钙依赖蛋白激酶(CDPKs)在植物钙信号转导中的作用

合集下载

植物生理学第七章 植物体内细胞信号转导

植物生理学第七章 植物体内细胞信号转导

土壤干旱
ABA
ABA受体
Ca2+
(胞外刺激)
等信号分子
初级信使
胞间化 学信号
膜上信 号转换
第二信使
• 二、受体在信号转导中的作用
• 受体:位于细胞的质膜或细胞内,能感受到胞外信

号的蛋白质分子。
• 配体:能与受体发生特异性结合的物质。
• 1. 受体特点:组成型表达。 • 2. 受体与配体结合特点 • ⑴ 特异性 • ⑵ 高亲和力 • ⑶ 可逆性
吉尔曼
Alfred G. Gilman 美国
得克萨斯大学西南医 学中心 1941年--
罗德贝尔
Martin Rodbell 美国 国立环境卫生研究所 1925年--1998年
2、小G蛋白(小GTPase)
类似G蛋白的亚基,结合在质膜朝向胞质溶 胶的一侧。受上游的鸟嘌呤核苷酸交换因子的活化, 并将信号传递给下游组分。结合GTP后活化,成为 植物信号网络中重要的分子开关。目前未发现小G 蛋白参与跨膜的信号转换。参与细胞骨架的运动、 细胞扩大、根毛发育和细胞极性生长的信号转导。
结构模式图及其激活机制
(B) (A)
⑴ CaM 的作用机制 第一,直接与靶酶结合,诱导靶酶的活性构
象,从而调节靶酶的活性。 第二,与Ca2+结合,形成活化态的Ca2+·CaM复合
体,然后再与靶酶结合,将靶酶激活。 ⑵ CaM 的活性调节
① 调幅机制
② 调敏机制
⒋ Ca2+·CaM复合体的靶酶 Ca2+- ATP 酶, Ca2+通道, NAD激酶 , 多种蛋白激酶等。
参与蕨类植物的孢子发芽,细胞有丝分裂、原 生质流动、植物激素的活性、向性、调节蛋白质磷 酸化,最终调节细胞的生长发育。

植物钙信号传递机制和应用研究

植物钙信号传递机制和应用研究

植物钙信号传递机制和应用研究钙离子在植物中被认为是一种重要的信号分子,能够影响植物发育、逆境响应和激素信号转导等多个生物学过程。

随着技术和方法的不断更新,研究表明,植物的钙信号传递网络非常复杂,包含多个层次和环节,并且与其他信号通路之间存在着密切的相互作用和调控。

本文将介绍植物钙信号传递机制的基本特点,以及一些近年来的应用研究进展。

植物的钙信号传递机制基本特点钙信号传递是一种生物系统中的高速动态过程,通常由三个部分组成:钙感受器、钙信号转导分子和效应器。

钙感受器是细胞膜上的蛋白质,能够与外界环境中的钙离子进行特异性结合,并产生相应的信号响应。

钙信号转导分子是细胞中的一类蛋白质,能够接受钙感受器产生的钙信号,并将其传递到下一级效应器。

效应器通常是基因表达调控蛋白或酶类蛋白,能够响应钙信号的变化,并通过相关的代谢途径或信号通路产生相应的生物学效应。

在植物中,钙感受器主要包括质膜电位响应型和配体响应型两类。

质膜电位响应型的钙感受器通常与细胞膜上的K+、Ca2+或Cl-离子通道相关,能够通过调节钙离子的浓度和流动方向来产生信号响应。

配体响应型的钙感受器主要与植物生长素、环境信号和逆境响应等相关,能够通过配体的结合而产生信号响应。

在钙信号转导分子和效应器方面,植物中的钙调素、钙离子依赖性蛋白激酶和细胞质中的钙离子结合蛋白等都起到了重要的作用。

除了这些基本特点外,植物的钙信号传递网络还具有其他一些独特的生物学特性。

例如,植物的细胞壁和质膜结构会对钙离子的浓度和流动方向产生很大的影响,从而影响钙信号的传递效率和精度。

此外,不同类型的植物组织和器官中,钙信号传递的特点也不同,需要针对不同组织和器官进行深入研究。

植物钙信号传递应用研究进展基于对植物钙信号传递机制的深入了解,近年来开展了许多有意义的应用研究,为植物遗传改良和农业生产提供了新的思路和方法。

下面将重点介绍一些钙信号传递应用研究的进展。

1. 植物逆境耐受性提高环境条件变化是影响植物生长和发育的主要因素之一,因此提高植物的逆境耐受性成为了一项重要的研究方向。

生物小综述钙离子第二信使-

生物小综述钙离子第二信使-

Ca2+在信号传导中对植物生理的影响一、摘要本文简要分析Ca2+在信号传导中作为第二信使配合钙调蛋白和钙依赖型蛋白激酶的机制原理,并概述其对植物生长生理的影响。

二、关键词:Ca2+钙调素 CDPK 第二信使三、引言我们知道,矿质元素对植物的生长发育和生理过程起着重要作用,Ca2+就是其中最为重要的离子之一。

Ca2+既是植物细胞壁的重要组成部分,大部分Ca2+在细胞壁中与果胶酸形成果胶酸钙,起支持和加固作用;Ca2+对维持膜结构的稳定性也有一定作用;同时,Ca2+作为第二信使配合钙调蛋白和CDPK在植物生理的信号传导过程中具有重要作用。

四、正文1、钙稳态在静息态的胞质中Ca2+浓度≤0.1μmol/L,而通常在细胞壁、ER、液泡、线粒体中的浓度会高2~5个数量级。

细胞壁是植物细胞的最大钙库[1]。

细胞中各处的钙离子浓度梯度在未受刺激时是保持相对稳定的,当受到刺激时,由于胞外Ca2+浓度高与胞内,此平衡就会被打破。

信号分子与受体结合通常引起跨膜的离子流动,从而引起膜电位的改变。

在质膜上,存在Ca2+通道,类似于水通道,引起Ca2+的内流;同时存在Ca2+泵,是Ca2+外流的通道。

在胞内钙库如液泡、ER等结构的膜上也存在相应的结构,其上的Ca2+通道是从钙库流向胞质的通道,Ca2+泵、Ca2+/nH+反向运输体是Ca2+从胞质流向钙库的通道。

因此细胞质中的游离Ca2+的浓度主要受质膜和内膜系统上的Ca2+通道和Ca2+泵的调节。

任何一种外界刺激或激素所引起的细胞反应通过Ca2+作为第二信使传递的直接证据是细胞质中是否有游离Ca2+的浓度变化。

2、Ca2+的作用方式有两种:第一种是游离Ca2+的浓度直接或间接影响植物的生理过程;第二种是胞质里的Ca2+与钙结合蛋白,如钙调蛋白CaM(也叫钙调素)、钙依赖型蛋白激酶(CDPK)结合而起作用。

3、钙调素3.1 钙调素( Calmodulin, CaM)是一种分布最广,功能最重要的钙依赖性调节蛋白。

高级植物生理学,信号转导

高级植物生理学,信号转导

高级植物生理学,植物细胞信号转导植物在整个生长过程中,受到来自外部内部的各种生物的或非生物的刺激。

如温度、光、重力、植物激素、病原生物,这些刺激都能影响植物的生长和发育过程。

在长期的进化过程中,植物体本身形成了许多应答(response)这些刺激的机制,其中信号转导(signal transduction)就是应答这些刺激最为重要的环节。

