山西量子光学研究直达国际前沿

山西量子光学研究直达国际前沿

冷原子物理意义

冷原子物理的意义 按照人类对微观世界的认识深入程度划分,当代物理学有三个最主要的研究领域,即粒子物理,原子分子与光物理(AMO)和凝聚态物理。这三个领域的物理学家瓜分了决大多数20世纪50年代以来的诺贝尔物理学奖。 就这三个大领域的基础性和应用性来说,原子分子与光物理领域介于其他两者之间。它没有像粒子物理物理那样需要依靠大型实验设备展开基础性探索工作,也没有像凝聚态物理那样把更多的研究方向瞄准于可遇见的应用。因此在原子分子与光物理领域中,许多研究方向的现实意义并不为人所熟知,激光冷却技术和冷原子物理就是其中一例。 作为这个大领域的最热门方向之一,激光冷却技术冷原子物理领域曾在5 年内诞生了两次诺贝尔物理学奖,分别是1997年朱棣文(S. Chu), 科昂-塔努基(C. Cohen-Tannoudji)和菲利普斯(W. Phillips)因发明了激光冷却技术而获奖;以及2 001年维曼(C. Wieman),康乃尔(E. Cornell), 和凯特勒(W. Ketterle)利用激光冷却技术获得玻色-爱因斯坦凝聚(BEC)而获奖。就连2005年诺贝尔物理学奖的获奖成果也与冷原子物理紧密相关,获奖人之一的汉施(T. Hansch)也曾是激光冷却思想最早的提出者之一。 一个小小的研究领域能这样受到重视,它深层次的研究意义分不开的。冷原子物理领域的开创者们也许不会想到,依靠激光冷却技术获得的超低温原子因为有着其他状态的物质(常温原子)所没有的优势,在可预见的未来将对人类文明发展起到十分关键作用。 一、可观测相干的物质波波长 微观世界的粒子都具有波粒二相性。德布罗意波(物质波)波长λ=h/mv,与粒子的动量呈反比。室温原子因为平均速度达到几百米每妙,其德布罗意波长为很小,大约为10-12米量级,原子大多处在不同的量子态上,相干长度很短,难以形成干涉。冷原子最低温度可达到几个纳K,平均速度可达到几厘米每秒,德布罗意波长约为10-7米量级,相干长度很长,能够宏观观测到相干现象。当碱

量子与光学

量子与光学 ——量子光学领域的历程、进展以及量子点 徐慧远 111086

一、量子光学 在经典力学中,生活的简单的。颗粒就是颗粒,波就是波,并且我们确切地知道事物存在的位置和状态。然而,任何一个学过物理的人都会告诉你,在量子领域,问题就变得复杂多了。下面我将从一个特别的视角来描述量子——量子光学,把量子理论和光学结合在一起构成了一个奇特,精彩的世界。 根据澳大利亚昆士兰大学的量子光学领域的专家Gerard Milburn的说法,这一领域的研究要追溯到上世纪60年代。值得一提的是,哈佛大学的Roy Glauber教授最先开始量子电磁场的相干光研究,并以此获得了诺贝尔奖。 Milburn解释道,“Roy在光学干涉实验中展示了已经广为人知的相干性质领域的量子状态。尽管这证实了特定的场态会从经典光学中重新得到已知的结果,但是这一新的量子光学领域表明了独特的量子表现将会变成某些类型情境的证据”。“通过理论科学家和实验科学家之间的紧密的交流,这一学科在上世界60至90年代之间的历史可以看成是一种这一前景的稳固的实现。” 根据Milburn的说法,上世界70年代是研究光子计数统计的量子特性的最重要的10年,并且在预言和观测光子的反聚束方面达到了顶峰。在随后的80年代科学家们又反过头来补充研究光的波动性,重点关注于相位依赖特性。在90年代,纠缠态的非经典方面又成为了研究的主要领域,随后出现了贝尔不等式这些具有先驱性的成果。 90年代还见证了在原子凝聚物和量子信息这些新领域的分歧,并且取得了重大的进步。量子光学早90年代早期就已成为量子信息理论领域的一些新思想的理想的实验土壤,并且之后取得了巨大的成功。许多更加令人称奇的关于量子理论的预言(包括电子传输和反贝尔不等式)都已经被证实在量子光学领域具有惊人的可靠性。Milburn还解释了这些巨大成功的原因: “实验室要想达到光频段,温度就必须极其低。因而光频段的热激发通常可以忽略的,因此可以直接研究量子相干性而不用去考虑热噪声产生的隐藏的影响。当然,必须得考虑自发辐射和光子吸收,”Milburn还提到“这一领域的大部分的进展都是来自于减轻这些热噪声影响从而得到相干量子控制的一个非凡的水平,尤其是在量子通信协议方面,比如说量子密匙分配。” 那么将来这一领域将会怎样呢?下一个十年,量子光通信和计算无疑将会继续取得重大的成果。Nature的一篇社论中高度评价了量子信息协议的实现在近些年取得的进展。目前应用方面主要受到硬件方面的限制,尤其是光子探测器和可靠的单光子源的需求。好消息是有文章表明在这方面已经有了稳步的进展。 近来在处理要求更高的任务时所涉及到的量子光学系统定标方面的一项非常重要的发展就是集成光学电路的应用,这打开了片上量子光学实验的这一具有有人前景的大门。已有文章报道了实现了具有很高集成度的器件,从而避免了繁

