第九章__过___程

合集下载

四年级下册数学目录

四年级下册数学目录

四年级下册数学目录第一章:整数1.1 正数和负数1.2 整数与自然数的关系1.3 整数的比较1.4 整数的加法和减法1.5 整数的乘法和除法第二章:分数的认识2.1 分数的定义2.2 分数的比较2.3 分数的加法和减法2.4 分数的乘法和除法2.5 分数与整数的关系第三章:小数的认识3.1 小数的定义3.2 小数的读写和比较3.3 小数的加法和减法3.4 小数的乘法和除法3.5 小数与分数的关系第四章:长度单位4.1 长度单位的认识4.2 厘米和米的换算4.3 毫米和厘米的换算4.4 公里和米的换算4.5 解决实际问题第五章:时间5.1 时间的认识5.2 时钟和分钟5.3 小时和分钟的换算5.4 AM和PM5.5 解决实际问题第六章:三角形和四边形6.1 三角形的边和角6.2 三角形的分类6.3 四边形的边和角6.4 四边形的分类6.5 解决实际问题第七章:数据和图表7.1 数据和统计7.2 图表的构成元素7.3 直方图和柱状图7.4 折线图和饼图7.5 分析和解读数据第八章:图形和变换8.1 点、线、面8.2 平行和垂直8.3 对称和旋转8.4 平移和缩放8.5 使用图形工具第九章:解方程9.1 方程的认识9.2 一元一次方程9.3 解方程的步骤9.4 解决实际问题9.5 应用与总结以上是四年级下册数学的目录,共包括九个章节。

