浙江省台州市八校八年级数学上学期期中联考试题答案含答案
浙江省台州市2020版八年级上学期数学期中考试试卷(I)卷

浙江省台州市2020版八年级上学期数学期中考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2018·邯郸模拟) 由7个大小相同的正方体搭成的几何体如图所示,则以下结论:①主视图既是轴对称图形,又是中心对称图形;②俯视图是中心对称图形;③左视图不是中心对称图形;④俯视图和左视图都不是轴对称图形其中正确结论是()A . ①③B . ①④C . ②③D . ②④2. (2分)点M到x轴的距离为3,到y的距离为4,则点M的坐标为()A . (3,4)B . (4,3)C . (4,3),(-4,3)D . (4,3),(-4,3),(-4,-3),(4,-3)3. (2分)若(a-1)x<a-1的解集为x>1,那么a的取值范围是()A . a>0B . a<0C . a<1D . a>14. (2分)在下列条件中:①∠A+∠B=∠C,②∠A∶∠B∶∠C=1∶2∶3,③∠A=90°-∠B,④∠A=∠B -∠C中,能确定△ABC是直角三角形的条件有()A . 1个B . 2个C . 3个D . 4个5. (2分)下列命题中不成立的是()A . 矩形的对角线相等B . 三边对应相等的两个三角形全等C . 两个相似三角形面积的比等于其相似比的平方D . 一组对边平行,另一组对边相等的四边形一定是平行四边形6. (2分)下列说法中,其中错误的()①△ABC在平移过程中,对应点连接的线段一定相等;②△ABC在平移过程中,对应点连接的线段一定平行;③△ABC在平移过程中,周长不变;④△ABC在平移过程中,面积不变.A . ①B . ②C . ③D . ④7. (2分)(2016·深圳模拟) 如图,边长为1的正方形ABCD绕点A顺时针旋转30°到AB′C′D′的位置,则图中阴影部分的面积为()A .B .C . 1﹣D . 1﹣8. (2分) (2018八上·江干期末) 如图,在△ABC中,P是BC上的点,作PQ∥AC交AB于点Q,分别作PR⊥AB,PS⊥AC,垂足分别是R,S,若PR=PS,则下面三个结论:①AS=AR;②AQ=PQ;③△PQR≌△CPS;④AC﹣AQ=2SC,其中正确的是()A . ②③④B . ①②C . ①④D . ①②③④9. (2分)(2017·重庆模拟) 从﹣4,﹣3,1,3,4这五个数中,随机抽取一个数,记为m,若m使得关于x,y的二元一次方程组有解,且使关于x的分式方程﹣1= 有正数解,那么这五个数中所有满足条件的m的值之和是()A . 1B . 2C . ﹣1D . ﹣210. (2分)(2019·河南模拟) 如图,在Rt△ABC中,∠BAC=90°,AB=2,AC=3,D为BC的中点,动点E,F 分别在AB,AC上,分别过点EG∥AD∥FH,交BC于点G、H,若EF∥BC,则EF+EG+FH的值为()A .B .C .D .二、解答题 (共7题;共68分)11. (5分)解不等式组:.12. (10分) (2017八上·揭阳月考)(1)如图,正方形网格中每个小正方形边长都是 1,小正方形的顶点称为格点,在正方形网格中画出长为的线段 PQ,其中 P 、 Q 都在格点上;(2)如图,正方形网格中有△ABC,若小方格边长为1,请你根据所学的知识,判断△ABC是什么三角形,并说明理由.13. (6分)(2018·覃塘模拟) 根据要求尺规作图,并在图中标明相应字母 (保留作图痕迹,不写作法).如图,已知△ABC中,AB=AC,BD是BA边的延长线.(1)①作∠DAC的平分线AM;②作AC边的垂直平分线,与AM交于点F,与BC边交于点E;(2)联接AF,则线段AE与AF的数量关系为________.14. (11分) (2019八下·洛阳月考) 【背景介绍】勾股定理是几何学中的明珠,充满着魅力.千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者.向常春在1994年构造发现了一个新的证法.(1)【小试牛刀】把两个全等的直角三角形如图1放置,其三边长分别为a、b、c.显然,∠DAB=∠B=90°,AC⊥DE.请用a、b、c分别表示出梯形ABCD、四边形AECD、△EBC的面积,再探究这三个图形面积之间的关系,可得到勾股定理:S梯形ABCD=________,S△EBC=________,S四边形AECD=________,则它们满足的关系式为________,经化简,可得到勾股定理.(2)【知识运用】Ⅰ.如图2,铁路上A、B两点(看作直线上的两点)相距40千米,C、D为两个村庄(看作两个点),AD⊥AB,BC⊥AB,垂足分别为A、B,AD=25千米,BC=16千米,则两个村庄的距离为________千米(直接填空);Ⅱ.在(1)的背景下,若AB=40千米,AD=24千米,BC=16千米,要在AB上建造一个供应站P,使得PC=PD,请用尺规作图在图2中作出P点的位置并求出AP的距离.________(3)【知识迁移】借助上面的思考过程与几何模型,求代数式最小值(0<x<16)15. (15分) (2017八下·潮阳期末) 如图,矩形OABC在平面直角坐标系内(O为坐标原点),点A在x轴上,点C在y轴上,点B的坐标为(﹣4,4 ),点E是BC的中点,现将矩形折叠,折痕为EF,点F为折痕与y轴的交点,EF交x轴于G且使∠CEF=60°.(1)求证:△EFC≌△GFO;(2)求点D的坐标;(3)若点P(x,y)是线段EG上的一点,设△PAF的面积为s,求s与x的函数关系式并写出x的取值范围.16. (10分) (2019八下·嘉陵期中) 已知:如图,在 ABCD中,AE⊥BC,垂足为E,CE=CD,点F为CE 的中点,点G为CD上的一点,连接DF、EG、AG,∠1=∠2。
浙江省台州市2020年(春秋版)八年级上学期数学期中考试试卷(I)卷

浙江省台州市2020年(春秋版)八年级上学期数学期中考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分) (2018八上·长春期末) 实数 , -π, , , 0, 3 , 0.1010010001……中,无理数的个数是()A . 2B . 3C . 4D . 52. (2分)下列说法中正确的有()①±2都是8的立方根;② =±4;③ 的平方根是± ;④﹣ =2⑤﹣9是81的算术平方根.A . 1个B . 2个C . 3个D . 4个3. (2分) (2017七下·抚顺期中)的算术平方根的倒数是()A . ±B .C .D .4. (2分)下列函数:①y=﹣x;②y=2x+11;③y=x2﹣x+1;④y=,其中一次函数有()A . 1个B . 2个D . 4个5. (2分) (2018七上·辽阳期末) 计算-32的结果是()A . 9B . -9C . 6D . -66. (2分) (2019八下·昭通期末) 如果点P(2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A . ﹣1B . 1C . ﹣5D . 57. (2分)实数,,在数轴上的对应点的位置如图所示,则正确的结论是()A .B .C .D .8. (2分)(2012·山东理) 如图,在中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN 等于A .B .C .D .9. (2分)关于变量x,y有如下关系:①x﹣y=5;②y2=2x;③y=|x|;④y= .其中y是x函数的是()B . ①②③④C . ①③D . ①③④10. (2分)已知,如图,E(-4,2),F(-1,-1)以O为位似中心,按比例尺1:2把△EFO缩小,点E的对应点的坐标()A . (-2,1)B . (2,-1)C . (2,-1)或(-2,1)D . (8,-4)或(-8,4)11. (2分)如图反映的过程是小明从家去食堂吃早餐,接着去图书馆读报,然后回家.其中x表示时间,y 表示小明离家的距离,小明家、食堂、图书馆在同一直线上.根据图中提供的信息,有下列说法:(1)食堂离小明家0.4km;(2)小明从食堂到图书馆用了3min;(3)图书馆在小明家和食堂之间;(4)小明从图书馆回家的平均速度是0.04km/min.其中正确的有()A . 4个B . 3个C . 2个D . 1个12. (2分)(2016·徐州) 已知点P(0,-3)与点Q(2a+b,a+2b)关于原点对称,则ba的值为()A . 2B . -2C . 0.5D . -0.513. (2分)已知火车站托运行李的费用C和托运行李的重量P(千克)(P为整数)的对应关系如下表P12345…C2 2.534…则C与P的对应关系为()A . C=0.5(P-1)B . C=2P-0.5C . C=2P+ 0.5D . C=2+0.5(P-1)14. (2分) (2018八上·揭西期末) 一次函数y=2x-3与y轴的交点坐标为()A . (0,-3)B . (0,3)C . ( ,0)D . ( ,0)15. (2分) (2017八下·福清期末) 如图,点A,D分别在两条直线y=3x和y=x上,AD//x轴,已知B,C 都在x轴上,且四边形ABCD是矩形,则的值是()A .B .C .D .二、填空题 (共5题;共5分)16. (1分) (2016七上·乐昌期中) 计算:|3.14﹣π|=________17. (1分) (2018八上·衢州月考) 如图,6×6正方形网格(每个小正方形的边长为1)中,网格线的交点称为格点,△ABC的顶点都在格点上,D是BC的中点.则AC=________;AD=________.18. (1分) (2018七下·深圳期中) 某地市话的收费标准为:(1)通话时间在3分钟以内(包括3分钟)话费0.3元;通话时间超过3分钟时,超过部分的话费按每分钟0.11元计算.在一次通话中,如果通话时间超过3分钟,那么话费y(元)与通话时间x(分)之间的关系式为________.19. (1分)写出一个一次函数,使该函数的图象不经过第三象限:________.20. (1分) (2019九上·上街期末) 如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD的内部,将AF延长后交边BC于点G,且,则的值为________.