,其余学生乘汽车沿相同路线出发,结果他们同时到达,已知汽车的速度是自行车速度的2倍,求自行车和汽车的速度分别是多少千米/小时?42.某校八年级学生乘车前往某景点秋游,现有两条线路可供选择:线路一全程25km,线路二全程30km;若走线路二平均车速是走线路一的1.5倍,所花时间比走线路一少用10min,则走线路一、二的平均车速分别为多少?43.(1)某公司到北京参加会议,给员工购买重庆到北京的高铁票.该公司计划花费43600元一次性购买一等座票,二等座票共50张.已知一等座票的价格为950元/张,二等座票的价格为820元/张,求该公司原计划购买两种高铁票各多少张?(2)已知重庆到北京的高铁全长2200公里,高铁提速后重庆到北京的时间比高铁提速前缩短3小时40分钟,该高铁提速后的速度比提速前的速度提升了50%,求提速后该高铁从重庆到北京的速度是多少公里/小时?(高铁在站点停留时间忽略不计)44.周末,小李和妈妈在600米的环形跑道上跑步锻炼,他们在同一地点沿着同一方向同时出发,跑步结束后两人有如下的对话.小李:妈妈跑得好快呀,你的速度是我的2倍;妈妈:妈妈跑完一圈所用的时间比你跑完一圈所用的时间少2分钟.(1)求小李和妈妈的速度;(2)妈妈第一次追上小李后,第二次追上小李前,再经过多少分钟,小李和妈妈在跑道上相距100米?45.远大中学组织同学到离学校15km的郊区进行社会调查.一部分同学骑自行车前往,另一部分同学在骑自行车的同学出发40min后,乘汽车沿相同路线行进,结果骑自行车的与乘汽车的同学同时到达目的地,已知汽车速度是自行车速度的3倍,求自行车和汽车的速度.46.小红家到学校的路程为38km,小红从家去学校总是先乘公共汽车,下车后再步行2km,才能到达学校,路途所用时间为1h.已知公共汽车的速度是小红步行速度的9倍,求小红步行的速度.47.某学校开展了社会实践活动,活动地点距离学校15km,甲、乙两同学骑自行车同时从学校出发,甲的速度是乙的1.5倍,结果甲比乙早到15min,求乙同学骑自行车的速度.48.在春季,很多学校会组织学生进行春游.某校组织学生到离学校有90公里的生态园春游,队伍8:00从学校坐大巴车出发.李老师因有事情,8:30从学校自驾小车以大巴车1.5倍的速度追赶,追上大巴车后继续前行,结果比队伍提前15分钟到达生态园.求大巴车与小车的平均速度.49.据报道,我国高铁运营里程已超过世界高铁总里程的60%.已知某高铁平均速度提高50km/h后,行驶700km 所用的时间与提速前行驶600km所用的时间相同.求该高铁提速后的平均速度.50.每年的3月12日是植树节,某中学八年级师生在植树节当天到距学校13千米的森林公园植树,一班师生骑电动车先走,走了7千米后,二班师生乘汽车出发,结果同时到达.已知汽车的速度比电动车的速度每小时快35千米,求两种车的速度各是多少?51.某小区改造一段总长1800米的下水道管线,实际施工时,每天的施工效率比原计划提高了20%,可提前6天完成任务.(1)求实际施工时,每天改造下水道管线的长度;(2)施工进行10天后,为了减少对小区居民日常生活的影响,施工单位决定再次加快施工进度以确保总工期不超过25天,那么以后每天改造下水道管线至少还要增加多少米?52.一项工程,甲、乙两队合作需要8天完成,现甲队做了4天,乙队做了2天共完成这项工程的,若甲队单独做这项工程需要多少天完成?53.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米.甲、乙两队每天共修多少米?54.甲、乙、丙三人承包一项工程,发给他们工资共1800元,三人完成这项工程的具体情况是:甲、乙两人合作6天完成了工程的,因为甲有事,由乙、丙合作2天完成余下工程的,以后三人合作5天完成了这项工程,按完成量的多少来付劳动报酬,甲、乙、丙各得多少元?55.随着快递业务的不断增加,分拣快件是一项重要工作,某快递公司为了提高分拣效率,引进智能分拣机,每台机器每小时分拣的快件量是人工每人每小时分拣快件数量的20倍,经过测试,由5台机器分拣6000件快件的时间,比20个人工分拣同样数量的快件节省4小时.(1)求人工每人每小时分拣多少件?(2)若该快递公司每天需要分拣10万件快件,机器每天工作时间为16小时,则至少需要安排台这样的分拣机.56.新冠疫情发生后,全社会积极参与防疫工作,某医疗器械生产厂家接到A型口罩和B型口罩共86000只的订单,该工厂有甲、乙两个车间,甲车间生产A型口罩,乙车间生产B型口罩.已知A型口罩的数量是B型口罩的2倍少10000只.(1)求A型口罩和B型口罩的数量分别是多少?(2)甲、乙两个车间同时开始生产,甲车间比乙车间平均每天多生产1000只口罩,由于疫情需要,甲车间在完成所承担的生产任务后,通过技术改进使工作效率比原来提高了.设乙车间平均每天生产口罩m只,请回答下列问题:①根据题意,填写下表:(温馨提示:请写在答题卷对应的表格内)乙车间甲车间技术改进前技术改进后生产天数(天)(用含m的代数式表示)②若甲、乙两车间同时完成生产任务,求乙车间平均每天生产的口罩数量m和生产的天数.57.某化工厂为了给员工创建安全的工作环境,采用A,B两种机器人来搬运化工原料.其中A型机器人比B型机器人每小时多搬运30千克,A型机器人搬运1500千克所用时间与B型机器人搬运1000千克所用时间相等.(1)求A,B两种机器人每小时分别搬运多少千克化工原料;(2)若每台A型,B型机器人的价格分别为5万元和3万元,该化工厂需要购进A,B两种机器人共12台,工厂现有资金45万元,则最多可购进A型机器人多少台?58.现有A,B两个蚕丝纺织作坊,已知A作坊每天纺织蚕丝布的长度比B作坊每天多纺织50米,A作坊纺织600米蚕丝布与B作坊纺织300米蚕丝布所用的天数相同.(1)求A,B两个蚕丝纺织作坊每天各纺织多少米蚕丝布?(2)某服装厂需要4000米的蚕丝布,需要A、B两作坊共同完成,若A作坊每天需花费成本1.2万元,B作坊每天需花费成本0.5万元,已知两作坊总成本不超过46.8万元,则至少安排B作坊工作多少天?59.2022年第22届世界杯足球赛在卡塔尔举行,其官方吉祥物是一个外形酷似头巾的卡通人物,名字叫做拉伊卜,受到众人的热捧.