每个章节都涵盖了不同的数学知识点和技能,从整数、分数、小数到长度单位、时间、图形和变换,最后以解方程为结束。

每个章节都包含了基本的概念和方法,并通过解决实际问题的方式帮助学生加深对数学的理解和应用能力。

通过学习这些内容,学生可以逐渐提高数学解决问题的能力,培养数学思维和逻辑思维能力。

第九章 第二节 第1课时 系统知识——圆的方程、直线与圆的位置关系、圆与圆的位置关系

第九章  第二节 第1课时 系统知识——圆的方程、直线与圆的位置关系、圆与圆的位置关系

第二节圆与方程[考纲要求]1.掌握确定圆的几何要素.2.掌握圆的标准方程与一般方程.3.能根据给定直线、圆的方程判断直线与圆的位置关系.4.能根据给定两个圆的方程判断两圆的位置关系.5.能用直线和圆的方程解决一些简单的问题.6.初步了解用代数方法处理几何问题的思想.第1课时系统知识——圆的方程、直线与圆的位置关系、圆与圆的位置关系圆的方程1.圆的定义及方程定义平面内到定点的距离等于定长的点的轨迹叫做圆标准方程(x-a)2+(y-b)2=r2(r>0)圆心:(a,b) 半径:r一般方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0)圆心:⎝⎛⎭⎫-D2,-E2半径:r=D2+E2-4F2点M(x0,y0),圆的标准方程(x-a)2+(y-b)2=r2.理论依据点到圆心的距离与半径的大小关系三种情况(x0-a)2+(y0-b)2=r2⇔点在圆上(x0-a)2+(y0-b)2>r2⇔点在圆外(x0-a)2+(y0-b)2<r2⇔点在圆内[提醒]不要把形如x2+y2+Dx+Ey+F=0的结构都认为是圆,一定要先判断D2+E2-4F的符号,只有大于0时才表示圆.[谨记常用结论]若x 2+y 2+Dx +Ey +F =0表示圆,则有:(1)当F =0时,圆过原点.(2)当D =0,E ≠0时,圆心在y 轴上;当D ≠0,E =0时,圆心在x 轴上.(3)当D =F =0,E ≠0时,圆与x 轴相切于原点;E =F =0,D ≠0时,圆与y 轴相切于原点.(4)当D 2=E 2=4F 时,圆与两坐标轴相切.[小题练通]1.[人教A 版教材P124A 组T4]圆C 的圆心在x 轴上,并且过点A (-1,1)和B (1,3),则圆C 的方程为____________.答案:(x -2)2+y 2=102.[教材改编题]经过点(1,0),且圆心是两直线x =1与x +y =2的交点的圆的方程为________________.答案:(x -1)2+(y -1)2=13.[教材改编题]圆心为(1,1)且过原点的圆的方程是________. 答案:(x -1)2+(y -1)2=24.[易错题]已知圆的方程为x 2+y 2+ax +2y +a 2=0,一定点为A (1,2),要使过定点A 的圆的切线有两条,则a 的取值范围是________.答案:⎝⎛⎭⎫-233,2335.若坐标原点在圆(x -m )2+(y +m )2=4的内部,则实数m 的取值范围是________. 答案:(-2,2)6.在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为________________. 答案:x 2+y 2-2x =0直线与圆的位置关系1.直线与圆的位置关系(半径r ,圆心到直线的距离为d ) 相离相切相交图形量化 方程观点Δ<0 Δ=0 Δ>0 几何观点d >rd =rd <r2.圆的切线(1)过圆上一点的圆的切线①过圆x 2+y 2=r 2上一点M (x 0,y 0)的切线方程是x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点M (x 0,y 0)的切线方程是(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.(2)过圆外一点的圆的切线过圆外一点M (x 0,y 0)的圆的切线求法:可用点斜式设出方程,利用圆心到直线的距离等于半径求出斜率k ,从而得切线方程;若求出的k 值只有一个,则说明另一条直线的斜率不存在,其方程为x =x 0.(3)切线长①从圆x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)外一点M (x 0,y 0)引圆的两条切线,切线长为x 20+y 20+Dx 0+Ey 0+F .②两切点弦长:利用等面积法,切线长a 与半径r 的积的2倍等于点M 与圆心的距离d 与两切点弦长b 的积,即b =2ard .[提醒] 过一点求圆的切线方程时,要先判断点与圆的位置关系,以便确定切线的条数. 3.圆的弦问题直线和圆相交,求被圆截得的弦长通常有两种方法:(1)几何法:因为半弦长L2、弦心距d 、半径r 构成直角三角形,所以由勾股定理得L =2r 2-d 2.(2)代数法:若直线y =kx +b 与圆有两交点A (x 1,y 1),B (x 2,y 2),则有: |AB |=1+k 2|x 1-x 2|= 1+1k2|y 1-y 2|. [谨记常用结论]过直线Ax +By +C =0和圆x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)交点的圆系方程为x 2+y 2+Dx +Ey +F +λ(Ax +By +C )=0.,[小题练通]1.[教材改编题]若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( )A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)答案:C2.[教材改编题]直线y =ax +1与圆x 2+y 2-2x -3=0的位置关系是( ) A .相切B .相交C.相离D.随a的变化而变化解析:选B∵直线y=ax+1恒过定点(0,1),又点(0,1)在圆(x-1)2+y2=4的内部,故直线与圆相交.3.[教材改编题]已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是________.解析:由题意知点M在圆外,则a2+b2>1,圆心到直线的距离d=1a2+b2<1,故直线与圆相交.答案:相交4.[易错题]过点(2,3)且与圆(x-1)2+y2=1相切的直线的方程为________________.解析:当切线的斜率存在时,设圆的切线方程为y=k(x-2)+3,由圆心(1,0)到切线的距离为1,得k=43,所以切线方程为4x-3y+1=0;当切线的斜率不存在时,易知直线x=2是圆的切线,所以所求的直线方程为4x-3y+1=0或x=2.答案:x=2或4x-3y+1=05.以M(1,0)为圆心,且与直线x-y+3=0相切的圆的方程是________.答案:(x-1)2+y2=86.直线y=x+1与圆x2+y2+2y-3=0交于A,B两点,则|AB|=________.解析:由x2+y2+2y-3=0,得x2+(y+1)2=4.∴圆心C(0,-1),半径r=2.圆心C(0,-1)到直线x-y+1=0的距离d=|1+1|2=2,∴|AB|=2r2-d2=24-2=2 2.答案:2 2圆与圆的位置关系圆与圆的位置关系(两圆半径为r1,r2,d=|O1O2|)相离外切相交内切内含图形量的关系d>r1+r2d=r1+r2|r1-r2|<d<r1+r2d=|r1-r2|d<|r1-r2|[提醒]涉及两圆相切时,没特别说明,务必要分内切和外切两种情况进行讨论.[谨记常用结论]圆C1:x2+y2+D1x+E1y+F1=0与C2:x2+y2+D2x+E2y+F2=0相交时:(1)将两圆方程直接作差,得到两圆公共弦所在直线方程;(2)两圆圆心的连线垂直平分公共弦;(3)x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0表示过两圆交点的圆系方程(不包括C2).[小题练通]1.[人教A版教材P133A组T9]圆x2+y2-4=0与圆x2+y2-4x+4y-12=0的公共弦的长为________.答案:2 22.[教材改编题]若圆x2+y2=1与圆(x+4)2+(y-a)2=25相切,则实数a=________.答案:±25或03.[教材改编题]圆x2+y2=r2与圆(x-3)2+(y+1)2=r2外切,则半径r=________.解析:由题意,得2r=32+(-1)2,所以r=10 2.答案:10 24.[易错题]若两圆x2+y2=m和x2+y2+6x-8y-11=0有公共点,则实数m的取值范围是________.答案:[1,121]5.若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m=()A.21 B.19C.9 D.-11解析:选C圆C1的圆心为C1(0,0),半径r1=1,因为圆C2的方程可化为(x-3)2+(y -4)2=25-m,所以圆C2的圆心为C2(3,4),半径r2=25-m(m<25).从而|C1C2|=32+42=5.由两圆外切得|C1C2|=r1+r2,即1+25-m=5,解得m=9,故选C.6.与圆C1:x2+y2-6x+4y+12=0,C2:x2+y2-14x-2y+14=0都相切的直线有() A.1条B.2条C.3条D.4条解析:选A两圆分别化为标准形式为C1:(x-3)2+(y+2)2=1,C2:(x-7)2+(y-1)2=36,则两圆圆心距|C1C2|=(7-3)2+[1-(-2)]2=5,等于两圆半径差,故两圆内切.所以它们只有一条公切线.故选A.[课时跟踪检测]1.(2019·广西陆川中学期末)圆C1:x2+y2+2x+8y-8=0与圆C2:x2+y2-4x-4y-1=0的位置关系是()A .内含B .外离C .外切D .相交解析:选D 圆C 1的标准方程为(x +1)2+(y +4)2=25,圆C 2的标准方程为(x -2)2+(y -2)2=9,两圆的圆心距为(2+1)2+(2+4)2=35,两圆的半径为r 1=5,r 2=3,满足r 1+r 2=8>35>2=r 1-r 2,故两圆相交.故选D.2.(2019·闽侯第八中学期末)若圆Ω过点(0,-1),(0,5),且被直线x -y =0截得的弦长为27,则圆Ω的方程为( )A .x 2+(y -2)2=9或(x +4)2+(y -2)2=25B .x 2+(y -2)2=9或(x -1)2+(y -2)2=10C .(x +4)2+(y -2)2=25或(x +4)2+(y -2)2=17D .(x +4)2+(y -2)2=25或(x -4)2+(y -1)2=16解析:选A 由于圆过点(0,-1),(0,5),故圆心在直线y =2上,设圆心坐标为(a,2),由弦长公式得|a -2|2=a 2+(5-2)2-7,解得a =0或a =-4.故圆心为(0,2),半径为3或圆心为(-4,2),半径为5,故选A.3.(2019·北京海淀期末)已知直线x -y +m =0与圆O :x 2+y 2=1相交于A ,B 两点,且△OAB 为正三角形,则实数m 的值为( )A.32B.62 C.32或-32D.62或-62解析:选D 由题意得圆O :x 2+y 2=1的圆心坐标为(0,0),半径r =1. 因为△OAB 为正三角形,则圆心O 到直线x -y +m =0的距离为32r =32,即d =|m |2=32,解得m =62或m =-62,故选D. 4.(2019·南宁、梧州联考)直线y =kx +3被圆(x -2)2+(y -3)2=4截得的弦长为23,则直线的倾斜角为( )A.π6或5π6 B.-π3或π3C .-π6或π6D.π6解析:选A 由题知,圆心(2,3),半径为2,所以圆心到直线的距离为d =22-(3)2=1.即d =|2k |1+k 2=1,所以k =±33,由k =tan α,得α=π6或5π6.故选A.5.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -2)2+()y -12=1B .(x -2)2+(y +1)2=1C .(x +2)2+(y -1)2=1 D.()x -32+(y -1)2=1解析:选A 由于圆心在第一象限且与x 轴相切,故设圆心为(a,1)(a >0),又由圆与直线4x -3y =0相切可得|4a -3|5=1,解得a =2,故圆的标准方程为(x -2)2+(y -1)2=1. 6.(2019·西安联考)直线y -1=k (x -3)被圆(x -2)2+(y -2)2=4所截得的最短弦长等于( )A. 3 B .2 3 C .2 2D. 5解析:选C 圆(x -2)2+(y -2)2=4的圆心C (2,2),半径为2,直线y -1=k (x -3), ∴此直线恒过定点P (3,1),当圆被直线截得的弦最短时,圆心C (2,2)与定点P (3,1)的连线垂直于弦,弦心距为(2-3)2+(2-1)2=2,所截得的最短弦长为222-(2)2=22,故选C.7.(2019·山西晋中模拟)半径为2的圆C 的圆心在第四象限,且与直线x =0和x +y =22均相切,则该圆的标准方程为( )A .(x -1)2+(y +2)2=4B .(x -2)2+(y +2)2=2C .(x -2)2+(y +2)2=4D .(x -22)2+(y +22)2=4解析:选C 设圆心坐标为(2,-a )(a >0),则圆心到直线x +y =22的距离d =|2-a -22|2=2,∴a =2,∴该圆的标准方程为(x -2)2+(y +2)2=4,故选C. 8.(2018·唐山二模)圆E 经过A (0,1),B (2,0),C (0,-1)三点,且圆心在x 轴的正半轴上,则圆E 的标准方程为( )A.⎝⎛⎭⎫x -322+y 2=254B.⎝⎛⎭⎫x +342+y 2=2516C.⎝⎛⎭⎫x -342+y 2=2516D.⎝⎛⎭⎫x -342+y 2=254解析:选C 根据题意,设圆E 的圆心坐标为(a,0)(a >0),半径为r , 则有⎩⎪⎨⎪⎧(a -2)2=r 2,a 2+(0+1)2=r 2,a 2+(0-1)2=r 2,解得a =34,r 2=2516,则圆E 的标准方程为⎝⎛⎭⎫x -342+y 2=2516.故选C.9.(2018·合肥二模)已知圆C:(x-6)2+(y-8)2=4,O为坐标原点,则以OC为直径的圆的方程为()A.(x-3)2+(y+4)2=100 B.(x+3)2+(y-4)2=100C.(x-3)2+(y-4)2=25 D.(x+3)2+(y-4)2=25解析:选C因为圆C的圆心的坐标C(6,8),所以OC的中点坐标为E(3,4),所求圆的半径|OE|=32+42=5,故以OC为直径的圆的方程为(x-3)2+(y-4)2=25.故选C.10.(2018·荆州二模)圆(x-1)2+(y-1)2=2关于直线y=kx+3对称,则k的值是() A.2 B.-2C.1 D.-1解析:选B∵圆(x-1)2+(y-1)2=2关于直线y=kx+3对称,∴直线y=kx+3过圆心(1,1),即1=k+3,解得k=-2.故选B.11.(2019·厦门质检)圆C与x轴相切于T(1,0),与y轴正半轴交于两点A,B,且|AB|=2,则圆C的标准方程为()A.(x-1)2+(y-2)2=2 B.(x-1)2+(y-2)2=2C.(x+1)2+(y+2)2=4 D.(x-1)2+(y-2)2=4解析:选A由题意得,圆C的半径为1+1=2,圆心坐标为(1,2),∴圆C的标准方程为(x-1)2+(y-2)2=2,故选A.12.(2019·孝义一模)已知P为直线x+y-2=0上的点,过点P作圆O:x2+y2=1的切线,切点为M,N,若∠MPN=90°,则这样的点P有()A.0个B.1个C.2个D.无数个解析:选B连接OM,ON,则OM=ON,∠MPN=∠ONP=∠OMP=90°,∴四边形OMPN为正方形,∵圆O的半径为1,∴|OP|=2,∵原点(圆心)O到直线x+y-2=0的距离为2,∴符合条件的点P只有一个,故选B.13.(2019·北京东城联考)直线l:y=kx+1与圆O:x2+y2=1相交于A,B两点,则“k =1”是“|AB|=2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A 直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,∴圆心到直线的距离d =11+k 2,则|AB |=21-d 2=21-11+k 2=2k 21+k 2,当k =1时,|AB |=2 12=2,即充分性成立;若|AB |=2,则2k 21+k 2=2,即k 2=1,解得k =1或k =-1,即必要性不成立,故“k =1”是“|AB |=2”的充分不必要条件,故选A.14.已知圆C :(x +1)2+(y -1)2=1与x 轴切于A 点,与y 轴切于B 点,设劣弧AB 的中点为M ,则过点M 的圆C 的切线方程是________________.解析:因为圆C 与两轴相切,且M 是劣弧AB 的中点,所以直线CM 是第二、四象限的角平分线,所以斜率为-1,所以过M 的切线的斜率为1.因为圆心到原点的距离为2,所以|OM |=2-1,所以M ⎝⎛⎭⎫22-1,1-22,所以切线方程为y -1+22=x -22+1,整理得x -y +2-2=0.答案:x -y +2-2=015.(2018·枣庄二模)已知圆M 与直线x -y =0及x -y +4=0都相切,且圆心在直线y =-x +2上,则圆M 的标准方程为________________.解析:∵圆M 的圆心在y =-x +2上, ∴设圆心为(a,2-a ),∵圆M 与直线x -y =0及x -y +4=0都相切,∴圆心到直线x -y =0的距离等于圆心到直线x -y +4=0的距离, 即|2a -2|2=|2a +2|2,解得a =0, ∴圆心坐标为(0,2),圆M 的半径为|2a -2|2=2,∴圆M 的标准方程为x 2+(y -2)2=2. 答案:x 2+(y -2)2=216.(2019·天津联考)以点(0,b )为圆心的圆与直线y =2x +1相切于点(1,3),则该圆的方程为____________________.解析:由题意设圆的方程为x 2+(y -b )2=r 2(r >0). 根据条件得⎩⎪⎨⎪⎧1+(3-b )2=r 2,|-b +1|5=r ,解得⎩⎨⎧b =72,r =52.∴该圆的方程为x 2+⎝⎛⎭⎫y -722=54. 答案:x 2+⎝⎛⎭⎫y -722=5417.(2019·丹东联考)经过三点A (1,3),B (4,2),C (1,-7)的圆的半径是________. 解析:易知圆心在线段AC 的垂直平分线y =-2上,所以设圆心坐标为(a ,-2),由(a -1)2+(-2-3)2=(a -4)2+(-2-2)2,得a =1,即圆心坐标为(1,-2),∴半径为r =(1-1)2+(-2-3)2=5. 答案:518.(2019·镇江联考)已知圆C 与圆x 2+y 2+10x +10y =0相切于原点,且过点A (0,-6),则圆C 的标准方程为____________________.解析:设圆C 的标准方程为(x -a )2+(y -b )2=r 2,其圆心为C (a ,b ),半径为r (r >0). ∵x 2+y 2+10x +10y =0可化简为(x +5)2+(y +5)2=50, ∴其圆心为(-5,-5),半径为5 2.∵两圆相切于原点O ,且圆C 过点(0,-6),点(0,-6)在圆(x +5)2+(y +5)2=50内,∴两圆内切,∴⎩⎨⎧a 2+b 2=r 2,(a +5)2+(b +5)2=52-r ,(0-a )2+(-6-b )2=r 2,解得a =-3,b =-3,r =32, ∴圆C 的标准方程为(x +3)2+(y +3)2=18. 答案:(x +3)2+(y +3)2=18。