第21章--量子光学基础

第21章--量子光学基础

第二十一章 量子光学 基础 一、选择题 1、用频率为ν1的单色光照射某一种金属时,测 得光电子的最大动能为E K 1;用频率为ν2的单色 光照射另一种金属时,测得光电子的最大动能为 E K 2.如果E K 1 >E K 2,那么 (A) ν1一定大于ν2. (B) ν1一定小于ν2. (C) ν1一定等于ν2. (D) ν1可能大于也可 能小于ν2. [ D ] 2、用频率为ν1的单色光照射某种金属时,测得 饱和电流为I 1,以频率为ν2的单色光照射该金属 时,测得饱和电流为I 2,若I 1> I 2,则 (A) ν1 >ν2. (B) ν1 <ν2. (C) ν1 =ν2. (D) ν1与ν2的关 系还不能确定. [ D ] 3、已知某单色光照射到一金属表面产生了光电 效应,若此金属的逸出电势是U 0 (使电子从金属 逸出需作功eU 0),则此单色光的波长λ 必须满 足: (A) λ ≤)/(0eU hc . (B) λ ≥)/(0 eU hc . (C) λ ≤)/(0 hc eU . (D) λ ≥) /(0hc eU . [ A ] 4、已知一单色光照射在钠表面上,测得光电子 的最大动能是 1.2 eV ,而钠的红限波长是5400

?,那么入射光的波长是 (A) 5350 ?. (B) 5000 ?. (C) 4350 ?. (D) 3550 ?. [ D ] 5、在均匀磁场B 内放置一极薄的金属片,其红 限波长为λ0.今用单色光照射,发现有电子放出, 有些放出的电子(质量为m ,电荷的绝对值为e ) 在垂直于磁场的平面内作半径为R 的圆周运动, 那末此照射光光子的能量是: (A) 0λhc . (B) 0 λhc m eRB 2)(2+ . (C) 0λhc m eRB +. (D) 0λhc eRB 2+. [ B ] 6、一定频率的单色光照射在 某种金属上,测出其光电流 的曲线如图中实线所示.然 后在光强度不变的条件下增 大照射光的频率,测出其光电流的曲线如图中虚线所示.满足题意的图是: [ D ] O I U O I U O I U O I U

量子光学与量子信息讲课教案

量子光学与量子信息

量子光学与量子信息 摘要:量子光学是应用辐射的量子理论研究光辐射的产生、相干统计性质、传输、检测以及光与物质相互作用中的基础物物理问题的一门学科。 关键字:量子光学量子信息 JC模型 TC模型 早在1900和1905年,普朗克和爱因斯坦就提出了光量子假说,并成功解释了黑体辐射谱分布与光电效应,确定了光具有波粒二象性的基本物理思想。然而,长期以来由于经典电磁辐射理论能完满地解释绝大多数物理光学实验现象,光的量子理论并未得到系统发展。直到2O世纪7O年代以后,随着激光与光电子技术的进步,一系列用经典理论无法解释的非经典光学效应逐步被实验观测,才形成了以量子化光场为基础的量子光学学科领域。 光量子或称光子为基本能量单元的量子化光场遵循量子电动力学基本规律,严格地说只有用QED理论,才能解释迄今为止所观察到的所有光学现象。量子光学用量子电动力学理论研究光场的量子性和相干性,以及光与原子相互作用的量子力学效应。当前,量子光学中应用性较强的重要研究领域有:光场的量子噪声,光场与物质相互作用中的动量传递、腔量子电动力学等。 在光学与原子物理这门课程的学习中,我们了解到了量子化这个概念。那么,量子光学在科技实验研究中有哪些应用呢? 首先,量子光学的原理和理论基础为: 热辐射基尔霍夫定律 一.热辐射

1.热辐射:在一定时间内辐射能量的多少及能量按波长的分布都与物体的温度有关,故称电磁辐射为热辐射(温度辐射); 辐射能(λ,T ),如炉子,酒精灯… 2.平衡热辐射:相同时间内辐射与吸收的能量相等,T 不变 二. 辐出度(辐射出射度,发射本领) 1. 单色辐出度:单位时间内从物体表面单位面积上向各个方向所发射的波长在λλλd ~+范围内辐射能量)T (dE λ和波长间隔λd 的比值 λ λλd )T (dE )T (e = 2. 辐出度:单位时间内从物体表面单位面积上向各个方向所发射的各种波长的辐射总能量。 λλd )T ,(e )T (E ?∞ =0 三. 吸收比、反射比 1. 吸收比:J B )T (a = 单色吸收比:) T ,(J )T ,(B )T ,(a λλλ= 2. 反射比:J R )T (=ρ 单色反射比:) T ,(J )T ,(R )T ,(λλλρ= 不透明物体:1=+)T ,()T ,(a λρλ 四. 绝对黑体(黑体) 1. 定义:1=)T ,(a λ的物体