三、解答题 (共8题;共95分)21. (10分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1 ,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2 ,并直接写出点B旋转到点B2所经过的路径长.22. (20分)计算:+2sin60°﹣3tan30°.23. (15分) (2017九下·简阳期中) 如图,一次函数y=kx+b的图象与反比例函数(x>0)的图象交于A(2,﹣1),B(,n)两点,直线y=2与y轴交于点C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积.24. (10分) (2019八下·哈尔滨期中) 若y-2与x+1成正比例.当x=2时,y=11.(1)求y与x的函数关系式;(2)求当x=0时,y的值;(3)求当y=0时,x的值.25. (10分) (2019八上·灌云月考) 将一矩形纸片OABC放在直角坐标系中,O为原点,C在x轴上,OA=6,OC=10.(1)如图1,在OA上取一点E,将△EOC沿EC折叠,使O点落在AB边上的D点,求E点的坐标;(2)如图2,在OA、OC边上选取适当的点E′、F,将△E′OF沿E′F折叠,使O点落在AB边上的D′点,过D′作D′G⊥C′O交E′F于T点,交OC′于G点,T坐标为(3,m),求m.26. (10分)(2019·深圳) 已知在平面直角坐标系中,点A(3,0),B(-3,0),C(-3,8),以线段BC为直径作圆,圆心为E,直线AC交□E于点D,连接OD.(1)求证:直线OD是□E的切线;(2)点F为x轴上任意一点,连接CF交□E于点G,连接BG:当tan∠FCA= ,求所有F点的坐标________(直接写出);27. (5分) (2017八下·厦门期中) 如图,在□ABCD中,,,.求∠D的度数28. (15分) (2016八上·富宁期中) 某超市对进货价为10元/千克的某种苹果的销售情况进行统计,发现每天销售量y(千克)与销售价x(元/千克)存在一次函数关系,如图所示.(1)求y关于x的函数关系式(不要求写出x的取值范围);(2)应怎样确定销售价,使该品种苹果的每天销售利润最大?最大利润是多少?参考答案一、单选题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题 (共5题;共5分)16-1、17-1、18-1、19-1、20-1、三、解答题 (共8题;共95分)21-1、22-1、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-2、27-1、28-1、28-2、。
浙江省台州市2021年八年级上学期数学期中考试试卷(I)卷

浙江省台州市2021年八年级上学期数学期中考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列式子错误的是()A . ﹣ =﹣0.2B . =0.1C . =﹣5D . =±92. (2分) (2018七上·镇平月考) 在数-3,2,0,3中,大小在-1和2之间的数是()A . -3B . 2C . 0D . 33. (2分)(2017·营口模拟) 下列运算正确的是()A . x2•x3=x6B . x2+x2=2x4C . (﹣2x)2=4x2D . (﹣2x)2•(﹣3x)3=6x54. (2分)若x+y=3,x﹣y=1,则x2﹣y2的值为()A . 1B . 2C . 3D . ﹣35. (2分) (2019七上·杨浦月考) 、两地相距米,通讯员原计划用时从地到达地,现需提前小时到达,则每小时要多走()A . 米B . 米C . 米D . 米6. (2分)(2016·长沙模拟) 已知正数x满足x2+ =62,则x+ 的值是()A . 31B . 16C . 8D . 47. (2分) (2019八上·德清期末) 下列命题中,是真命题的是().A . 两个锐角之和为钝角B . 相等的两个角是对顶角C . 同位角相等D . 钝角大于它的补角8. (2分)下列说法中,正确的是()A . 两边及其中一边的对角分别相等的两个三角形全等B . 两边及其中一边上的高分别相等的两个三角形全等C . 斜边和一锐角分别相等的两个直角三角形全等D . 面积相等的两个三角形全等9. (2分) (2019七上·江苏期中) 知﹣a+2b+8=0,则代数式2a﹣4b+10的值为()A . 26B . 16C . 2D . ﹣610. (2分)小明每个月收集废电池a个,小亮比小明多收集20%,则小亮每个月收集的废电池数为()A . (a+20%)个B . a(1+20%)个C . 个D . 个二、填空题 (共6题;共7分)11. (1分)已知:m+n=10,mn=9,则=________.12. (1分) (2019七上·涡阳月考) 若∣a-1∣+(b+2)2=0,则(a+b)2019=________13. (1分)如果|a+2|+(b﹣1)2=0,那么(a+b)2018=________.14. (1分)(2017·沭阳模拟) 如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH 的长为________.15. (1分) (2017七上·弥勒期末) AB=4cm,BC=3cm,如果O是线段AC的中点.线段OB的长度为________.16. (2分) (2019七上·海淀期中) 由于(﹣1)n=,所以我们通常把(﹣1)n称为符号系数.(1)观察下列单项式:﹣,…按此规律,第5个单项式是________,第n个单项式是________.(2)的值为________;(3)你根据(2)写出一个当n为偶数时值为2,当n为奇数时值为0的式子________.三、解答题 (共9题;共67分)17. (5分) (2019九上·临沧期末) 已知x1、x2是方程x2+2x﹣3=0的两个根,(1)求x1+x2;x1x2的值;(2)求x12+x22的值.18. (5分)利用因式分解计算:(1)342+34×32+162;(2) 38.92﹣2×38.9×48.9+48.92 .19. (5分)化简求值:-ab·(a2b5-ab3-b),其中ab2=-2.20. (5分) (2019七下·封开期中) 求下列各式中的x .(1) x2﹣121=0(2) (x﹣5)3+8=021. (6分) (2019七上·江阴期中) 如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)你认为图②中的阴影部分的正方形的边长等于________.(2)请用两种不同的方法列代数式表示图②中阴影部分的面积.方法①________. 方法②________.(3)观察图②,你能写出这三个代数式之间的等量关系吗?(4)利用以上等量关系,解决问题:已知a+b=3,ab=-2,求的值.22. (5分)如图,点A、F、C、D在同一直线上,点B和E分别在直线AD的两侧,AB∥DE且AB=DE,AF=DC.求证:(1)AC=DF;(2)BC∥EF.23. (10分) (2019七上·包河期中) 观察下列图形.它们是按一定规律排列的,依照此规律,解答下列问题。
浙江省台州市2021年八年级上学期数学期中考试试卷A卷

浙江省台州市2021年八年级上学期数学期中考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分)(2020·哈尔滨模拟) 下列图形中,是中心对称图形但不是轴对称图形的是()A .B .C .D .2. (1分) (2019八上·交城期中) 已知三角形两个内角的差等于第三个内角,则它是()A . 锐角三角形B . 钝角三角形C . 直角三角形D . 以上都不对3. (1分) (2019八上·新田期中) 如图,将△ABC的三边AB,BC,CA分别拉长到原来的两倍,得点D,E,F,已知△DEF的面积为42,则△ABC的面积为()A . 14B . 7C . 6D . 34. (1分) (2016八上·余杭期中) 下列长度的三条线段能组成三角形的是()A . 1,2,3B . 1,,3C . 3,4,8D . 4,5,65. (1分) (2019八上·海淀期中) 等腰三角形的一个外角是100°,则它的顶角的度数为()A . 80°B . 80°或50°C . 20°D . 80°或20°6. (1分) (2016八上·临河期中) 如图,△ABC中,AB=AC,AD平分∠B AC,DE⊥AB于E,DF⊥AC于F,则下列五个结论:①AD上任意一点到AB,AC两边的距离相等;②AD上任意一点到B,C两点的距离相等;③AD⊥BC,且BD=CD;④∠BDE=∠CDF;⑤AE=AF.其中,正确的有()A . 2个B . 3个C . 4个D . 5个7. (1分)(2011·资阳) 给出下列命题:①若m=n+1,则1﹣m2+2mn﹣n2=0;②对于函数y=kx+b(k≠0),若y随x的增大而增大,则其图象不能同时经过第二、四象限;③若a、b(a≠b)为2、3、4、5这四个数中的任意两个,则满足2a﹣b>4的有序数组(a,b)共有5组.其中所有正确命题的序号是()A . ①②B . ①③C . ②③D . ①②③8. (1分) (2020八上·丰台期末) 如图,在△ABC中,AB=3,AC=4,BC=5,EF是BC的垂直平分线,P是直线EF上的任意一点,则PA+PB的最小值是()A . 3B . 4C . 5D . 69. (1分)如图,在△ABC中,AB=AC,BD=BC,若∠A=40°,则∠BDC的度数是()A . 80°B . 70°C . 60°D . 50°10. (1分)如图,等边△ABC的三条角平分线相交于点O,过点O作EF∥BC,分别交AB于E,交AC于F,则图中的等腰△有()个A . 4B . 5C . 6D . 7二、填空题 (共8题;共8分)11. (1分)如图,已知正方形ABCD,以AB为边向正方形外作等边三角形ABE,连结DE,CE,则∠DEC=________。
