仪器分析红外光谱实验

仪器分析红外光谱实验
仪器分析红外光谱实验

序号:06

仪器分析实验报告

实验名称:红外光谱分析(IR)实验学院:化学工程学院

专业:化学工程与工艺

班级:化工班

姓名:学号

指导教师:

日期:

一、 实验目的

1、掌握溴化钾压片法制备固体样品的方法;

2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法;

3、初步学会对红外吸收光谱图的解析。

二、实验原理

红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在0.75~1000μm 。通常又把这个波段分成三个区域,即近红外区:波长在0.75~2.5μm (波数在13300~4000cm -1),又称泛频区;中红外区:波长在 2.5~50μm (波数在4000~200cm -1),又称振动区;远红外区:波长在50~1000μm (波数在200~10cm -1),又称转动区。其中中红外区是研究、应用最多的区域。

红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为:

)(10)(4

1

cm cm λσ=- 作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为“分子指纹”。它最广泛的应用还在于对物质的化学组成进行分析。用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析。而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪等)比较,构造简单,操作方便,价格便宜,最常用于工业及实验研究领域,如医药鉴别,人造皮革中异氰酸酯基确定等等。因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。

根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。因此,特征吸收谱带的数目、位置、形状及强度取决于分子中各基团(化学键)的振动形式和所处的化学环境。只要掌握了各种基团的振动频率(基团频率)及其位移规律,即可利用基团振动频率与分子结构的关系,来确定吸收谱带的归属,确定分子中所含的基团或键,并进而由其特征振动频率的位移、谱带强度和形状的改变,来推定分子结构。

红外光谱仪可分为色散型和干涉型。色散型红外光谱仪又有棱镜分光型和光栅分光型,干涉型为傅立叶变换红外光谱仪(FTIR ),最主要的区别是FTIR 没

有色散元件。本实验所演示的是傅立叶变换红外光谱仪(FTIR)。所得的红外谱图的横坐标是波数(或波长),纵坐标是吸光度。

三、仪器和试剂

1、仪器:美国尼高立IR-6700

2、试剂:溴化钾,聚乙烯,苯甲酸

3、傅立叶红外光谱仪(FTIR)的构造及工作原理

?

?→

?→

?→

?

?

?

计算机

样品室

检测器

光源?→

干涉仪

图1 FTIR工作原理框图

四、实验步骤

1、打开红外光谱仪并稳定大概5分钟,同时进入对应的计算机工作站。

2、波数检验:将聚乙烯薄膜插入红外光谱仪的样品池处,从4000-650cm-1进行波数扫描,得到吸收光谱。然后将所得的谱图与计算机上的标准谱图进行匹配,分析得到最吻合的图谱,即可判断物质结构。

3、测绘苯甲酸的红外吸收光谱——溴化钾压片法

取1-2mg苯甲酸,加入在红外灯下烘干的100-200mg溴化钾粉末,在玛瑙研钵中充分磨细(颗粒约2μm),使之混合均匀。取出约80mg混合物均匀铺洒在干净的压模内,于压片机上制成直径透明薄片。将此片装于固体样品架上,样品架插入红外光谱仪的样品池处,从4000-400cm-1进行波数扫描,得到吸收光谱。然后将所得的谱图与计算机上的标准谱图进行匹配。

4、结束实验,关闭工作站和红外光谱仪。

五、注意事项

1、实验室环境应该保持干燥;

2、确保样品与药品的纯度与干燥度;

3、在制备样品的时候要迅速以防止其吸收过多的水分,影响实验结果;

4、试样放入仪器的时候动作要迅速,避免当中的空气流动,影响实验的准确性;

5、溴化钾压片的过程中,粉末要在研钵中充分磨细,且于压片机上制得的透明

薄片厚度要适当。

六、实验结果与讨论

1.聚乙烯的红外光谱图

图1 聚乙烯的红外光谱图

聚乙烯红外吸收光谱图上主要吸收峰的归属如下:

表1 聚乙烯的红外光谱图

cm吸收基团的振动形式

谱带位置/1-

ν(—C—(CH2)n—C—n≥4)2914.396

C-

H

ν(—C—(CH2)n—C—n≤3)2848.828

H

C-

δ(面内)1472.203

C-

H

δ(面外)729.804

C-

H

δ(面外)719.637

C-

H

2.苯甲酸的红外光谱图

图2 苯甲酸的红外光谱图

苯甲酸红外光谱图主要吸收峰的归属如下:

表2 苯甲酸的红外光谱图

cm吸收基团的振动形式谱带位置/1-

1686.418 νC = O

1453.899 νC = C

δ(面内)

1292.206

H

C-

ν

1179.663

C-

O

δ(面外)

934.479

H

O-

δ(面外)

707.480

H

C-

1、本实验成败的关键在于溴化钾压片制直径透明薄片。本实验主要是为了学习和掌握美国尼高立IR-6700型红外光谱仪的使用方法,得益与计算机发展,得到红外谱图后无需通过红外光谱解析程序(先特征、后指纹;先强峰,后次强峰;先粗查,后细找;先否定,后肯定;寻找有关一组相关峰进行佐证)对物质官能团进行定性分析,只需导入标准谱图判别其吻合程度即可。

2、对特征峰及其特征频率要有一定的识记,例如羰基(C=O)的伸缩振动吸收峰在各种化合物中总是出现在1880~1660cm-1之间。再如,当化合物中有C≡C 键时,其吸收峰总是出现在2500~2000cm-1之间。而羟基(O-H)在3650-3200 cm-1之间,胺、酰胺(N-H)在3300 cm-1附近有尖锐特征峰等等。

3、思考题解答

1)为什么要选用KBr作为来承载样品的介质?

答:KBr为一种无色晶体,相对NaCl来讲具有很好的延展性。而且KBr对红外光吸收很小,因此可以测绘全波段光谱图。

2)红外光谱法对试样有什么要求?

答:(a) 试样应为“纯物质”(98%),通常在分析前,样品需要纯化,可以通过分馏、萃取、重结晶等分离和精制的方法;

(b) 试样不含有水(水可产生红外吸收且侵蚀吸收室的盐窗;

(c) 试样浓度或厚度应适当,使光谱图中的大多数吸收峰投射在合适范围内。

3)红外光谱法制样有哪些方法?