细胞通过感受这些物理的、化学的或生物的信息,并作出适当的生理反应以维持其生命活动的进行。

例如植物的向光性能促使植物向光线充足的方向生长,在这个过程中,首先植物体要能感受到光线,然后把相关的信息传递到有关的靶细胞,并诱发胞内信号转化传递,调节基因的表达或改变酶的活性,从而使细胞作出反应。

这种信息的胞间传递和胞内转导过程称为植物体内的信号传导。

植物体的信息系统可概括为两大类:一类是遗传基因信息系统。

在生物进化过程中形成的,以核酸蛋白质为组成的生物大分子信息系统。

高等植物细胞全能性的发现,证实了细胞中含有发育成为完整植株的全套的遗传信息。

植物生长发育就是植物基因(遗传信息)受内外环境的影响,在时间和空间顺序表达的结果。

另一类是环境刺激—细胞反应偶联信息系统。

植物感受到环境信号,并将其转变为植物体内的信号,从而调节植物的生长发育过程。

生长发育是基因在一定时间、空间上顺序表达的过程,而基因表达除受遗传信息支配外,还受环境的调控。

植物在整个生长发育过程中,受到各种内外因素的影响,植物体要正确地辨别接受各种信息并作出相应的反应,以确保正常生长和发育。

植物细胞受到的刺激或信号:环境的外源信号: 如光照、温度、水分、重力、风、雨、气体、触摸、机械伤害、病原因子等;细胞的内源信号: 如激素、化学调节因子、电信号(生物电位)等。

这些信号作用于植物体,先到达细胞间隙—胞间信号,再到达细胞表面与细胞受体结合,通过跨膜信号转换,转变为胞内信号,将信息转导到胞内的特定效应部位起作用,而产生细胞反应,调节植物体的生长发育。

