实验七

合集下载

实验七Southern印迹法

实验七Southern印迹法

实验七Southern印迹法Southern印迹法是分子生物学中常用的 DNA 转移与杂交技术。

Southern印迹法的目的是分离 DNA 片段,并根据它们的长度和数量测定第一种样品中特定 DNA 片段的存在。

该方法是以 Edward M. Southern 1975 年提出的。

Southern印迹法是一种将 DNA 片段转移到硝酸纤维素膜上的技术。

该方法的基本原理是将目标 DNA 的片段分离出来,通过凝胶电泳分离出 DNA 后,将它转移到硝酸纤维素或其他荧光杂交膜上。

转移后进行 DNA 与膜的固定和预处理,然后涂上 DNA 探针发现和显示 DNA 片段的方法。

这些探针经常是标记的核酸分子,它们与目标 DNA 片段杂合并可以通过荧光或放射性探测器进行检测。

1. DNA 片段的制备从需要研究的DNA中,通过限制酶切或PCR扩增等方法,将所需 DNA 片段制备出来。

2. 电泳用琼脂糖电泳分离DNA片段,根据分子大小排列。

3. 转移将分离出的 DNA 片段转移到硝酸纤维素或其他荧光杂交膜上。

4. 增强和固定增强和固定DNA与膜之间的结合力,以便进行杂交。

5. 杂交将贴有 DNA 片段的膜和DNA探针,一起置于一定的条件下进行杂交,以检测特定的DNA 片段是否存在。

6. 洗涤和显影通过洗涤和显影等操作,观察到探针与 DNA 片段的杂交情况,以得到所需的信息。

Southern印迹法在生物学领域中的应用广泛。

它被广泛用于研究 DNA 片段,如发现基因缺失、揭示癌症的起源等方面的研究。

此外,它还可以用于检测利用基因工程技术制造的 DNA 片段与细胞内的核酸结合情况。

总之,Southern印迹法是一种常用的 DNA 分析方法,它可以用于很多领域,比如基因工程、细胞生物学、药物研究和疾病诊断等。

该方法分离DNA 片段的能力和灵敏度高,可以对 DNA 片段进行量化,是分子生物学中不可或缺的重要技术手段。

实验七 PCR扩增技术

实验七  PCR扩增技术

【实验试剂】
• • • • • • • • DNA模板; Taq酶,扩增缓冲液,ddH2O; 琼脂糖N; DNA分子量标准; 50TAE电泳缓冲液(储存液); 6*loading buffer; 溴化乙锭溶液(EB):0.5 mg/ml;管里按以下比例配置50 l反应 体系: • 模板DNA0.5 l • 上游引物1 l • 下游引物1 l • 10扩增缓冲液5 l • dNTP4 l • Taq酶0.5 l • ddH2O38 l
【注意事项】
• • PCR反应灵敏度很高,为了防止污染,使用的 0.2 ml的PCR薄壁管和吸头都应该是无污染的。 加试剂前,应短暂离心10 s,然后再打开试剂的 管盖,以防止污染试剂。 配置PCR反应体系时,Taq酶应该最后加入。使 用工具酶的操作必须在冰浴的条件下进行,使 用后应立即将工具酶放回冰箱。
• 酶失活:需更换新酶,或新旧两种酶同时使用, 以分析是否因酶的活性丧失或不够而 导致假阴性。 需注意的是有时忘加Taq酶或溴乙锭。 • 引物:引物质量、引物的浓度、两条引物的浓度 是否对称,是PCR失败或扩增条带不 理想、容易 弥散的常见原因。有些批号的引物合成质量有问 题,两条引物一条浓度 高,一条浓度低,造成低 效率的不对称扩增,对策为:①选定一个好的引 物合成单 位。②引物的浓度不仅要看OD值,更要 注重引物原液做琼脂糖凝胶电泳,一定要有引物 条带出现,而且两引物带的亮度应大体一致,如 一条引物有条带,一条引物无条带,此时做PCR有 可能失败,应和引物合成单位协商解决。如一条 引物亮度高,一条亮度低,在稀释引物时要平衡 其浓度。③引物应高浓度小量分装保存,防止多 次冻融或长期放冰箱冷藏部分,导致引物变质降 解失效。④引物设计不合理,如引物长度不够, 引物之间形成二聚体等。

实验七--旋光法测定蔗糖转化反应的速率常数(新)