答:固体试样最常用的是压片法,此外还有石蜡糊法和薄膜法;液体试样一般采用液体池法和液膜法。

4、傅立叶变换红外光谱仪的特点:扫描速度快;具有很高的分辨率;灵敏度高;波数准确度高;光学部件简单;多通路等。

红外光谱(FTIR)实验报告

红外光谱仪调查及实验报告 第一部分红外光谱仪调查 1.1 简介 傅里叶红外光谱仪: 全名为傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,FTIR Spectrometer),是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。傅里叶红外光谱仪不同于色散型红外分光的原理,可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。 滤光片型近红外光谱仪器: 滤光片型近红外光谱仪器以滤光片作为分光系统,即采用滤光片作为单色光器件。滤光片型近红外光谱仪器可分为固定式滤光片和可调式滤光片两种形式,其中固定滤光片型的仪器时近红外光谱仪最早的设计形式。仪器工作时,由光源发出的光通过滤光片后得到一宽带的单色光,与样品作用后到达检测器。 色散型近红外光谱仪器: 色散型近红外光谱仪器的分光元件可以是棱镜或光栅。为获得较高分辨率,现代色散型仪器中多采用全息光栅作为分光元件,扫描型仪器通过光栅的转动,使单色光按照波长的高低依次通过样品,进入检测器检测。根据样品的物态特性,可以选择不同的测样器件进行投射或反射分析。 傅里叶变换型近红外光谱仪器: 傅里叶变换近红外分光光度计简称为傅里叶变换光谱仪,它利用干涉图与光谱图之间的对应关系,通过测量干涉图并对干涉图进行傅里叶积分变换的方法来测定和研究近红外光谱。其基本组成包括五部分:①分析光发生系统,由光源、分束器、样品等组成,用以产生负载了样品信息的分析光;②以传统的麦克尔逊干涉仪为代表的干涉仪,以及以后的各类改进型干涉仪,其作用是使光源发出的光分为两束后,造成一定的光程差,用以产生空间(时间)域中表达的分析光,即干涉光;③检测器,用以检测干涉光;④采

仪器分析_紫外-可见分光光度和红外光谱法习题及参考答案.docx

第三章紫外可见吸收光谱法 1人眼能感觉到的可见光的波长范围是( )。 A 、400nm ?760nm B 、200nm ?400nm C 、200nm ?600nm D 、360nm ?800nm 2、 在分光光度法中,透射光强度 (I )与入射光强度(∣0)之比l∕∣0称为( )。 A 、吸光度 B 、吸光系数 C 、透光度 D 、百分透光度 3、 符合朗伯-比尔定律的有色溶液在被适当稀释时,其最大吸收峰的波长位置 ( )。 A 、向长波方向移动 B 、向短波方向移动 C 、不移动 D 、移动方向不确定 4、 对于符合朗伯-比尔定律的有色溶液,其浓度为 C 0时的透光度为 T 0;如果其浓度增大 1 倍,则此溶液透光度的对数为 ( )。 A 、T 0∕2 B 、2T 0 C 、2lgT 0 D 、0.5lgT 0 5、 在光度分析中,某有色物质在某浓度下测得其透光度为 T ;若浓度增大1倍,则透光度 为 ()。 2 1/2 A 、T B 、T/2 C 、2T D 、T 6、 某物质的摩尔吸光系数很大,则表明 ( )。 A 、该物质溶液的浓度很大 B 、光通过该物质溶液的光程长 C 、 该物质对某波长的光的吸收能力很强 D 、 用紫外-可见光分光光度法测定该物质时其检出下限很低 7、在用分光光度法测定某有色物质的浓度时,下列操作中错误的是 ( )。 B 、待测溶液注到比色皿的 2/3高度处 D 、将比色皿透光面置于光路中 B 、吸光度与浓度成正比 D 、玻璃棱镜适用于紫外光区 9、在分光光度分析中,常出现工作曲线不过原点的情况。与这一现象无关的情况有 ( )。 A 、试液和参比溶液所用吸收池不匹配 B 、参比溶液选择不当 C 、显色反应的灵敏度太低 D 、被测物质摩尔吸光系数太大 10、 质量相等的A 、B 两物质,其摩尔质量 M A > M B O 经相同方式发色后,在某一波长下测 得其吸光度相等,则在该波长下它们的摩尔吸光系数的关系是 ( )O A A 、 B Pel A, B ZB A B^ — A 、 B 选择题 A 、比色皿外壁有水珠 C 、光度计没有调零 8、下列说法正确的是( )。 A 、透光率与浓度成正比

无水乙醇红外光谱分析实验报告

竭诚为您提供优质文档/双击可除无水乙醇红外光谱分析实验报告 篇一:红外光谱分析实验报告 一、【实验题目】 红外光谱分析实验 二、【实验目的】 1.了解傅立叶变换红外光谱仪的基本构造及工作原理 2.掌握红外光谱分析的基础实验技术 3.学会用傅立叶变换红外光谱仪进行样品测试 4.掌握几种常用的红外光谱解析方法 三、【实验要求】 利用所学过的红外光谱知识对碳酸钙、聚乙烯醇、丙三醇、乙醇的定性分析制定出合理的样品制备方法;并对其谱图给出基本的解析。 四、【实验原理】 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在0.78~300μm。通常又把这个波段分成三个区域,即近红外区:波长在0.78~2.5μm(波数在12820~

4000cm-1),又称泛频区;中红外区:波长在2.5~25μm(波数在4000~400cm-1),又称基频区;远红外区:波长在25~300μm(波数在400~33cm-1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数(wavenumber)σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为"分子指纹"。它最广泛的应用还在于对物质的化学组成进行分析。用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析。而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪 等)比较,构造简单,操作方便,价格便宜。因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。因此,特征吸收