植物诱导抗性的机理及应用

植物诱导抗性的机理及应用

第1卷第1期植物医学2022年2月V o l.1N o.1P l a n tH e a l t h a n dM e d i c i n e F e b.2022D O I:10.13718/j.c n k i.z w y x.2022.01.003植物诱导抗性的机理及应用万宣伍1,田卉1,张伟1,杨娟2,董义霞3,刘昌黎4,杜学英5,谭康5,唐自然51.四川省农业农村厅植物保护站,成都610041;2.四川省岳池县植保植检站,四川广安638300;3.四川省凉山州植物检疫站,四川西昌615000;4.四川省开江县农业农村局,四川达州636250;5.四川省蓬溪县农业农村局植物保护站,四川遂宁629100摘要:植物可由外源蛋白质㊁糖类㊁有机酸等诱导产生抗性,通过受体识别㊁信号传导产生防御反应.利用植物诱导免疫的机理,开发出蛋白类㊁生防菌类㊁寡糖类等多种植物免疫诱抗剂,在提高农作物抗病性㊁抗逆能力㊁增加产量和提高品质等方面表现出巨大的应用潜力.本文概述了植物免疫反应的原理和类型㊁免疫反应的3个过程以及免疫激发子和诱抗剂的种类,系统性诠释植物免疫机制,进一步分析了目前植物免疫诱抗剂使用存在的问题,并对植物免疫诱抗剂开发的未来发展趋势等方面进行了展望.研究结果为植物免疫诱抗剂的基础研究㊁产业化开发和田间应用等方面提供了科学依据.关键词:诱导抗性;激发子;植物免疫诱抗剂;抗病性中图分类号:S432.2文献标志码:A文章编号:20971354(2022)01001808M e c h a n i s ma n dA p p l i c a t i o no f I n d u c e dR e s i s t a n c e i nP l a n tWA N X u a n w u1, T I A N H u i1,Z HA N G W e i1, Y A N GJ u a n2,D O N G Y i x i a3, L I U C h a n g l i4, D U X u e y i n g5,T A N K a n g5, T A N GZ i r a n51.T h eP l a n t P r o t e c t i o nS t a t i o no f S i c h u a nA g r i c u l t u r ea n dR u r a l D e p a r t m e n t,C h e n g d u610041,C h i n a;2.T h eP l a n t P r o t e c t i o na n dQ u a r a n t i n eS t a t i o no f Y u e c h i C o u n t y,G u a n g a nS i c h u a n638300,C h i n a;3.T h eP l a n tQ u a r a n t i n eS t a t i o no f L i a n g s h a n,X i c h a n g S i c h u a n615000,C h i n a;4.T h eA g r i c u l t u r a l a n dR u r a l B u r e a uo f K a i j i a n g C o u n t y,D a z h o uS i c h u a n636250,C h i n a;5.T h eP l a n t P r o t e c t i o nS t a t i o no f A g r i c u l t u r a l a n dR u r a l B u r e a uo f P e n g x i C o u n t y,S u i n i n g S i c h u a n629100,C h i n a收稿日期:20211226作者简介:万宣伍,正高级农艺师,主要从事病虫害绿色防控技术推广.通信作者:张伟,正高级农艺师.Copyright©博看网. All Rights Reserved.A b s t r a c t :R e s i s t a n c e c o u l db e i n d u c e db y e x o g e n o u s p r o t e i n s ,c a r b o h y d r a t e s a n do r ga n i c a c i d s ,i n c l u d i n g t h r e e p r o c e s s e so f r e c e p t o rr e c o g n i t i o n ,s i g n a l t r a n s d u c t i o na n dd e f e n s i v er e s p o n s e .B a s e d o n t h em e c h a n i s mo f p l a n t -i n d u c e d i mm u n i t y ,m a n y k i n d s o f pl a n t i mm u n e i n d u c e r s s u c h a s p r o t e i n s ,b i o c o n t r o l b a c t e r i a a n d o l i g o s a c c h a r i d e sw e r e d e v e l o p e d ,w h i c h s h o w e d g r e a t a p pl i -c a t i o n p o t e n t i a l i n i m p r o v i n g d i s e a s e r e s i s t a n c e ,s t r e s s r e s i s t a n c e ,y i e l d a n d q u a l i t y o f c r o p s .I n t h i s p a p e r ,t h e p r i n c i p l e s a n d t y p e s o f p l a n t i mm u n i t y r e s p o n s e ,t h e t h r e e p r o c e s s e s o f pl a n t i m -m u n i t y r e s p o n s e a n d t h e t y p e so f i mm u n i t y e l i c i t o r s a n d i mm u n i t y in d u c e r sw e r e s u mm a r i z e d .T h e p l a n t i mm u n i t y m e c h a n i s m w a ss y s t e m a t i c a l l y e x p l a i n e d ,a n dt h e p r o b l e m sa n dd e v e l o p-m e n t t r e n do f p l a n t i mm u n i t y i n d u c e r sw e r e f u r t h e r a n a l y z e d .T h i s p a p e r p r o v i d e das c i e n t i f i c b a s i s f o r t h eb a s i c r e s e a r c h ,i n d u s t r i a l d e v e l o p m e n t a n d f i e l da p p l i c a t i o no f p l a n t i mm u n i t y i n -d u c e r s .K e y w o r d s :i n d u c e d r e s i s t a n c e ;e l i c i t o r ;p l a n t i mm u n i t y i n d u c e r ;d i s e a s e r e s i s t a n c e 随着植物免疫机制研究的深入,科学家发现了大量能够诱导植物产生抗病性㊁抗逆性的激发子,并根据植物诱导抗性机理,开发出多种应用于生产的植物免疫诱抗剂.植物免疫诱抗剂的问世改变了长期以来病虫害防治以化学合成农药为主的状况,在解决病虫害3R (R e s i s r a n c e,R e s u r g e n c e ,R e s i d u e )问题,促进农业高质量绿色发展方面表现出巨大潜力.本文综述了近年来国内外在植物免疫机制及植物免疫诱抗剂开发方面的进展,分析了目前植物免疫诱抗剂使用存在的问题并对未来发展趋势进行了展望.1 植物免疫反应的基本原理1.1 植物免疫类型大量研究表明,植物具有与动物类似的先天免疫系统[1].与动物的适应性免疫系统不同,植物需要通过细胞识别才能响应有害生物为害,称为诱导抗性(I n d u c e dR e s i s t a n c e ,I R )[2].在长期的协同进化过程中,植物形成了具有识别真菌㊁细菌㊁卵菌㊁病毒等病原微生物和线虫㊁昆虫等有害生物,激活免疫系统保护自身的能力.