某工厂计划加急生产一批该吉祥物,已知甲车间每天加工的数量是乙车间每天加工数量的2倍,两车间各加工3000个该吉祥物时,甲车间比乙车间少用5天.(1)求甲乙两车间每天各加工多少个吉祥物?(2)已知甲乙两车间加工该吉祥物每天的费用分别是1800元和600元,该工厂计划生产15000个这种吉祥物,如果总加工费用不超过39000元,那么乙车间至少要加工多少天?60.京东快递仓库使用机器人分拣货物,已知一台机器人的工作效率相当于一名分拣工人工作效率的20倍,若用一台机器人分拣4000件货物,比原先16名工人分拣这些货物要少用小时.(1)求一台机器人一小时可分拣多少件货物?(2)受“双十一”影响,石家庄某京东仓库11月11日当天收到快递70万件,为了在8小时之内分拣完所有快递货物,公司调配了20台机器人和30名分拣工人,工作3小时之后,又调配了10台机器人进行增援,该公司能否在规定的时间内完成任务?请说明理由.分式方程+分式应用题专练60题参考答案与试题解析一.解答题(共60小题)1.先化简,再求值:,其中a﹣b=6.【答案】2.【解答】解:原式=(1﹣)•=•=,当a﹣b=6时,原式=2.2.先化简再求值,,其中a=1.【答案】,2.【解答】解:=÷==,当a=1时,原式===2.3.先化简,再求值:,其中﹣1≤x<2且x为整数.请你选一个合适的x值代入求值.【答案】x﹣1,当x=0时,原式=﹣1.【解答】解:=•=•=•=x﹣1,∵﹣1≤x<2且x为整数,(x+1)(x﹣1)≠0,∴x=0,当x=0时,原式=0﹣1=﹣1.4.先化简,再求值:(1),其中;(2)÷(a+2+),其中a是使不等式成立的正整数.【答案】(1),原式=;(2)﹣,原式=﹣.【解答】解:(1)=•+=+===,当时,原式===;(2)÷(a+2+)=÷=÷=•=﹣,∵,∴a﹣1≤2,∴a≤3,∴该不等式的正整数解为:3,2,1,∵a﹣2≠0,3+a≠0,3﹣a≠0,∴a≠2,a≠﹣3,a≠3,∴当a=1时,原式=﹣=﹣.5.先化简,然后从﹣1,0,1,2中选取一个合适的数作为x的值代入求值.【答案】﹣,1.【解答】解:原式=(﹣)÷=•=•=•=﹣,∵x+1≠0,x﹣2≠0,∴x≠﹣1,x≠2,∴当x=0时,原式=﹣=1.6.先化简,再求值:,其中m2+3m=﹣1.【答案】,﹣1.【解答】解:原式=÷(﹣)=÷=•=,∵m2+3m=﹣1,∴原式==﹣1.7.已知实数a满足,求的值.【答案】,+1.【解答】解:原式=﹣•=﹣=﹣=,∵a2+2a+2﹣=0,∴a2+2a+1=﹣1,∴原式===+1.8.先化简(1﹣a+)÷,再从不等式﹣2<a<2中选择一个适当的整数,代入求值.【答案】,﹣1.【解答】解:原式=(+)÷=•=,在﹣2<a<2中,整数有﹣1,0,1,由题意得:x≠±1,当x=0时,原式==﹣1.9.先化简,后求值:,其中x=﹣5.【答案】x+2,﹣3.【解答】解:原式===x+2,当x=﹣5时,原式=﹣5+2=﹣3.10.先化简,再求代数式的值,其中.【答案】x+1,.【解答】解:==x+1;当时,原式=.11.化简求值:,已知m2﹣3m﹣4=0.【答案】,.【解答】解:=÷=•=•==,∵m2﹣3m﹣4=0,∴m2﹣3m=4,当m2﹣3m=4时,原式==.12.先化简,再求值:,其中.【答案】,.【解答】解:原式=÷[]===,当x=﹣3,原式==.13.先化简,再从﹣1,0,1,2中选择一个适当的数作为a的值代入求值.【答案】,﹣1或2.【解答】解:=[]×===,∵a2﹣2a≠0,解得:a≠0,a≠2,∴当a=1时,原式==2;当a=﹣1时,原式==﹣1.14.先化简:,再从﹣3,﹣1,1,3中选取一个使原式有意义的数代入求值.【答案】x+1,﹣2.【解答】解:原式=•=•=•=x+1,∵x﹣1≠0,x﹣3≠0,x+1≠0,∴x≠1,3,﹣1.∴当x=﹣3时,原式=﹣3+1=﹣2.15.化简:,并在﹣1,0,2中选一个合适的数作为a的值代入求值.【答案】,2.【解答】解:===,∵a≠2且a≠﹣1,∴a=0,当a=0时,原式=.16.先化简,再求值:,从a=2,a=3中取一个a的值代入计算出结果.【答案】,5.【解答】解:====,∵a=2时,原式没有意义,∴a=3时,当a=3时,原式=.17.先化简,再求值:,其中x=3.【答案】;.【解答】解:=•=•=,当x=3时,原式=.18.先化简,再求值:(2﹣)÷,其中x=﹣3.【答案】,﹣3.【解答】解:原式=÷=•=,当x=﹣3时,原式==﹣3.19.(1)化简:;(2)化简并求值:,其中.【答案】(1);(2),.【解答】解:(1)========;(2)===,当时,原式=.20.先化简,再求值:,然后从﹣1,0,1,2四个数中选择一个恰当的数代入求值.【答案】,当x=2时,原式=.【解答】解:=•=•=,∵当x=0,±1时,原分式无意义,∴x=2,当x=2时,原式==.21.解方程:(1);(2).【答案】(1)x=5;(2)无解.【解答】解:(1),x﹣2(x﹣1)=﹣3,解得:x=5,检验:当x=5时,x﹣1≠0,∴x=5是原方程的根;(2),5(x﹣1)+4x=x+3,解得:x=1,检验:当x=1时,x(x﹣1)=0,∴x=1是原方程的增根,∴原方程无解.22.解方程:(1);(2).【答案】(1)x=﹣4;(2)无解.【解答】解:(1),方程两边同时乘以(3﹣x),得:2x+1=﹣3+x,解得:x=﹣4,检验:当x=﹣4时,3﹣x≠0,∴原方程的解是x=﹣4;(2),方程两边同时乘以x(x+1)(x﹣1),得:2x﹣(x﹣1)=0,解得x=﹣1,检验:当x=﹣1时,x(x+1)(x﹣1)=0,∴x=﹣1是原方程的增根,∴原方程无解.23.解方程:(1)=5.(2)=0.【答案】(1)x=4;(2)x=.【解答】解:(1)=5.方程两边同乘(x﹣1),得:3=5(x﹣1)﹣3x,解得:x=4,检验:当x=4时,x﹣1≠0,∴原分式方程的解为:x=4;(2)=0,原方程变形为:=0,两边同乘x(x+1)(x﹣1),得:5(x﹣1)﹣(x+1)=0,解得:x=,检验:当x=时,x(x+1)(x﹣1)≠0,∴原分式方程的解为:x=.24.