仪器分析红外吸收光谱法习题及答案

红外吸收光谱法 一.填空题 1.一般将多原子分子的振动类型分为伸缩振动和变形振动,前者又可分为对称伸缩振动和反对称伸缩振动,后者可分为面内剪式振动(δ)、面内摇摆振动(ρ) 和面外摇摆振动(ω)、面外扭曲振动(τ) 。2.红外光区在可见光区和微波光区之间,习惯上又将其分为三个区: 远红外区,中红外区和近红外区 ,其中中红外区的应用最广。 3.红外光谱法主要研究振动中有偶极矩变化的化合物,因此,除了单原子和同核分子等外,几乎所有的化合物在红外光区均有吸收。 4.在红外光谱中,将基团在振动过程中有偶极矩变化的称为红外活性 ,相反则 称为红外非活性的。一般来说,前者在红外光谱图上出现吸收峰。5.红外分光光度计的光源主要有能斯特灯和硅碳棒。 6.基团一OH、一NH;==CH的一CH的伸缩振动频率范围分别出现在 3750—3000 cm-1, 3300—3000 cm-1, 3000—2700 cm-1。 7.基团一C≡C、一C≡N ;—C==O;一C=N,一C=C—的伸缩振动频率范围分别出现在 2400—2100 cm-1, 1900—1650 cm-1, 1650—1500 cm-1。 8.4000—1300 cm-1 区域的峰是由伸缩振动产生的,基团的特征吸收一般位于此范围,它是鉴最有价值的区域,称为官能团区;1300—600 cm-1 区域中,当分子结构稍有不同时,该区的吸收就有细微的不同,犹如人的指纹一样,故称为指纹区。 二、选择题 1.二氧化碳分子的平动、转动和振动自由度的数目分别(A) A. 3,2,4 B. 2,3,4 C. 3,4,2 D. 4,2,3 2.乙炔分子的平动、转动和振动自由度的数目分别为(C) A. 2,3,3 B. 3,2,8 C. 3,2,7 D. 2,3,7 4.下列数据中,哪一组数据所涉及的红外光谱区能够包括CH 3CH 2 COH的吸收 带?(D) A. 3000—2700cm-1,1675—1500cm-1,1475—1300cm一1。 B. 3300—3010cm-1,1675—1500cm-1, 1475—1300cm-1。 C. 3300—3010cm-1, 1900—1650cm-l,1000——650cm-1。 D. 3000—2700cm-1, 1900—1650cm-1, 1475——1300cm-1。 1900—1650cm-1为 C==O伸缩振动,3000—2700cm-1为饱和碳氢C—H伸缩振动(不饱和的其频率高于3000 cm-1),1475——1300cm-1为C—H变形振动(如—CH 3 约在1380—1460cm-1)。

红外分析实例

图1 就是SBS 红外光谱图, 可以瞧出2921cm-1、2846cm-1为- CH2- 得伸缩振动吸收峰, 1601cm-1、1493cm-1为苯核得动吸收峰, 699cm-1、757cm-1为单取代苯环得振动吸收峰, 966cm-1为C=C 得扭曲振动吸收峰, 911cm-1为=CH2面外摇摆振动吸收峰。

从图2、图 3 可以瞧出各特征峰所对应得基团 :2924cm-1、2853cm-1为- CH 2 - 得伸缩振动吸收峰, 2960cm-1为- CH 3伸缩振动吸收峰,1460cm-1为- CH 2 - 得剪式 振动吸收峰, 1377cm-1为- CH 3 剪式振动吸收峰。

由图1可见,基质沥青红外光谱图中出现了3处吸收峰,其中波数650~910cm-1区域就是苯环取代区,出现得几个吸收峰就是由苯环上C-H面外摇摆振动 形成得;而波数1375cm-1与1458cm-1处得吸收峰则由 C-CH 3与-CH 2 -中C-H面内伸 缩振动形成得;波数2800~3000cn-1范围内得吸收峰比较强,就是环烷烃与烷烃 得C-H 伸缩振动得结果,由-CH 2-伸缩振动形成得。

由全波段得红外光谱(图3)可知,改性沥青与基质沥青在2800~3000cm-1左右出现得强吸收峰带基本相同,吸收峰得位置没有发生变化。就改性沥青而言,整个功能团没有发现新得吸收峰,但吸收峰得强度随SBD改性剂含量得增大而略有增强。由650~1100cm-1波区得红外光谱(图\4、图5)可知,在指纹区改性沥青与基质沥青得吸收峰存在明显差异,即在波数690~710cm-1与950~980cm-1处,SBS改性沥青得红外波区吸收相对较强,并在966、1cm-1与698cm-1处出现了吸收峰,虽然波数698cm-1得绝对吸收峰值较波 966、1cm-1处得大,但波数966、1cm-1处得吸峰特征更为明显。 每种物质分子都有一个由其组成与结构所决定得红外特征吸收峰,它只吸收一些特定波长得红外光。由于掺入得SBS改性剂与基质沥青并没有发生化学反应,亦即聚苯乙烯与聚丁二烯并没有发生化学变化,所以SBS改性沥青得红外光谱只就是在基质沥青得红外光谱上简单叠加了聚苯乙烯与聚丁二烯得红外光谱,而相应得吸收峰位置与强度基本保持不变,就是基质沥青与SBS改性剂得红外光谱得

红外光谱分析实验报告

仪器分析实验 实验名称:红外光谱分析实验 学院:化学工程学院专业:化学工程与工艺班级: 姓名:学号: 指导教师: 日期:

一、 实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在0.75~1000μm 。通常又把这个波段分成三个区域,即近红外区:波长在0.75~2.5μm (波数在13300~4000cm -1),又称泛频区;中红外区:波长在 2.5~50μm (波数在4000~200cm -1),又称振动区;远红外区:波长在50~1000μm (波数在200~10cm -1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: )(10)(4 1 cm cm λσ=- 三、仪器和试剂 1、仪器: 美国尼高立IR-6700 2、试剂: 溴化钾,聚乙烯,苯甲酸 3、傅立叶红外光谱仪(FTIR)的构造及工作原理 计算机检测器样品室干涉仪光源?→??→??→??→? 四、实验步骤 1、打开红外光谱仪并稳定大概5分钟,同时进入对应的计算机工作站。 2、波数检验:将聚乙烯薄膜插入红外光谱仪的样品池处,从4000-650cm -1进行 波数扫描,得到吸收光谱。然后将所得的谱图与计算机上的标准谱图进行匹配,分析得到最吻合的图谱,即可判断物质结构。 3、测绘苯甲酸的红外吸收光谱——溴化钾压片法 取1-2mg 苯甲酸,加入在红外灯下烘干的100-200mg 溴化钾粉末,在玛瑙研钵中充分磨细(颗粒约2μm ),使之混合均匀。取出约80mg 混合物均匀铺洒在干净的压模内,于压片机上制成直径透明薄片。将此片装于固体样品架上,样品架插入红外光谱仪的样品池处,从4000-400cm -1进行波数扫描,得到吸收光谱。然后将所得的谱图与计算机上的标准谱图进行匹配。 4、结束实验,关闭工作站和红外光谱仪。