植物通过细胞表面的模式识别受体(P a t t e r n -r e c o g n i t i o nR e c e pt o r s ,P R R s )识别入侵病原相关分子激活的免疫反应称为模式触发的免疫(P a t t e r n -t r i g g e r e d I mm u n i t y ,P T I )[3];通过细胞内的受体蛋白识别病原释放的效应蛋白而激活的免疫反应称为效应蛋白触发的免疫(E f f e c t o r -t r i g g e r e d I mm u n i t y,E T I )[3].基于信号传导途径的差异,植物的诱导抗性可分为系统获得抗性和诱导系统抗性.其中,系统获得抗性指植物由坏死性病原物(N e c r o t i z i n g P a t h o g e n )侵染或诱导因子处理后导致植株未侵染(处理)部位产生的对后续多种病原物的增强抗性,而诱导系统抗性是指由部分非致病根围细菌定植植物根部后诱发产生的整株系统抗性[4-5].1.2 诱导植物产生免疫反应的过程诱导植物产生免疫反应大致可分为受体识别㊁信号传导和防御反应3个过程.由大量存在于植物细胞膜上的特异性受体蛋白(又称为模式识别受体)识别入侵的有害生物相关分子模式是激发植物免疫反应的首要条件[6].植物上的细菌模式识别受体研究相对深入.F L S 2是植物第一个被发现的模式识别受体,可结合细菌鞭毛蛋白N 端保守多肽[7].研究发现,细菌分泌的蛋白多肽A x 21㊁细胞壁成分肽聚糖㊁脂多糖也可触发植物免疫响应[8].N -乙酰氨基葡萄糖聚合而成的几丁质是真菌细胞壁的主要成分,但在植物中尚未发现.对拟蓝芥的研究发现,C E R K 1和L Y K 5共同参与真菌细胞壁的识别[9];在水稻上,C E P i B 蛋白负责识别真菌细胞壁几丁质[10].除几丁质外,木聚糖酶㊁内聚半乳糖醛酸酶也是植物识别真菌的重要分子模91第1期 万宣伍,等:植物诱导抗性的机理及应用Copyright ©博看网. All Rights Reserved.式[11].但是,植物对卵菌的识别机制研究相对较少,葡聚糖-壳聚糖等是卵菌细胞壁的主要成分,这些物质被认为是诱导植物免疫反应的分子模式,但相应的模式识别受体尚未确定[12].植物中还存在一些模式识别受体来识别昆虫取食或产卵时分泌的损伤分子相关模式和植食性昆虫相关分子模式,从而激发对害虫的抗性[13].植物细胞膜上的模式识别受体识别到入侵有害生物的相关分子模式后,通过有丝分裂原激活的蛋白激酶(MA P K )途径㊁G T P 结合蛋白途径㊁钙离子信号传导途径㊁水杨酸信号传导途径㊁茉莉酸信号传导途径和乙烯信号传导途径等将感知信号向下游传递,诱导抗性基因表达.其中,MA P K 途径是最重要的传导途径之一,是由促分裂原活化蛋白激酶(MA P K )㊁磷酸化MA P K 的促分裂原活化蛋白激酶激酶(MA P K K )和磷酸化MA P K K 的促分裂原活化蛋白激酶激酶激酶(MA P K K K )共同参与的复杂三级磷酸化反应,仅在拟蓝芥中就鉴定到不同组合的多条途径[14].G T P 结合蛋白途径通过G T P 结合蛋白与受体结合,激活离子通道㊁磷脂化磷酸酶等方式传递信号[15].钙依赖蛋白激酶(C D P K )是钙离子传导途径中最重要的传感器,通过触发钙离子内流,激发植物抗性[16].水杨酸信号传导途径㊁茉莉酸信号传导途径和乙烯信号传导途径都属于植物激素通路调控,应对不同的病原微生物,植物启动的激素通路也不同[17].植物的防御反应在表型上表现为胼胝质沉积㊁细胞壁增厚㊁气孔关闭㊁程序性细胞死亡等[18],在生理生化上表现为离子流变化㊁氧暴发㊁活性氧积累㊁一氧化氮产生㊁植物激素的变化及植保素等次生代谢物质的产生等[19-21],在基因上表现为防御基因的转录表达[22](图1).钙离子㊁氢离子内流和钾离子㊁氯离子外流以及氧暴发㊁活性氧积累㊁一氧化氮产生属于植物防御早期反应,可快速激活相关蛋白酶活性,促进细胞壁增厚,诱导抗性基因表达等;植物激素变化㊁次生物质产生㊁胼胝质沉积㊁细胞壁增厚㊁气孔关闭及程序性细胞死亡属于植物防御后期反应,形成抵御病原物侵染的物理性屏障.图1 植物在基因表达㊁生理生化和表型上多层次发生的防御反应过程2 植物免疫激发子种类及其作用机理诱导植物产生免疫反应的激发子是一类能激活植物免疫反应的化合物的总称.根据来源,植物免疫激发子可分为生物源激发子和非生物源激发子[23].生物源激发子主要为微生物㊁昆虫02植物医学 h t t p ://x b b jb .s w u .e d u .c n 第1卷Copyright ©博看网. All Rights Reserved.活体或其代谢产物,非生物源激发子主要为无机化合物.按照化学成分划分,生物源植物免疫激发子可分为生防菌㊁蛋白类激发子㊁糖类激发子㊁有机酸类激发子等[3,23-24];非生物源激发子主要包括磷酸盐㊁粉状二氧化硅和臭氧等[3](表1).目前,生物源激发子的鉴定及其作用机理研究是植物免疫诱抗研究的热点.2.1 生防菌生防菌的种类繁多,生产上广泛应用的有真菌㊁细菌㊁放线菌等(表1).研究表明,生防菌的代谢产物通过促使抗菌酶类活性提高来诱导植物产生免疫反应[25];贝莱斯芽孢杆菌可显著提高大豆过氧化物酶(P O D )㊁超氧化物歧化酶(S O D )㊁过氧化氢酶(C A T )活性,增强植株抗病能力[26];巨大芽孢杆菌㊁纺锤形赖氨酸芽孢杆菌和蜡样芽孢杆菌可诱导水稻P R 10,P O D 等抗稻瘟病相关基因表达量增加,P O D ,C A T ,多氧化酚酶(P P O )活性增强,并出现活性氧积累现象[27-28];放线菌可使番茄根系P P O 和辣椒叶片苯丙氨酸解氨酶(P A L )活性增强[29-30].表1 植物免疫激发子种类激发子类型来源种类非生物源激发子磷酸盐㊁二氧化硅㊁臭氧生物源激发子生防菌真菌:木霉菌㊁毛壳菌㊁酵母菌㊁拟青霉菌㊁厚壁孢子轮枝菌㊁菌根真菌;细菌:芽孢杆菌㊁假单胞杆菌㊁放射性土壤农杆菌㊁巴氏杆菌;放线菌:链霉菌及其变种等[25]蛋白类激发子H a r p i n 蛋白㊁N e p1-l i k e 蛋白家族㊁E l i c i t i n ㊁激活蛋白㊁无毒蛋白㊁酶类[24]糖类激发子海带多糖㊁海藻糖㊁寡聚糖㊁壳寡糖㊁氨基寡糖㊁几丁质㊁胞外多糖㊁木葡聚糖㊁寡聚脱乙酰壳多糖[3]有机酸类激发子茉莉酸㊁茉莉酸甲酯㊁水杨酸㊁水杨酸甲酯2.2 蛋白类激发子世界上第一个蛋白类激发子是1968年从果生核盘菌分离得到的.这类激发子是最早发现的,也是目前已知种类最多的,大多数都是从细菌㊁真菌㊁卵菌和病毒等病原微生物中分离纯化得到的[31].从麦长管蚜㊁麦二叉蚜㊁沙漠蝗㊁美洲棉铃虫中也分离得到葡萄糖氧化酶㊁脂酶㊁磷脂酶等一些蛋白类激发子[32];还有少量激发子是寄主植物与病原微生物互作产生,如从番茄中鉴定到的系统素和从大豆中鉴定到的亚麻酶[33].不同类型的蛋白激发子作用机理不同.例如,H a r p i n 蛋白㊁N e p1-l i k e 蛋白家族调控植物激素通路,诱导植物细胞程序性死亡;E l i c i t i n 通过调节钙离子通道,诱导活性氧暴发㊁植保素积累和防御相关基因表达;激活蛋白在稻瘟病菌㊁纹枯病菌等多种病菌中存在,可提高P P O ,P A L 和P O D 等多种解毒酶的活性;无毒蛋白由病原微生物的无毒基因编码,可诱导植物抗病基因表达[24].2.3 糖类激发子糖类激发子多来源于病原微生物和植物的细胞壁或动物的外壳,如氨基寡糖来自海洋生物的外壳,壳寡糖在甲壳动物外壳和真菌细胞壁中都存在,寡聚半乳糖醛酸来自烟草细胞壁.糖类激发子诱导植物产生抗性的主要机制是活性氧积累㊁解毒酶活性增强㊁植物激素信号通路打开和防御基因表达上调,如使用氨基寡糖后处理,响应激发子的R o b h 基因㊁转录P O D和C A T 相关基因以及水杨酸调控通路的P R 1和N P R 1基因表达量均显著上调[34],部分糖类12第1期 万宣伍,等:植物诱导抗性的机理及应用Copyright ©博看网. All Rights Reserved.22植物医学h t t p://x b b j b.s w u.e d u.c n第1卷激发子还会诱发植物表型变化.在烟草和黄瓜上使用氨基寡糖,除产生生理生化上的变化外,还会诱导细胞壁增厚㊁产生乳突来增强抗病性;海藻糖处理小麦㊁葡萄㊁水稻后,可激活水杨酸通路,促使相关病程蛋白表达[35-36].2.4有机酸类激发子茉莉酸㊁水杨酸等有机酸是植物在遇到外界刺激时产生的内源信号传导物质.早期研究发现,使用外源水杨酸可诱导烟草对花叶病毒产生抗性,茉莉酸可增强番茄对晚疫病的抗性[37-38].另外,使用外源茉莉酸和水杨酸还可提高植物对害虫的抗性或吸引害虫天敌.其中茉莉酸诱导对咀嚼式和刺吸式口器害虫的抗性,水杨酸诱导对刺吸式口器害虫的抗性[32].因此,茉莉酸㊁水杨酸及其酯类化合物(茉莉酸甲酯㊁水杨酸甲酯)也是一类重要的植物诱导抗性激发子.茉莉酸及茉莉酸甲酯诱导使植物产生系统获得抗性,而水杨酸和水杨酸甲酯诱导植物产生诱导系统抗性[4-5].喷施外源茉莉酸和水杨酸后,胡椒叶片多酚含量降低,P P O和P A L活性先增强后降低[39].茉莉酸和水杨酸甲酯处理灯盏花后,总黄酮含量增加,叶片对日灼等环境胁迫的抵抗力增强, E b M Y B06黄酮合成相关基因表达上调,P A L,4C L等13个基因协同上调,A N R,D F R等6个基因协同下调[40].3植物免疫诱抗剂种类及应用3.1植物免疫诱抗剂的种类植物诱导抗性具有广谱性㊁持久性㊁传导性和安全性等特点.