解分式方程(1)..【答案】(1)x=3;(2)无解.【解答】解:(1),4﹣(x+1)(x﹣1)=﹣(x﹣1)2,解得:x=3,检验:当x=3时,(x+1)(x﹣1)≠0,∴x=3是原方程的根;,2+2(x﹣3)=x﹣1,解得:x=3,检验:当x=3时,x﹣3=0,∴x=3是原方程的增根,∴原方程无解.25.解下列方程(1);(2).【答案】(1)x=0;(2)无解.【解答】解:(1),两边都乘以2x﹣5得:x﹣5=2x﹣5,解得:x=0,经检验:x=0是原方程的解,∴方程的解为:x=0.(2),∴,去分母得:2x+9=12x﹣21+6x﹣18,整理得:16x=48,解得:x=3,经检验:x=3是增根,∴原方程无解.26.解方程:(1);(2).【答案】(1)x=1;(2)无解.【解答】解:(1)方程两边同乘(x﹣2),得x﹣3+x﹣2=﹣3,解得x=1,检验:当x=1时x﹣2≠0,∴原分式方程的解是x=1;(2)方程两边同时乘(x+1)(x﹣1),得x+1﹣2(x﹣1)=4,解得x=﹣1,检验:当x=﹣1时,(x+1)(x﹣1)=0,∴原分式方程无解.27.解下列分式方程:(1);(2).【答案】(1)x=;(2)无解.【解答】解:(1)原方程去分母得:x﹣2=3(2x﹣1),去括号得:x﹣2=6x﹣3,移项,合并同类项得:﹣5x=﹣1,系数化为1得:x=,经检验,x=是分式方程的解,故原方程的解为x=;(2),去分母得:8+x2﹣4=x(x+2),去括号得:8+x2﹣4=x2+2x,移项得:x2﹣x2﹣2x=﹣8+4,解得:x=2,经检验,x=2是分式方程的增解,∴原分式方程无解.28.解方程:(1);(2).【答案】(1)x=;(2)无解.【解答】解:(1)原方程去分母得:1+x2=(x﹣2)2,整理得:1+x2=x2﹣4x+4,移项,合并同类项得:4x=3,系数化为1得:x=,经检验,x=是原分式方程的解,故原方程的解为x=;(2)原方程去分母得:4x﹣3(x﹣1)=2(x+1),去括号得:4x﹣3x+3=2x+2,移项,合并同类项得:﹣x=﹣1,系数化为1得:x=1,经检验,x=1是原分式方程的增根,故原方程无解.29.解分式方程:(1);(2).【答案】(1)x=1;(2)无解.【解答】解:(1)方程两边同乘2x(x+3),得x+3=4x,解得x=1,检验:当x=1时2x(x+3)≠0,∴原分式方程的解是x=1;(2)方程两边同乘(x+2)(x﹣2),得(x﹣2)2﹣(x+2)(x﹣2)=16,解得x=﹣2,检验:当x=﹣2时,(x+2)(x﹣2)=0,∴原分式方程无解.30.解方程:(1);(2).【答案】(1)x=﹣;(2)x=3.【解答】解:(1)方程两边同乘(x+1)(x﹣1),得x(x﹣1)﹣(x+1)(x﹣1)=3(x+1),解得x=﹣,检验:当x=﹣时(x+1)(x﹣1)≠0,∴原分式方程的解是x=﹣;(2)方程两边同乘(x+2)(x﹣2),得3(x﹣2)+2=x+2,解得x=3,检验:当x=3时(x+2)(x﹣2)≠0,∴原分式方程的解是x=3.31.为加快公共领域充电基础设施建设,某停车场计划购买A,B两种型号的充电桩.已知A型充电桩比B型充电桩的单价少0.3万元,且用18万元购买A型充电桩与用24万元购买B型充电桩的数量相等.求A,B两种型号充电桩的单价各是多少万元?【答案】A型充电桩的单价为0.9万元,B型充电桩的单价为1.2万元.【解答】解:设A型充电桩的单价为x万元,则B型充电桩的单价(x+0.3)万元,根据题意得:=,解得:x=0.9,经检验,x=0.9是所列方程的解,且符合题意,∴x+0.3=0.9+0.3=1.2.答:A型充电桩的单价为0.9万元,B型充电桩的单价为1.2万元.32.列分式方程解应用题:2022年10月16日,习总书记在中国共产党第二十次全国代表大会上的报告中提出:“积极稳妥推进碳达峰碳中和”.某公司积极响应节能减排号召,决定采购新能源A型和B型两款汽车,已知每辆A型汽车的进价是每辆B 型汽车的进价的1.5倍,若用1500万元购进A型汽车的数量比1200万元购进B型汽车的数量少10辆.求A型和B型汽车的进价分别为每辆多少万元?【答案】A型汽车的进价为每辆30万元,B型汽车的进价为每辆20万元.【解答】解:设B型汽车的进价为每辆x万元,则A型汽车的进价为每辆1.5x万元,依题意得,解得:x=20,经检验,x=20是方程的解,1.5x=1.5×20=30,答:A型汽车的进价为每辆30万元,B型汽车的进价为每辆20万元;33.某超市用5000元购进一批新品种苹果进行试销,由于销售状况良好,超市又调拨11000元资金第二次购进该品种苹果.但第二次的进货价比试销时每千克多了0.5元,第二次购进苹果数量是试销时的2倍.(1)设试销时该品种苹果的进货价是x元,则试销时购进苹果数量为千克?(用含x的式子表示)(2)列分式方程求试销时该品种苹果的进货价是多少元?【答案】(1);(2)5元.【解答】解:(1)设试销时该品种苹果的进货价是x元,则试销时购进苹果数量为千克;故答案为:;(2)根据题意,得:=×2,解之得:x=5,经检验:x=5是原方程的解,答:试销时该品种苹果的进货价是5元.34.山地自行车越来越受中学生的喜爱一家店经营的某型号山地自行车,今年七月份销售额为22500元,八月份每辆车售价比七月份每辆车售价提高100元,若销售的数量与上一月销售的数量相同,则销售额是25000元.(1)求八月份每辆车售价是多少元?(2)为了促销,九月份每辆车售价比八月份每辆车售价降低了15%销售,该店仍可获利25%,求每辆山地自行车的进价是多少元?【答案】(1)八月份每辆车的售价是1000元;(2)每辆山地自行车的进价是680元.【解答】解:(1)设八月份每辆车的售价是x元,由题意得:,解得:x=1000.经检验x=1000是原方程的解.答:八月份每辆车的售价是1000元;(2)设每辆山地自行车的进价是y元,由题意得:,解得:y=680.