仪器分析实验有机化合物的红外光谱分析解读

仪器分析实验有机化合物的红外光谱分析 2015年4月21日 有机化合物的红外光谱分析 开课实验室:环境资源楼312 【实验目的】 1、初步掌握两种基本样品制备技术及傅里叶变换光谱仪器的简单操作; 2、通过谱图解析及网上标准谱图的检索,了解由红外光谱鉴定未知物的一般过程; 3、掌握有机化合物红外光谱测定的制样方法,回顾基础有机化学光谱的相关知识。 【基本原理】 ? 原理概述:物质分子中的各种不同基团,在有选择地吸收不同频率的红外辐射后,发生振动能级之间的跃迁,形成各自独特的红外吸收光谱。据此,可对物质进行定性和定量分析。特别是对化合物结构的鉴定,应用更为广泛。 ? 红外吸收法: 类型:吸收光谱法; 原理:电子的跃迁:电子由于受到光、热、电等的激发,从一个能级转移到另一个能级的现象。这是因为分 子中的电子总是处在某一种运动状态中,每一种状态都具有一定的能量,属于一定的能级。当这些电子有选择地吸收了不同频率的红外辐射的能量,发生振动能级之间的跃迁,形成各自独特的红外吸收光谱。据此,可对化合物进行定性和定量分析; 条件:分子具有偶极矩。 【仪器与试剂】 1、仪器: 傅里叶变换红外光谱仪(德国Bruker公司,TENSOR 27型; 美国Thermo Fisher 公司, Nicolet 6700型);压片机; 玛瑙研钵; 红外灯。 2、试剂:NaCl窗片、KBr晶体,待分析试样液体及固体。 【实验步骤】 1、样品制备 (1)固体样品:KBr压片法 在玛瑙研钵将KBr晶体充分研磨后加入其量5%左右的待测固体样品,混合研磨直至均匀。在一个具有抛光面的金属模具上放一个圆形纸环,用刮勺将研磨好的

固体红外光谱实验报告

KBr压片法测定固体样品的红外光谱 一、实验目的 1、掌握红外光谱分析法的基本原理。 2、掌握Nicolet5700智能傅立叶红外光谱仪的操作方法。 3、掌握用KBr压片法制备固体样品进行红外光谱测定的技术和方法。 4、了解基本且常用的KBr压片制样技术在红外光谱测定中的应用。 5、通过谱图解析及标准谱图的检索,了解由红外光谱鉴定未知物的一般过程。 二、仪器及试剂 1 仪器:美国热电公司Nicolet5700智能傅立叶红外光谱仪;HY-12型手动液压式红外压片机及配套压片模具;磁性样品架;红外灯干燥器;玛瑙研钵。 2 试剂:苯甲酸样品(AR);KBr(光谱纯);无水丙酮;无水乙醇。 三、实验原理 红外吸收光谱法是通过研究物质结构与红外吸收光谱间的关系,来对物质进行分析的,红外光谱可以用吸收峰谱带的位置和峰的强度加以表征。测定未知物结构是红外光谱定性分析的一个重要用途。根据实验所测绘的红外光谱图的吸收峰位置、强度和形状,利用基团振动频率与分子结构的关系,来确定吸收带的归属,确认分子中所含的基团或键,并推断分子的结构,鉴定的步骤如下: (1)对样品做初步了解,如样品的纯度、外观、来源及元素分析结果,及物理性质(分子量、沸点、熔点)。 (2)确定未知物不饱和度,以推测化合物可能的结构; (3)图谱解析 ①首先在官能团区(4000~1300cm-1)搜寻官能团的特征伸缩振动; ②再根据“指纹区”(1300~400cm-1)的吸收情况,进一步确认该基团的存在以及与其它基团的结合方式。

图1 仪器的基本结构 四、实验步骤 1. 红外光谱仪的准备 (1)打开红外光谱仪电源开关,待仪器稳定30 分钟以上,方可测定; (2)打开电脑,选择win98系统,打开OMNIC E.S.P软件;在Collect菜单下的Experiment Set-up 中设置实验参数; (3)实验参数设置:分辨率 4 cm-1,扫描次数32,扫描范围4000-400 cm-1;纵坐标为Transmittance 2.固体样品的制备 (1)取干燥的苯甲酸试样约1mg于干净的玛瑙研钵中,在红外灯下研磨成细粉,再加入约150mg干燥且已研磨成细粉的KBr一起研磨至二者完全混合均匀,混合物粒度约为2μm以下(样品与KBr的比例为1:100~1:200)。 (2)取适量的混合样品于干净的压片模具中,堆积均匀,用手压式压片机用力加压约30s,制成透明试样薄片。 3.样品的红外光谱测定 (3)小心取出试样薄片,装在磁性样品架上,放入Nicolet5700智能傅立叶红外光谱仪的样品室中,在选择的仪器程序下进行测定,通常先测KBr的空白

仪器分析红外光谱实验

仪器分析实验报告 实验名称:红外光谱分析(IR)实验学院:化学工程学院 专业:化学工程与工艺 班级:化工112 姓名:王文标学号11402010233 指导教师:张宗勇 日期:2014.4.29