光学工程前沿报告1 潘运

光学工程前沿之来自量子世界的新技术 潘运(MF1415003) (南京大学光通信中心江苏南京 210008) 摘要:本文是听完全国光电技术与系统学术会议中量子技术的邀请报告后,自己的一些感想和总结。郭光灿院士首先介绍了量子世界的与经典世界的一些不同的特点,用来引起大家对量子学的兴趣,然后着重介绍了量子密码和量子计算这两方面的量子学的应用,这两项应用着重体现了量子学巨大的发展前景,最后鼓励大家投身与科学研究的事业中来,体现了郭院士不仅自己专心搞研究而且期望拉起一个研究队伍的科研理念。本篇报告着重介绍量子光学的一些基础性知识,并且对会议中量子学的应用做一些介绍。 关键词:量子光学,量子信息技术,量子世界 Abstract:This article is after listening to the National Optoelectronic Technology and Systems Conference invited the report quantum technology, some of their own feelings and summary. Academician Guangcan Guo first introduced the quantum world with some of the different characteristics of the classical world, to arouse interest in quantum science, and then focuses on the quantum cryptography and quantum computing applications of quantum science in these two areas, which focuses on two applications quantum Theory reflects strong growth prospects, and finally to encourage everyone to join the cause of scientific research in the past, reflecting the professor Guo concentrate not only their own research and expect to pull out of a research team of research ideas. This chapter report highlights some of the basic quantum optics knowledge, and for meeting the application of quantum science to do some introduction. Keywords: Quantum Optics,Quantum information technology,Quantum World 1.引言 量子世界具有经典世界所不具有的特点,对于常年生活在宏观世界中的人来说,这种微观的量子世界的特点可能会然人感到怪异。但是正是由于量

物理学院光电信息科学与工程专业(理)

物理学院光电信息科学与工程专业(理) 级本科培养方案 一、培养目标 本专业培养适应社会主义现代化建设需要的,德、智、体、美全面发展的,具有光电信息科学与技术的知识背景和学科交叉能力,具有创新意识和实践能力的复合型拔尖人才。学生具有优秀的道德品质,扎实的专业技能,有成为行业领袖的气质,爱国爱民。 毕业生应具有坚实的自然科学和较好的人文社会科学基础,并熟练掌握一门外语;系统地掌握本专业领域中较宽的科学和技术基础理论;了解光信息科学技术领域的前沿和发展动态;具有创新意识和跟踪掌握该领域新理论、新知识、新技术的能力;掌握文献索引、资料查询的基本方法,熟悉国家信息产业政策及国内外有关知识产权的法律法规,具有一定的科学研究能力。 二、培养规格和要求 本专业基本学制年,授理学学士学位,培养要求如下: 、通过专业基础课以及专业核心课程,打造学生厚实的基础知识体系,使学生一方面获得坚实的数学、物理和光信息科学等基础知识,同时也具备光电子学、光信息学、光电子材料与光通信方向的专业技能。此外,在公共必修课中培养学生较高道德修养、较强的身体素质、较深的文化底蕴,形成正确地世界观、人生观、价值观,使学生做到德才兼备、全面发展。 、通过公共选修课中的通识课程、学科中专业选修课程,拓展学生的科学文化视野,提高人文修养和科学素养,促进学生建立良好的大局观与创新意识,为学生争当某领域领军人物,形成领袖气质奠定良好的基础。 、通过专业实践课、研究型的专业选修课,以及学院提供的国际交流和业余科研课题,强化学生专业技术能力,学术研究能力,全面提升学生知识综合运用能力,培养学生修身齐家意识,树立正确的家国情怀。 三、授予学位与修业年限 按要求完成学业者授予理学学士学位。修业年限:四年。

典型临界腔设计

目录 典型临界腔设计 (2) F-P腔体结构 (2) 一、F-P腔的工作原理 (2) 二、F-P腔的结构 (3) 三、F-P腔的调节 (4) 四、F-P腔在光学实验中的应用 (5) 激光横膜 (9) 一.横模选择的原则。 (9) 二.横模选择的方法 (10) 激光纵膜 (11) 一.纵模选择的意义及原则。 (11) 二.纵模选择的方法。 (11)

典型临界腔设计 F-P 腔体结构 一、F-P 腔的工作原理 F-P 腔(Fabry-perot Cavity )是一种利用多光束干涉现象来工作的装置。 图1 多光束干涉示意图 如图1,一束光0入射到一上下表面平行的薄膜上,它将产生一系列的反射光束1,2,3,…,和一系列的透射光束1’,2’,3’,… 令r 和t 分别代表光从膜外到膜内的振幅反射率和透射率, r ’和t ’分别代表光从膜内到膜外的振幅反射率和透射率,用A 代表入射光0的振幅。在薄膜2两侧媒质的折射率n1和n2相等的条件下,由光的可逆性原理可得: r=-r 和r2+tt ’=1 (1) 反射光束和透射光束的复振幅表示: '1'22123 3'43''''''''i i i i U U Att U At Ar U A r t U t Atr t r t U Atr t e e e e δδδδ=-??=??=???=?=????=? ? (2) 反射光和透射光的总振幅和光强分别为: 11 j R R R R j T T T j T j U U I U U I U U U U ∞*=*∞ =? =??=? ??=??=?? ∑∑ (3) 式中0R T I I I +=,2 0I A =为入射光强。 计算可得透射光强为 : 22 22 00 224222 (')(1)4sin (/2)12cos (1)(1) 1(1)T T T i i I A tt I r I U U R r r r r R e e δδ δδ*--====-+--+ - (4) 利用(4)式可作出F-P 腔透射特性曲线如图2所示