2021年台州市八年级数学上期中模拟试卷(带答案)

一、选择题1.在等腰ABC ∆中,80A ∠=︒,则B 的度数不可能是( )A .80︒B .60︒C .50︒D .20︒2.如图,长方形ABCD 沿直线EF 、EG 折叠后,点A 和点D 分别落在直线l 上的点A '和点D 处,若130∠=︒,则2∠的度数为( )A .30°B .60°C .50°D .55°3.已知点A 的坐标为()1,3,点B 的坐标为()2,1,将线段AB 沿坐标轴翻折180°后,若点A 的对应点A '的坐标为()1,3-,则点B 的对应点B '的坐标为( )A .()2,2B .(2,1)-C .()2,1-D .(2,1)-- 4.如图,在Rt △ABC 中,∠BAC =90°,∠ACB =45°,点D 是AB 中点,AF ⊥CD 于点H ,交BC 于点F ,BE ∥AC 交AF 的延长线于点E ,给出下列结论:①∠BAE =∠ACD ,②△ADC ≌△BEA ,③AC =AF ,④∠BDE =∠EDC ,⑤BC ⊥DE .上述结论正确的序号是( )A .①②⑤B .②④⑤C .①②④D .①②③ 5.如图,,AD BC ⊥垂足为,D BF AC ⊥,垂足为,F AD 与BF 交于点,5,2E AD BD DC ===,则AE 的长为( )A .2B .5C .3D .76.如图,点O 是△ABC 中∠BCA ,∠ABC 的平分线的交点,已知△ABC 的面积是12,周长是8,则点O 到边BC 的距离是( )A .1B .2C .3D .47.如图,在ABC 中,B C ∠=∠,BD CE =,BF CD =,则EDF ∠等于( )A .90A ︒-∠B .1802A ︒-∠C .1902A ︒-∠D .11802A ︒-∠ 8.对于ABC 与DEF ,已知∠A=∠D ,∠B=∠E ,则下列条件:①AB=DE ;②AC=DF ;③BC=DF ;④AB=EF 中,能判定它们全等的有( )A .①②B .①③C .②③D .③④9.如图,AB 和CD 相交于点O ,A C ∠=∠,则下列结论中不正确的是( ).A .B D ∠=∠B .1A D ∠=∠+∠C .2D ∠>∠D .C D ∠=∠ 10.下列说法正确的是( )A .射线AB 和射线BA 是同一条射线B .连接两点的线段叫两点间的距离C .两点之间,直线最短D .七边形的对角线一共有14条11.下列说法正确的有( )个 ①把一个角分成两个角的射线叫做这个角的角平分线;②连接C 、D 两点的线段叫两点之间的距离;③两点之间直线最短;④射线上点的个数是直线上点的个数的一半;⑤n 边形从其中一个顶点出发连接其余各顶点,可以画出()3n -条对角线,这些对角线把这个n 边形分成了()2n -个三角形.A .3B .2C .1D .012.如图,在ABC ∆中,80,BAC ∠=︒点D 在BC 边上,将ABD △沿AD 折叠,点B 恰好落在AC 边上的点'B 处,若'20B DC ∠=.则C ∠的度数为( )A .20B .25C .35D .40二、填空题13.如图,在ABC 中,AB 的垂直平分线DE 分别与,AB BC 交于点,D E ,AC 的垂直平分线FG 分别与,BC AC 交于点,F G ,10,3BC EF ==,则AEF 的周长是________.14.如图,AOB 与COB △关于边OB 所在的直线成轴对称,AO 的延长线交BC 于点D .若46BOD ∠=︒,22C ∠=︒,则ADC ∠=______°.15.如图,在Rt ABC △中,90B ∠=︒,12AB =,5BC =,射线AP AB ⊥于点A ,点E 、D 分别在线段AB 和射线AP 上运动,并始终保持DE AC =,要使ABC 和DAE △全等,则AE 的长为______.16.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为边BC 、AB 上的点,且AE =AC ,DE ⊥AB .若∠ADC =61°,则∠B 的度数为_____.17.如图,ABC 中,90ACB ∠=︒,8cm,6cm AC BC ==,直线l 经过点C 且与边AB 相交,动点P 从点A 出发沿A C B →→路径向终点B 运动,动点Q 从点B 出发沿B C A →→路径向终点A 运动,点P 和点Q 的速度分别为3cm/s 和2cm/s ,两点同时出发并开始计时,当点P 到达终点B 时计时结束.在某时刻分别过点P 和点Q 作PM l ⊥于点M ,QN l ⊥点N ,设运动时间为t 秒,则当t =__________秒时,PMC △与QNC 全等.18.如图,已知ABC 中,90,50ACB B D ︒︒∠=∠=,为AB 上一点,将BCD △沿CD 折叠后,点B 落在点E 处,且//CE AB ,则ACD ∠的度数是___________.19.如图,若∠CGE=α,则∠A+∠B+∠C+∠D+∠E+∠F=____.20.AD 为ABC 的中线,AE 为ABC 的高,ABD △的面积为14,7,2AE CE ==则DE 的长为_________.三、解答题21.如图,ABC 是边长为10的等边三角形,现有两点P 、Q 沿如图所示的方向分别从点A 、点B 同时出发,沿ABC 的边运动,已知点P 的速度为每秒1个单位长度,点Q 的运度为每秒2个单位长度,当点P 第一次到达B 点时,P 、Q 同时停止运动. (1)点P 、Q 运动几秒后,可得到等边三角形APQ ?(2)点P 、Q 运动几秒后,P 、Q 两点重合?(3)当点P 、Q 在BC 边上运动时,能否得到以PQ 为底边的等腰APQ ?如存在,请求出此时P 、Q 运动的时间.22.如图,在ABC ∆中,60B ∠=︒,点M 从点B 出发沿线段BC 方向,在线段BC 上运动.在点M 运动的过程中,连结AM ,并以AM 为边在线段BC 上方,作等边AMN ∆,连结CN .(1)当_________BAM ∠=时,2AB BM =;(2)请添加一个条件:_________,使得ABC ∆为等边三角形;当ABC ∆为等边三角形时,求证:CN CM AC +=;23.如图,AB ⊥CB ,DC ⊥CB , E 、F 在 BC 上,AF=DE ,BE=CF ,求证:AB =DC .24.如图,A 、D 、F 、B 在同一直线上,EF ∥CD ,AE ∥BC ,且AD =BF .求证:AE =BC25.如图①,在ABC 中,,CD CE 分别是ABC 的高和角平分线,(),BAC B αβαβ∠=∠=∠>(1)若70,40BAC B ︒︒∠=∠=,求DCE ∠的度数(2)若(),BAC B αβαβ∠=∠=∠>,则DCE ∠= (用含,αβ的代数式表示); (3)若将ABC 换成钝角三角形,如图②,其他条件不变,试用含,αβ的代数式表示DCE ∠的度数,并说明理由;(4)如图③,若CE 是ABC 外角ACF ∠的平分线,交BA 延长线与点E ,且30αβ︒-=,则DCE ∠= (直接写出结果)26.如图,直线AB 与直线MN 相交,交点为O ,OC ⊥AB ,OA 平分∠MOD ,若∠BON =20°,求∠COD 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】分∠A 是顶角和底角两种情况分类讨论求得∠B 的度数,即可得到答案.【详解】当∠A 是顶角时,则∠B=(180°-∠A)÷2=(180°-80°)÷2=50°,当∠B 是顶角时,则∠A 是底角,∴∠B=180°-80°-80°=20°,当∠C 是顶角时,则∠A 和∠B 都是底角,∴∠B=∠A=80°,综上所述:∠B 的度数为:50°或20°或80°.观察各选项可知∠B 不可能是60°.故选B .【点睛】本题主要考查等腰三角形的性质,掌握分类讨论思想方法,是解题的关键.2.B解析:B【分析】根据折叠的性质得到∠AEF=130∠=︒,2D EG '∠=∠,根据12180AEF D EG '∠+∠+∠+∠=︒得到2(12)180∠+∠=︒,即可求出答案.【详解】解:由折叠得:∠AEF=130∠=︒,2D EG '∠=∠,∵12180AEF D EG '∠+∠+∠+∠=︒,∴2(12)180∠+∠=︒,∴260∠=︒故选:B .【点睛】此题考查折叠的性质,平角有关的计算,正确理解折叠性质得到∠AEF=130∠=︒,2D EG '∠=∠是解题的关键.3.C解析:C【分析】根据点A ,点A'坐标可得点A ,点A'关于y 轴对称,即可求点B'坐标.【详解】解:∵将线段AB 沿坐标轴翻折后,点A (1,3)的对应点A′的坐标为(-1,3), ∴线段AB 沿y 轴翻折,∴点B 关于y 轴对称点B'坐标为(-2,1)故选:C .【点睛】本题考查了翻折变换,坐标与图形变化,熟练掌握关于y 轴对称的两点纵坐标相等,横坐标互为相反数是关键.4.A解析:A【分析】由90BAE FAC ∠+∠=︒,90ACD FAC ,得出BAE ACD ∠=∠,①正确;由ASA 证明ADC BEA ∆≅∆,②正确;由AC AB AF ,得出③不正确;由全等三角形的性质得出AD BE =,由AD BD =,得出BE BD =,45BDE EDC ,④不正确;由等腰直角三角形的三线合一性质得出⑤正确;即可得出结论.【详解】90BAC ∠=︒,45ACB ∠=︒,ABC ∴是等腰直角三角形,90BAE FAC ∠+∠=︒,AB AC ∴=,45CBA ACB ,AF CD ⊥,90AHC ∴∠=︒,90ACD FAC ,BAE ACD ∴∠=∠,①正确;//BE AC ,180ABE BAC ,90ABE ∴∠=︒,在ADC ∆和BEA ∆中,90CADABE ACAB ACD BAE()ADCBEA ASA ,②正确; AC AB AF ,∴③不正确; ADC BEA , AD BE ∴=,点D 是AB 中点,AD BD ∴=,BE BD ∴=,45BDE EDC ,④不正确;90ABE ∠=︒,BE BD =,45CBA ∠=︒,45EBP ,即BP 平分ABE ∠,△BDE 为等腰直角三角形,∴根据“三线合一”可得BC ⊥DE ,⑤正确.故选:A .