经检验y=680 是原方程的解.答:每辆山地自行车的进价是680元.35.节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求汽车行驶中每千米用电费用是多少元?甲、乙两地的距离是多少千米?(2)若汽车从甲地到乙地采用油电混合动力行驶,要使行驶总费用不超过60元,求至少需要用电行驶多少千米?【答案】(1)汽车行驶中每千米用电费用是0.3元,甲、乙两地的距离是30÷0.3=100千米;(2)40千米.【解答】解:(1)设汽车行驶中每千米用电费用是x元,则每千米用油费用为(x+0.5)元,可得:,解得:x=0.3,经检验x=0.3是原方程的解,∴汽车行驶中每千米用电费用是0.3元,甲、乙两地的距离是30÷0.3=100千米;(2)汽车行驶中每千米用油费用为0.3+0.5=0.8元,设汽车用电行驶ykm,可得:0.3y+0.8(100﹣y)≤60,解得:y≥40,所以至少需要用电行驶40千米.36.小明妈妈在批发市场购买某种海鲜销售,第一次用3000元购进一批,并以每千克40元的价格出售,很快售完.由于海鲜捕获量减少,第二次购买时,每千克的进价比第一次提高了20%,用3240元所购买的海鲜质量比第一次少了10千克,此次以每千克50元售出30千克后,因销售情况不佳,且海鲜不易保存,小明妈妈为减少损失,便降价50%售完剩余的海鲜.(1)求第一次购进的海鲜的进价.(2)在这两次销售中,小明妈妈总体上是盈利还是亏损?盈利或亏损了多少元?【答案】(1)第一次购买的海鲜的进价是每千克30元;(2)在这两次销售中,小明妈妈总体上是盈利了,盈利了760元.【解答】解:(1)设第一次购买的海鲜的进价是每千克x元,则第二次购买的海鲜的进价是每千克1.2x元,根据题意得,解得x=30.经检验,x=30是原方程的解.答:第一次购买的海鲜的进价是每千克30元.(2)第一次购买海鲜的质量为3000÷30=100(千克),第二次购买海鲜的质量为100﹣10=90(千克),∴第一次盈利100×(40﹣30)=1000(元),第二次盈利30×(50﹣30×1.2)+(90﹣30)×(50×0.5﹣30×1.2)=﹣240(元).∵1000﹣240=760(元),∴在这两次销售中,小明妈妈总体上是盈利了,盈利了760元.37.多多果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,由于水果畅销,很快售完,第二次用1430元购买了一批水果,每千克的进价比第一次提高了10%,所购买的水果的数量比第一次多20千克,求第一次购买水果的进价是每千克多少元?【答案】第一次购买水果的进价是每千克5元.【解答】解:设第一次购买水果的进价是每千克x元,则第二次购买水果的进价是每千克(1+10%)x元,依题意得:﹣=20,解得:x=5,经检验,x=5是原方程的解,且符合题意,答:第一次购买水果的进价是每千克5元.38.昭通苹果和天麻美味可口,小明在昆明某超市购买1市斤昭通苹果和2市斤小草坝天麻需要支付105元,购买。
八年级(上册)数学分式方程应用题与答案08769

解,得x=50
经检验:x=50是原方程的解。
⑵4月份销售件数:2000÷50=40(件)
每件进价:(2000-800)÷40=30(元)
5月份销售这种纪念品获利:(2000+700)-30×(40+20) =900(元)
答:4月份销售价为每件50元,5月份销售这种纪念品获利900元。
解:⑴设试销时进价为每千克x元,则
解,得x=5
经检验:x=5是原方程的解。
⑵ =4160(元)
答:试销时进价为每千克5元,超市在这两次苹果销售中共盈利4160元。
11、某公司开发的960件新产品必须加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工48件产品的时间与乙工厂单独加工72件产品的时间相等,而且乙工厂每天比甲工厂多加工8件产品,在加工过程中,公司需每天支付50元劳务费请工程师到厂进行技术指导。
方案一付款:1.5×20=30(万元)
方案二:耽误工期不预考虑。
方案三付款:1.5×4+省工程款。
8、一个分数的分母比分子大7,如果把此分数的分子加17,分母减4,所得新分数是原分数的倒数,求原分数。
解:设原分数为x,则
解,得x=3
经检验:x=3是原方程的解。
原分数为: 答:原分数为 。
八年级上数学分式方程专项练习
1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。问:乙单独整理需多少分钟完工?
解:设乙单独整理需x分钟完工,则
解,得x=80
经检验:x=80是原方程的解。
答:乙单独整理需80分钟完工。
2、有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?
第十五章 分式 分式方程的应用(1)—工程问题 同步练习 2022-2023人教版数学八年级上册

第13课 分式方程的应用(1)——工程问题一、知识储备工程问题:=.( )工作时间( )列分式方程解应用题的步骤:①设未知数;②列方程;③解方程;④______________;⑤作答.二、新课学习1.某化肥厂由于采取了新技术,每天比原计划多生产化肥3吨,实际生产180吨与原计划生产120吨的时间相等,那么该化肥厂原计划每天生产化肥多少吨?2.小王做90个零件所需要的时间与小李做120个零件所用的时间相同,又知每小时小王与小李两个人共做35个机器零件.求小王、小李每小时各做多少个零件?3.某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.4.某年,云南省发生了百年一遇的旱灾,连续8个多月无有效降水,为抗旱救灾,某部队计划为驻地村民新修水渠3600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务,间原计划每天修水渠多少米?5.