量子光学重点整理

一、量子调控的途径:外场调控(振幅、相位、啁啾及形状等手段调控)和结构调控(利 用材料的结构特征调控,比如原子、分子及半导体微结构等); 量子干涉与相干现象:激光诱导原子态相干,导致了介质不同激发通道间的量子干涉。从而可操控介质的光学特性。 经典相干导致原子相干 经典干涉导致量子干涉 量子化的基本思想: 找出描述经典场的一组完备的正则“坐标”和“动量”,然后把它们视为相应的算符,满足正则坐标和正则动量的对易式,从而使其量子化。 粒子数算符 ??? N a a+ =的本征态就是FOCK态|n>。 Fock表象也叫占有数表象能量表象二、 相干态的三种定义: 1,湮灭算符的本征态 2. ()0 D αα = 相干态是位移算符作用在真空态上得来的,是谐振子基态的位移形 式。 3.光子数态的分解: 相干态的性质: 1.粒子数分布是泊松分布相干态下的光子的平均数目

2.相干态是最小不确定态 3.相干态并非正交系 4.相干态是光场正频部分(湮灭算符)的本征态,具有和真空态一样的最小测不准关系。 5.相干态的相干度是1. 压缩态: 相干态时: FOCK态时: 压缩算子: 压缩相干态:双光子想干态 一、实现光学压缩态的基本条件 1、有合适的机制,对光强或光场的振幅的起伏进行抑制; 2、有合适的对相位灵敏的放大机制,使得被压缩的光场分量放大,而另一个分量衰减。实现光学压缩态的实验途径 1、四波混频产生光学压缩态 2.用光学参量振荡实现压缩态的实验 三、压缩态光的应用 1).减小光通讯中的噪声,大大提高信噪比

2).引力波检测 3).激光光谱 海森堡绘景下的薛定谔方程: 二能级近似: 电偶极近似: 旋转波近似: 旋转波近似的全量子理论理解: 慢变振幅近似:

量子光学与量子信息

量子光学与量子信息 摘要:量子光学是应用辐射的量子理论研究光辐射的产生、相干统计性质、传输、检测以及光与物质相互作用中的基础物物理问题的一门学科。 关键字:量子光学 量子信息 JC 模型 TC 模型 早在1900和1905年,普朗克和爱因斯坦就提出了光量子假说,并成功解释了黑体辐射谱分布与光电效应,确定了光具有波粒二象性的基本物理思想。然而,长期以来由于经典电磁辐射理论能完满地解释绝大多数物理光学实验现象,光的量子理论并未得到系统发展。直到2O 世纪7O 年代以后,随着激光与光电子技术的进步,一系列用经典理论无法解释的非经典光学效应逐步被实验观测,才形成了以量子化光场为基础的量子光学学科领域。 光量子或称光子为基本能量单元的量子化光场遵循量子电动力学基本规律,严格地说只有用QED 理论,才能解释迄今为止所观察到的所有光学现象。量子光学用量子电动力学理论研究光场的量子性和相干性,以及光与原子相互作用的量子力学效应。当前,量子光学中应用性较强的重要研究领域有:光场的量子噪声,光场与物质相互作用中的动量传递、腔量子电动力学等。 在光学与原子物理这门课程的学习中,我们了解到了量子化这个概念。那么,量子光学在科技实验研究中有哪些应用呢? 首先,量子光学的原理和理论基础为: 热辐射 基尔霍夫定律 一. 热辐射 1.热辐射:在一定时间内辐射能量的多少及能量按波长的分布都与物体的温度有关,故称电磁辐射为热辐射(温度辐射); 辐射能(λ,T ),如炉子,酒精灯… 2.平衡热辐射:相同时间内辐射与吸收的能量相等,T 不变 二. 辐出度(辐射出射度,发射本领) 1. 单色辐出度:单位时间内从物体表面单位面积上向各个方向所发射的波长在λλλd ~+范围内辐射能量)T (dE λ和波长间隔λd 的比值 λλλd )T (dE )T (e = 2. 辐出度:单位时间内从物体表面单位面积上向各个方向所发射的各种波长的辐射总能量。

(整理)华东师范大学研究生学科培养计划.

金融学 Finance (专业代码:020204) 一、学科概况 本学科拥有硕士学位授予权,为“经济学”一级学科下的二级学科,是经济学的重要组成部分。本学科是以经济学和现代金融理论为指导,在充分吸收和利用国外有关金融理论研究的最新成果同时,大量吸收相关学科的研究成果和技术方法手段,研究金融学的理论与发展和金融市场的实务与运作,主要研究方向有:金融理论与政策、资本市场理论与投资管理、商业银行管理、金融工程的理论与方法、风险管理、投资项目分析等,本学科硕士点设在经济管理学院应用经济学系。 二、培养目标 1、进一步学习马列主义、毛泽东思想和邓小平理论,树立马克思主义世界观;坚持四项基本原则,热爱祖国;具有集体主义观念和艰苦奋斗的作风,遵纪守法,品德优良;具有严谨的治学态度和求实创新精神;服从国家需要,积极为社会主义现代化建设服务。 2、培养系统掌握现代经济学和管理学的基本原理,具有扎实的金融学理论知识和业务技能,具有较高的外语水平和计算机应用能力,并能阅读本专业的外文资料,具有一定的创新能力和创业精神,能够理论联系实际,具有对金融经济问题的观察分析能力,能在各级金融机构、大中型企业、投融资管理单位、以及金融监管部门从事与管理工作的中高级金融人才。 三、学制和学分 全日制硕士研究生实行为以两年半制为主的弹性学制,原则上不超过5年。 总学分不少于35学分,其中必修课程不少于14个学分。