实验七--旋光法测定蔗糖转化反应的速率常数(新)

旋光法测定蔗糖转化反应的活化能一、实验目的1.了解蔗糖转化反应体系中各物质浓度与旋光度之间的关系。

2.测定蔗糖转化反应的速率常数和半衰期。

3.了解旋光仪的基本原理,掌握其使用方法。

二、 基本原理蔗糖在水中转化成葡萄糖和果糖,其反应为:C 12H 22O 11+H 2O C 6H 12O 6+C 6H 12O 6 (蔗糖) (葡萄糖) (果糖)它是一个二级反应,在纯水中此反应的速率很慢,通常需要在H +离子催化作用下进行。

由于反应时水是大量存在的,尽管有部分水分子参加了反应,仍可近似地认为整个反应中水的浓度是恒定的;而且H +是催化剂,其浓度也保持不变。

因此蔗糖转化反应可看作是准一级反应。

一级反应的速率方程可由下式表示: –dtdc A=A kc (1) C A 为时间t 时反应物的浓度,k 为反应速率常数。

积分可得:0,ln ln A A c kt c +-= (2)式中, C A,0为反应物的初始浓度。

当C A =1/2C A,0时,t 可用t 1/2表示,即为反应的半衰期。

由(2)式可得:(3)从上式可以看出,在不同时间测定反应物的相应浓度,并以c ln 对t 作图,可得一条直线,由直线的斜率可求得反应速率常数k ,由于反应是不断进行的,要快速分析出反应物的浓度是很困难的。

但蔗糖及其转化产物都具有旋光性,而且它们的旋光能力不同,故可利用体系在反应进程中旋光度的变化来度量反应的进程。

溶液的旋光度与溶液中所含旋光物质的旋光能力、溶剂性质、溶液浓度、样品管的长度及温度均有关系。

当其它条件均固定时,旋光度α与反应物浓度c 呈线性关系,即α=βc (4) 式中比例常数β与物质旋光能力、溶剂性质、样品管长度、温度等有关。

作为反应物的蔗糖是右旋性物质,其比旋光度[α] =66.6º;生成物中葡萄糖也是右旋光性物质,其比旋光度[α] =52.5º,但果糖是左旋性物质,其比旋光度[α] =-91.9º。

实验七 铬、锰

实验七 铬、锰
(2) K2Cr2O7 能否氧化浓盐酸?如何验证?
重 铬 酸 钾 与 浓 盐 酸 反 应 演 示
(5)铬酸根和重铬酸根在溶液中的平衡
Cr2O72- 与CrO4- 在不同酸度时的转化
(6)微溶性铬酸盐的生成
铬 酸 钾 与 金 属 离 子 反 应
(6)微溶性铬酸盐的生成
重 铬 酸 钾 与 金 属 离 子 反 应
实验七 铬、锰
一、实验目的
★ 掌握铬、锰化合物的氧化还原性及介质对产 物的影响。 ★掌握铬、锰价态相互转化的规律及转化条件。 ★学会离子的鉴定方法。 ★熟练掌握沉淀的分离、洗涤等操作。
二、内容提要(一)
表 1 铬、锰常见氧化态 稳定氧化态
Cr
+3,+6
Mn
+2,+4,+6,+7
不稳定氧化态 +2
+3,+5
二、内容提要(二)
铬的各种主要价态化合物的重要性质,各种价态的转化条件
CrO5 蓝色 H+(O2)Cr3+(兰紫色)适量 OH- Cr(OH)3 灰蓝色过量 OH- CrO2-绿色 H+
H2O2+HNO3 H++SO32-
乙醚
OHCr2O72-(橙红色)
H+
CrO42-(黄色)
H2O2+OH-
Pb2+ Ag+ Ba2+
使用什么酸做酸性介质?
(2)Mn(Ⅳ)的生成和氧化性
①MnO2 的制取及其氧化性 ②MnO2与浓盐酸反应
二氧化 锰与浓 盐酸反 应及生 成物鉴 定
(3)Mn(VI)的生成和氧化还原稳定性 注意使用40%浓NaOH,水浴加热

实验7HF-ISO15693协议操作

实验7HF-ISO15693协议操作

实验7HF-ISO15693协议操作知识点学习:ISO/IEC 15693协议标准的高频RFID无源IC卡,专为供应链与运筹管理应用所设计,具有高度防冲突与长距离运作等优点,适合于高速、长距离应用。