高等数学:第九章 常微分方程1-2

高等数学:第九章 常微分方程1-2

设在微小的时间间隔 [t, t t], o
100 cm
水面的高度由h降至 h h, 则 dV r 2dh,
r 1002 (100 h)2 200h h2 ,
dV (200h h2 )dh,
(2)
比较(1)和(2)得: (200h h2 )dh 0.62 2ghdt,
28
(200h h2 )dh 0.62 2ghdt,
解 设制动后 t 秒钟行驶 s 米, s s(t)
d 2s dt 2 0.4
t 0时, s 0,v ds 20, dt
v
ds dt
0.4t
C1
s 0.2t 2 C1t C2
代入条件后知 C1 20, C2 0
7
例 2 列车在平直的线路上以 20 米/秒的速度行驶,
当制动时列车获得加速度 0.4 米/秒 2,问开始制动
其中c1, …,cn是n个独
立的任意常数,则称y是F=0的一个通解。
例: y=x2+C是方程y'=2x 的通解.yBiblioteka x2 2C1x C2

方程y"=1的通解.
y
y=x2+C
独立:C1 C2 x C3 x 2 不独立:C1x C2 x (C1 C2 )x Cx
0
x
15
5. 特解: 不包含任何常数的解.
隐函数的形式Φ(x,y;c1, …,cn)=0,给出, 把Φ(x,y;c1, …,cn)=0称作方程的通积分。
求微分方程满足某些条件的特解。即
9. 初值问题:求出方程F(x, y, y‘, …, y (n) ) = 0满足
初始条件的解。其中x0,y0,y1,…,yn-1是
已知常数。y(x0 ) y0,