四、课程设置

五、科研能力与水平 1、掌握金融学科的基本理论、基本知识; 2、具有处理银行、证券、投资与保险等方面业务的基本能力; 3、熟悉国家有关金融的方针、政策和法规; 4、了解本学科的理论前沿和发展动态; 5、具有一定科学研究和实际工作能力; 6、鼓励学生在正式出版的学术期刊发表学术论文。 六、开题报告 硕士研究生应在导师的指导下于第4小学期进行开题工作,硕士生导师应在第1学期给学生布置任务,提前明确研究方向乃至论文题目,硕士生提前进入论文选题与开题的准备工作。选题至少在第2学期与课程学习并行开展,在课程学习的同时,通过大量查阅文献(文献阅读量不少于50篇,且外文文献不少于20篇)、收集资料和调查研究后确定研究课题,写出选题文献综述(不少于5000字)和研究计划,按照《南京理工大学硕士研究生学位论文选题、开题的规定》中的要求完成开题报告。开题报告经导师签字同意后,由学科点在第4小学期末组织专家进行开题答辩,审议通过。 七、学位论文 学位论文工作是硕士研究生培养工作的重要组成部分,是对硕士生进行科学研究的全面训练,是培养硕士生创新能力、综合运用所学知识发现问题、分析问题和解决问题能力的重要环节。硕士学位论文要求层次分明、概念清楚、立论正确、分析严谨、数据可靠、计算正确、图表清晰、语句流畅。研究生应按照研究进度及写作格式规范撰写学位论文,论文在某些方面应有所创新。学位论文必须在导师的指导下由硕士生独立完成。

量子光学

第十五章 量子光学 教学基本要求: 1、理解光电效应的实验规律及爱因斯坦光电效应方程。理解光的波粒二象 性。 2、理解康普顿效应的实验规律,以及光子理论对这个效应的解释。 §15-1 黑体辐射 一. 热辐射 1.热辐射:在一定时间内辐射能量的多少及能量按波长的分布都与物体的温度有关,故称电磁辐射为热辐射(温度辐射); 辐射能(λ,T ),如炉子,酒精灯… 2.平衡热辐射:相同时间内辐射与吸收的能量相等,T 不变 二. 辐出度(辐射出射度,发射本领) 1. 单色辐出度:单位时间内从物体表面单位面积上向各个方向所发射的波长在λλλd ~+范围内辐射能量)T (dE λ和波长间隔λd 的比值 λ λλd ) T (dE )T (e = 2. 辐出度:单位时间内从物体表面单位面积上向各个方向所发射的各种波 长的辐射总能量。 λλd )T ,(e )T (E ?∞ =0 三. 吸收比、反射比 1. 吸收比:J B )T (a = 单色吸收比:) T ,(J )T ,(B )T ,(a λλλ= 2. 反射比:J R )T (= ρ 单色反射比:)T ,(J )T ,(R )T ,(λλλρ= 不透明物体:1=+)T ,()T ,(a λρλ

四. 绝对黑体(黑体) 1. 定义:1=)T ,(a λ的物体 是理想模型,可用一带有小孔的空腔近似 黑色物体:吸收所有入射可见光 黑洞:1=)T ,(a λ且0=)T ,(e λ 2. 灰体:1<=ηλ)T ,(a 五、 绝对黑体的辐射定律 1. 维恩位移定律 b T m =?λ K m .b ??=-3108972 2. 斯特藩-玻尔兹曼定律 4T )T (E B σ= 42810675---???=K m W .σ 例:地球距离太阳km .81051?,太阳 直径km .D 610391?=,太阳表面的温度 K T 6000=。若太阳可看成绝对黑体,问在地球表面受阳光垂直照射时每平 方米的面积上每秒钟得到的辐射能是多少? 六、普朗克公式 1. 瑞利-金斯的工作:经典的电磁场理论+能量均分原理; 42-=λπλckT )T ,(e B 此公式长波段与实验符合得很好 2. 维恩的工作:经典的电磁场理论+玻尔兹曼-麦克斯韦分布; T hc B e hc )T ,(e λλπλ- -=522 此公式短波段与实验符合得很好,“把物理学直接引到了量子物理的大门 口”,获1911年诺贝尔奖 3.普朗克公式