一、 实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在0.75~1000μm 。通常又把这个波段分成三个区域,即近红外区:波长在0.75~2.5μm (波数在13300~4000cm -1),又称泛频区;中红外区:波长在 2.5~50μm (波数在4000~200cm -1),又称振动区;远红外区:波长在50~1000μm (波数在200~10cm -1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: )(10)(4 1 cm cm λσ=- 作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为“分子指纹”。它最广泛的应用还在于对物质的化学组成进行分析。用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析。而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪等)比较,构造简单,操作方便,价格便宜,最常用于工业及实验研究领域,如医药鉴别,人造皮革中异氰酸酯基确定等等。因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。 根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。因此,特征吸收谱带的数目、位置、形状及强度取决于分子中各基团(化学键)的振动形式和所处的化学环境。只要掌握了各种基团的振动频率(基团频率)及其位移规律,即可利用基团振动频率与分子结构的关系,来确定吸收谱带的归属,确定分子中所含的基团或键,并进而由其特征振动频率的位移、谱带强度和形状的改变,来推定分子结构。 红外光谱仪可分为色散型和干涉型。色散型红外光谱仪又有棱镜分光型和光栅分光型,干涉型为傅立叶变换红外光谱仪(FTIR ),最主要的区别是FTIR 没

红外吸收光谱法试题和答案解析

红外吸收光谱法 一、选择题 1. CH 3—CH 3的哪种振动形式是非红外活性的(1) (1)υC-C (2)υC-H (3)δasCH (4)δsCH 2. 化合物中只有一个羰基.却在1773cm -1和1736 cm -1 处出现两个吸收峰.这是因 为(3) (1)诱导效应 (2)共轭效应 (3)费米共振 (4)空间位阻 3. 一种能作为色散型红外光谱仪的色散元件材料为(4) (1)玻璃 (2)石英 (3)红宝石 (4)卤化物晶体 4. 预测H 2S 分子的基频峰数为(2) (1)4 (2)3 (3)2 (4)1 5. 下列官能团在红外光谱中吸收峰频率最高的是(4) (1) (2)—C ≡C — (3) (4)—O —H 二、解答及解析题 1. 把质量相同的球相连接到两个不同的弹簧上。弹簧B 的力常数是弹簧A 的力常数的两倍.每个球从静止位置伸长1cm.哪一个体系有较大的势能。 答:M h hv E k 2π= = ;所以B 体系有较大的势能。 2. 红外吸收光谱分析的基本原理、仪器.同紫外可见分光光度法有哪些相似和不同之处 答: 红外 紫外 基本原理 当物质分子吸收一定波长的光能.能引起分子振动和转动的能及跃迁.产生的吸收光谱一般在中红外区.称为红外光谱 当物质分子吸收一定波长的光能.分子外层电子或分子轨道电子由基态跃迁到激发态.产生的吸收光谱一般在紫外-可见光区。 仪器 傅立叶变换红外光谱仪 紫外可见光分光光度计 相同:红外光谱和紫外光谱都是分子吸收光谱。 不同:紫外光谱是由外层电子跃迁引起的。电子能级间隔一般约为1~20eV; 而红外光谱是分子的振动能级跃迁引起的.同时伴随转动能级跃迁.一般振动能级间隔约为~1eV 。

仪器分析之红外吸收光谱法试题及答案

红外吸收光谱法习题 一、填空题 1. 在分子的红外光谱实验中,并非每一种振动都能产生一种红外吸收带,常常是实际吸收带比预期的要少得多。其原因是(1)_______; (2)________; (3)_______; (4)______。 2.乳化剂OP-10的化学名称为:烷基酚聚氧乙烯醚, 化学式: IR谱图中标记峰的归属:a_____, b____, c______, d____。 3.化合物的红外光谱图的主要振动吸收带应为: (1)3500~3100 cm-1处,有 ___________________振动吸收峰 (2)3000~2700 cm-1处,有 ___________________振动吸收峰 (3)1900~1650 cm-1处,有 ___________________振动吸收峰 (4)1475~1300 cm-1处,有 ___________________振动吸收峰 4.在苯的红外吸收光谱图中 (1) 3300~3000cm-1处,由________________________振动引起的吸收峰 (2) 1675~1400cm-1处,由________________________振动引起的吸收峰 (3) 1000~650cm-1处,由________________________振动引起的吸收峰 二、选择题 分子在红外光谱图上基频吸收峰的数目为 ( ) 1. Cl 2 (1) 0 (2) 1 (3) 2 (4) 3 2.下列关于分子振动的红外活性的叙述中正确的是 ( ) (1)凡极性分子的各种振动都是红外活性的,非极性分子的各种振动都不是红外活性的 (2)极性键的伸缩和变形振动都是红外活性的 (3)分子的偶极矩在振动时周期地变化,即为红外活性振动 (4)分子的偶极矩的大小在振动时周期地变化,必为红外活性振动,反之则不是 4.用红外吸收光谱法测定有机物结构时,试样应该是 ( ) (1)单质 (2)纯物质 (3)混合物 (4)任何

红外光谱实验报告

红外光谱实验报告 一、实验原理: 1、红外光谱法特点: 由于许多化合物在红外区域产生特征光谱,因此红外光谱法广 泛应用于这些物质的定性和定量分析,特别是对聚合物的定性 分析,用其他化学和物理方法较为困难,而红外光谱法简便易 行,特别适用于聚合物分析。 2、红外光谱的产生和表示 红外光谱定义:分子吸收红外光引起的振动能级跃迁和转动能级跃 迁而产生的吸收信号。 分子发生振动能级跃迁需要的能量对应光波的红外区域分类为: i.近红外区:10000-4000cm-1 ⅱ.中红外区:4000-400cm-1——最为常用,大多数化合物的化键振 动能级的跃迁发生在这一区域。 ⅲ.远红外区:400-10cm-1 产生红外吸收光谱的必要条件: 1)分子振动:只有在振动过程中产生偶极矩变化时才能吸收红外辐射。 ⅰ.双原子分子的振动:(一种振动方式)理想状态模型——把两个 原子看做由弹簧连接的两个质点,用此来 描述即伸缩振动;

图1 双原子分子的振动模型 ⅱ.多原子分子的振动:(简正振动,依据键长和键角变化分两大类) 伸缩振动:对称伸缩振动 反对称伸缩振动 弯曲振动:面内弯曲:剪切式振动 (变形振动)平面摇摆振动 面外弯曲振动:扭曲振动 非平面摇摆振动 ※同一种键型,不对称伸缩振动频率大于对称伸缩振动频率,伸缩振动频率大于弯曲振动频率。 ※当振动频率和入射光的频率一致时,入射光就被吸收,因而同一基团基本上总是相对稳定地在某一特定范围内出现吸收峰。ⅲ.分子振动频率: 基频吸收(强吸收峰):基态到第一激发态所产生分子振动 的振动频率。 倍频吸收(弱吸收峰):基态到第二激发态,比基频高一倍 处弱吸收,振动频率约为基频两倍。 组频吸收(复合频吸收):多分子振动间相互作用,2个或2