张家界市为了治理城市污水污染,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量是原计划的1.2倍,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?6.某服装厂准备加工380套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高10%,结果共用了18天完成任务,问计划每天加工服装多少套?7.某中学组织学生去福利院慰问,在准备礼品时发现甲礼品的单价比乙礼品多40元,并且花费600元.购买甲礼品和花费360元购买乙礼品的数量相等,求甲、乙两种礼品的单价各为多少元?8.某工厂计划生产120件零件,由于采用新技术,每天比原计划多生产3件,因此提前2天完成计划,设原计划每天生产x件零件,则可列方程为()A.12012023x x-=-B.12012023x x-=-C.12012023x x-=+D.12012023x x-=+9.开学初,某文化用品商店减价促销,全场8折.用60元购买规格相同的签字笔,折价后买到的数量刚好比按原价买到的数量多3支原来每支签字笔的价格是多少元?10.一台收割机的工作效率相当于一个农民工作效率的150倍,用这台机器收割10hm2小麦比100个农民人工收割这些小麦要少用1h,这台收割机每小时收割多少公顷小麦?11.两个工程队共同参与一项筑路工程,甲队单独做需要3个月完成,当甲队单独施工1个月后,乙队加入共同施工,又工作了半个月,总工程全部完成,求乙队单独施工需要多少个月能完成全部工程?12.某服装厂设计了一款新式夏装,想尽快制作8800件投入市场,服装厂有A,B两个制衣车间,A车间每天加工的数量是B车间的1.2倍,A,B两车间共同完成一半后,A车间出现故障停产,剩下全部由B车间单独完成,结果前后共用20天完成A,B两车间每天分别能加工多少件?第13课 分式方程的应用(1)——工程问题1.解:设原计划每天生产化肥x 吨.依题意,得1801203x x=+,解得6x = 经检验,6x =是方程的解.所以原计划每天生产化肥6吨. 2.解:设小王每小时做零件x 个,小李每小时做零件()35x -个.依题意,列方程9012035x x=-,解得15x =. 经检验,15x =是方程的解.所以小王每小时做零件15个,小李每小时做零件20个.3.解:设原计划每天加工这种画图工具x 套.依题意,列方程3000300041.2x x -=,解得125x =.经检验,125x =是方程的解.所以原计划每天加工这种画图工具125套.4.解:设原计划每天修水渠x 米.依题意36003600201.8x x⋅=,解得80x =. 经检验,80x =是方程的解,所以原计划每天修水渠80米.5.解:设原计划每天铺设管道x 米.依题意,有120300120271.2x x-+=,解得10x =, 经检验,10x =是方程的解,所以原计划每天铺设管道10米.6.解:设计划每天加工服装x 套.依题意,有16038016018(110%)x x -+=+,解得20x =, 经检验,20x =是方程的解,所以计划每天加工服装20套.7.解:设甲礼品单价为x 元,则之礼品单价为()40x -元.依题意,有60036040x x =-,解得 100x =,经检验, 100x =是方程的解,所以甲礼品单价为100元,乙礼品单价为60元.8.C9.解:设原来每支签字笔的价格是x 元.依题意,有606030.8x x-=,解得5x =, 经检验,5x =是方程的解,所以原来每支签字笔的价格是5元.10.解:设这台收割机每小时收割x 公顷小麦,依题意有,10010101150x x÷-=,解得5x =, 经检验,5x =是方程的解,所以这台收割机每小时收割5公顷小麦.11.解:设乙队单独施工需要x 个月能完成全部工程.依题意,有111111332x ⎛⎫⨯++⨯= ⎪⎝⎭,解得1x =.经检验,1x =是方程的解,所以乙队单独施工需要1个月能完成全部工程.12.解:设B 车间每天能加工x 件,则A 车间每天加工的数量是1.2x 件.依题意,44004400201.2x x x+=+,解得320x =, 经检验,320x =是方程的解,所以A 车间每天能加工384件,B 车间每天能加工320件。
初中数学八年级分式方程应用题专项练习共24题

分式方程应用题班级姓名1、重量相同的两种商品,分别价值900元和1500元,已知第一种商品每千克的价值比第二种少300元,分别求这两种商品每千克的价值。
2、某客车从甲地到乙地走全长480Km的高速公路,从乙地到甲地走全长600Km的普通公路。
又知在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从乙地到甲地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。
3、从甲地到乙地的路程是15千米,A骑自行车从甲地到乙地先走,40分钟后,B骑自行车从甲地出发,结果同时到达。
已知B的速度是A的速度的3倍,求两车的速度。
4、一台甲型拖拉机4天耕完一块地的一半,加一台乙型拖拉机,两台合耕,1天耕完这块地的另一半。
乙型拖拉机单独耕这块地需要几天?5、A做90个零件所需要的时间和B做120个零件所用的时间相同,又知每小时A、B两人共做35个机器零件。
求A、B每小时各做多少个零件。
6、某甲有25元,这些钱是甲、乙两人总数的20%。
乙有多少钱?7、某甲有钱400元,某乙有钱150元,若乙将一部分钱给甲,此时乙的钱是甲的钱的10%,问乙应把多少钱给甲?8、我部队到某桥头狙击敌人,出发时敌人离桥头24千米,我部队离桥头30千米,我部队急行军速度是敌人的1.5倍,结果比敌人提前48分钟到达,求我部队的速度。
9、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。
已知水流的速度是3千米/时,求轮船在静水中的速度。
10、某中学到离学校15千米的某地旅游,先遣队和大队同时出发,行进速度是大队的1.2倍,以便提前半小时到达目的地做准备工作。