【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的性质、平行线的性质等知识,熟悉相关性质是解题的关键.5.C解析:C【分析】先证明△ACD ≌△BED ,得到CD=ED=2,即可求出AE 的长度.【详解】解:∵AD BC ⊥,BF AC ⊥,∴90AFE BDE ADC ∠=∠=∠=︒,∵AEF BED ∠=∠,∴EAF EBD ∠=∠,∵5AD BD ==,∴△ACD ≌△BED ,∴CD=ED=2,∴523AE AD ED =-=-=;故选:C .【点睛】本题考查了全等三角形的判定和性质,余角的性质,解题的关键是掌握全等三角形的判定和性质,从而进行解题.6.C解析:C【分析】过点O作OE⊥AB于E,OF⊥AC于F,连接OA,根据角平分线的性质得:OE=OF=OD然后根据△ABC的面积是12,周长是8,即可得出点O到边BC的距离.【详解】如图,过点O作OE⊥AB于E,OF⊥AC于F,连接OA.∵点O是∠ABC,∠ACB平分线的交点,∴OE=OD,OF=OD,即OE=OF=OD∴S△ABC=S△ABO+S△BCO+S△ACO=12AB·OE+12BC·OD+12AC·OF=12×OD×(AB+BC+AC)=12×OD×8=12OD=3故选:C【点睛】此题主要考查了角平分线的性质以及三角形面积求法,角的平分线上的点到角的两边的距离相等,正确表示出三角形面积是解题关键.7.C解析:C【分析】根据∠B=∠C,BD=CE,BF=CD,可证出△BFD≌△CDE,继而得出∠BFD=∠EDC,再根据三角形内角和定理及平角等于180︒,即可得出∠B=∠EDF,进而得到答案.【详解】解:∵∠B=∠C,BD=CE,BF=CD,∴△BFD≌△CDE,∴∠BFD=∠EDC,∴∠B+∠BFD+∠BDF=∠BDF+∠EDF+∠EDC,∴∠B=∠EDF,又∵∠B=∠C=18019022AA ︒-∠=︒-∠,∴∠EDF=1902A︒-∠,故选:C.【点睛】本题考查全等三角形的判定与性质、等腰三角形的性质以及三角形内角和定理,根据全等三角形的性质找出∠BFD=∠EDC是解题的关键.8.A解析:A【分析】根据已知条件,已知两角对应相等,所以要证两三角形全等,可以根据角边角、角角边、边角边判定定理添加条件,再根据选项选取答案即可;【详解】题意已知:∠A=∠D,∠B=∠E,∴①根据“ASA”可添加AB=DE,故①正确;②根据“AAS” 可添加AC=DF,故②正确;③根据“AAS” 可添加BC=EF,故③错误;④根据“ASA”可添加AB=DE,故④错误;所以补充①②可判定两三角形全等;故选:A.【点睛】本题主要考查了三角形全等的判定,根据不同的判定方法可选择不同的条件,所以对三角形全等的判定定理要熟练掌握并归纳总结;9.D解析:D【分析】利用三角形的外角性质,对顶角相等逐一判断即可.【详解】∵∠1=∠2,∠A=∠C,∠1=∠A+∠D,∠2=∠B+∠C,∴∠B=∠D,∴选项A、B正确;∵∠2=∠A+∠D,∠>∠,∴2D∴选项C正确;∠=∠没有条件说明C D故选:D.【点睛】本题考查了对顶角的性质,三角形外角的性质,熟练掌握并运用两条性质是解题的关键. 10.D解析:D【分析】根据两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线对各小题分析判断即可得解.【详解】解:A 、射线AB 和射线BA 是不同的射线,故本选项不符合题意;B 、连接两点的线段的长度叫两点间的距离,故本选项不符合题意;C 、两点之间,线段最短,故本选项不符合题意;D 、七边形的对角线一共有7(73)142条,正确 故选:D【点睛】本题考查了两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线,熟练掌握概念是解题的关键. 11.C解析:C【分析】分别利用直线、射线、线段的定义、角的概念和角平分线的定义以及多边形对角线的求法分析得出即可.【详解】解:①把一个角分成两个角的射线叫做这个角的角平分线,故原说法错误;②连接C 、D 两点的线段的长度叫两点之间的距离,故原说法错误;③两点之间线段最短,故原说法错误;④射线上点的个数与直线上点的个数没有关系,故原说法错误;⑤n 边形从其中一个顶点出发连接其余各顶点,可以画出()3n -条对角线,这些对角线把这个n 边形分成了()2n -个三角形,此说法正确.所以,正确的说法只有1个,故选:C .【点睛】此题主要考查了直线、射线、线段的定义以及角的概念和角平分线的定义等知识,正确把握相关定义是解题关键.12.D解析:D【分析】由折叠的性质可求得'B AB D ∠=∠,利用三角形内角和及外角的性质列方程求解.【详解】解:由题意可得'B AB D ∠=∠∵80,BAC ∠=︒∴∠B+∠C=100°又∵'='=20B AB D C B DC C ∠=∠+∠+∠∠,∴∠C+20°+∠C=100°解得:∠C=40°故选:D .【点睛】本题考查三角形内角和及外角的性质,找准角之间的等量关系列出方程正确计算是解题关键.二、填空题13.16【分析】根据线段的垂直平分线的性质得到EB =EAAF =FC 根据三角形的周长公式计算得到答案【详解】解:∵DE 是AB 边的垂直平分线∴EB =EA ∵FG 是AC 边的垂直平分线∴AF =FC ∴△AEF 的周长解析:16【分析】根据线段的垂直平分线的性质得到EB =EA 、AF =FC ,根据三角形的周长公式计算,得到答案.【详解】解:∵DE 是AB 边的垂直平分线,∴EB =EA ,∵FG 是AC 边的垂直平分线,∴AF =FC ,∴△AEF 的周长=AF+AE+EF=FC+BE+EF=EC+EF+BE+EF=BC+2EF=10+6=16,故答案为:16.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.14.70【分析】根据三角形的外角和定理得和再根据轴对称的性质得和列式求出的值即可得到结果【详解】解:∵是的外角∴∵是的外角∴∵与关于边OB 所在的直线成轴对称∴∴即解得∴故答案是:【点睛】本题考查轴对称的 解析:70【分析】根据三角形的外角和定理,得ADC A ABC ∠=∠+∠和ADC BOD OBD ∠=∠+∠,再根据轴对称的性质得12OBD ABC ∠=∠和22C A ∠=∠=︒,列式求出ABC ∠的值,即可得到结果.【详解】解:∵ADC ∠是ABD △的外角, ∴ADC A ABC ∠=∠+∠, ∵ADC ∠是BOD 的外角, ∴ADC BOD OBD ∠=∠+∠, ∵AOB 与COB △关于边OB 所在的直线成轴对称, ∴12OBD ABC ∠=∠,22C A ∠=∠=︒, ∴12A ABC BOD ABC ∠+∠=∠+∠, 即122462ABC ABC ︒+∠=︒+∠, 解得48ABC ∠=︒, ∴224870ADC A ABC ∠=∠+∠=︒+︒=︒.故答案是:70.【点睛】本题考查轴对称的性质和三角形外角和定理,解题的关键是熟练运用这两个性质定理进行求解.15.5或12【分析】本题要分情况讨论:①Rt △ABC ≌Rt △DAE 此时AE=BC=5可据此求出E 点的位置②Rt △CBA ≌Rt △DAE 此时AE=AB=12EB 重合【详解】解:①当AE=CB 时∵∠B=∠EA解析:5或12【分析】本题要分情况讨论:①Rt △ABC ≌Rt △DAE ,此时AE=BC=5,可据此求出E 点的位置.②Rt △CBA ≌Rt △DAE ,此时AE=AB=12,E 、B 重合.【详解】解:①当AE=CB 时,∵∠B=∠EAP=90°,在Rt △ABC 与Rt △DAE 中,AE CB DE AC=⎧⎨=⎩, ∴Rt △ABC ≌Rt △DAE (HL ),即AE=BC=5;②当E 运动到与B 点重合时,AE=AB ,在Rt △CBA 与Rt △DAE 中,AE AB DE AC =⎧⎨=⎩, ∴Rt △CBA ≌Rt △DAE (HL ),即AE=AB=12,∴当点E 与点B 重合时,△CBA 才能和△DAE 全等.综上所述,AE=5或12.故答案为:5或12.【点睛】本题考查了三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.16.32°【分析】由HL 可证明△ADE ≌△ADC 得出∠ADE =∠ADC =61°再根据直角三角形两个锐角互余即可得出结论【详解】解:∵DE ⊥AB ∴∠AED =90°=∠DEB 在Rt △ADE 和Rt △ADC 中∴解析:32°【分析】由HL 可证明△ADE ≌△ADC ,得出∠ADE =∠ADC =61°,再根据直角三角形两个锐角互余即可得出结论.【详解】解:∵DE ⊥AB ,∴∠AED =90°=∠DEB ,在Rt △ADE 和Rt △ADC 中,AD AD AE AC =⎧⎨=⎩, ∴Rt △ADE ≌Rt △ADC (HL ),∴∠ADE =∠ADC =61°,∴∠BDE =180°﹣61°×2=58°,∴∠B =90°﹣58°=32°.故答案为:32°.【点睛】本题考查了全等三角形的判定及性质问题,解题的关键是能够熟练掌握全等三角形的判定及性质.17.2或【分析】分点Q 在BC 上和点Q 在AC 上根据全等三角形的性质分情况列式计算【详解】由题意得AP =3tBQ =2tAC =8cmBC =6cmCP =8﹣3tCQ =6﹣2t①如图当与全等时PC=QC 解得;②如解析:2或145. 【分析】分点Q 在BC 上和点Q 在AC 上,根据全等三角形的性质分情况列式计算.【详解】由题意得,AP =3t ,BQ =2t ,AC =8cm ,BC =6cm ,∴ CP =8﹣3t ,CQ =6﹣2t ,①如图,当PMC △与QNC 全等时,PC=QC ,6283t t -=-,解得2t =;②如图,当PMC △与QNC 全等时,点P 已运动至BC 上,且与点Q 相遇, 则PC=QC ,6238t t -=-,解得145t =;故答案为:2或145. 【点睛】 本题考查了全等三角形的性质,掌握全等三角形对应边相等是解决问题的关键. 