包括ICODE SLI-S、SL2-S 等多系列产品,目前ICODE 是高频(HF)RFID标签方案的业界标准。

ICODE SLI-S系列SL2 ICS20芯片的内部构成如上图,可分为射频处理单元、数据控制单元和EEPROM存储单元。

在数据控制单元里对数据进行反碰撞、认证和存储控制等处理。

SLICS20存储器分为32个块、每个块由4字节(32位)组成,共128字节,如下图,上部4个块(-4、-3、-2、-1块)分别用于UID(64位唯一ID序列号)、特殊功能(EAS、AFI、DSFID)和写入控制位,其他28个块为用户数据块。

UID占用块-4和块-3共8个字节(64位),是厂商写入的世界唯一标签识别序列号,用户不可更改,在UID中包含厂商代码、产品分类代码和标签芯片生产序列代码,UID的代码构成如上图。

块-1是写入控制位,具体控制分配见上图,它可以控制每个数据块的写入和块-2(特殊功能块)每个字节的写入。

写入位1代表写入保护,且不可再修改控制位。

特殊功能EAS(Electronic Article Surveillance,电子防盗系统)主要用来防止物品被盗,标签管理者可以设置(EAS=1)和清除(EAS=0)EAS标识,当设置有EAS标识的标签通过读写器的作用范围时,读写器会识别EAS标识,发出警报。

EAS的数据结构如下图,EAS的LSB的第一位(e位)写1代表EAS 标示有效,写0代表清除EAS标示,其他位无效。

特殊功能AFI(Application Family Idenfifier,应用族标识符),可事先规定应用族代码并写入AFI字节,在处理多个标签的时候进行分类处理。

例如在物流中心处理大量货物时,可根据标签上的AFI应用族标识符来区分是出口货物还是内销货物。

实验七溶液吸附法测固体的比表面_GAOQS

实验七溶液吸附法测固体的比表面_GAOQS

实验七 溶液吸附法测固体的比表面一 实验目的1. 了解溶液吸咐法测定比表面的基本原理。

2. 掌握722型分光光度计的原理并熟悉其使用方法。

3. 掌握用亚甲基蓝水溶液测定颗粒活性碳比表面的方法。

二 实验原理根据比耳光吸收定律,当入射光为一定波长的单色光时,某溶液的消 光值与溶液中有色物质的浓度及液层的厚度成正比。

A =log(I 0 / I )=K c lA 为消光值或吸光度,I 0和I 分别为入射光强度和透过光强度,K 为消光系数,c 为溶液浓度,l 为液层厚度。

T =(I / I 0),称为透射比。

同一溶液在不同波长所测得的消光值不同。

将消光值A 对波长λ作图,可得到溶液的吸收曲线。

为提高测量的灵敏度,工作波长一般选择在A 值最大处。

亚甲基蓝在可见光区有两个吸收峰:445nm 和665nm。

在445nm 处,活性碳吸附对吸收峰有很 大干扰,故本实验选用665nm 为工作波长。

在一定浓度范围内,大多数固体对亚甲基蓝的吸附是单分子层吸附,即符合朗格缪尔型。

若溶液浓度过高,会出现多分子层吸附,若溶液浓度过低,吸附又不能饱和。

本实验原始溶液浓度为0.2%左右,平衡溶液浓度不小于0.1%。

亚甲基蓝具有矩形平面结构。

阳离子大小为17.0×7.6×3.25A 3。

亚甲基蓝的吸附有三种取向:平面吸附投影面积为135A 2;侧面吸附投 影 面积为75A 2;端基吸附投影面积为39.5A 2。

对于非 石墨型的活性碳,亚甲基蓝可能不是平面吸附而是 端基吸附。

实验表明,在单分子层吸附的情况下,亚甲基蓝覆盖面积为:2.45×103m 2·g -1。

溶液吸附法测定固体比表面,简便易行,但其测量误差较大,一般为10%左右。

三 仪器药品 722型分光光度计1套;100ml 容量瓶3只;100ml 碘定量瓶2只;50ml 移液管1只;1ml 带刻度移液管2只;玻璃漏斗1只;颗粒状非石墨型活性碳亚甲基蓝溶液:0.2%原始溶液;0.0100%标准溶液。

实验七葡萄糖含量的测定(碘量法)