科学家利用这种特性开发出的不直接杀菌或抗病毒,但能激活植物免疫系统产生抗病㊁抗逆的新型多功能生物农药就是植物免疫诱抗剂.目前,在我国获得登记并在生产上应用较广泛的主要有蛋白类㊁糖类和生防菌类3类植物免疫诱抗剂.其中,糖类植物免疫诱抗剂在我国产业化基础最好㊁登记种类最多㊁应用最为广泛.据中国农药信息网,登记的植物免疫诱抗剂有效成分几乎全为糖类,包括氨基寡糖素㊁香菇多糖㊁几丁聚糖㊁低聚糖素等有效成分;蛋白类植物免疫诱抗剂仅登记4种,登记类别为杀菌剂和植物生长调节剂,包括超敏蛋白㊁链蛋白和β-羽扇豆球蛋白多肽3种有效成分;生防菌类植物免疫诱抗剂登记类别均为杀菌剂,主要有枯草芽孢杆菌㊁蜡质芽孢杆菌㊁木霉菌㊁哈茨木霉菌和寡雄腐霉等,其中枯草芽孢杆菌登记种类最多,达到93个.3.2植物免疫诱抗剂的应用从大量实验室生物测定和大田应用试验发现,施用植物免疫诱抗剂一方面可以提高植物抗病的能力,另一方面可增强植物对干旱㊁冻害㊁洪涝等环境胁迫的抵抗能力,还有增加作物产量㊁提高农产品品质的作用.3.2.1抗病作用2000年左右,氨基寡糖素在我国开始应用于农作物病害防治.试验结果表明,氨基寡糖素对番茄病毒病㊁番茄晚疫病㊁烟草病毒病㊁棉花苗期枯萎病㊁西瓜枯萎病㊁马铃薯晚疫病㊁香蕉褐缘灰斑病和桃细菌性穿孔病等都有较好的预防控制效果[41-48].链蛋白是近年来从极细链格孢分离得到的一种新型蛋白类植物免疫诱抗剂,对烟草㊁辣椒㊁菜豆㊁小麦㊁马铃薯和水稻病毒病和真菌性病害的预防控制有较好效果[49-54].田间试验发现,单独施用6%寡糖㊃链蛋白对水稻恶苗病的防效超过70%[55].木霉菌㊁哈茨木霉㊁枯草芽孢杆菌等生防菌在小麦㊁烟草㊁玉米㊁水稻㊁辣椒㊁黄瓜等农作物的病害防治上应用也较为广泛[56-61].对比试验发现,单独使用植物免疫诱抗剂对农作物病害的防治效果小于单独使用化学农药,但两者联合使用,防效高于单独使用化学农药,同时还减少了用量[62].3.2.2抗逆作用研究发现,施用植物免疫诱抗剂还具有提高植物对干旱㊁低温㊁高盐以及重金属等不利环Copyright©博看网. All Rights Reserved.境条件的耐受力.在低温条件下,施用氨基寡糖素进行叶片喷施处理后的安吉白茶,P O D ,S O D 活性增强,叶绿素含量增高,抗寒性增强.转录组学研究发现,有1605个基因表达上调,主要与光合作用和碳代谢相关[62].在干旱条件下,施用3μg/m L 极细链格孢激活蛋白,大豆幼苗叶片中水分含量增加,P O D ,S O D ,C A T 活性增强,丙二醛含量降低,幼苗抗旱能力增强[63].在盐胁迫逆境下,小麦幼苗鲜质量随着盐浓度的增高而降低,施用0.5g /L 的氨基寡糖溶液后,处理的鲜质量显著高于对照,P O D ,C A T 活性增强,一定程度上缓解了高盐对小麦的胁迫[64].3.2.3 促生作用氨基寡糖㊁香菇多糖㊁链蛋白㊁几丁聚糖㊁木霉菌㊁枯草芽孢杆菌等多种植物免疫诱抗剂在生产应用中都被发现有促进细胞分裂㊁根系生长㊁芽分化,增加分蘖㊁穗粒数等促生作用.喷施5%氨基寡糖素后,茶叶芽梢数量增加1倍以上,鲜质量提高13.2%[65].水稻施用6%寡糖㊃链蛋白后,分蘖数㊁有效穗数和结实率均高于对照,产量增加13%左右[66].植物免疫诱抗剂还具有提高农产品质量的作用.大枣施用几丁聚糖后,还原糖㊁维生素C ㊁钙㊁镁㊁锌等营养元素的含量显著升高[67];辣椒施用木霉菌后,可溶性糖㊁维生素C 含量比对照明显提高,而硝酸盐含量明显降低[68].4 展望植物免疫诱抗剂通过提高植物自身抗性来抵御病虫害和不良环境条件的侵害,对解决化学农药过量使用造成的有害生物抗性上升㊁农业生态环境污染和农产品质量安全问题有重要意义.但植物免疫诱抗剂的应用还存在一些问题.由于不同的植物免疫诱抗剂激活的植物诱导抗性信号通路不同,在抗病性上的表现也不尽相同.目前登记的植物免疫诱抗剂绝大部分都是单一有效成分,复配是否可增强植物免疫系统,从而提高抗病能力,还未深入研究,但已有田间试验表明,施用6%寡糖㊃链蛋白对烟草病毒病的防治效果优于单独使用氨基寡糖素[69].尽管已从植食性昆虫上鉴定到多种植物诱导抗性激发子,但由于昆虫激发子的作用机制尚未完全明确,还没有开发出针对防治害虫的植物免疫诱抗剂[32].目前,植物免疫诱抗剂在生产上主要用于农作物病害防治.植物免疫诱抗剂的作用对象是植物免疫系统,而不针对病原微生物,对农作物病害的防控效果通常低于使用化学合成杀菌剂,加之价格和速效性与杀菌剂相比都没有优势,农民大多不愿意主动使用植物免疫诱抗剂.尽管目前植物免疫诱抗剂的开发㊁应用还存在一些问题,但随着植物诱导抗性研究机制的深入开展㊁植物免疫激发子鉴定新方法的应用㊁基因工程用于植物免疫诱抗剂开发㊁产业化成本不断下降和田间应用技术的不断完善,可以预见,植物免疫诱抗剂在保障农业生产安全㊁农产品质量安全和农业生态环境安全方面将发挥更大作用.参考文献:[1]E U L G E M T.R e g u l a t i o no f t h eA r a b i d o p s i sD e f e n s eT r a n s c r i p t o m e [J ].T r e n d s i nP l a n t S c i e n c e ,2005,10(2):71-78.[2] T AMM L ,T HÜR I GB ,F L I E S S B A C H A ,e t a l .E l i c i t o r s a n dS o i lM a n a g e m e n t t o I n d u c eR e s i s t a n c eA ga i n s t F u n g a l P l a n tD i s e a s e s [J ].N J A S -W a g e n i n g e n J o u r n a l o fL i f eS c i e n c e s ,2011,58(3-4):131-137.[3] 刘艳潇,祝一鸣,周而勋.植物免疫诱抗剂的作用机理和应用研究进展[J ].分子植物育种,2020,18(3):1020-1026.[4] K A K A R K U ,N AWA ZZ ,C U I Z ,e t a l .R h i z o s p h e r e -A s s o c i a t e d A l c a l i ge n e s a n d B a c i l l u s S t r a i n s t h a t I n d u c e R e s i s t a n c eA g a i n s tB l a s t a n dS h e a t hB l i g h tD i s e a s e s ,E n h a n c eP l a n tG r o w t ha n dI m p r o v e M i n e r a lC o n t e n t i n R i c e [J ].J o u r n a l o fA p p l i e d M i c r o b i o l o g y,2017,124(3):779-796.[5] WA L T E R SDR ,F O U N T A I N EJM.P r a c t i c a l A p p l i c a t i o n o f I n d u c e dR e s i s t a n c e t oP l a n t D i s e a s e s :a nA p pr a i s -a l o fE f f e c t i v e n e s su n d e rF i e l dC o n d i t i o n s [J ].T h e J o u r n a l o fA g r i c u l t u r a l S c i e n c e ,2009,147(5):523-535.[6] Z I P F E LC .P l a n tP a t t e r n -R e c o g n i t i o nR e c e p t o r s [J ].T r e n d s i n I mm u n o l o g y,2014,35(7):345-351.[7] G ÓM E Z -G ÓM E ZL ,B O L L E RT.F L S 2:a nL R RR e c e p t o r -L i k eK i n a s e I n v o l v e d i n t h eP e r c e pt i o n o f t h eB a c t e -32第1期 万宣伍,等:植物诱导抗性的机理及应用Copyright ©博看网. All Rights Reserved.42植物医学h t t p://x b b j b.s w u.e d u.c n第1卷r i a l E l i c i t o rF l a g e l l i n i n A r a b i d o p s i s[J].M o l e c u l a rC e l l,2000,5(6):1003-1011.