光学A课程教学大纲

《光学A》课程教学大纲 课程名称:Optics 课程编号:132016 总学时数:80学时讲课学时:64学时实验学时:16学时 学分:5学分 先修课程:高等数学、力学、热学、电磁学 教材:姚启钧原著,光学教程(第三版).北京:高等教育出版社2002.7 参考书目:赵凯华钟锡华,光学.北京:北京大学出版社,1984.1 刘坤英范汝盐主编,光学.北京:中国科学技术出版社,1994.8 《课程内容简介》: 《光学》课程内容包括:几何光学及物理光学两大部分,以物理光学为主。物理光学分波动光学和量子光学两大板块,以波动光学为主。第一章主要讲述几何光学的基本原理及基本成像仪器。波动光学中首先设置波动光学通论一章,介绍波的时空周期性及其数学描述,进而从波的叠加观点分析各种波的合成方式及其结果,从中引入偏振光的概念;最后系统讨论光在各项同性介质界面的反射与折射。然后分别以三章内容,系统而详尽的讲解光的干涉、衍射和偏振现象,说明其物理成因、数学处理方法、各种干涉、衍射图样的特征及形成条件,以及一些有关光学仪器及器件的原理和应用。第六章介绍光的吸收、色散和散射现象。第七章从经典物理处理黑体辐射时的困难入手引入光的量子性,进而介绍支持光的量子性的一系列实验,深化对光的本性的认识,并以光的波粒二象性对全书的基本观点进行总结。 一、课程性质、目的和要求 《光学》是为物理系本科生物理学专业学生开设的一门必修基础课。是培养物理专业人才的专业课程之一,在教学培养计划中列为主干课程。 通过本课程的学习,使学生逐步掌握波动光学,几何光学及量子光学的基本原理及研究有关问题的思路和方法,在获取知识的同时,学生建立物理模型的能力、定性分析、估算与定量计算的能力,独立获取知识的能力,理论联系实际的能力获得同步提高与发展。开阔思路,激发探索和创新精神,增强适应能力,提升其科学技术的整体素养。通过本课程的学习,使学生掌握科学的学习方法和形成良好的学习习惯,养成辩证唯物主义的世界观和方法论。通过本门课程的学习,使学生系统地掌握有关光学的基本概念、基本规律和基本的计算方法,培养学生分析和解决问题的能力,为学习后续课程以及今后的工作打下基础。 通过本课程的学习,应使学生达到如下要求: (1)掌握光学的基础理论、基础知识、基本技能和光学的整体结构。并初步具备近代光学及其应用的物理基础。

2014年量子光学考试试题

2013-2014年第二学期《量子光学基础》考试试题 1、V 型三能级原子与两个经典光场作用。频率为ω1的经典光场与能级|a>,|b>耦合,频率为ω2的经典光场与能级|a>,|c>耦合。系统的哈密顿量为H =H 0+H 1,H 0=?ωa |a > =c a (t )e ?iωa t ?a >+c b (t )e ?iωb t |b >+c c (t )e ?iωc t |c>。原子和光场共振,即:ωa ?ωb =ω1, ωa ?ωc =ω2. 通过解薛定谔方程,可以求得波函数。 (1)求c a (t ),c b (t ),c c (t )所满足的微分方程;(2)假设原子的初态为|ψ(0)>=cos θ 2|b > +sin θ 2|c >. 求出c a (t ),c b (t ),c c (t ); (3)当ΩR1,ΩR2,,?1,?2满足什么条件时,原子在演化过程中始终处于下两个能级态|b>、|c>的叠加态,而不被激发到激发态上去。这种现象叫做相干囚禁(coherent trapping), 从物理上解释这种现象。(见M. O. Scully ,M. S. Zubairy 的书《quantum optics 》223-224页, 世界图书出版公司出版,中国,北京) |a> |c> 2、增加了一个光子的相干态(Single-photon-added coherent state(SPACS)),|α,1> = a + ||2 |α>. 考虑该辐射场的两个厄米算符?11()2 X a a =+, ? 21()2X a a i =?,它们分别对应于场的复振幅的实部和虚部, 满足对易关系[]12,2 i X X =. 当α取何值时(本题α取正实 数)SPACS 态,时是压缩态。(提示:压缩条件(ΔX i )2<1/4, 或(ΔX 2)2 <1/4)。 3、考虑一个理想的光学腔,腔里有单模辐射场|?(0)>F = 1 √2(|0>-i|10>)。处于基态且与单模 场共振的二能级原子|φ(0)>A =|g >进入该光学腔,与场发生作用,相互作用的哈密顿量为)(22÷?++=a a g H I σσ (在相互作用绘景中研究) 。系统的演化方程为|ψ(t)>AF =e ?i H I t |?(0)>F |φ(0)>A 。作用一段时间后原子从腔中逸出。经探测:出射原子处于激发态 |e >。(1) 计算该单模场初始时刻|?(0)>F 的平均光子数n ?;(2)任意时刻系统的态|ψ(t)?AF ; (3) 原子出射后,腔内的辐射场的平均光子数变为多少?