求先遣队和大队的速度各是多少?11、某人现在平均每天比原计划多加工33个零件,已知现在加工3300个零件所需的时间和原计划加工2310个零件的时间相同,问现在平均每天加工多少个零件。
12、我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册——分式方程的实际应用题分式方程的实际应用题1.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?2.2013年4月20日,雅安发生7.0级地震,某地需550顶帐篷解决受灾群众临时住宿问题,现由甲、乙两个工厂来加工生产.已知甲工厂每天的加工生产能力是乙工厂每天加工生产能力的1.5倍,并且加工生产240顶帐篷甲工厂比乙工厂少用4天.①求甲、乙两个工厂每天分别可加工生产多少顶帐篷?②若甲工厂每天的加工生产成本为3万元,乙工厂每天的加工生产成本为2.4万元,要使这批救灾帐篷的加工生产总成本不高于60万元,至少应安排甲工厂加工生产多少天?3.甲、乙两商场自行定价销售某一商品.(1)甲商场将该商品提价15%后的售价为1.15元,则该商品在甲商场的原价为元;(2)乙商场将该商品提价20%后,用6元钱购买该商品的件数比没提价前少买1件,求该商品在乙商场的原价是多少?(3)甲、乙两商场把该商品均按原价进行了两次价格调整.甲商场:第一次提价的百分率是a,第二次提价的百分率是b;乙商场:两次提价的百分率都是(a>0,b>0,a≠b).请问甲、乙两商场,哪个商场的提价较多?请说明理由.4.通惠新城开发某工程准备招标,指挥部现接到甲、乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.67万元,乙队每天的施工费用为0.33万元,该工程预算的施工费用为19万元.为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,问:该工程预算的施工费用是否够用?若不够用,需要追加预算多少万元?请说明理由.5.为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4800元.已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?(2)若单独租用一台车,租用哪台车合算?6.为了保护水资源,实行节约用水,我省某市经过“调整水费听证会”后决定,2005年4月1日起,民用自来水水费调整为每立方米1.80元(含污染费),并提出“超额高费措施”,即每月用水量不超15m3收费,按规定标准1.80元/m3,若用水超过15m3,则超过部分按3.6元/m3收费(含“超标用水费”和“高额排污费”)(1)小玲家响应市政府的号召,从2005年4月起计划平均每月用水量比过去平均每月用水量减少3m3,这使得小玲家现在用180m3的水比过去可多用3个月,问小玲家计划平均每月用水量是多少m3(2)小玲家从2005年4月到2006年3月的一年中,有四个月因为有亲戚来家玩耍,这四个月用水量有二个月超计划平均用水量20%,有二个月超平均用水量的40%,其余八个月均按计划用水量用水,那么按新交费法,小玲家从2005年4月到2006年3月的这一年中应共交水费多少元?7.京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.8.“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?9.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?10.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?11.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?12.2015年5月,某县突降暴雨,造成山体滑坡,挢梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,己知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐蓬?(2)如果这批帐篷有1490件,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其它装满,求甲、乙两种汽车各有多少辆?13.宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?14.某工厂计划在规定时间内生产24000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.分式方程的实际应用题一.解答题(共14小题)1.(2016•泰安模拟)为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?【分析】如果设甲工厂每天加工x件产品,那么根据乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍,可知乙工厂每天加工1.5x件产品.然后根据等量关系:甲工厂单独加工完成这批产品的天数﹣乙工厂单独加工完成这批产品的天数=10列出方程.【解答】解:设甲工厂每天加工x件产品,则乙工厂每天加工1.5x件产品,依题意得﹣=10,解得:x=40.经检验:x=40是原方程的根,且符合题意.所以1.5x=60.答:甲工厂每天加工40件产品,乙工厂每天加工60件产品.【点评】本题考查了分式方程在实际生产生活中的应用.理解题意找出题中的等量关系,列出方程是解题的关键.注意分式方程一定要验根.2.(2013•眉山)2013年4月20日,雅安发生7.0级地震,某地需550顶帐篷解决受灾群众临时住宿问题,现由甲、乙两个工厂来加工生产.已知甲工厂每天的加工生产能力是乙工厂每天加工生产能力的1.5倍,并且加工生产240顶帐篷甲工厂比乙工厂少用4天.①求甲、乙两个工厂每天分别可加工生产多少顶帐篷?