《仪器分析》教案7 - 红外吸收光谱法

第十章红外吸收光谱法 10.1教学建议 一、从应用实例入手,介绍红外吸收光谱法的基本原理和红外光谱仪结构特征。 二、依据红外谱图确定有机化合物结构,推断未知物的结构为目的,介绍红外光谱分析方法在定性及定量分析的方面的应用。 10.2主要概念 一、教学要求: (一)、掌握红外吸收光谱法的基本原理; (二)、掌握依据红外谱图确定有机化合物结构,推断未知物的结构方法; (三)、了解红外光谱仪的结构组成与应用。 二、内容要点精讲 (一)基本概念 红外吸收光谱——当用红外光照射物质时,物质分子的偶极矩发生变化而吸收红外光光能,有振动能级基态跃迁到激发态(同时伴随着转动能级跃迁),产生的透射率随着波长而变化的曲线。 红外吸收光谱法——利用红外分光光度计测量物质对红外光的吸收及所产生的红外光谱对物质的组成和结构进行分析测定的方法,称为红外吸收光谱法。 振动跃迁——分子中原子的位置发生相对运动的现象叫做分子振动。不对称分子振动会引起分子偶极矩的变化,形成量子化的振动能级。分子吸收红外光从振动能级基态到激发态的变化叫做振动跃迁。 转动跃迁——不对称的极性分子围绕其质量中心转动时,引起周期性的偶极矩变化,形成量子化的转动能级。分子吸收辐射能(远红外光)从转动能级基态到激发态的变化叫做转动跃迁。 伸缩振动——原子沿化学键的轴线方向的伸展和收缩的振动。 弯曲振动——原子沿化学键轴线的垂直方向的振动,又称变形振动,这是键长不变,键角发生变化的振动。 红外活性振动——凡能产生红外吸收的振动,称为红外活性振动,不能产生红外吸收的振动则称为红外非活性振动。 诱导效应——当基团旁边连有电负性不同的原子或基团时,通过静电诱导作用会引起分子中电子云密度变化,从而引起键的力常熟的变化,使基团频率产生位移的现象。 共轭效应——分子中形成大 键使共轭体系中的电子云密度平均化,双键力常数减小,使基团的吸收频率向低波数方向移动的现象。 氢键效应——氢键使参与形成氢键的原化学键力常数降低,吸收频率将向低波数方向移动的现象。 溶剂效应——由于溶剂(极性)影响,使得吸收频率产生位移现象。 基团频率——通常将基团由振动基态跃迁到第一振动激发态所产生的红外吸收频率称为基团频率,光谱上出现的相应的吸收峰称为基频吸收峰,简称基频峰。 振动偶合——两个相邻基团的振动之间的相互作用称为振动偶合。 基团频率区——红外吸收光谱中能反映和表征官能团(基团)存在的区域。 指纹区——红外吸收光谱中能反映和表征化合物精细结构的区域。

红外光谱实验报告

一、实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在~1000μm。通常又把这个波段分成三个区域,即近红外区:波长在~μm(波数在13300~4000cm-1),又称泛频区;中红外区:波长在~50μm(波数在4000~200cm-1),又称振动区;远红外区:波长在50~1000μm(波数在200~10cm-1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 三、仪器和试剂 1、仪器:美国尼高立IR-6700 2、试剂:溴化钾,聚乙烯,苯甲酸 3、傅立叶红外光谱仪(FTIR)的构造及工作原理 四、实验步骤

1、波数检验:将聚苯乙烯薄膜插入红外光谱仪的样品池处,从4000-650cm-1进行波数扫描,得到吸收光谱。 2、测绘苯甲酸的红外吸收光谱——溴化钾压片法 取1-2mg苯甲酸,加入在红外灯下烘干的100-200mg溴化钾粉末,在玛瑙研钵中充分磨细(颗粒约2μm),使之混合均匀。取出约80mg混合物均匀铺洒在干净的压模内,于压片机上制成直径透明薄片。将此片装于固体样品架上,样品架插入红外光谱仪的样品池处,从4000-400cm-1进行波数扫描,得到吸收光谱。 五、注意事项 1、实验室环境应该保持干燥; 2、确保样品与药品的纯度与干燥度; 3、在制备样品的时候要迅速以防止其吸收过多的水分,影响实验结果; 4、试样放入仪器的时候动作要迅速,避免当中的空气流动,影响实验的准确性。 5、溴化钾压片的过程中,粉末要在研钵中充分磨细,且于压片机上制得的透明薄片厚度要适当。 六、数据处理 该图中在波数700~800、1500~1600、2800~2975左右有峰形,证明了该物质中可能有烯烃的C-H变形振动,C-C间的伸缩振动,同时也拥有烷烃的C-H伸缩振动,推测为聚乙烯的红外谱图。 谱带位置/cm-1吸收基团的振动形式 )n—C— n≥4) (—C—(CH 2

仪器分析红外光谱法

第8章红外光谱分析法 教学时数:6学时 教学要求: 1、理解产生红外吸收的条件。 2、了解分子的振动类型,红外光谱中吸收峰增减的原因。 3、理解影响吸收峰的位置、峰数、峰强的主要因素。 4、掌握基团频率和特征吸收峰,主要有机化合物的红外吸收光谱特征。 5、理解影响基团频率位移的因素 6、掌握红外吸收光谱法的定性、定量方法。 7、了解红外光谱的构造与红外制样技术。 教学重点与难点: 重点:红外吸收的条件,影响吸收峰强度的因素,基团频率和特征吸收峰,典型有机化合物的红外光谱主要特征,定性分析。 难点:分子的振动,影响基团频率的因素,结构推断。 §8-1 概述 一、分子光谱与红外光区的划分 E分子= E电子+E振动+ E转动 其中E电子属于紫外,可见研究的范围,分子的振动,转动光谱属于红