2021届高考数学一轮复习第九章平面解析几何第1节直线的方程教学案含解析新人教A版

2021届高考数学一轮复习第九章平面解析几何第1节直线的方程教学案含解析新人教A版

第1节 直线的方程考试要求 1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素;2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;3.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.知 识 梳 理1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角;(2)规定:当直线l 与x 轴平行或重合时,规定它的倾斜角为0; (3)范围:直线的倾斜角α的取值范围是[0,π). 2.直线的斜率(1)定义:当直线l 的倾斜角α≠π2时,其倾斜角α的正切值tan α叫做这条直线的斜率,斜率通常用小写字母k 表示,即k =tan__α. (2)计算公式:①经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率k =y 2-y 1x 2-x 1. ②若直线的方向向量为a =(x ,y )(x ≠0),则直线的斜率k =y x. 3.直线方程的五种形式名称 几何条件 方程适用条件 斜截式 纵截距、斜率 y =kx +b 与x 轴不垂直的直线点斜式 过一点、斜率 y -y 0=k (x -x 0) 两点式过两点y -y 1y 2-y 1=x -x 1x 2-x 1与两坐标轴均不垂直的直线截距式 纵、横截距x a +y b =1 不过原点且与两坐标轴均不垂直的直线 一般式Ax +By +C =0(A 2+B 2≠0)所有直线[常用结论与微点提醒]1.直线的倾斜角α和斜率k 之间的对应关系:α 0 0<α<π2π2 π2<α<π kk >0 不存在k <02.截距和距离的不同之处“截距”是直线与坐标轴交点的坐标值,它可正,可负,也可以是零,而“距离”是一个非负数.诊 断 自 测1.判断下列结论正误(在括号内打“√”或“×”) (1)直线的倾斜角越大,其斜率就越大.( ) (2)直线的斜率为tan α,则其倾斜角为α.( ) (3)斜率相等的两直线的倾斜角不一定相等.( )(4)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( )解析 (1)当直线的倾斜角α1=135°,α2=45°时,α1>α2,但其对应斜率k 1=-1,k 2=1,k 1<k 2.(2)当直线斜率为tan(-45°)时,其倾斜角为135°. (3)两直线的斜率相等,则其倾斜角一定相等. 答案 (1)× (2)× (3)× (4)√2.(老教材必修2P89B5改编)若过两点A (-m ,6),B (1,3m )的直线的斜率为12,则直线的方程为________.解析 由题意得3m -61+m =12,解得m =-2,∴A (2,6),∴直线AB 的方程为y -6=12(x -2), 整理得12x -y -18=0. 答案 12x -y -18=03.(老教材必修2P101B2改编)若方程Ax +By +C =0表示与两条坐标轴都相交的直线(不与坐标轴重合),则应满足的条件是________.解析 由题意知,直线斜率存在且斜率不为零,所以A ≠0且B ≠0. 答案 A ≠0且B ≠04.(2020·西安调研)直线x -y +1=0的倾斜角为( ) A.30°B.45°C.120°D.150°解析 由题意得,直线y =x +1的斜率为1,设其倾斜角为α,则tan α=1,又0°≤α<180°,故α=45°. 答案 B5.(2020·昆明诊断)已知直线l 经过A (2,1),B (1,m 2)两点(m ∈R ),那么直线l 的倾斜角的取值范围是( ) A.[0,π)B.⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,πC.⎣⎢⎡⎦⎥⎤0,π4D.⎣⎢⎡⎭⎪⎫π4,π2∪⎝ ⎛⎭⎪⎫π2,π解析 直线l 的斜率k =1-m 22-1=1-m 2,因为m ∈R ,所以k ∈(-∞,1],所以直线的倾斜角的取值范围是⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,π.答案 B6.(2020·合肥调研)过点(-3,4),在x 轴上的截距为负数,且在两坐标轴上的截距之和为12的直线方程为______.解析 由题设知,横、纵截距均不为0,设直线的方程为x a +y12-a =1,又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9(舍).故所求直线的方程为4x -y +16=0.答案 4x -y +16=0考点一 直线的倾斜角与斜率典例迁移【例1】 (一题多解)(经典母题)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.解析 法一 设PA 与PB 的倾斜角分别为α,β,直线PA 的斜率是k AP =1,直线PB 的斜率是k BP =-3,当直线l 由PA 变化到与y 轴平行的位置PC 时,它的倾斜角由α增至90°,斜率的取值范围为[1,+∞).当直线l 由PC 变化到PB 的位置时,它的倾斜角由90°增至β,斜率的变化范围是(-∞,-3].故斜率的取值范围是(-∞,-3]∪[1,+∞). 法二 设直线l 的斜率为k ,则直线l 的方程为y =k (x -1),即kx -y -k =0.∵A ,B 两点在直线l 的两侧或其中一点在直线l 上, ∴(2k -1-k )(-3-k )≤0,即(k -1)(k +3)≥0,解得k ≥1或k ≤- 3.即直线l 的斜率k 的取值范围是(-∞,-3]∪[1,+∞). 答案 (-∞,-3]∪[1,+∞)【迁移1】 若将例1中P (1,0)改为P (-1,0),其他条件不变,求直线l 斜率的取值范围. 解 设直线l 的斜率为k ,则直线l 的方程为y =k (x +1),即kx -y +k =0.∵A ,B 两点在直线l 的两侧或其中一点在直线l 上, ∴(2k -1+k )(-3+k )≤0,即(3k -1)(k -3)≤0,解得13≤k ≤ 3.即直线l 的斜率的取值范围是⎣⎢⎡⎦⎥⎤13,3. 【迁移2】 若将例1中的B 点坐标改为B (2,-1),其他条件不变,求直线l 倾斜角的取值范围.解 由例1知直线l 的方程kx -y -k =0,∵A ,B 两点在直线l 的两侧或其中一点在直线l 上, ∴(2k -1-k )(2k +1-k )≤0, 即(k -1)(k +1)≤0,解得-1≤k ≤1.即直线l 倾斜角的取值范围是⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.规律方法 1.由直线倾斜角的取值范围求斜率的取值范围或由斜率的取值范围求直线倾斜角的取值范围时,常借助正切函数y =tan x 在⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫π2,π上的单调性求解,这里特别要注意,正切函数在⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫π2,π上并不是单调的.2.过一定点作直线与已知线段相交,求直线斜率范围时,应注意倾斜角为π2时,直线斜率不存在.【训练1】 如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( )A.k 1<k 2<k 3B.k 3<k 1<k 2C.k 3<k 2<k 1D.k 1<k 3<k 2解析 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2. 答案 D考点二 直线方程的求法【例2】 求适合下列条件的直线方程: (1)经过点P (1,2),倾斜角α的正弦值为45;(2)(一题多解)经过点P (2,3),并且在两坐标轴上截距相等;(3)经过两条直线l 1:x +y =2,l 2:2x -y =1的交点,且直线的一个方向向量v =(-3,2). 解 (1)由题可知sin α=45,则tan α=±43,∵直线l 经过点P (1,2),∴直线l 的方程为y -2=±43(x -1),即y =±43(x -1)+2,整理得4x -3y +2=0或4x +3y -10=0.(2)法一 ①当截距为0时,直线l 过点(0,0),(2,3), 则直线l 的斜率为k =3-02-0=32,因此,直线l 的方程为y =32x ,即3x -2y =0.②当截距不为0时,可设直线l 的方程为x a +y a=1. 因为直线l 过点P (2,3),所以2a +3a=1,所以a =5.所以直线l 的方程为x +y -5=0.综上可知,直线l 的方程为3x -2y =0或x +y -5=0. 法二 由题意可知所求直线斜率存在, 则可设y -3=k (x -2),且k ≠0.令x =0,得y =-2k +3.令y =0,得x =-3k+2.于是-2k +3=-3k +2,解得k =32或k =-1.则直线l 的方程为y -3=32(x -2)或y -3=-(x -2),即直线l 的方程为3x -2y =0或x +y -5=0.(3)联立⎩⎪⎨⎪⎧x +y =2,2x -y =1,得x =1,y =1,∴直线过点(1,1),∵直线的方向向量v =(-3,2), ∴直线的斜率k =-23.则直线的方程为y -1=-23(x -1),即2x +3y -5=0.规律方法 1.在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.2.对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应判断截距是否为零).【训练2】 (1)求经过点B (3,4),且与两坐标轴围成一个等腰直角三角形的直线方程; (2)求经过点A (-5,2),且在x 轴上的截距等于在y 轴上截距的2倍的直线方程. 解 (1)由题意可知,所求直线的斜率为±1. 又过点(3,4),由点斜式得y -4=±(x -3). 所求直线的方程为x -y +1=0或x +y -7=0.(2)当直线不过原点时,设所求直线方程为x 2a +y a =1,将(-5,2)代入所设方程,解得a =-12,所以直线方程为x +2y +1=0;当直线过原点时,设直线方程为y =kx ,则-5k =2,解得k=-25,所以直线方程为y =-25x ,即2x +5y =0.故所求直线方程为2x +5y =0或x +2y +1=0.考点三 直线方程的综合应用 多维探究角度1 直线过定点问题【例3-1】 已知k ∈R ,写出以下动直线所过的定点坐标: (1)若直线方程为y =kx +3,则直线过定点________; (2)若直线方程为y =kx +3k ,则直线过定点________; (3)若直线方程为x =ky +3,则直线过定点________. 解析 (1)当x =0时,y =3,所以直线过定点(0,3). (2)直线方程可化为y =k (x +3),故直线过定点(-3,0). (3)当y =0时,x =3,所以直线过定点(3,0). 