②若甲工厂每天的加工生产成本为3万元,乙工厂每天的加工生产成本为2.4万元,要使这批救灾帐篷的加工生产总成本不高于60万元,至少应安排甲工厂加工生产多少天?【分析】①先设乙工厂每天可加工生产x顶帐篷,则甲工厂每天可加工生产1.5x顶帐篷,根据加工生产240顶帐篷甲工厂比乙工厂少用4天列出方程,求出x的值,再进行检验即可求出答案;②设甲工厂加工生产y天,根据加工生产总成本不高于60万元,列出不等式,求出不等式的解集即可.【解答】解:①设乙工厂每天可加工生产x顶帐篷,则甲工厂每天可加工生产1.5x顶帐篷,根据题意得:﹣=4,解得:x=20,经检验x=20是原方程的解,则甲工厂每天可加工生产1.5×20=30(顶),答:甲、乙两个工厂每天分别可加工生产30顶和20顶帐篷;②设甲工厂加工生产y天,根据题意得:3y+2.4×≤60,解得:y≥10,则至少应安排甲工厂加工生产10天.答:至少应安排甲工厂加工生产10天.【点评】此题考查了分式方程的应用和一元一次不等式的应用,读懂题意,找出题目中的数量关系,列出方程和不等式,注意分式方程要检验.3.(2014秋•重庆期末)甲、乙两商场自行定价销售某一商品.(1)甲商场将该商品提价15%后的售价为1.15元,则该商品在甲商场的原价为1元;(2)乙商场将该商品提价20%后,用6元钱购买该商品的件数比没提价前少买1件,求该商品在乙商场的原价是多少?(3)甲、乙两商场把该商品均按原价进行了两次价格调整.甲商场:第一次提价的百分率是a,第二次提价的百分率是b;乙商场:两次提价的百分率都是(a>0,b>0,a≠b).请问甲、乙两商场,哪个商场的提价较多?请说明理由.【分析】(1)灵活利用利润公式:售价﹣进价=利润,直接填空即可;(2)设该商品在乙商场的原价为x元,根据提价20%后,用6元钱购买该商品的件数比没提价前少买1件,即可列方程求解.(4)分别求出甲、乙两商场提价后的代数式,比较大小即可求解.【解答】解:(1)1.15÷(1+15%)=1(元);…(3分)(2)设该商品在乙商场的原价为x元,则.…(2分)解得x=1.…(1分)经检验:x=1满足方程,符合实际.答:该商品在乙商场的原价为1元.…(1分)(3)由于原价均为1元,则甲商场两次提价后的价格为:(1+a)(1+b)=1+a+b+ab.乙商场两次提价后的价格为:(1+=.∵.故乙商场两次提价后价格较多.…(4分)【点评】此类题目贴近生活,有利于培养学生应用数学解决生活中实际问题的能力.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.4.(2009•綦江县)通惠新城开发某工程准备招标,指挥部现接到甲、乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.67万元,乙队每天的施工费用为0.33万元,该工程预算的施工费用为19万元.为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,问:该工程预算的施工费用是否够用?若不够用,需要追加预算多少万元?请说明理由.【分析】(1)求的是工效,时间较明显,一定是根据工作总量来列等量关系,等量关系为:甲6天的工作总量+甲乙合作16天的工作总量=1;(2)应先算出甲乙合作所需天数,再算所需费用,和19万进行比较.【解答】解:(1)设甲队单独完成这项目需要x 天,则乙队单独完成这项工程需要2x天,(1分)根据题意,得(4分)解得x=30(5分)经检验,x=30是原方程的根,则2x=2×30=60(6分)答:甲、乙两队单独完成这项工程各需要30天和60天.(7分)(2)设甲、乙两队合作完成这项工程需要y天,则有,解得y=20(9分)需要施工费用:20×(0.67+0.33)=20(万元)(10分)∵20>19,∴工程预算的施工费用不够用,需追加预算1万元.(11分)【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题涉及的公式:工作总量=工作效率×工作时间.5.(2013•娄底)为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4800元.已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?(2)若单独租用一台车,租用哪台车合算?【分析】(1)假设甲车单独运完此堆垃圾需运x 趟,则乙车单独运完此堆垃圾需运2x趟,根据工作总量=工作时间×工作效率建立方程求出其解即可;(2)分别表示出甲、乙两车单独运每一趟所需费用,再根据关键语句“两车各运12趟可完成,需支付运费4800元”可得方程,再解出方程,再分别计算出利用甲或乙所需费用进行比较即可.【解答】解:(1)设甲车单独运完此堆垃圾需运x趟,则乙车单独运完此堆垃圾需运2x趟,根据题意得出:12(+)=1,解得:x=18,经检验得出:x=18是原方程的解,则乙车单独运完此堆垃圾需运:2x=36,答:甲车单独运完需18趟,乙车单独运完需36趟;(2)设甲车每一趟的运费是a元,由题意得:12a+12(a﹣200)=4800,解得:a=300,则乙车每一趟的费用是:300﹣200=100(元),单独租用甲车总费用是:18×300=5400(元),单独租用乙车总费用是:36×100=3600(元),3600<5400,故单独租用一台车,租用乙车合算.答:单独租用一台车,租用乙车合算.【点评】此题主要考查了分式方程的应用以及一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.6.