外光谱研究的范围。其波长范围约为0.75—1000nm 根据仪器技术及应用不同,习惯上把红外光谱分成三个区: 1、近红外区(λ=0.75—2.5μm ) 主要低能电子跃迁,含氢原子团的倍频吸收,用于研究稀土及其它过渡金属化合物,含氢(-OH 、N-N 、C-H )原子团的吸收 2、中红外区(λ=2.5 —25μm ) 大多有机化合物及无机离子的基频吸收带出现在该光区,主要由分子的振动和转动跃迁引起的,最适用于定性定量分析,且仪器及分析测试技术最成熟。 3、远红外区(λ= 25—1000μm ) 主要是分子的纯转动能级跃迁以及晶体振动很少应用。红外光谱中一般以波数表示谱带的位置,而不是用波长 σ(cm 1-)=) (1cm λ 二、 红外光谱研究的对象及特点 1、研究对象: 红外光谱是振动—转动光谱,但它只能研究震动中伴有偶极矩变化的化合物。 极性分子 有偶极矩变化—红外 μ≠0

红外吸收光谱分析

第三章红外吸收光谱分析 3.1概述 3.1.1红外吸收光谱的基本原理 红外吸收光谱法又称为分子振动转动光谱,属于分子光谱的范畴,是有机物结构分析的重要方法之一。当一定频率的红外光照射分子时,若分子中某个基团的振动频率和红外辐射的频率一致,两者产生共振,光的能量通过分子偶极矩的变化传递给分子,该基团就吸收了这个频率的红外光,产生振动能级跃迁;如果红外辐射的频率和分子中各基团的振动能级不一致,该频率的红外光将不被吸收。如果用频率连续变化的红外光照射某试样,分子将吸收某些频率的辐射,引起对应区域辐射强度的减弱,用仪器以吸收曲线的形式记录下来,就得到该试样的红外吸收光谱,稀溶液谱带的吸光度遵守Lambert-Beer定律。 图3-1为正辛烷的红外吸收光谱。红外谱图中的纵坐标为吸收强度,通常用透过率或吸光度表示,横坐标以波数或波长表示,两者互为倒数。图中的各个吸收谱带表示相应基团的振动频率。各种化合物分子结构不同,分子中各个基团的振动频率不同。其红外吸收光谱也不同,利用这一特性,可进行有机化合物的结构分析、定性鉴定和定量分析。 图3-1 正辛烷的红外光谱图 几乎所有的有机和无机化合物在红外光谱区均有吸收。除光学异构体,某些高分子量的高聚物以及一些同系物外,结构不同的两个化合物,它们的红外光谱一定不会相同。吸收谱带出现的频率位置是由分子振动能级决定,可以用经典力学(牛顿力学)的简正振动理论来说明。吸收谱带的强度则主要取决于振动过程中偶极矩的变化和能级跃迁的概率。也就是说,红外光谱中,吸收谱带的位置、形状和强度反映了分子结构的特点,而吸收谱带的吸收强度和分子组成或官能团的含量有关。

红外分析实例

图1 是SBS 红外光谱图, 可以看出2921cm-1、2846cm-1为- CH2- 的伸缩振动吸收峰, 1601cm-1、1493cm-1为苯核的动吸收峰, 699cm-1、757cm-1为单取代苯环的振动吸收峰, 966cm-1为C=C 的扭曲振动吸收峰, 911cm-1为=CH2面外摇摆振动吸收峰。

从图2、图 3 可以看出各特征峰所对应的基团:2924cm-1、2853cm-1为- CH2- 的伸缩振动吸收峰, 2960cm-1为- CH3伸缩振动吸收峰,1460cm-1为- CH2- 的剪式振动吸收峰, 1377cm-1为- CH3剪式振动吸收峰。

由图1可见,基质沥青红外光谱图中出现了3处吸收峰,其中波数650~910cm-1区域是苯环取代区,出现的几个吸收峰是由苯环上C-H面外摇摆振动形成的;而波数1375cm-1和1458cm-1处的吸收峰则由C-CH3和-CH2-中C-H面内伸缩振动形成的;波数2800~3000cn-1范围内的吸收峰比较强,是环烷烃和烷烃的C-H 伸缩振动的结果,由-CH2-伸缩振动形成的。

由全波段的红外光谱(图3)可知,改性沥青与基质沥青在2800~3000cm-1左右出现的强吸收峰带基本相同,吸收峰的位置没有发生变化。就改性沥青而言,整个功能团没有发现新的吸收峰,但吸收峰的强度随SBD改性剂含量的增大而略有增强。由650~1100cm-1波区的红外光谱(图\4、图5)可知,在指纹区改性沥青与基质沥青的吸收峰存在明显差异,即在波数690~710cm-1和950~980cm-1处,SBS改性沥青的红外波区吸收相对较强,并在966.1cm-1和698cm-1处出现了吸收峰,虽然波数698cm-1的绝对吸收峰值较波966.1cm-1处的大,但波数966.1cm-1处的吸峰特征更为明显。 每种物质分子都有一个由其组成和结构所决定的红外特征吸收峰,它只吸收一些特定波长的红外光。由于掺入的SBS改性剂与基质沥青并没有发生化学反应,亦即聚苯乙烯和聚丁二烯并没有发生化学变化,所以SBS改性沥青的红外光谱只是在基质沥青的红外光谱上简单叠加了聚苯乙烯与聚丁二烯的红外光谱,而相应的吸收峰位置和强度基本保持不变,是基质沥青和SBS改性剂的红外光谱的简单合成图。与基质沥青比较,SBS改性沥青的红外光谱在698cm-1和