答案 (1)(0,3) (2)(-3,0) (3)(3,0)规律方法 1.直线过定点问题,可以根据方程的结构特征,得出直线过的定点坐标. 2.含有参数的直线方程可看作直线系方程,这时要能够整理成过定点的直线系,即能够看出“动中有定”.角度2 与直线方程有关的多边形面积的最值问题【例3-2】 已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,实数a =________.解析 由题意知直线l 1,l 2恒过定点P (2,2),直线l 1的纵截距为2-a ,直线l 2的横截距为a 2+2,所以四边形的面积S =12×2(2-a )+12×2(a 2+2)=a 2-a +4=⎝ ⎛⎭⎪⎫a -122+154,又0<a <2,所以当a =12时,面积最小.答案 12规律方法 1.求解与直线方程有关的面积问题,应根据直线方程求解相应坐标或者相关长度,进而求得多边形面积.2.求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的单调性或基本不等式求解.【训练3】 已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程.(1)证明 直线l 的方程可化为k (x +2)+(1-y )=0,令⎩⎪⎨⎪⎧x +2=0,1-y =0,解得⎩⎪⎨⎪⎧x =-2,y =1. ∴无论k 取何值,直线总经过定点(-2,1).(2)解 由方程知,当k ≠0时直线在x 轴上的截距为-1+2k k,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2k k ≤-2,1+2k ≥1,解得k >0; 当k =0时,直线为y =1,符合题意,故k 的取值范围是[0,+∞). (3)解 由题意可知k ≠0,再由l 的方程,得A ⎝⎛⎭⎪⎫-1+2k k,0,B (0,1+2k ).依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k >0,解得k >0. ∵S =12·|OA |·|OB |=12·⎪⎪⎪⎪⎪⎪1+2k k ·|1+2k |=12·(1+2k )2k =12⎝⎛⎭⎪⎫4k +1k +4≥12×(2×2+4)=4, “=”成立的条件是k >0且4k =1k ,即k =12,∴S min =4,此时直线l 的方程为x -2y +4=0.A 级 基础巩固一、选择题1.(2020·安阳模拟)若平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,则a =( ) A.1±2或0 B.2-52或0 C.2±52D.2+52或0解析 由题意知k AB =k AC ,即a 2+a 2-1=a 3+a3-1,即a (a 2-2a -1)=0,解得a =0或a =1± 2.答案 A2.(2020·广东七校联考)若过点P (1-a ,1+a )和Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值范围是( ) A.(-2,1) B.(-1,2)C.(-∞,0)D.(-∞,-2)∪(1,+∞)解析 由题意知2a -1-a 3-1+a <0,即a -12+a <0,解得-2<a <1.答案 A3.(2020·福建六校联考)在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0有可能是( )解析 当a >0,b >0时,-a <0,-b <0,结合选项知B 符合,其他均不符合. 答案 B4.(2020·成都诊断)过点(2,1),且倾斜角比直线y =-x -1的倾斜角小π4的直线方程是( ) A.x =2 B.y =1 C.x =1D.y =2解析 直线y =-x -1的倾斜角为3π4,则所求直线的倾斜角为π2,故所求直线斜率不存在,又直线过点(2,1),所以所求直线方程为x =2. 答案 A5.已知直线l 的斜率为3,在y 轴上的截距为另一条直线x -2y -4=0的斜率的倒数,则直线l 的方程为( ) A.y =3x +2 B.y =3x -2 C.y =3x +12D.y =-3x +2解析 因为直线x -2y -4=0的斜率为12,所以直线l 在y 轴上的截距为2,所以直线l 的方程为y =3x +2.答案 A6.(2020·湖北四地七校联考)已知函数f (x )=a sin x -b cos x (a ≠0,b ≠0),若f ⎝ ⎛⎭⎪⎫π4-x =f ⎝⎛⎭⎪⎫π4+x ,则直线ax -by +c =0的倾斜角为( )A.π4B.π3C.2π3D.3π4解析 由f ⎝⎛⎭⎪⎫π4-x =f ⎝ ⎛⎭⎪⎫π4+x 知函数f (x )的图象关于直线x =π4对称,所以f (0)=f ⎝ ⎛⎭⎪⎫π2,所以a =-b ,由直线ax -by +c =0知其斜率k =a b =-1,所以直线的倾斜角为3π4,故选D.答案 D7.直线x sin α+y +2=0的倾斜角的取值范围是( ) A.[0,π)B.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,πC.⎣⎢⎡⎦⎥⎤0,π4D.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫π2,π解析 设直线的倾斜角为θ,则有tan θ=-sin α.又sin α∈[-1,1],θ∈[0,π),所以0≤θ≤π4或3π4≤θ<π.答案 B8.(2020·东北三省四校调研)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,则点P 横坐标的取值范围为( )A.⎣⎢⎡⎦⎥⎤-1,-12B.[-1,0]C.[0,1]D.⎣⎢⎡⎦⎥⎤12,1解析 由题意知,y ′=2x +2,设P (x 0,y 0),则在点P 处的切线的斜率k =2x 0+2.因为曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,则0≤k ≤1,即0≤2x 0+2≤1,故-1≤x 0≤-12.答案 A 二、填空题9.直线l 的倾斜角为60°,且在x 轴上的截距为-13,则直线l 的方程为________.解析 由题意可知,直线l 的斜率为3,且该直线过⎝ ⎛⎭⎪⎫-13,0,∴直线l 的方程为y =3⎝ ⎛⎭⎪⎫x +13,即3x -3y +1=0. 答案 3x -3y +1=010.已知三角形的三个顶点A (-5,0),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为________.解析 BC 的中点坐标为⎝ ⎛⎭⎪⎫32,-12,∴BC 边上中线所在直线方程为y -0-12-0=x +532+5,即x +13y +5=0.答案 x +13y +5=011.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________. 解析 b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值.所以b 的取值范围是[-2,2].答案 [-2,2]12.若经过两点A (4,2y +1),B (2,-3)的直线的倾斜角是直线4x -3y +2 020=0的倾斜角的一半,则y 的值为________.解析 因为直线4x -3y +2 020=0的斜率为43,所以由倾斜角的定义可知直线4x -3y +2 020=0的倾斜角α满足tan α=43,因为α∈[0,π),所以α2∈⎣⎢⎡⎭⎪⎫0,π2,所以2tanα21-tan 2α2=43,解得tan α2=12,由已知及倾斜角与斜率的关系得2y +1+34-2=12,所以y =-32.答案 -32B 级 能力提升13.(2019·湖南长郡中学月考)已知点(-1,2)和⎝ ⎛⎭⎪⎫33,0在直线l :ax -y +1=0(a ≠0)的同侧,则直线l 的倾斜角的取值范围是( )A.⎝⎛⎭⎪⎫π4,π3B.⎝ ⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫34π,πC.⎝ ⎛⎭⎪⎫34π,56πD.⎝ ⎛⎭⎪⎫23π,34π解析 因为点(-1,2)和⎝ ⎛⎭⎪⎫33,0在直线l :ax -y +1=0(a ≠0)的同侧,所以(-a -2+1)·⎝⎛⎭⎪⎫33a -0+1>0,即(a +1)(a +3)<0,所以-3<a <-1,又知直线l 的斜率k =a ,即-3<k <-1,又因为直线倾斜角的范围是[0,π),所以直线l 的倾斜角的取值范围为⎝ ⎛⎭⎪⎫23π,34π,故选D. 答案 D14.(2020·兰州模拟)若直线ax +by +c =0同时要经过第一、二、四象限,则a ,b ,c 应满足( ) A.ab >0,bc <0 B.ab >0,bc >0 C.ab <0,bc >0D.ab <0,bc <0解析 易知直线的斜率存在,则直线方程可化为y =-a b x -cb ,由题意知⎩⎪⎨⎪⎧-ab <0,-cb >0,所以ab >0,bc <0.答案 A15.已知数列{a n }的通项公式为a n =1n (n +1)(n ∈N *),其前n 项和S n =910,则直线x n +1+y n=1与坐标轴所围成的三角形的面积为________. 解析 由a n =1n (n +1)可知a n =1n -1n +1,所以S n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1, 又知S n =910,所以1-1n +1=910,所以n =9.所以直线方程为x 10+y9=1,且与坐标轴的交点为(10,0)和(0,9),所以直线与坐标轴所围成的三角形的面积为12×10×9=45.答案 4516.(2020·豫北名校调研)直线l 过点P (6,4),且分别与两坐标轴的正半轴交于A ,B 两点,当△ABO 的面积最小时,直线l 的方程为________.解析 设直线l 的方程为y -4=k (x -6)(k ≠0),则A ⎝⎛⎭⎪⎫6-4k,0,B (0,4-6k ),由题意知k <0,则S △ABO =12×|OA |·|OB |=12⎝ ⎛⎭⎪⎫6-4k ·(4-6k )=24-18k -8k ,∵k <0,∴-18k >0,-8k >0,∴-18k -8k≥2(-18k )·⎝ ⎛⎭⎪⎫-8k =24,当且仅当-18k =-8k ,即k 2=49,也即k =-23时取得等号,所以△ABO 的面积的最小值为48,此时直线l 的方程为y -4=-23(x -6),即2x +3y -24=0.答案 2x +3y -24=0C 级 创新猜想17.(多填题)设点A (-2,3),B (3,2),已知直线l 的方程为ax +y +2=0,则直线l 过定点________,若直线l 与线段AB 没有交点,则实数a 的取值范围是________.解析 直线ax +y +2=0恒过点M (0,-2),且斜率为-a ,∵k MA =3-(-2)-2-0=-52,k MB =2-(-2)3-0=43,结合题意可知-a >-52,且-a <43,∴a ∈⎝ ⎛⎭⎪⎫-43,52.答案 (0,-2) ⎝⎛⎭⎪⎫-43,52。