[8] WA N GSZ,S U NZ,WA N G H Q,e t a l.R i c eO s F L S2-M e d i a t e dP e r c e p t i o n o f B a c t e r i a l F l a g e l l i n s i sE v a d e db yX a n t h o m o n a sO r y z a eP V SO r y z a e a n dO r y z i c o l a[J].M o l e c u l a rP l a n t,2015,8(7):1024-1037.[9] C A O Y R,L I A N G Y,T A N A K A K,e t a l.T h eK i n a s eL Y K5i s a M a j o rC h i t i nR e c e p t o r i n A r a b i d o p s i s a n dF o r m s aC h i t i n-I n d u c e dC o m p l e xw i t hR e l a t e dK i n a s eC E R K1[J].e L i f e,2014,3:e03766.[10]S H I M I Z UT,N A K A N OT,T A K AM I Z AWAD,e t a l.T w oL y s M R e c e p t o rM o l e c u l e s,C E B i P a n dO s C E R K1,C o o p e r a t i v e l y R e g u l a t eC h i t i nE l i c i t o r S i g n a l i n g i nR i c e[J].T h eP l a n t J o u r n a l:f o rC e l l a n d M o l e c u l a rB i o l o g y,2010,64(2):204-214.[11]吴玉俊,吴旺泽.植物模式识别受体与先天免疫[J].植物生理学报,2021,57(2):301-312.[12]R A A YMA K E R ST M,V A N D E N A C K E R V E K E N G.E x t r a c e l l u l a rR e c o g n i t i o no fO o m y c e t e sd u r i n g B i o t r o-p h i c I n f e c t i o no fP l a n t s[J].F r o n t i e r s i nP l a n t S c i e n c e,2016,7:906.[13]徐丽萍,李恒,娄永根.植物-植食性昆虫互作关系中早期信号事件研究进展[J].植物保护学报,2018,45(5):928-936.[14]WA N G R,D E N G D N,S HA O N Y,e ta l.E v o d i a m i n e A c t i v a t e sC e l l u l a rA p o p t o s i st h r o u g hS u p p r e s s i n gP I3K/A K Ta n dA c t i v a t i n g MA P Ki nG l i o m a[J].O n c o T a r g e t s a n dT h e r a p y,2018,11:1183-1192.[15]P A R KJ,C HO IHJ,L E ES,e t a l.R a c-R e l a t e dG T P-B i n d i n g P r o t e i n i nE l i c i t o r-I n d u c e dR e a c t i v eO x y g e nG e n-e r a t i o nb y S u s p e n s i o n-C u l t u r e dS o y b e a nC e l l s[J].P l a n tP h y s i o l o g y,2000,124(2):725-732.[16]L U O H o n g l i n,R E I D Y M A.A c t i v a t i o no fB i g M i t o g e n-A c t i v a t e dP r o t e i nK i n a s e-1R e g u l a t e sS m o o t h M u s c l eC e l lR e p l i c a t i o n[J].A r t e r i o s c l e r o s i s,T h r o m b o s i s,a n dV a s c u l a rB i o l o g y,2002,22(3):394-399.[17]T AMA O K IM,F R E E MA NJL,MA R Q UÈSL,e t a l.N e wI n s i g h t s i n t o t h eR o l e so fE t h y l e n ea n dJ a s m o n i cA c i d i n t h eA c q u i s i t i o n o f S e l e n i u m R e s i s t a n c e i nP l a n t s[J].P l a n t S i g n a l i n g&B e h a v i o r,2008,3(10):865-867.[18]张肖晗,赵芊,谢晨星,等.参与植物天然免疫的L R R型蛋白[J].基因组学与应用生物学,2016,35(9):2513-2518.[19]V A NB R E U S E G E M F,B A I L E Y-S E R R E SJ,M I T T L E R R.U n r a v e l i n g t h eT a p e s t r y o fN e t w o r k sI n v o l v i n gR e a c t i v eO x y g e nS p e c i e s i nP l a n t s[J].P l a n tP h y s i o l o g y,2008,147(3):978-984.[20]G I L LSS,T U T E J A N.R e a c t i v eO x y g e nS p e c i e s a n dA n t i o x i d a n tM a c h i n e r y i nA b i o t i c S t r e s sT o l e r a n c e i nC r o pP l a n t s[J].P l a n tP h y s i o l o g y a n dB i o c h e m i s t r y,2010,48(12):909-930.[21]S AM IF,F A I Z A N M,F A R A ZA,e t a l.N i t r i cO x i d e-M e d i a t e d I n t e g r a t i v eA l t e r a t i o n s i nP l a n tM e t a b o l i s mt oC o n f e rA b i o t i c S t r e s sT o l e r a n c e,N OC r o s s t a l kw i t hP h y t o h o r m o n e s a n dN O-M e d i a t e dP o s tT r a n s l a t i o n a lM o d-i f i c a t i o n s i n M o d u l a t i n g D i v e r s eP l a n t S t r e s s[J].N i t r i cO x i d e,2018,73:22-38.[22]MA U R A D,HA Z A N R,K I T A O T,e t a l.E v i d e n c e f o rD i r e c tC o n t r o l o fV i r u l e n c e a n dD e f e n s eG e n eC i r c u i t sb y t h e P s e u d o m o n a s a e r u g i n o s a Q u o r u mS e n s i n g R e g u l a t o r,MV F R[J].Sc i e n t i f i cR e p o r t s,2016,6:34-43.[23]邱德文.植物免疫诱抗剂的研究进展与应用前景[J].中国农业科技导报,2014,16(1):39-45.[24]汪和贵,孙晓棠,郑兴汶,等.生物源蛋白激发子的研究进展[J].广西植物,2016,36(4):413-418.[25]曹健.生防菌及生物诱抗分子在植物免疫激活及枯萎病防治方面的效应及机理研究[D].济南:齐鲁工业大学,2019.[26]陈爽,王继华,张必弦,等.贝莱斯芽孢杆菌对大豆根腐病盆栽防效及防御酶活性检测[J].分子植物育种.(2021-04-01)[2022-03-14].h t t p s:ʊk n s.c n k i.n e t/k c m s/d e t a i l/46.1068.S.20210401.1337.010.h t m l. [27]周荣金,秦健,杨茂英,等.