(2013•成都校级模拟)为了保护水资源,实行节约用水,我省某市经过“调整水费听证会”后决定,2005年4月1日起,民用自来水水费调整为每立方米1.80元(含污染费),并提出“超额高费措施”,即每月用水量不超15m3收费,按规定标准1.80元/m3,若用水超过15m3,则超过部分按3.6元/m3收费(含“超标用水费”和“高额排污费”)(1)小玲家响应市政府的号召,从2005年4月起计划平均每月用水量比过去平均每月用水量减少3m3,这使得小玲家现在用180m3的水比过去可多用3个月,问小玲家计划平均每月用水量是多少m3(2)小玲家从2005年4月到2006年3月的一年中,有四个月因为有亲戚来家玩耍,这四个月用水量有二个月超计划平均用水量20%,有二个月超平均用水量的40%,其余八个月均按计划用水量用水,那么按新交费法,小玲家从2005年4月到2006年3月的这一年中应共交水费多少元?【分析】(1)设小玲家计划平均每月用水量是xm3,则过去每月用水量为(x+3)m3,找出等量关系:现在用180m3的水比过去可多用3个月,列方程求解即可;(2)分别计算出水量超20%和40%时每月的用水量,根据题意计算出相应的水费,相加即可得出一年应共交水费.【解答】解:(1)设小玲家计划平均每月用水量是xm3,则过去每月用水量为(x+3)m3,由题意得,﹣=3,解得:x=12或x=﹣15(不合题意,舍去),经检验:x=12是原方程的解,即小玲家计划平均每月用水量是12m3;(2)计划用水量为12cm3,超过计划用水量20%时,用水量=12×(1+20%)=14.4cm3,超过计划用水量40%时,用水量=12×(1+40%)=16.8cm3,则应交水费:12×8×1.8+14.4×2×1.8+(15×1.8+1.8×3.6)×2=291.6(元).答:小玲家从2005年4月到2006年3月的这一年中应共交水费291.6元.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.7.(2016•南昌校级自主招生)京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.【分析】(1)设甲单独完成这项工程所需天数,表示出乙单独完成这项工程所需天数及各自的工作效率.根据工作量=工作效率×工作时间列方程求解;(2)根据题意,甲乙合作工期最短,所以须求合作的时间,然后计算费用,作出判断.【解答】解:(1)设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要x天.根据题意,得.解得x=90.经检验,x=90是原方程的根.∴x=×90=60.答:甲、乙两队单独完成这项工程分别需60天和90天.(2)设甲、乙两队合作完成这项工程需要y天,则有.解得y=36.需要施工费用:36×(8.4+5.6)=504(万元).∵504>500.∴工程预算的施工费用不够用,需追加预算4万元.【点评】此题考查分式方程的应用,涉及方案决策问题,所以综合性较强.8.(2015•安顺)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?【分析】设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.【解答】解:设第一批盒装花的进价是x元/盒,则2×=,解得x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元.【点评】本题考查了分式方程的应用.注意,分式方程需要验根,这是易错的地方.9.(2015•成都)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?【分析】(1)可设该商家购进的第一批衬衫是x 件,则购进第二批这种衬衫是2x件,根据第二批这种衬衫单价贵了10元,列出方程求解即可;(2)设每件衬衫的标价y元,求出利润表达式,然后列不等式解答.【解答】解:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,依题意有+10=,解得x=120,经检验,x=120是原方程的解,且符合题意.答:该商家购进的第一批衬衫是120件.(2)3x=3×120=360,设每件衬衫的标价y元,依题意有(360﹣50)y+50×0.8y≥(13200+28800)×(1+25%),解得y≥150.答:每件衬衫的标价至少是150元.【点评】本题考查了分式方程的应用和一元一次不等式的应用,弄清题意并找出题中的数量关系并列出方程是解题的关键.10.(2014•梅州)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?【分析】(1)设乙工程队每天能完成绿化的面积是x(m2),根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列出方程,求解即可;(2)设应安排甲队工作y天,根据这次的绿化总费用不超过8万元,列出不等式,求解即可.【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设应安排甲队工作y天,根据题意得:0.4y+×0.25≤8,解得:y≥10,答:至少应安排甲队工作10天.【点评】此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程和不等式,解分式方程时要注意检验.11.(2014•内江)某汽车销售公司经销某品牌A 款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?【分析】(1)求单价,总价明显,应根据数量来列等量关系.等量关系为:今年的销售数量=去年的销售数量.(2)关系式为:99≤A款汽车总价+B款汽车总价≤105.(3)方案获利相同,说明与所设的未知数无关,让未知数x的系数为0即可;多进B款汽车对公司更有利,因为A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,所以要多进B款.【解答】解:(1)设今年5月份A款汽车每辆售价m万元.则:,解得:m=9.经检验,m=9是原方程的根且符合题意.答:今年5月份A款汽车每辆售价9万元;(2)设购进A款汽车x辆.则:99≤7.5x+6(15﹣x)≤105.解得:6≤x≤10.∵x的正整数解为6,7,8,9,10,。