高等数学下册同济第七版

高等数学下册同济第七版
链式法则
复合函数的求导法则,即一个复合函数的导数等于其内部函数的导数乘以外部函数的导数。
乘法法则
复合函数的求导法则,即两个函数的乘积的导数等于第一个函数的导数乘以第二个函数加上第二个函 数的导数乘以第一个函数。
隐函数的求导公式
隐函数
一个方程可以确定一个函数,这样的函 数称为隐函数。
VS
隐函数的求导公式
曲面及其方程
曲面的概念
曲面是一维图形在三维空间中的表现形式,它由多个点组成,每个 点都对应于空间中的一个位置。
曲面方程
曲面方程是描述曲面形状和大小的数学表达式。对于给定的曲面, 可以通过在其上任取一点,并建立该点的坐标系来得到该曲面的方 程。
常见曲面及其方程
例如,球面、锥面、柱面等都有对应的方程式。这些方程式描述了这 些曲面的形状和大小,并且可以通过图形来直观地表现出来。
VS
详细描述
对坐标的曲面积分主要用于计算曲面图形 上某部分区域内某物理量的累积值,如流 量、速度等。求解方法通常为定义法、参 数方程法、公式法等。在具体问题中,还 需考虑积分曲面的方向、不同部分的分界 线等因素。
THANK YOU
重积分的应用
总结词
重积分的应用非常广泛,包括求面积、求体 积、求质量等。
详细描述
重积分的应用包括求曲顶柱体的体积、求空 间物体的质量、求平面的面积等。例如,利 用二重积分可以求出平面区域的面积,利用 三重积分可以求出空间物体的质量。此外, 重积分还可以用于求解某些物理问题,如力
学、电磁学、光学等问题。
两个向量的向量积是一个向量,记作 $\overset{\longrightarrow}{a} \times \overset{\longrightarrow}{b}$,其 大小等于两个向量对应分量乘积的矢 量和,其方向垂直于两个向量所确定 的平面。

骑鹅旅行记的第九章梗概

骑鹅旅行记的第九章梗概

骑鹅旅行记的第九章梗概 一、引言 骑鹅旅行记是一本关于冒险、友情和成长的小说。在第九章中,主人公小明和他的好友小红继续他们的旅程。本章节中,他们遇到了一系列的挑战和冒险,并在其中获得了宝贵的经验和教训。本文将详细探讨第九章的故事情节和核心主题。

二、小明和小红的新冒险 2.1 出发前的计划 在第八章结束时,小明和小红决定骑着他们的鹅继续旅行。他们在第九章开始前制定了详细的旅行计划,包括途经的景点和预计的行程。他们计划骑鹅穿过山脉,探索未知的领域。