巨大芽孢杆菌B196菌株分泌的I t u r i nA2对水稻纹枯病的防治作用[J].广东农业科学,2014,41(4):96-99.[28]陈刘军,俞仪阳,王超,等.蜡质芽孢杆菌A R156防治水稻纹枯病机理初探[J].中国生物防治学报,2014,30(1):107-112.[29]陈秦,薛泉宏,申光辉,等.放线菌对棉花幼苗生长及抗旱能力的影响[J].西北农业学报,2010,19(8):84-89.[30]梁军锋,薛泉宏,牛小磊,等.7株放线菌在辣椒根部定殖及对辣椒叶片P A L与P P O活性的影响[J].西北植物学报,2005,25(10):2118-2123.[31]杨波,王源超.植物免疫诱抗剂的应用研究进展[J].中国植保导刊,2019,39(2):24-32.[32]董玉妹,张美倩,沈慧,等.植食性昆虫唾液效应子和激发子的研究进展[J].昆虫学报,2021,64(8):982-997.[33]P E A R C EG,Y AMA G U C H IY,B A R O N A G,e t a l.AS u b t i l i s i n-L i k eP r o t e i n f r o m S o y b e a nC o n t a i n s a nE m-b e d d e d,C r y p t i cS i g n a l t h a tAc t i v a t e sD e f e n s e-R e l a t e dG e n e s[J].P r o c e ed i n g so f t h eN a t i o n a lA c a de m y o fS c i-e n c e s of t h eU n i t e dS t a t e s o fA m e r i c a,2010,107(33):14921-14925.[34]陈霁晖.氨基寡糖素诱导猕猴桃抗溃疡病的效果及机理研究[D].陕西:西北农林科技大学,2021.[35]马青,孙辉,杜昱光,等.氨基寡糖素对黄瓜白粉病菌侵染的抑制作用[J].菌物学报,2004,23(3):423-428.[36]R E I G N A U L TPH,C O G A N A,MU C H E M B L E DJ,e t a l.T r e h a l o s e I n d u c e sR e s i s t a n c e t oP o w d e r y M i l d e w i nW h e a t[J].T h eN e wP h y t o l o g i s t,2001,149(3):519-529.[37]C OH E N Y.L o c a l a n dS y s t e m i cP r o t e c t i o nA g a i n s t P h y t o p h t h o r a i n f e s t a n s I n d u c e d i nP o t a t o a n dT o m a t oP l a n t sb y J a s m o n i cAc i da nd J a s m o n i cMe t h y l E s t e r[J].P h y t o p a t h o l o g y,1993,83(10):1054.Copyright©博看网. All Rights Reserved.[38]V ER N O O I JB ,F R I E D R I C H L ,MO R S EA ,e t a l .S a l i c y l i cA c i d i s n o t t h eT r a n s l o c a t e dS i g n a l R e s p o n s i b l e f o r I n d u c i n g S y s t e m i cA c q u i r e dR e s i s t a n c eb u t i sR e q u i r e d i nS i g n a lT r a n s d u c t i o n [J ].T h eP l a n tC e l l ,1994,6(7):959-965.[39]苏岳峰,郑其向,马晓,等.茉莉酸和水杨酸诱导胡椒抗瘟病中生理生化的变化研究[J ].西南农业学报,2021,34(8):1630-1636.[40]马关雪.氮元素㊁外源水杨酸㊁茉莉酸甲酯对R 2R 3M Y B 基因及灯盏花黄酮代谢途径相关基因表达的影响[D ].昆明:云南师范大学,2021.[41]孙光忠,彭超美,刘元明,等.氨基寡糖素对番茄晚疫病的防治效果研究[J ].农药科学与管理,2014,35(12):60-62.[42]宋林芳,双建林,李嘉伦,等.2%氨基寡糖素水剂防治番茄病毒病田间药效试验[J ].农业技术与装备,2020(9):145-146,148.[43]周林媛,林云红,熊茜,等.氨基寡糖素与镁锌混配对烟草TMV 的防控效果及生理分析[J ].湖南农业科学,2018(5):68-70,73.[44]陆健生.0.5%氨基寡糖素水剂防治棉花苗期枯萎病试验初报[J ].中国棉花,2009,36(2):24-25.[45]姚满昌,张明志,丁琴翠,等.氨基寡糖素对西瓜枯萎病的防治试验[J ].长江蔬菜,2009(8):71-72.[46]赵美键.氨基寡糖素对马铃薯黑痣病防治效果研究[D ].秦皇岛:河北科技师范学院,2019.[47]漆艳香,谢艺贤,丁兆建,等.不同浓度诱抗剂诱导香蕉抗褐缘灰斑病的田间效果[J ].中国南方果树,2019,48(5):61-64.[48]贺春娟,薛敏云.氨基寡糖素对桃细菌性穿孔病的防治效果及增产作用研究[J ].农药科学与管理,2014,35(10):60-62.[49]陈利民,吴倩倩,何天骏,等.寡糖㊃链蛋白浸种对菜豆根腐病的防控效果[J ].浙江农业科学,2021,62(10):2030-2033,2043.[50]徐传涛,王李芳,赵锦超,等.6%寡糖㊃链蛋白可湿性粉剂对烟草病毒病的防治效果[J ].安徽农业科学,2016,44(31):100-101.[51]王淑霞,王付彬,马井玉,等.寡糖㊃链蛋白等5种药剂对辣椒病毒病的防治效果[J ].浙江农业科学,2020,61(3):463-464.[52]徐润东,盛世英,杨秀芬,等.寡糖㊃链蛋白对小麦抗黄花叶病毒的免疫诱抗作用[J ].中国农业科学,2016,49(18):3561-3568.[53]李培玲.寡糖㊃链蛋白防控马铃薯晚疫病效果评价[D ].兰州:甘肃农业大学,2018.[54]刘见平,唐涛,赵明平.寡糖㊃链蛋白对南方水稻黑条矮缩病的防治效果及其对水稻的促长增产作用[J ].农药,2015,54(8):606-609.[55]王会福,王永才,余山红.6%寡糖㊃链蛋白W P 浸种处理对早稻恶苗病的预防效果及应用技术[J ].农业灾害研究,2020,10(4):15-16.[56]李玲,刘宝军,杨凯,等.木霉菌对小麦白粉病的田间防效研究[J ].山东农业科学,2021,53(7):96-100.[57]刘利佳,徐志强,何佳,等.哈茨木霉菌诱导烟草抗黑胫病代谢差异的研究[J ].中国农业科技导报,2021,23(8):91-105.[58]杨万荣,邢丹,蓬桂华,等.木霉菌生物防治辣椒疫病的研究进展[J ].现代农业科技,2015(19):127-129.[59]刘明鑫.木霉菌对黄瓜促生作用与立枯病防效的研究[D ].大庆:黑龙江八一农垦大学,2018.[60]朱华珺,周瑚,任佐华,等.枯草芽孢杆菌J N 005胞外抗菌物质及对水稻叶瘟防治效果[J ].中国水稻科学,2020,34(5):470-478.[61]余传金.哈茨木霉菌P A F -A H -l i k e 和h yd 1基因系统诱导玉米抗弯孢叶斑病机理研究[D ].上海:上海交通大学,2016.[62]张元珍,冯晓菲,吴磊,等.稻瘟酰胺与氨基寡糖素配施对水稻防病和增产的效果[J ].湖南农业科学,2020(9):52-54,57.[63]李莹莹.免疫诱抗剂对茶树抗寒性的影响及机制研究[D ].贵阳:贵州大学,2020.[64]陈德清,王亮,王娜,等.氨基寡糖素浸种对小麦生长发育的影响[J ].黑龙江农业科学,2018(8):11-14.[65]田卉,罗怀海,万宣伍,等.5%氨基寡糖素对茶树抗逆增产效果评估[J ].四川农业科技,2020(8):16-17,20.[66]康启中,刘观清.6%寡糖㊃链蛋白在水稻上应用效果初探[J ].安徽农学通报,2019,25(1):78-79.[67]杨莉,冯宏祖,师建银,等.几丁聚糖对枣黑斑病的防效及果实品质的影响[J ].塔里木大学学报,2018,30(3):9-14.[68]靳亚忠,熊亚男,孙雪,等.化肥减施与木霉菌有机肥配施对辣椒产量㊁品质及根际土壤酶活性的影响[J ].四川农业大学学报,2021,39(2):198-204.[69]廖建松,周路,张承琴.2种生物农药对烟草病毒病防治效果对比试验[J ].现代农业科技,2015(23):133,139.52第1期 万宣伍,等:植物诱导抗性的机理及应用Copyright ©博看网. All Rights Reserved.。