【物理】中国物理学现状 ——献给世界物理年

【物理】中国物理学现状——献给世界物理年 作者: bird007 发布日期: 2008-09-08 作者:九维空间QQ:56812216 为了纪念伟大的爱因斯坦发表改变世界的五篇论文一百周年,以及他逝世50周年,联合国大会在04年6月份一致通过决议把2005年定为“世界物理年”。 谈到物理学,首先要对物理学下一个定义。物理者,万物之理也。在英文中PHYSICS一词与PHYLOSOPHY(哲学)很相近,物理学最早被称为自然哲学,是哲学专门研究自然界的分支。这个概念最早可追溯到亚里士多德《物理学》一书,后来在牛顿的巨著《自然哲学的数学原理》给了物理学的诞生时一个比较准确的定义:用数学工具解决自然哲学问题,即用数学了解整个自然界的运动规律。中国古代采用“格物至知”一词来定义这门学科,即采用分析的方法研究物质获得知识,与中国古代哲学重视整体统一性而严重忽略事物细节和内部规律的做法大相径庭。 从诞生的那一天起,物理学就通过对自然界五花八门千变万化的各种现象内在本质的探索来帮助人类认识这个世界,从而能改造这个世界。既然物理学追求的是物质世界的一切运动规律,那么从广义上讲,一切自然科学都是物理学。这中说法毫不过分,自然科学本身就是人类为了认识这个世界而发展起来的方法和知识体系,自然科学的其他分支诸如化学,生命科学,宇宙学(天文),地球科学(地理)等等研究领域都是自然界的一部分或是一个知识层面,只有物理学研究的是整个自然界,大到浩瀚宇宙小到基本粒子。相比于其他学科定性概念居多研究深度有限而言,物理学深入探索整个自然界一切现象的本质规律,并尽可能地使其数学定量化,其他自然科学学科领域最基础最本质的运动规律和产生现象的原因都要靠物理学来回答,因此从广义上讲一切自然科学都是广义上的物理学。 然而这并不意味着其他自然科学学科可以简单地并入物理学成为他的一个分支,系统科学的出现表明,很多宏观概念还原到微观本质上的物理学规律以后是不能准确地反映这个概念的,因为在微观还原过程中层层近似并且忽略了在微观情况下可以忽略而组成宏观系统后影响较大不能忽略的那部分因素,因此还原论只是寻找本质,而本质并不代表一切。在化学和生物学等学科中很多概念都是复杂系统特有而对单个粒子意义不大的性质,诸如PH值、反应速率、生态系统等等。物理学本身也有很多这样的概念,例如温度本质上虽然是分子平均动能的体现,但在实际研究中后者显然不能替代前者。 于是我们通常所说的物理学便是狭义上的物理学。探讨中国物理学的现状,首先要知道世界物理学的现状,因为中国物理学一直落后于西方,它的现状和发展很基本上是由世界物理学现状及发展所决定的。国内将物理学列为一级学科,其下有

前沿引领技术基础研究专项前沿项目邀约书【模板】

附件1 前沿引领技术基础研究专项前沿项目邀约书 项目1:面向光子芯片研发的核心材料及关键技术基础 项目负责人:XXX 牵头承担单位:XX大学 一、项目方案概述 项目拟根据量子光学与量子信息应用需求,研究铌酸锂光子芯片上单元功能器件制备及其集成技术,研究光子高效产生与调控机理及实现的关键技术,展示若干重要应用。拟解决的重大科学问题和关键技术有:片上纠缠光子、单光子的高效产生和多维度调控,突破衍射极限下光的低损耗传输和有效耦合,具有特殊功能的光量子芯片的设计等;攻关基质材料大尺寸铌酸锂单晶生长,高品质光学超晶格制备和畴结构的精确调控,低损耗光子微结构精准加工及集成;展示若干重要应用如片上量子密钥产生与分发、量子信息处理、移动平台芯片化量子信息网络原理及实现等。该项目拟形成系列前沿引领技术与知识储备,为确立我省在光与量子信息芯片方向的技术引领作出贡献。 项目分阶段同步实施,包括突破铌酸锂晶体材料和微结构制备关键技术,光子器件原理探索和功能设计;片上结构与器件加工及集成;面向若干重要应用开发相关芯片,基于芯片的移动平台光量子信息系统等。 二、项目考核指标 1. 高品质光学级铌酸锂单晶,晶圆直径≥ 4 in;光学超晶格最小极

化周期≤ 4 μm;单模波导光学损耗≤ 0.1 dB/cm,微腔光学品质≥ 106量级;频率调制带宽≥ 40 GHz,半波电压≤ 2 V;中红外激光功率≥ 1 W,波长调谐范围2-4.1 μm;光频率梳谱宽≥ 300 nm。 2. 系列具有特定功能的光量子信息处理芯片,纠缠光子产率≥ 108 Hz˙nm-1˙mW-1,纠缠度≥ 0.93,保真度≥ 90%。 3. 针对不同协议的量子保密通信终端芯片,发射端光子态保真度≥ 99.5%,终端核心体积≤ 0.4 m3。 4. 基于移动平台的芯片化量子信息系统,纠缠分发距离≥ 1 km,密钥分发距离≥ 5 km,纠缠分发CHSH S值≥ 2.4。 三、课题分解方案 课题一:高品质铌酸锂材料和基本器件的制备 研究高品质光学级铌酸锂单晶生长,光学超晶格、波导和微腔等微结构及基本器件的制备工艺,满足课题二、三、四的需求,并研发多波长中红外激光器和频率梳产生。 考核指标:铌酸锂单晶直径≥ 4 in;光学超晶格最小极化周期≤ 4 μm;单模波导光学损耗≤ 0.1 dB/cm;中红外激光功率≥ 1 W;频率梳谱宽≥ 300 nm。 课题二:光量子信息处理芯片 基于课题一的加工工艺,研究片上多种光子纠缠态的制备和多自由度操控,实现特定功能的光量子信息处理芯片,为课题二和课题三提供支持。 考核指标:片上纠缠光子产率≥ 108 Hz˙nm-1˙mW-1,纠缠度≥ 0.93,量子信息处理芯片保真度≥ 90%。 课题三:芯片化量子保密通信终端 基于课题一和课题二的基础,研究芯片化量子保密通信终端,配合课题四实现基于光子芯片的量子保密通信系统,并对其安全性和稳定性进行 —17 —