实验七葡萄糖含量的测定(碘量法)实验七葡萄糖含量的测定(碘量法)一、实验目的本实验旨在通过碘量法测定样品中葡萄糖的含量,以了解该样品是否符合质量标准。

碘量法是一种常用的化学分析方法,具有操作简便、准确度高、适用范围广等优点。

二、实验原理碘量法的基本原理是利用碘与葡萄糖的氧化还原反应。

在酸性条件下,碘可以将葡萄糖氧化成葡萄糖酸,同时释放出等量的碘离子。

通过测量释放出的碘离子浓度,可以推算出葡萄糖的含量。

三、实验步骤1.样品处理:称取适量样品,用蒸馏水溶解,转移至250 mL容量瓶中,定容至刻度。

2.制备标准溶液:准确称取已知质量的葡萄糖标准品,用蒸馏水溶解并定容至100 mL容量瓶中,得到1 mg/mL的葡萄糖标准溶液。

3.绘制标准曲线:分别取0、1、2、3、4 mL的葡萄糖标准溶液于5个25 mL容量瓶中,各加入0.5 mL 6 mol/L的盐酸溶液,摇匀后分别加入0.5 mL0.1%的淀粉溶液和1 mL 0.05%的硫酸铜溶液,摇匀后再加入10 mL 0.01%的碘溶液,用蒸馏水定容至刻度。

在暗处静置5 min后,用光电比色计测量各溶液的吸光度,以吸光度为纵坐标,葡萄糖浓度为横坐标绘制标准曲线。

4.样品测定:取5 mL样品溶液于25 mL容量瓶中,按照标准曲线的制备方法进行操作,最后用光电比色计测量吸光度。

5.数据处理:根据标准曲线计算样品中葡萄糖的含量。

四、实验结果与数据分析1.标准曲线绘制结果:根据吸光度与葡萄糖浓度的关系绘制标准曲线,得到回归方程为y = 0.047x + 0.032(R² = 0.998)。

结果表明,在一定浓度范围内,吸光度与葡萄糖浓度呈线性关系。

2.样品测定结果:通过光电比色计测量样品溶液的吸光度,根据回归方程计算得到样品中葡萄糖的含量为98.5%。

3.数据处理与分析:根据实验结果可知,该样品中葡萄糖含量较高,符合质量标准。

此外,本实验还验证了碘量法测定葡萄糖含量的准确性和可靠性。

实验七-铵盐中氮含量的测定(甲醛法)

实验七硫酸铵中含氮量的测定一、摘要通过二、目的要求1. 学会用酸碱滴定法间接测定氮肥中氮的含量;2. 进一步掌握天平、移液管的使用。

三、实验原理氨态氮的测定可选用甲醛法或蒸馏法测定。

氨水及碳酸氢铵则可用酸碱滴定法直接测定。

甲醛法操作简单、迅速,但必须严格控制操作条件,否则结果易偏低。

蒸馏法操作简单,但该法准确可靠,是经典方法。

硫酸铵与甲醛作用,可生成等量的酸,其反应为:2(NH4)2SO4 + 6HCH0 = (CH2 6 N4 + 2H2SO4 + 6H2O反应中生成的酸可用NaOH标准溶液滴定,达化学计量点时,溶液pH约为8.8,故可用酚酞作指示剂。

根据H+与NH+4等化学量关系,可间接求(NH4)2SO仲的含N量。

四、实验用品1. 仪器分析天平,20ml移液管,量筒,锥形瓶,碱式滴定管2. 试剂固体(NH4)2SO4 NaOH (分析纯),20%甲醛溶液,2%酚酞指示剂四、实验步骤1、NaOH标准溶液的配制:2、NaOH标准溶液的标定:用差减法称取固体(NH4)2SO40.55-0.60 g于烧杯中,加约30 ml蒸馏水溶解,转移至100mL容量瓶中并定容至刻度,摇匀。

用移液管吸取20ml该溶液于三角瓶中,加入18%^性甲醛溶液5ml,放置反应5 min 后,加1-2滴酚酞,用NaOH滴定至终点(微红),记下所耗NaOH标准溶液的体积VNaOH,平行做2-3次。

计算试样中的含N量。

N%==(CV)Na0H*(14.1/100)*(100/20)/W(NH4)2S04*100%\\ 实验七铵盐中氮含量的测定(甲醛法)实验日期:实验目的:1、掌握用甲醛法测定铵盐中氮的原理和方法;2、熟练滴定操作和滴定终点的判断。