钙信号系统与植物激素信号的研究进展

钙信号系统与植物激素信号的研究进展

中国农学通报2010,26(15):221-226Chinese Agricultural Science Bulletin基金项目:海南省自然科学基金(No.808191),中国热带农业科学院博士启动基金(No.Pzsb0806,No.Rkyy0604),中央级公益性科研院所基本科研业务费专项资金(No.PZS004),海南省高校硕士研究生创新科研课题(Hxwsy2008-08)。

第一作者简介:易籽林,女,1983年出生,四川眉山人,硕士研究生,主要从事园林植物生理及分子生物学研究。

通信地址:571737海南省儋州市宝岛新村,中国热带农业科学院品种资源研究所,E-mail:yzl84@ 。

通讯作者:李志英,女,1971年出生,河南人,副研究员,博士,主要从事热带作物种质资源的保存、鉴定与创新利用。

通信地址:571737海南省儋州市宝岛新村,中国热带农业科学院品种资源研究所。

收稿日期:2010-01-12,修回日期:2010-05-19。

钙信号系统与植物激素信号的研究进展易籽林1,2,3,徐立1,2,黄绵佳3,李志英1,2(1中国热带农业科学院热带作物品种资源研究所海南儋州571737;2农业部热带作物种质资源利用重点开放实验室海南儋州571737;3海南大学园艺园林学院海南儋州571737)摘要:Ca 2+是高等植物细胞内普遍存在的一种信使分子,能介导植物对外界信号的刺激反应,调节多种生理过程,并参与植物体内多种刺激-反应的藕联过程。

目前证实在植物里钙依赖性蛋白激酶(CDPKs )、钙调素(CaM )、钙调磷酸酶B 类似蛋白(CBLs )三类钙结合蛋白,这些蛋白质可识别特定的钙签名,并依赖这些钙信号向下游转达以适应外界刺激。

Ca 2+信使系统与激素在植物的花发育(成花诱导、花芽分化及开花调控),有性生殖方面(在花粉萌发和花粉管生长),逆境生理等都起着非常重要的作用。

近些年有关学者在植物激素受体蛋白、信号转导、基因表达等方面的研究,以及与Ca 2+相关的信号传递机理的研究中发现:Ca 2+/CaM 、Ca 2+/CDPK 和Ca 2+/CBL 三类钙信号系统与植物激素信号密切相关。

钙信号转导在植物生长和发育中的调控机制研究

钙信号转导在植物生长和发育中的调控机制研究

钙信号转导在植物生长和发育中的调控机制研究植物生长和发育的调控是一个极为复杂的过程,其中一个十分重要的调节机制就是钙信号转导。

钙离子是一个非常重要的细胞信使分子,在细胞中有着重要的调节作用。

钙信号转导是指钙离子在细胞内外的浓度变化引发的一系列反应,这些反应又调控了细胞的生长和发育。

钙信号转导在生物界中十分普遍,包括单细胞生物和多细胞生物,在人类、动植物和微生物中均发挥着重要的生物学功能。

在植物生长和发育中,钙离子充当着关键的角色,它能够调节细胞分裂和扩张、细胞分化、花期开放、子叶萌发以及感光等多种生理和生化过程。

钙离子的浓度影响着钙信号转导的速率、强度和方向。

植物细胞质内的钙离子浓度很低(约为100毫摩尔/L),而细胞质外钙离子的浓度大约是10至100倍。

由于钙离子的高度电荷反响,其在膜之间难以通过扫描电镜的成像,因此,对钙信号转导的研究较为困难。

一些细胞膜和胞浆中的钙离子通道是实现钙离子释放的必要媒介。

钙泵和CARL钙离子扩散调节体结构也是其实现机制之一。

钙离子释放后能够与不同的靶蛋白结合,包括钙调素,激活钙信号转导信号途径,诱导细胞内作用,如细胞大小和水分调节等。

最初,有关钙信号转导的研究主要是在线粒体和叶绿体中进行的。

但是,仅有单一细胞内部产生的信号不足以解释钙信号转导系统对整个植物生长和发育的影响。

最近的科学研究显示,植物的细胞壁中也有类似的机制作用在植物的锈菌孢子和种子休眠期中。

休眠是植物发育中一个重要的阶段,主要因为减少了温度、阳光、水分和呼吸活动,其结果是种子或孢子休眠期结束后生长更加迅速。

钙信号转导路径在植物细胞中有着复杂的交互作用,包括入侵钙离子、钙离子扩散和靶标激活,以及信号突触后的分子递质释放等。

其中,细胞膜和质膜上的离子通道、离子泵通过调节钙离子的浓度起着重要的作用。

半胱氨酸蛋白酶与蛋白激酶的磷酸化也参与了细胞内钙离子的信号转导途径。

研究者们从分子层面研究了这些机制模型,并构建了一系列具有钙离子感知和反应的转录调控网络。

钙信号转导与植物生长发育调节

钙信号转导与植物生长发育调节

钙信号转导与植物生长发育调节随着对植物生长发育调节机制的不断深入研究,钙离子(Ca2+)信号转导在其中扮演了越来越重要的角色。

钙离子作为一种重要的细胞信号分子,能够与多种蛋白质结合并调节它们的活性,从而控制细胞生长、分化和代谢过程。

而在植物中,钙信号转导既参与了各种内外环境的反应,又在植物的生长发育过程中起到了至关重要的作用。

一、钙信号转导的基本过程钙离子信号转导可以分为三个基本步骤:第一步是通过离子通道和离子泵将Ca2+离子向内运输,提高细胞内钙离子浓度;第二步则是Ca2+离子与钙信号感受器结合,激活其携带的蛋白激酶或磷酸酶,从而引发一系列的信号级联反应;最后一步是通过Ca2+离子泵或Ca2+/Na+反向转运蛋白将离子的过量部分移出细胞,维持细胞内Ca2+浓度的平衡。

在植物细胞中,细胞膜上的离子通道、细胞质中的Ca2+感受器和细胞核中的Ca2+调节蛋白都是钙信号转导的重要组成部分。

细胞膜上的离子通道通常是由泛素-26S 蛋白酶体降解途径调节的,可以被外部的环境因素(如机械刺激、光照、低温等)或内部的激素、植酸等物质所调节。

而在细胞核内,核钙离子调节蛋白(Nuclear Ca2+ Regulated Proteins,NCRPs)通过与DNA结合,调控基因的转录和表达。

二、钙信号转导在植物中的作用钙信号转导在植物的生长发育中扮演了重要的角色,涉及到植物细胞的各种生理活动,这些活动包括:植物的萌发、根和茎的生长、叶片的延展和气孔的开闭等。

此外,在植物应对环境胁迫和内外部信号的识别中,钙信号转导也发挥着不可替代的作用。

1. 植物发育的调节植物发育的调节涉及到表观遗传调控、激素调控和钙信号转导等多种机制。

其中,钙信号转导可通过调节植物生长素和脱落酸等植物发育素的合成和分泌,从而控制植物的生长发育。

例如,一些研究表明,通过调节葡萄糖诱导的钙离子释放,可以影响小麦胚芽的伸长和分化,快速增加细胞体积,从而促进胚芽转变为成熟的植株。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档