18.25°【分析】先求出∠A 的度数再根据折叠的性质可得∠E 的度数根据平行线的性质求出∠ADE 的度数进而即可求解【详解】∵∴∠A=40°∵沿折叠后点B 落在点E 处∴∠E=∠B=50°∵∴∠ADE=∠E=50解析:25°【分析】先求出∠A 的度数,再根据折叠的性质可得∠E 的度数,根据平行线的性质求出∠ADE 的度数,进而即可求解.【详解】∵90,50ACB B ︒︒∠=∠=,∴∠A=40°,∵BCD △沿CD 折叠后,点B 落在点E 处,∴∠E=∠B=50°,CE AB,∵//∴∠ADE=∠E=50°,∴∠BDC=∠EDC=(180°-50°)÷2=65°,∴∠ACD=∠BDC-∠A=65°-40°=25°,故答案是:25°.【点睛】本题主要考查折叠的性质,三角形外角的性质,平行线的性质,直角三角形的性质,掌握平行线的性质以及三角形外角的性质,是解题的关键.19.2【分析】根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠A+∠B∠D+∠E再根据邻补角表示出∠CGF然后利用三角形的内角和定理列式整理即可得解【详解】解:如图根据三角形的外角性质∠1=∠A解析:2【分析】根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠A+∠B,∠D+∠E,再根据邻补角表示出∠CGF,然后利用三角形的内角和定理列式整理即可得解.【详解】解:如图,根据三角形的外角性质,∠1=∠A+∠B,∠2=∠D+∠E,∵∠3=180°-∠CGE=180°-α,∴∠1+∠F+180°-α=180°,∴∠A+∠B+∠F=α,同理:∠2+∠C+180°-α=180°,∴∠D+∠E+∠C=α,∴∠A+∠B+∠C+∠D+∠E+∠F=2α.故答案为:2α【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,准确识图是解题的关键.20.2或6【分析】利用面积法求出BD即可求得CD再分AE在内部和外部求出DE即可【详解】解:为的高△ABD的面积为14AE=7∴∵为的中线∴CD=BD=4当AE在内部时∵CE=2∴DE=CD-CE=2当解析:2或6【分析】利用面积法求出BD ,即可求得CD ,再分AE 在ABC 内部和外部,求出DE 即可.【详解】解:AE 为ABC 的高,△ABD 的面积为14,AE=7, 1142∴⋅⋅=BD AE , ∴2828=4,B 7D ==AE ∵AD 为ABC 的中线,∴CD=BD=4, 当AE 在ABC 内部时∵CE=2, ∴DE=CD-CE=2,当AE 在ABC 外部时∵CE=2,∴DE=CD+CE=6,故答案为:2或6【点睛】本题考查三角形的高、中线和面积,注意高可在三角形的内部和外部是解题的关键.三、解答题21.(1)点P 、Q 运动103秒后,可得到等边三角形APQ ;(2)点P 、Q 运动10秒后,P 、Q 两点重合;(3)当点P 、Q 在BC 边上运动时,能得到以PQ 为底边的等腰三角形,此时P 、Q 运动的时间为403秒. 【分析】(1)设点P 、Q 运动t 秒后,可得到等边三角形APQ ,利用,AP AQ = 列方程,解方程可得答案;(2)设点P 、Q 运动x 秒后,P 、Q 两点重合,由追及问题中的相等关系:Q 的运动路程等于P 的运动路程加上相距的路程,列方程,解方程即可得到答案;(3)当点P 、Q 在BC 边上运动时,可以得到以PQ 为底边的等腰三角形.先证明:ACP △≌ABQ △,可得CP BQ =,再列方程,解方程并检验即可得到答案.【详解】解:(1)设点P 、Q 运动t 秒后,可得到等边三角形APQ ,如图①,AP t =,102AQ AB BQ t =-=-,∵三角形APQ 是等边三角形,,AP AQ ∴=∴102t t =-,解得103t =, ∴点P 、Q 运动103秒后,可得到等边三角形APQ .(2)设点P 、Q 运动x 秒后,P 、Q 两点重合,102x x +=,解得:10x =.∴点P 、Q 运动10秒后,P 、Q 两点重合.(3)当点P 、Q 在BC 边上运动时,可以得到以PQ 为底边的等腰三角形.理由如下: 由(2)知10秒时P 、Q 两点重合,恰好在C 处,如图②,假设APQ 是等腰三角形,∴AP AQ =,∴APQ AQP ∠=∠,∴APC AQB ∠=∠,∵ACB △是等边三角形,∴C B ∠=∠,在ACP △和ABQ △中,,,,AC AB C B APC AQB =⎧⎪∠=∠⎨⎪∠=∠⎩, ∴ACP △≌ABQ △,∴CP BQ =,设当点P 、Q 在BC 边上运动时,P 、Q 运动的时间y 秒时,APQ 是等腰三角形, 由题意得:10CP y =-,302QB y =-,∴ 10302y y -=-, 解得:403y =, P 的最长运动时间为2020,1s = Q 从B A C B →→→的最长时间为30=152s , 由403<15, ∴ 403y =符合题意, ∴当点P 、Q 在BC 边上运动时,能得到以PQ 为底边的等腰三角形,此时P 、Q 运动的时间为403秒. 【点睛】 本题考查的是三角形全等的判定与性质,等腰三角形的判定与性质,等边三角形的判定与性质,动点问题,掌握以上知识是解题的关键.22.(1)30;(2)AB=AC ;证明详见解析.【分析】(1)根据含30°角的直角三角形的性质解答即可;(2)利用等边三角形的判定即可解答;利用等边三角形的性质和全等三角形的判定证得△BAM ≌△CAN (SAS ),利用全等三角形的性质即可求证结论.【详解】(1)当∠BAM=30°时,∴∠AMB=180°﹣60°﹣30°=90°,∴AB=2BM ;故答案为30;(2)添加一个条件AB=AC ,可得△ABC 为等边三角形;故答案为AB=AC ;①∵△ABC 与△AMN 是等边三角形,∴BC =AB=AC ,AM=AN ,∠BAC=∠MAN=60°,∴∠BAC ﹣∠MAC=∠MAN ﹣∠MAC ,即∠BAM=∠CAN ,∴△BAM ≌△CAN (SAS ),∴BM=CN ,∴BM +CM=CN +CM即BC =AC =CN +CM .【点睛】本题考查等边三角形的判定及性质、全等三角形的判定及性质、含30°角的直角三角形的性质,解题的关键是熟练掌握所学知识.23.见解析【分析】由BE =CF 得BF =CE ,由AB ⊥CB ,DC ⊥CB 得到∠ABF =∠DCE =90°,然后根据“HL ”可判断Rt ABF ≌Rt DCE ,则AB =DC 即可.【详解】证明:∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE ,∵AB ⊥CB ,DC ⊥CB ,∴∠ABF =∠DCE =90°,∵在Rt ABF 和Rt DCE 中,AF DE BF CE =⎧⎨=⎩, ∴Rt ABF ≌Rt DCE (HL ),∴AB =DC .【点睛】本题考查了直角三角形的判定与性质:有一组直角边和斜边对应相等的两直角三角形全等;全等三角形的对应角相等,对应边相等.24.见详解【分析】欲证明AE=BC ,只要证明△AEF ≌△BCD 即可.【详解】证明:∵EF ∥CD ,AE ∥BC ,∴∠A=∠B ,∠EFD=∠CDB ,∵AD=BF ,∴AF=DB ,在△AEF 和△BCD 中,A B AF BD EFA CDB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEF ≌△BCD ,∴AE=BC .【点睛】本题考查全等三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.25.(1)15°;(2)1122a β-;(3)1122a β-,理由见解析;(4)75°. 【分析】(1)根据三角形的内角和180°解得=70BCA ∠︒、20DCA ∠=︒,再根据角平分线的性质,得到35ACE ∠=︒,最后由DCE ACE DCA ∠=∠-∠解题即可;(2)根据三角形的内角和180°解得BCA ∠、DCA ∠的度数,再根据角平分线的性质,得到ACE ∠的度数,最后由DCE ACE DCA ∠=∠-∠解题即可;(3)根据三角形的内角和180°解得BCA ∠、DCA ∠的度数,再根据角平分线的性质,得到BCE ∠的度数,最后由DCE BCD BCE ∠=∠-∠解题即可;(4)根据角平分线的性质,12FCE ECA FCA ∠=∠=∠,结合三角形一个外角等于不相邻的两个内角和,解得1()2ECA αβ∠=+,根据三角形的内角和180°解得DCA ∠的度数,最后由DCE DCA ACE ∠=∠+∠解题即可.【详解】(1)180BAC B BCA ∠+∠+∠=︒,70,40BAC B ∠=︒∠=︒=180704070BCA ∴∠︒-︒-︒=︒ CE 平分BCA ∠11703522ACE BCA ∴∠=∠=⨯︒=︒, CD AB ⊥180907020DCA ∴∠=︒-︒-︒=︒352015DCE ACE DCA ∴∠=∠-∠=︒-︒=︒;(2)若(),BAC B αβαβ∠=∠=∠>,=180BCA αβ∴∠︒-- CE 平分BCA ∠1111(180)902222ACE BCA αβαβ∴∠=∠=︒--=︒--, CD AB ⊥1809090DCA αα∴∠=︒-︒-=︒-11119022(90)22DCE ACE DCA αβαβα∴∠=∠-∠=-︒-=︒---, 故答案为:1122a β-; (3)若将ABC 换成钝角三角形,(),BAC B αβαβ∠=∠=∠>,=180BCA αβ∴∠︒-- CE 平分BCA ∠1111(180)902222BCE ACE BCA αβαβ∴∠=∠=∠=︒--=︒--, CD AB ⊥1809090BCD ββ∴∠=︒-︒-=︒-DCE BCD BCE ∴∠=∠-∠1190(90)22βαβ=︒--︒-- 01190229βαβ︒+=︒--+ 1122αβ=- 故答案为:1122αβ-; (4)CE 是ABC 外角ACF ∠的平分线,12FCE ECA FCA ∴∠=∠=∠ 由三角形的外角性质得,11=()22FCE ECA FCA αβ∴∠=∠=∠+ CD AB ⊥1809090ACD αα∴∠=︒-︒-=︒-DCE ACD ACE ∴∠=∠+∠190()2ααβ=︒-++ 119022αβ=︒-+190()2αβ=︒-- 30αβ-=︒19030752DCE ∴∠=︒-⨯︒=︒ 故答案为:75︒.【点睛】本题考查角平分线的性质、三角形内角和180°、三角形外角性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.26.∠COD =70°【分析】利用对顶角相等可得∠AOM 的度数,再利用角平分线的定义和垂线定义进行计算即可.【详解】解:∵∠BON =20°,∴∠AOM =20°,∵OA 平分∠MOD ,∴∠AOD =∠MOA =20°,∵OC ⊥AB ,∴∠AOC =90°,∴∠COD =90°﹣20°=70°.【点睛】本题考查了垂线,关键是掌握对顶角相等,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.。