2.2 第一个挑战:陡峭的山道 他们上路后不久,就遇到了一条陡峭的山道。小明和小红克服了对险峻山脉的恐惧,骑鹅小心翼翼地穿越了这段困难的路段。

2.3 遇到善良的村民 在山脉的另一侧,他们遇到了一群善良的村民。这些村民向他们提供了食物和住宿,并分享了他们的故事。小明和小红在与这些村民的交流中学到了很多关于生活和勇气的重要教训。

2.4 第二个挑战:暴风雨的考验 继续旅行的路上,小明和小红突遇一场突如其来的暴风雨。他们被迫寻找避难所,并在风雨中与大自然的威力作斗争。这次经历使他们更加坚强和勇敢。 2.5 重新找到方向 风雨过后,小明和小红迷路了。他们重新寻找方向,进行了长时间的导航。通过相互合作和努力,他们最终找到了正确的路线,继续他们未知的旅程。

三、故事的核心主题 3.1 冒险和挑战 骑鹅旅行记中的第九章突出了冒险和挑战的重要性。小明和小红在面对困难和未知时保持了勇气和决心。他们所经历的种种挑战使他们变得更加坚强和成熟。

3.2 友情和合作 小明和小红之间的友情在第九章中得到了进一步的展示。他们相互依靠,并共同面对各种困难。友情和合作是他们成功完成冒险旅程的关键。

3.3 成长和经验 本章中,小明和小红通过面对挑战和冒险,获得了宝贵的成长经验。他们从每一次冒险中学习,不断提升自己的技能和智慧。

3.4 善良和乐于助人 小明和小红遇到的善良的村民教会了他们善良和乐于助人的重要性。这些村民无私地向他们提供援助,展现了人与人之间互相支持的力量。

卫生标准操作程序、危害分析及关键控制点与食品安全

整理课件
用 消 毒 剂 洁 净 的 手
整理课件
整理课件
整理课件
整理课件
5、保护食品、食品包装材料和食品接触面免受 润滑剂、燃油、杀虫剂、清洁剂、冷凝水、涂料、铁 锈和其它外来污染物的污染。
以适当方式作业,防止食品受外来污染物污染。
整理课件
6、有毒化学物质的正确标识、保存和使用 。 ①必须对有毒化学物质进行正确标识、安全存储 和安全使用。 ②盛装产品的容器不要与有毒化学物质直接邻近。 ③只有在确保食品、食品接触面和包装材料不会 被污染时才可使用杀虫剂等化学药剂。
(5)协调性。SSOP文件应与HACCP相当、管 理文件保持一致,做到协调统一,不能存在不一致和 相互矛盾。
(6)可行性。SSOP文件应立足于工厂实际,切 实可行。 Nhomakorabea整理课件
(7)可操作性。SSOP文件对每个环节的各项活 动内容及要求等都应做出详细明确的规定,要能指导 实践,便于责任人员进行操作。包括依据什么文件、 所需资源以及做什么记录等。
整理课件
具体要求: (1)指令性。SSOP文件由负责卫生标准操作活 动的分管领导批准后发布实施。 (2)目的性。SSOP文件应确定卫生标准操作活 动的目标。 (3)符合性。SSOP文件的编制应符合HACCP 体系的应用准则,符合GMP和国家及行业发布的各项 法规法令标准的规定。
整理课件
(4)系统性。SSOP文件是保证HACCP、GMP 对所有影响食品卫生标准操作的活动进行恰当而连续 控制的基础文件,并对活动实施的程序和控制做出规 定。职责应明确清楚,各项设施程序做到有序连贯。
整理课件
整理课件
2、与食品接触的表面的卫生状况和清洁程度, 包括工器具、设备、手套和工作服等。
①手套、工作服:统一清洗消毒,统一发放,保 持完好无破损。

PCS7深入浅出(第九章)

PCS7深⼊浅出(第九章)第9章:过程标签类型、模型主数据库和过程对象视图⽬录:第9章过程标签类型、模型,主数据库和过程对象视图 (3)第9章过程标签类型、模型,主数据库和过程对象视图 (3)1.简介 (3)2.标签类型或者模型 (3)3.标签类型和标签 (4)3.1 马达类型图 (4)3.2 创建标签类型 (5)3.3 分配标签类型的数据⽂件 (8)3.4 IEA编辑器内的标签数据⽂件 (10)3.5 分配导⼊⽂件 (13)3.6 标签的外部编辑 (15)4.模型和拷贝 (16)4.1 创建模型 (16)4.2 拷贝 (20)5.主数据库 (21)5.1 PCS7库的操作 (21)5.2 项⽬的块 (21)5.3 其它库 (21)5.4 库的操作 (22)5.5 使⽤主数据库更新功能块 (22)6.过程对象视图 (23)6.1 过程对象视图的General标签页 (24)6.2 参数标签页 (24)6.3 Siganal标签页 (25)6.4 Message标签页 (27)6.5 Picture object标签页 (28)6.6 Archive标签页 (28)6.7 在过程对象视图中的操作 (30)6.7.1 拆分窗⼝视图 (30)6.7.2 过滤器 (30)6.7.3 查找/替换 (31)6.7.4 定义列 (32)6.7.5 取消 (32)6.7.6 为导出和导⼊选择连接和消息 (33)6.7.7 导出/导⼊过程对象 (37)6.7.8 过程对象视图中的测试模式 (39)练习 (42)练习 (42)练习 9.1 阀门控制标签类型 (42)1. 任务 (42)2. 指南 (42)第9章过程标签类型、模型,主数据库和过程对象视图1.简介如果在应⽤程序中⽤到⼀个特定类型的电机控制,并且在控制过程中频繁使⽤多种变体,您可以为这种电机控制建⽴⼀个类型或者模型,然后同变体⼀起有效地应⽤于程序中。

类型或者模型就象是⼀个模板,可以⽅便地复制各种变体。

12护理学导论课后练习题

12护理学导论课后练习题第九章护理程序一、名词解释1.护理确诊(nursingdiagnosis)2.护理评价(nursingevaluation)二、填空题1.护理程序的五个步骤是护理评估、_________、_________、_________和护理评价。