理学 SCIENCE 学科中英文对照

理学SCIENCE 课程中文名称课程英文名称 矩阵分析Matrix Analysis 面向对象程序设计方法Design Methods of Object Oriented Program 李代数Lie Algebra 代数图论Algebraic Graph Theory 代数几何(I)Algebraic Geometry(I) 泛函分析Functional Analysis 论文选读Study on Selected Papers Hopf代数Hopf Algebra 基础代数Fundamental Algebra 交换代数Commutative Algebra 代数几何Algebraic Geometry Hopf代数与代数群量子群Hopf Algebra , Algebraic Group and Qua ntum Group 量子群表示Representation of Quantum Groups 网络算法与复杂性Network Algorithms and Complexity 组合数学Combinatorial Mathematics 代数学Algebra 半群理论Semigroup Theory 计算机图形学Computer Graphics 图的对称性Graph Symmetry 代数拓扑Algebraic Topology 代数几何(II)Algebraic Geometry(II) 微分几何Differential Geometry 多复变函数Analytic Functions of Several Complex Variab les 代数曲面Algebraic Surfaces 高维代数簇Algebraic Varieties of Higher Dimension 数理方程Mathematics and Physical Equation 偏微分方程近代方法The Recent Methods of Partial Differential Equations 激波理论The Theory of Shock Waves 非线性双曲型守恒律解的存在性The Existence of Solutions for Non linear Hyperbolic Conservation Laws 粘性守恒律解的稳定性Stability of Solutions for Viscous Conservation Laws 微分方程数值解Numerical Methods for Differential Equations 小波理论与应用Warelet Theory and Application 非线性方程组的数值解法Numerical Methods for No-linear System s of Equations 网络算法与复杂性Network Algorithms and Complexity Graph Theory 60 近世代数Modern Algebra 高等量子力学Advanced Quantum Mechanics 统计力学Statistical Mechanics 固体理论Solid State Theory 薄膜物理Thin Film Physics 计算物理学Computational Physics 量子场论Quantum Field Theory

量子光学课程论文

量子光学发展史及其发展现况 摘要:量子光学是应用辐射的量子理论研究光辐射的产生、相干统计性质、传输、检测以及光与物质相互作用中的基础物物理问题的一门学科。本文对量子光学领域的发展史,现状进行了阐述,并进一步指出了当今的量子光学领域的几个前沿的课题. 关键词:量子光学光子量子理论 1引言 众所周知, 光的量子学说最初是由爱因斯坦于1905年在研究光电效应现象时提出来的,光电效应现象包括外光电效应、内光电效应和光电效应的逆效应等等,爱因斯坦本人则是因为研究外光电效应现象并从理论上对其做出了正确的量子解释而获得了诺贝尔物理学奖;这是量子光学发展史上的第一个重大转折性历史事件,同时也是量子光学发展史上的第一个诺贝尔物理学奖。尽管爱因斯坦终生对科学的贡献是多方面的(例如,他曾建立了狭义相对论和广义相对论等等),但他本人却只获得了这唯一的一次诺贝尔物理学奖。 2 量子光学的发展简史 1905年,A.阿尔伯特·爱因斯坦提出了光子假设,成功地解释了光电效应现象,爱因斯坦认为光子不仅具有能量,而且与普通实物粒子一样具有质量和动量(见光的二象性)。1923年,A.H.康普顿利用光子与自由电子的弹性碰撞过程解释了X射线的散射实验(见康普顿散射)。与此同时,各种光谱仪的普遍使用促进了光谱学的发展,通过原子光谱来探索原子内部的结构及其发光机制导致了量子力学的建立。所有这一切为量子光学奠定了基础 从1906 年到1959 年的这50 多年时间内, 有关光的量子理论的研究工作虽然也曾取得过许多重要成就, 但就其总体发展而言, 仍然是比较缓慢的. 其最明显特征就是光的量子理论尚未形成完整的理论体系. 自1960 年国际上诞生第一台红宝石激光器以来, 有关这一领域的科学研究工作进入到了空前活跃的快速发展时期. 由此, 直接导致了量子光学的诞生与发展. 真正将量子光学的理论研究工作引上正轨并推向深入的, 是E1T 1Jaynes 和F1W 1Cumm ings 两人。1963 年, E. T. Jaynes 和F. W. Cumm ings 两人提出了表征单模光场与单个理想二能级原子单光子相互作用的Jaynes2 Cumm ings 模型, 这标志着量子光学的正式诞生. 此后, 人们围绕着标准JCM 及其各种推广形式做了大量的而且是富有成效的理论与实验研究工作. 随着研究工作的深入和深化, 随着研究对象、研究内容和研究范围的拓展, 以及随着研究方法和研究手段的更新与改进, 今天的量子光学领域已经出现了一系列全新的、重大突破性进展. 特别是在1997 年, S . Chu, C. C. Tannoudji和W. D. Ph illi p s 等人因研究原子的激光冷却与捕获而分获1997 年度诺贝尔物理学奖, 从而将量子光学领域的研究工作推向了第一个高潮. 1997 年以后, 量子光学领域又出现了许多新的发展迹象. 因此,在这种情况下, 我们有必要对量子光学领域已往的辉煌成就进行总结回顾, 并对当前量子光学领域的最新发展动态以及下个世纪初量子光学领域的未来发展趋势和发展方向进行分析与展望, 以使人们在今后新的探索中能够受到新的启发, 并力争在21 世纪初期取得更大的突破. 3 量子光学的若干发展领域