浙江宁波八校联考2024年上学期八年级期中数学试卷+答案

八年级(上)期中数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A. B. C. D.2.若aa<bb,则下列不等式中成立的是( )A. aa−3>bb−3B. aa+3>bb+3C. −3aa>−3bbD. aa3>bb33.等腰三角形的底角等于50∘,则这个等腰三角形顶角的度数是( )A. 50∘B. 65∘C. 80∘D. 100∘4.如图,点E、H、G、N共线,∠EE=∠NN,EEEE=NNNN,添加一个条件,不能判断△EEEEEE≌△NNNNNN的是( )A. EENN=NNEEB. ∠EE=∠NNC. EEEE=NNNND. EEEE//NNNN5.如图,△AAAAAA中,D为AB中点,E在AC上,且AAEE⊥AAAA.若DDEE=5,AAEE=8,则BE的长度是( )A. 5B. 5.5C. 6D. 6.56.给出下列命题:①三角形任何两边之和大于第三边;②三角形任何一外角等于两内角之和;③两边和一角对应相等的两个三角形全等,下列属于真命题的是( )A. ①③B. ②③C. ①②D. ①7.如图,在△AAAAAA中,∠AAAAAA为钝角.用直尺和圆规在边AB上确定一点DD.使∠AADDAA=2∠AA,则符合要求的作图痕迹是( )A. B.C. D.8.若一个直角三角形的两边长分别为3和4,则它的第三边长为( )A. 5B. √ 7C. 5或4D. 5或√ 79.如图,在矩形ABCD中,AAAA=6,AADD=3,将△AAAADD沿对角线BD翻折,点C落在点AA′处,AAAA′交AD 于点E,则线段DE的长为( )A. 3B. 154C. 5D. 15210.如图点P是∠AAAAAA内任意一点,且∠AAAAAA=40∘,点M和点N分别是射线OA和射线OB上的动点,当△PPNNNN周长取最小值时,则∠NNPPNN的度数为( )A. 140∘B. 100∘C. 50∘D. 40∘二、填空题:本题共6小题,每小题4分,共24分。
台州市八年级上学期期中数学试卷
台州市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2020八上·柳州期末) 如图,平分,,,垂足分别为、,若,则()A .B .C .D .2. (2分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当点A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是()A .B . 2C . 3D . 23. (2分) (2016七下·乐亭期中) 如图,直线AB∥CD,BC平分∠AB D,∠1=65°,则∠2的度数为()A . 65°B . 50°C . 45°D . 40°4. (2分) (2016八上·达县期中) 不等式≤﹣ x+ 的解集在数轴上表示正确的是()A .B .C .D .5. (2分) (2020七下·思明月考) 关于x的不等式组恰好只有两个整数解,则a的取值范围为()A . 5≤a<6B . 5<a≤6C . 4≤a<6D . 4<a≤66. (2分) (2020八下·深圳期中) 若,则下列结论正确的是()A .B .C .D .7. (2分) (2020八下·灯塔月考) 不等式的非负整数解有()A . 1个B . 2个C . 3个D . 4个8. (2分)用数学的方式理解“当窗理云鬓,对镜贴花黄”和“坐地日行八万里”(只考虑地球的自转),其中蕴含的图形变换是()A . 平移和旋转B . 对称和旋转C . 对称和平移D . 旋转和平移9. (2分)(2020·北京模拟) 下列四个图形是四所医科大学的校徽,其中校徽内部图案(不含文字)是轴对称图形的是()A .B .C .D .10. (2分) (2016八上·江阴期中) 如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2016次后,顶点A在整个旋转过程中所经过的路程之和是()A . 2015πB . 3019.5πC . 3018πD . 3024π二、填空题 (共8题;共9分)11. (1分)(2019·资阳) 给出以下命题:①平分弦的直径垂直于这条弦;②已知点、、均在反比例函数的图象上,则;③若关于x的不等式组无解,则;④将点向左平移3个单位到点,再将绕原点逆时针旋转90°到点,则的坐标为.其中所有真命题的序号是________.12. (2分)(2019·婺城模拟) 在△ABC中,AB=,BC=6,∠B=45°,D为BC边上一点将△ABC沿着过D点的直线折叠,使得点C落在AB边上,记CD=m,则AC=________,m的取值范围是________13. (1分)王老师带领学生到植物园参观,门票每张5元,购票才发现所带的钱不足,售票处工作人员告诉他:如果参观人数50人以上(含50人),可以按团体票享受8折优惠,于是王老师买了50张票,结果发现所带的钱还有剩余,那么王老师和他的学生至少有________人.14. (1分)(2019·越城模拟) △ABC的顶点都在方格纸的格点上,则sinA=________.15. (1分) (2018八上·长春开学考) 在△ABC中,∠C=90°,AC=BC ,将△ABC绕点A按顺时针方向旋转60°到△AB’C’的位置,连结C’B、BB’ ,则∠BB’C’=________.16. (1分)(2018·兰州) 不等式组的解集为________17. (1分)一副含和角的三角板和叠合在一起,边与重合,(如图1),点为边的中点,边与相交于点.现将三角板绕点按顺时针方向旋转(如图2),在从到的变化过程中,点相应移动的路径长为________.(结果保留根号)18. (1分)如图,平行四边形 ABCD 中,A(﹣1,0)、B(0,﹣2),顶点 C、D 在双曲线 y= (x>0)上,边 AD 交 y 轴于点 E,若点 E 恰好是 AD 的中点,则 k=________.三、解答题 (共8题;共80分)19. (5分)如图,AB是半圆O的直径,D是半圆上的一点,∠DOB=75°,DC交BA的延长线于E,交半圆于C,且CE=AO,求∠E的度数.20. (10分)某乡镇风力资源丰富,为了实现低碳环保,该乡镇决定开展风力发电,打算购买10台风力发电机组.现有A,B两种型号机组,其中A型机组价格为12万元/台,月均发电量为2.4万kw.h;B型机组价格为10万元/台,月均发电量为2万kw.h.经预算该乡镇用于购买风力发电机组的资金不高于105万元.(1)请你为该乡镇设计几种购买方案;(2)如果该乡镇用电量不低于20.4万kw.h/月,为了节省资金,应选择那种购买方案?21. (10分)(2017·濮阳模拟) 绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A,B两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:种植户种植A类蔬菜面积(单位:亩)种植B类蔬菜面积(单位:亩)总收入(单位:元)甲3112500乙2316500说明:不同种植户种植的同类蔬菜每亩的平均收入相等;亩为土地面积单位.(1)求A、B两类蔬菜每亩的平均收入各是多少元;(2)某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.22. (10分)(2017·绍兴模拟) “低碳环保,你我同行”.两年来,绍兴市区的公共自行车给市民出行带来切实方便.如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为20cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2,图3是公共自行车车桩的截面示意图,PQ⊥PM,PM⊥MN,点Q,N在GO上,GO∥HF,PQ=80cm,PM=24cm,QN=25cm,GH=4cm.(1)求车架档AD的长;(2)求车座点E到车架档AB的距离及车桩的截面示意图中的点P到地面的距离.(结果精确到1cm.参考数据:sin75°≈0.97,cos75°≈0.26,tan75≈3.73)23. (10分) (2019七上·潮南期末) 如图,等边三角形纸片ABC中,点D在边AB(不包含端点A、B)上运动,连接CD ,将∠ADC对折,点A落在直线CD上的点A′处,得到折痕DE;将∠BDC对折,点B落在直线CD上的点B′处,得到折痕DF .(1)若∠ADC=80°,求∠BDF的度数;(2)试问∠EDF的大小是否会随着点D的运动而变化?若不变,求出∠EDF的大小;若变化,请说明理由.24. (10分) (2016八上·吉安开学考) 在如图所示的正方形网格中,已知△ABC的三个顶点分别是格点A ,B ,C .(1)请在正方形网格中作△A1B1C1 ,使它与△ABC关于直线m成轴对称,其中点A1 , B1 , C1分别是A ,B , C的对称点.(2)若网格中小正方形的边长为1,求四边形BCC1B1的面积.25. (10分) (2017九上·重庆开学考) 如图,在8×8的方格中建立平面直角坐标系,有点A(﹣2,2)、B (﹣3,1)、C(﹣1,0),P(a,b)是△ABC的AC边上点,将△ABC平移后得到△A1B1C1 ,点P的对应点为P1(a+4,b+2).(1)画出平移后的△A1B1C1 ,写出点A1、C1的坐标;(2)若以A、B、C、D为顶点的四边形为平行四边形,写出方格中D点的坐标.26. (15分) (2020八上·广元期末) 如图1,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A、B分别在x轴与y轴上,已知OA=6,OB=10.点D为y轴上一点,其坐标为(0,2),点P从点A出发以每秒2个单位的速度沿线段AC﹣CB的方向运动,当点P与点B重合时停止运动,运动时间为t秒.(1)当点P经过点C时,求直线DP的函数解析式;(2)①求△OPD的面积S关于t的函数解析式;②如图②,把长方形沿着OP折叠,点B的对应点B′恰好落在AC边上,求点P的坐标.(3)点P在运动过程中是否存在使△BDP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共80分)19-1、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。