2.护理诊断由名称、_________、_________和__________四部分组成。

3.护理评估中资料的种类分为_________和__________两种。

4.护士搜集资料的方法存有_________、_________、_________和查询四种。

5.护理诊断的类型有_________、_________、_________和综合的护理诊断四种。

6.护理诊断的pes公式中,p代表_________、e代表_________、s代表_________。

7.排列护理诊断的三优先原则是_________、_________和__________。

8.对于合作性问题,护士承担_________责任,需与_________共同合作解决服务对象的健康问题。

9.预期目标包含_________和__________两种。

10.护理措施可分为_________、_________和__________三类。

11.pio记录法中的p就是指_________,i就是指_________,o就是指_________。

12.目标同时实现的程度分成_________、_________和__________三种。

三、选择题a1型题1.以下哪一项整体护理课堂教学特征表明护理专业的独立性和护士的自身价值:a.现代护理观b.护理程序c.计划性护理d.护患合作e.推动身心健康2.护理程序是科学地认识、分析和解决问题的:a.工作前提b.工作方法c.工作基础d.工作方针e.工作思想3.关于护理程序叙述恰当的就是:a.规范技术操作的程序b.护理工作的简化形式c.护理工作的分工类型d.循环的护理活动过程e.系统地解决问题的方法4.有关护理程序的表述欠妥的就是:a.是科学的确认问题及解决问题的工作方法和思想方法b.以满足服务对象的身心需要,恢复或增进健康为目标c.有计划、有步骤、连续的、动态的、全面的过程d.分为评估、诊断、计划、评价四个步骤e.具有决策和反馈功能的理论与实践模式5.护理程序中,指导护理活动的核心是:a.以工作内容为中心b.以继续执行医嘱为中心c.以医院管理为中心d.以护理工作为中心e.以护理对象为中心6.组成护理程序基本框架的理论是:a.分析论b.方法论c.系统论d.解决问题论e.人的基本须要论7.护理程序的结构和功能彰显的依据就是:a.分析论b.方法论c.系统论d.解决问题论e.人的基本需要论8.系统论的最基本原则是:a.整体性b.连续性c.相关性d.动态性e.层次性9.在应用领域护理程序的护理工作方法时,不是护理系统输出的内容就是:a.病人原来的健康资料b.掌握护理知识和护理技能的工作人员c.病人的自理情况d.提高了护理业务水平的护士e.医院的设备用物10.有关系统理论恰当的就是:a.开放系统没边界b.系统的整体功能是各组成部分功能的总和c.人是自然系统的次系统d.系统的开放和闭合是绝对的e.开放系统与环境的促进作用就是通过输出和输入顺利完成的11.护理程序的基础就是:a.评估b.计划c.诊断d.评价e.实施12.评估的根本目的是:a.找到必须化解的护理问题b.作出护理确诊c.制定护理计划d.为医生制定治疗方案提供依据e.培养护士的能力13.评估病人健康状况提及的理论就是:a.分析论b.方法论c.系统论d.解决问题论e.人的基本需要论14.进行护理程序中的“评估”应在:a.病人入院时b.病人出院时c.病人入院及出院时d.自病人入院时开始至病人出院为止e.以上都不是15.以下就是资料的轻易来源的就是:a.患者b.病历c.病人家属d.护士的判断e.护理体检16.在护理评估中,以下不是资料来源的就是:a.患者b.病历c.病人家属d.护士的判断e.护理体检17.病人资料的最佳来源是:a.医生的临床确诊b.病人本人c.文献资料d.知情者e.对病人存有关键影响的人18.属患者通常资料的就是:a.姓名、年龄、文化程度b.患病史、过敏史、婚育史c.性格特征、个性倾向、情绪状态d.患者对疾病的认识与反应e.家庭关系、经济状况、医疗条件19.关于病人的主观资料以下观点恰当的就是:a.主观资料就可以源自于病人本身b.病人对自己身心健康问题的体验和重新认识c.护士对病人健康问题的体验和认识d.护士体格检查获得的病人的资料e.护士通过观察获得的病人身心健康资料20.以下哪项属病人的主观资料:a.病人体温37.5℃b.病人自觉无力c.病人皮肤发绀d.病人咳嗽e.病人呼吸20次/分22.不属于病人的主观资料的是:a.胸闷b.没食欲c.肢体麻木d.咽喉部发炎e.恶心23.属主观资料的就是:a.肺部水泡音b.心动过速c.急性病容d.病人提出的需求e.呕吐24.不属于主观资料的是:a.疼痛b.入睡困难c.消化不良d.惧怕e.呕血25.以下不属于客观资料的就是:a.面色苍白b.坐立不安c.腹泻d.皮肤瘙痒e.尿蛋白++26.下列属于客观资料的是:a.头晕2天b.恶心c.消化不良d.腹部压痛e.腹痛吐血27.以下不属于客观资料的就是:a.气短b.呼吸急促c.尿糖阳性d.心率不齐e.血压100/60mmhg28.下列不属于客观资料的是:a.体重78千克b.二尖瓣杂音c.黄疸d.肝脾小e.我想要出院29.以下都属客观资料的就是:a.疼痛、吃不下饭、心脏听诊b.口渴、意识丧失、呕吐c.乏力、便秘、活动无耐力d.心率增加、膝关节压痛、呕吐e.头晕、皮肤破损、肌张力三级30.对病人心理社会评估使用的最主要方法就是:a.体格检查b.交谈和观察c.查阅相关资料d.心理社会测试e.使用疼痛评估工具31.关于记录资料的选项不妥的是:a.及时记录b.主观和客观资料应当尽量采用病人语言c.叙述的词语应当清楚d.防止护士的主观推论和结论e.恰当充分反映病人的问题32.责任护士对病人进行收集资料,以下不对的是:a.通过医生病历获得体格检查的健康资料b.通过与患者交谈获得其健康资料c.通过观察患者的非语言犯罪行为介绍客观资料d.通过与患者家属的攀谈赢得一定的信息e.通过写作化验报告赢得客观的身心健康资料33.护理程序的五个步骤中,最具护理专业特色的步骤是:a.评估护理b.护理确诊c.护理实行d.护理计划e.护理评价34.制定护理计划的主要依据是:a.护理确诊b.医疗确诊c.检查报告d.护理体查e.既往病史35.护理确诊的内容就是针对病人:a.疾病的种类b.疾病病理过程c.疾病的病理变化d.对健康问题的反应e.疾病潜在的病理过程36.护理诊断的构成不包括:a.名称b.定义c.身心健康问题d.确诊依据e.有关因素37.在护理确诊陈述时常用字母“e”则表示:a.名称b.定义c.诊断依据d.原因e.症状和体症38.护理诊断pse陈述公式中“p”表示:a.名称b.定义c.身心健康问题d.确诊依据e.有关因素39.护士小凌用pse公式书写护理确诊,其中“s”代表:a.患者的主述b.患者的症状或体征c.患者产生健康问题d.患者的既往史e.患者产生健康问题的原因40.气体交换损坏:与肺水肿有关。

第9章 常微分方程初值问题数值解法

2
数值分析
第9章 常微分方程初值问题数值解法
《常微分方程》中介绍的微分方程主要有:
(1)变量可分离的方程 (2)一阶线性微分方程(贝努利方程) (3)可降阶的一类高阶方程 (4)二阶常系数齐次微分方程 (5)二阶常系数非齐次微分方程 (6)全微分方程 本章主要介绍一阶常微分方程初值问题的数值解法。
进一步: 令
y n1 y n
xn 1 xn
y n 1 y( x n 1 ) , y n y( x n )
f ( x , y( x ))dx h f ( x n , y n )

9

实际上是矩形法
数值分析
第9章 常微分方程初值问题数值解法
(3)
用Taylor多项式近似并可估计误差
解决方法:有的可化为显格式,但有的不行 18
数值分析
第9章 常微分方程初值问题数值解法
与Euler法结合,形成迭代算法 ,对n 0,2, 1,
( yn0 )1 yn hf x n , yn ( k 1) h ( yn1 yn f x n , yn f x n1 , ynk )1 2
7
数值分析
第9章 常微分方程初值问题数值解法
建立数值解法的常用方法
建立微分方程数值解法,首先要将微分方程离散 化. 一般采用以下几种方法: (1) 用差商近似导数
dy yx yx x x dx x y
n 1 n n 1 n
n
,
n
进一步: 令
yn1 y( xn1 ) , yn y( xn )
由 x0 , y0 出发取解曲线 y y x 的切线(存在!),则斜率
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档