分析实验报告-红外光谱测定苯甲酸---最终版

华南师范大学实验报告 学生姓名:杨秀琼学号:20082401129 专业:化学年级班级:08化二 实验类型:综合实验时间:2010/3/25 实验指导老师郭长娟老师实验评分: 红外光谱法测定苯甲酸 一、[ 实验目的] 1.了解苯甲酸的红外光谱特征,通过实践掌握有机化合物的红外光谱鉴定方法。 2.练习用KBr压片法制备样品的方法。 3.了解红外光谱仪的结构,熟悉红外光谱仪的使用方法。 二、[实验原理] 红外吸收光谱分析方法主要是依据分子内部原子间的相对振动和分子转动等信息进行测定。不同的化学键或官能团,其振动能级从基态跃迁到激发态所需的能量不同,因此要吸收不同的红外光,将在不同波长出现吸收峰,从而形成红外光谱。 三、[仪器与试剂] 仪器:傅里叶红外光谱仪 软件:IRSolution; 压片机、膜具和干燥器;玛瑙研钵、药匙、镜纸及红外灯。 试剂:苯甲酸粉末、光谱纯KBr粉末。 四、[实验步骤]

1.将所有的膜具用酒精擦拭干净,用电吹风先烘干,再在红外灯下烘烤; 2.用电子天平称量一定量的KBr粉末(每份约200mg),在红外灯下研钵中加入KBr进行研磨,直至KBr粉末颗粒足够小(注意KBr粉末的干燥); 3.将KBr装入膜具,在压片机上压片,压力上升至14Mpa左右,稳定30S; 4.打开傅里叶红外光谱仪,将压好的薄片装机,设置背景的各项参数之后,进行测试,得到背景的扫描谱图。 5. 取一定量的样品(样品:大约1.2-1.3g)放入研钵中研细,然后重复上述步骤得到试样的薄片; 6.将样品的薄片固定好,装入红外光谱仪,设置样品测试的各项参数后进行测试,得到苯甲酸的红外谱图; 7.然后删掉背景谱图,对样品谱图进行简单的编辑和修饰,并标注出吸收峰值,保存试样的红外谱图; 8.谱图分析:在测定的谱图中根据出现吸收带的位置、强度和形状,利用各种基团特征吸收的知识,确定吸收带的归属。若出现了某基团的吸收,应该查看该基团的相关峰是否也存在。应用谱图分析,结合其他分析数据,可以确定化合物的结构单元,在按照化学知识和解谱经验,提出可能的结构式。然后查找该化合物标准谱图来验证推定的化合物的结构式。 五、[结果与分析]

仪器分析_紫外可见分光光度和红外光谱法习题及参考答案

第三章紫外可见吸收光谱法 一、选择题 1、人眼能感觉到的可见光的波长范围就是()。 A、400nm~760nm B、200nm~400nm C、200nm~600nm D、360nm~800nm 2、在分光光度法中,透射光强度(I)与入射光强度(I0)之比I/I0称为( )。 A、吸光度 B、吸光系数 C、透光度 D、百分透光度 3、符合朗伯-比尔定律的有色溶液在被适当稀释时,其最大吸收峰的波长位置( )。 A、向长波方向移动 B、向短波方向移动 C、不移动 D、移动方向不确定 4、对于符合朗伯-比尔定律的有色溶液,其浓度为c0时的透光度为T0;如果其浓度增大1倍,则此溶液透光度的对数为( )。 A、T0/2 B、2T0 C、2lgT0 D、0、5lgT0 5、在光度分析中,某有色物质在某浓度下测得其透光度为T;若浓度增大1倍,则透光度为( )。 A、T2 B、T/2 C、2T D、T1/2 6、某物质的摩尔吸光系数很大,则表明( )。 A、该物质溶液的浓度很大 B、光通过该物质溶液的光程长 C、该物质对某波长的光的吸收能力很强 D、用紫外-可见光分光光度法测定该物质时其检出下限很低 7、在用分光光度法测定某有色物质的浓度时,下列操作中错误的就是( )。 A、比色皿外壁有水珠 B、待测溶液注到比色皿的2/3高度处 C、光度计没有调零 D、将比色皿透光面置于光路中 8、下列说法正确的就是( )。 A、透光率与浓度成正比 B、吸光度与浓度成正比 C、摩尔吸光系数随波长而改变 D、玻璃棱镜适用于紫外光区 9、在分光光度分析中,常出现工作曲线不过原点的情况。与这一现象无关的情况有( )。 A、试液与参比溶液所用吸收池不匹配 B、参比溶液选择不当 C、显色反应的灵敏度太低 D、被测物质摩尔吸光系数太大 10、质量相等的A、B两物质,其摩尔质量M A>M B。经相同方式发色后,在某一波长下测得其吸光度相等,则在该波长下它们的摩尔吸光系数的关系就是( )。 A、εA>εB B、εA<εB C、εA=εB D、2εA>εB 11、影响吸光物质摩尔吸光系数的因素就是( )。 A、比色皿的厚度 B、入射光的波长

无水乙醇红外光谱分析实验报告

竭诚为您提供优质文档/双击可除 无水乙醇红外光谱分析实验报告 篇一:红外光谱分析实验报告 一、【实验题目】 红外光谱分析实验 二、【实验目的】 1.了解傅立叶变换红外光谱仪的基本构造及工作原理 2.掌握红外光谱分析的基础实验技术 3.学会用傅立叶变换红外光谱仪进行样品测试 4.掌握几种常用的红外光谱解析方法 三、【实验要求】 利用所学过的红外光谱知识对碳酸钙、聚乙烯醇、丙三醇、乙醇的定性分析制定出合理的样品制备方法;并对其谱图给出基本的解析。 四、【实验原理】红外光是一种波长介于可见光区和微波区之间的电磁 波谱。波长在0.78?300卩m通常又把这个波段分成三个区域, 即近红外区:波长在0.78?2.5卩m (波数在12820?

4000cm-1),又称泛频区;中红外区:波长在2.5?25卩m(波数在4000?400cm-1),又称基频区;远红外区:波长在25?300卩m(波数在400?33cm-1)又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长入表征外,更常用波数 (wavenumber)c表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为"分子指纹"。它最广泛的应用还在于对物质的化学组成进行分析。用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析。而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪等)比较,构造简单,操作方便,价格便宜。因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。因此,特征吸收 谱带的数目、位置、形状及强度取决于分子中各基团(化学键)的振动形式和所处的化学环境。只要掌握了各种基团的振动频率(基团频率)及其位移规律,即可利用基团振动频率与分子结构的关系,来确定吸收谱带的归属,确定分子中所含的基团或键,并进而由其特征振动频率的位移、谱带强度和形状的改变,来推定分子结构。

相关文档
最新文档