浙江省台州市2021版八年级上学期数学期中考试试卷C卷
浙江省台州市 2021 版八年级上学期数学期中考试试卷 C 卷姓名:________班级:________成绩:________一、 单选题 (共 10 题;共 20 分)1. (2 分) (-3)2 的相反数是( )A . -9B.C. D.9 2. (2 分) (2019 八下·金华期中) 下面计算正确的是( ) A. B.C. D.3. (2 分) (2019 七下·丹江口期中) 若都是实数,且,则的平方根为()A.B.C.D.4. (2 分) (2019 八下·乐陵期末) 如果下列各组数是三角形的三边长,那么能组成直角三角形的一组数是()A. , ,B. , ,C.,,D. , ,5. (2 分) (2020 七上·文登期末) 一架长的梯子斜靠在培上,梯子底端到墙的距高为端下滑 ,那么梯子底端在水平方向上滑动了( )A.B . 小于第 1 页 共 16 页.若梯子顶C . 大于 D . 无法确定 6. (2 分) (2020 八上·吴兴期末) 如图为小平与小聪微信对话记录,根据两人的对话记录,若下列有一种 走法能从科技馆出发走到小平家,则可行的是( )A . 向北直走 200 米,再向东直走 1200 米 B . 向北直走 200 米,再向西直走 1200 米 C . 向北直走 500 米,再向东直走 700 米 D . 向北直走 700 米,再向西直走 500 米 7. (2 分) (2020 八下·曲阳期末) A(-2,-3)到 x 轴的距离为( ) A . -2 B . -3 C.3 D.2 8. (2 分) 已知 M(0,2)关于 x 轴对称的点为 N,线段 MN 的中点坐标是( ) A . (0,-2) B . (0,0) C . (-2,0) D . (0,4) 9. (2 分) (2017·平川模拟) 已知 k1<0<k2 , 则函数 b=﹣1<0∴和 y= 的图象大致是( )A.第 2 页 共 16 页B.C.D. 10. (2 分) 一辆汽车和一辆摩托车分别从 A,B 两地去同一个城市,它们离 A 地的路程随时间变化的图象如 图所示.则下列结论:①摩托车比汽车晚到 1h;②A,B 两地的路程为 20km;③摩托车的速度为 45km/h,汽车的速 度为 60km/h;④汽车出发 1 小时后与摩托车相遇,此时距 B 地 40 千米.其中正确结论的个数是( )A . 2个 B . 3个 C . 4个 D . 1个二、 填空题 (共 6 题;共 6 分)11. (1 分) (2019 八上·郑州开学考) 实数中的无理数是________.12. (1 分) (2017 八上·郑州期中) 如图,已知 OA=OB,那么数轴上点 A 表示的数是________第 3 页 共 16 页13. (1 分) (2018 八下·韶关期末) 如图①,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人 们称它为“赵爽弦图”.此图案的示意图如图②,其中四边形 ABCD 和四边形 EFGH 都是正方形,△ABF、△BCG、△CDH、 △DAE 是四个全等的直角三角形.若 EF=2,DE=8,则 AB 的长为________.14. (1 分) (2017 七下·五莲期末) 某点 M(a,a+2)在 x 轴上,则 a=________. 15. (1 分) (2019 七下·茂名期中) 快餐每盒 5 元,买 n 盒需付 m 元,则其中常量是________.16. (1 分) (2018 八下·江门月考) 若函数是一次函数,则 m=________,且 随 的增大而________三、 解答题 (共 7 题;共 29 分)17. (10 分) (2017·毕节) 计算:(﹣ )﹣2+(π﹣ )0﹣| ﹣ |+tan60°+(﹣1)2017 . 18. (1 分) (2019 七上·潮阳期末) 比较大小:-|+4|________-|-7| 19. (1 分) 古城黄州以其名胜古迹吸引了不少游客.从地图上看,较有名的六外景点在黄州城内的分布是∶ 东坡赤壁在市政府以西 2km 再往南 3km 处,黄冈中学在市政府以东 1 km 处,宝塔公园在市政府以东 3km 处,鄂黄 长江桥在市政府以东 7 km 再往北 8 km 处,遗爱湖在市政府以东 4km 再往北 4km 处,博物馆在市政府以北 2 km 再 往西 1 km 处。
浙江省台州市八年级上学期期中数学试卷
浙江省台州市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2016八上·自贡期中) 若一个正n边形的一个外角为45°,则n等于()A . 6B . 8C . 10D . 122. (2分) (2018八上·洛阳期中) 如图,小明把一块三角形玻璃打碎成三块,现在要到玻璃店去配一块完全一样的玻璃,则最省事的方法是带第③块去,理由是根据全等的判定定理()A . SASB . AASC . SSSD . ASA3. (2分) (2016八上·达县期中) 如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为()A .B . 1C .D . 24. (2分)在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100° ,那么△ABC中与这个角对应的角是()A . ∠AB . ∠BC . ∠CD . ∠D5. (2分)如图,AD⊥BC,GC⊥BC,CF⊥AB,D,C,F是垂足,下列说法中错误的是()A . △ABC中,AD是BC边上的高B . △ABC中,GC是BC边上的高C . △GBC中,GC是BC边上的高D . △GBC中,CF是BG边上的高6. (2分)(2017·北仑模拟) 下列全国各地地铁标志图中,既是轴对称图形又是中心对称图形的是()A .B .C .D .7. (2分)点(-2,4)关于x轴对称的点的坐标是()A . (-2,-4)B . (-2,4)C . (2-4)D . (2,4)8. (2分)如图,在△ABC中,∠A=30°,∠ABC=50°,∠ACB=100°,△EDC≌△ABC,且A、C、D在同一条直线上,则∠BCE=()A . 20°B . 30°C . 40°D . 50°二、填空题 (共7题;共8分)9. (2分)已知:△ABC≌△A′B′C′,∠A=∠A′,∠B=∠B′,∠C=70°,AB=15cm,则∠C′=________ 度,A′B′=________ cm.10. (1分) (2015八上·北京期中) 如图,已知△ABC是等边三角形,点D、E在BC的延长线上,G是AC上一点,且CG=CD,F是GD上一点,且DF=DE,则∠E=________度.11. (1分) (2016八上·阜康期中) 一个多边形的外角和是内角和的,则这个多边形的边数为________.12. (1分) (2018八上·天河期末) 等腰三角形的两条边长分别为8cm和6cm,则它的周长是________cm.13. (1分)如图,在Rt△ABC中,∠C=90°,AB=8,AD平分∠BAC,交BC边于点D,若CD=2,则△ABD的面积为________ .14. (1分)如图,三角形△ABC中,∠OAB=∠AOB=15°,点B在x轴的正半轴,坐标为B(6 ,0).OC 平分∠AOB,点M在OC的延长线上,点N为边OA上的点,则MA+MN的最小值是________.15. (1分) (2017八上·东台期末) 如图,在△ABC中,AD⊥BC于D点,BD=CD,若BC=6,AD=5,则图中阴影部分的面积为________.三、解答题 (共8题;共66分)16. (6分)如图,格点△ABD在8×14的正方形网格中,边BD在直线l上.(1)请画出△ABD关于直线l对称的△CBD(2)画出将四边形ABCD向右平移5格后的四边形A1B1C1D1,则AD1=________17. (5分)如图,已知E、F分别是△ABC的边AB、AC上的两个定点,问在边BC上能否找到一点M,使得△EFM 的周长最小?如果能,请作出来。
浙江省台州市温岭市2019-2020学年八年级上学期期中数学试题(解析版)
浙江省台州市温岭市2019-2020学年八年级上学期期中数学试题一、选择题(本大题10小题,每小题3分,共30分.在每小题列出的四个选项中,只有一个是正确的,请把正确答案选项的字母填在对应的括号里)1. 下面所给的交通标志图中是轴对称图形的是( A )A. B. C. D.2.如图,一个三角形被纸板挡住了一部分,我们还能够画出一个与它完全重合的三角形,其原理是判定两个三角形全等的基本事实或定理,本题中用到的基本事实或定理是( D )A. SSSB. SASC. HLD. ASA3.一个多边形的每一个外角都等于45°,那么这个多边形的内角和为( B )A. 1260°B. 1080°C. 1620°D. 360°4.如图,△ABC≌△BAD,A和B.C和D分别是对应顶点,若AB=6cm,AC=5cm,BC=4cm,则AD的长为( C )A. 6cmB. 5cmC. 4cmD. 以上都不对5.如图,AD是△ABC的外角∠EAC的平分线,AD∥BC,∠B=32°,则∠C的度数是( B )A. 64°B. 32°C. 30°D. 40°6.如图,在△ABC中,∠BAC=90°,AB=3,AC=4,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是( B )A. 3B. 4C. 5D. 67.如图,在△ABC 中,画出AC 边上的高,正确的图形是( C )A. B. C. D.8.如图所示的仪器中,OD =OE ,CD =CE.小州把这个仪器往直线l 上一放,使点D ,E 落在直线l 上,作直线OC ,则OC⊥l,他这样判断的理由是( C )A. 到一个角两边距离相等的点在这个角的平分线上B. 角平分线上的点到这个角两边的距离相等C. 到线段两端点距离相等的点在这条线段的垂直平分线上D. 线段垂直平分线上的点到线段两端点的距离相等9.如图,锐角ABC 中,BC AB AC >>,若想找一点P ,使得BPC ∠与A ∠互补,甲、乙、丙三人作法分别如下:甲:以B 为圆心,AB 长为半径画弧交AC 于P 点,则P 即为所求; 乙:分别以B ,C圆心,AB ,AC 长为半径画弧交于P 点,则P 即为所求;丙:作BC 的垂直平分线和BAC ∠的平分线,两线交于P 点,则P 即为所求. 对于甲、乙、丙三人的作法,下列叙述正确的是( B )A. 三人皆正确B. 甲、丙正确,乙错误C. 甲正确,乙、丙错误D. 甲错误,乙、丙正确10.如图,等腰Rt △ABC 中,∠BAC =90°,AD ⊥BC 于D ,∠ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,延长AM 交BC 于点N ,连接DM ,下列结论:①AE =AF ;②DF =DN ;③AE =CN ;④△AMD 和△DMN 的面积相等,其中错误的结论个数是( D )A. 3个B. 2个C. 1个D. 0个二.填空题(本大题10小题,每小题4分,共40分.)11.写出点M(﹣3,3)关于y轴对称的点N的坐标(3,3).12.如图,△ABC中,AD为角平分线,若∠B=∠C=60°,AB=8,则CD的长度为 4 .13.小明从镜子里看到镜子对面电子钟的像,如图所示,实际时间是 10:51 .14.如图,AD是△ABC的中线,若AB:AC=3:4,则S△ABD:S△ACD= 1:1 .15.等腰△ABC周长为18cm,其中两边长的差为3cm,则腰长为 5cm或7cm .16.如图,以正六边形ADHGFE的一边AD为边向外作正方形ABCD,则∠BED= 45 °.17.如图,在△ABC中,已知点O是边AB、AC垂直平分线的交点,点E是∠ABC、∠ACB角平分线的交点,若∠O+∠E =180°,则∠A= 36 度.18.规定:四条边对应相等,四个角对应相等的两个四边形全等.某学习小组在研究后发现判定两个四边形全等需要五组对应条件,于是把五组条件进行分类研究,并且针对二条边和三个角对应相等类型进行研究提出以下几种可能:①AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1;②AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠D=∠D1;③AB=A1B1,AD=A1D1,∠B=∠B1,∠C=∠C1,∠D=∠D1;④AB=A1B1,CD=C1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1.其中能判定四边形ABCD和四边形A1B1C1D1全等的有 3 个.19.在一款名为超级玛丽的游戏中,玛丽到达一个高为10米的高台A,利用旗杆顶部的索,划过90°到达与高台A 水平距离为17米,高为3米的矮台B,玛丽在荡绳索过程中离地面的最低点的高度MN= 2cm .20.如图,在△ABC中,∠C=90°,AC=8cm,BC=6cm,AB=10cm,点E在AC上,现将△BCE沿BE翻折,使点C落在点C′处连接AC′,则AC′长度的最小值是 4cm .三. 解答题21.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD;(2)若AB=CF,∠B=40°,求∠D的度数.解:(1)证明:∵AB∥CD,∴∠B=∠C,在△ABE和△CDF中,∠B=∠C,AE=DF ,∠A=∠D.∴△AEB≌△DFC.∴AB=CD.(2)∵AB=CD,AB=CF,∴CD=CF,∵∠B=∠C=40°,∴∠D=(180°-40°)÷2=70°.22.如图,在3×3的正方形格纸中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中△ABC是一个格点三角形.(1)请在下面每一个备选图中作出一个与△ABC成轴对称的格点三角形.(不能重复)(2)在这个3×3的正方形格纸中,与△ABC成轴对称的格点三角形最多有 6 个.解:(1)与△ABC成轴对称的格点三角形如图所示:(答案不唯一)23.如图,△ABC中,AB=AC,(1)请你利用直尺和圆规完成如下操作:①作△ABC的角平分线A D;②作边AB的垂直平分线EF,EF与AD相交于点P;③连接PB,PC.请你观察图形解答下列问题:(2)线段PA,PB,PC之间的数量关系是 PA=PB=PC ;请说明理由.(3)若∠ABC=70°,求∠BPC的度数.解:(1)如图,AD、EF 、点P为所作;(2)PA=PB=PC,理由:∵AB=AC,AD平分∠BAC,∴AD是BC的垂直平分线,∴PB=PC,∵EP是AB的垂直平分线,∴PA=PB,∴PA=PB=PC;故答案为PA=PB=PC;(3)∵AB=AC,∴∠ABC=∠ACB=70°,∴∠BAC=180°-2×70°=40°,∵AM平分∠BAC,∴∠BAD=∠CAD=20°,∵PA=PB=PC,∴∠ABP=∠BAP=∠ACP=20°,∴∠BPC=∠ABP+∠BAC+∠ACP=20°+40°+20°=80°.24.定义:如果经过三角形一个顶点的线段把这个三角形分成两个小三角形,其中一个三角形是等腰三角形,另外一个三角形和原三角形的三个内角分别相等,那么这条线段称为原三角形的“和谐分割线”,例如:如图1,等腰直角三角形斜边上的中线就是一条“和谐分割线”()1判断下列两个命题是真命题还是假命题(填“真”或“假”)①等边三角形必存在“和谐分割线”②如果三角形中有一个角是另一个角的两倍,则这个三角形必存在“和谐分割线”.命题①是假命题,命题②是真命题;()2如图2,Rt ABC,90AC=,试探索Rt ABC是否存在“和谐分割线”?若存在,C∠=,2B∠=,30求出“和谐分割线”的长度;若不存在,请说明理由.()3如图3,ABC中,42∠=,若线段CD是ABC的“和谐分割线”,且BCD是等腰三角形,求出所有符A∠的度数.合条件的B解:()2Rt ABC存在“和谐分割线”,理由是:∠的平分线,如图作CAB∠=,30∠=,BC90DAB B∴∠=∠=,30∴=,DA DB∴是等腰三角形,且ACD∽BCA,ADB∴线段AD是ABC的“和谐分割线”,43cos3033AC AD ===. ()3如图3中,分2种情形:①当DC DB =,ACD ∽ABC 时,B ACD DCB ∠=∠=∠设B x ∠=,则2ADC x ∠=24218046x x x ∴++==,可得46B ∠=.②当BC BD =,ACD ∽ABC 时,设B x ∠=,则42BDC BCD x ∠=∠=+424218032x x x x ∴++++==,可得32B ∠=.综上所述,满足条件的B ∠的值为46或32.25.在等边三角形ABC 中,点D 是BC 的中点,点E 、F 分别是边AB 、AC (含线段AB 、AC 的端点)上的动点,且∠EDF =120°,小明和小慧对这个图形展开如下研究:问题初探:(1)如图1,小明发现:当∠DEB =90°时,BE +CF =nAB ,则n 的值为 12; 问题再探:(2)如图2,在点E 、F 的运动过程中,小慧发现两个有趣的结论: ①DE 始终等于DF ;②BE 与CF 的和始终不变;请你选择其中一个结论加以证明.成果运用:(3)若边长AB =8,在点E 、F 的运动过程中,记四边形DEAF 的周长为L ,L =DE +EA +AF +FD ,则周长L 取最大值和最小值时E 点的位置? 解:(2)如图,①过点D 作DG ⊥AB 于G ,DH ⊥AC 于H , ∴∠DGB=∠AGD=∠CHD=∠AHD=90°, ∵△ABC 是等边三角形, ∴∠A=60°,∴∠G DH=360°-∠AGD-∠AHD-∠A=120°, ∵∠EDF=120°, ∴∠EDG=∠FDH ,∵△ABC 是等边三角形,且D 是BC 的中点, ∴∠BAD=∠CAD , ∵DG ⊥AB ,DH ⊥AC , ∴DG=DH ,在△EDG 和△FDH 中,90DGE DHF DG DHEDG FDH ∠∠︒⎧⎪⎨⎪∠∠⎩====, ∴△EDG ≌△FDH (ASA ), ∴DE=DF ,即:DE 始终等于DF ; ②同(1)的方法得,BG+CH=12AB , 由①知,△EDG ≌△FDH (ASA ), ∴EG=FH ,∴BE+CF=BG-EG+CH+FH=BG+CH=12AB , ∴BE 与CF 的和始终不变; (3)由(2)知,DE=DF ,BE+CF=12AB , ∵AB=8, ∴BE+CF=4,∴四边形DEAF 的周长为L=DE+EA+AF+FD=DE+AB-BE+AC-CF+DF=DE+AB-BE+AB-CF+DE=2DE+2AB-(BE+CF)=2DE+2×8-4=2DE+12,∴DE最大时,L最大,DE最小时,L最小,当DE⊥AB时,DE最小,L最小,此时∠BDE=90°-60°=30°,BE=12BD=2,当点F和点C重合或点E和点B重合时,DE最大,点F和点C重合时,∠BDE=180°-∠EDF=120°=60°,∵∠B=60°,∴∠B=∠BDE=∠BED=60°,∴△BDE是等边三角形,∴BE=DE=BD=12AB=4,当点E和点B重合时,DE=BD=4,周长L有最大值,即周长L取最大值时点E和点B重合或BE=4,取最小值时BE=2.。