一、方法原理铵盐是常见的无机化肥,是强酸弱碱盐,可用酸碱滴定法测定其含量,但由于NH+的酸性太弱(Ka= 5.6 x 10-10),直接用NaOH标准溶液滴定有困难,生产和实验室中广泛采用甲醛法测定铵盐中的含氮量。

实验七 密立根油滴实验

实验五密立根油滴实验【预习重点】1、了解密立根实验思想的发展过程。

2、了解显微摄像油滴仪的原理、结构和操作方法。

3、了解非整最大公约数的数值求解方法。

【实验目的】1、学习密立根的敬业创新精神,学做一个有心人。

2、尝试用现代化测量仪器计算手段研究经典课题,实测基本电荷e 。

3、培养耐心细致的工作风格和技巧。

【学史背景】密立根(Robert Andrews Millikan, 1868-1953)出身贫寒,上学较晚,除希腊语和数学外几乎没有什么特长。

一个偶然的机会使他投身物理学,那是在奥伯林学院大二即将结束的时候,协助老师给预科班开设基础物理课。

密立根刻苦钻研教学,在课堂上经常采用生动的演示实验,比之教授们的照本宣科大受欢迎。

他本科毕业后一边教学一边自修硕士学位,之后获奖学金赴哥伦比亚大学攻读博士,继而到欧洲留学;返美后应迈克耳孙之邀到芝加哥大学任教。

而立之年的密立根,教学工作非常优秀,科学研究尚未起步。

为此他很着急,决心向科学前沿出击。

J.J.汤姆孙1897年发现电子的论文给了他极大启发,他选定基本电荷的测量作为科研切入点。

因研究气体导电获1906年度诺贝尔物理奖的J.J. 汤姆孙爵士(Sir Joseph John Thomson, 1856-1940)并不擅长实验技术,但思路敏锐善于设计,在同事和学生协助下完成了许多精采实验。

他证明了阴极射线是带负电的粒子流,这种粒子的尺度远小于分子原子,他将之命名为电子(electron),还测算了电子荷质比。

接下来的工作就是要确定电子带电量,许多学者投入这项工作。

著名科学家卢瑟福的赞赏激发了密立根的创新灵感,密立根在改进别人的云室法时突发奇想:为使云雾稳定不动,可否加上一个与重力反向的电场力?结果大出所料,雾粒在很短时间内以不同速度散得一干二净。

失败了吗?否!密立根从意外现象的背后看到出路,一举创造了测量单个带电液滴的著名实验方法,以确凿的数据证明了电荷的量子性,荣获1923年度诺贝尔物理奖。

实验七----电导法测定醋酸的电离度和电离常数

实验七----电导法测定醋酸的电离度和电离常数⼀. 实验⽬的1、掌握醋酸解离度和解离常数测定⽅法,加深对电离度,电离常数和溶液浓度与电导关系的理解。

2、学习电导法测电离度的原理和在井⽳板中进⾏电导率测量的操作;理解酸度计的使⽤。

3、进⼀步掌握溶液的配制、滴定操作。

⼆. 实验原理COOH或HAc)是弱电解质,在⽔溶液中存在下列解离平衡:1、醋酸(CH3起始浓度(mol/L) c 0 0平衡浓度(mol/L) c- cα cα cα若c为醋酸的起始浓度,α为醋酸的解离度,[H+]、[Ac-]、[HAc]分别为H+、Ac-、HAc的平衡浓度,Kα为醋酸的解离常数,则[H+]=[Ac-]= cα [HAc]= c(1-α)解离度:α=[H+]/c×100%解离常数:Kα=[H+][Ac-]/[HAc]= cα2/(1-α)=[H+]2 /(c-[H+])已知pH=-lg[H+],所以测定了已知浓度的醋酸溶液的pH值,就可以求出它的解离度和解离常数。

2、PHS-3C酸度计直接电位法测定pH值的原理PHS-3C型精密级酸度计是⼀3(1/2)位数字显⽰的酸度计,适⽤于研究室、医药、学校、化⼯、环保等化验室的取样测定⽔溶液的酸度(pH值)和测量电极电位(mV值)。

如配上适当的离⼦选择电极,则可以作为电位滴定。

其⼯作原理是利⽤复合电极对被测⽔溶液中不同的酸度产⽣直流电位,通过前置阻抗转换器把⾼内阻的直流电位转变成低内阻的直流电位,输⼊到A/D转换器,以达到pH值数字显⽰。

同样,配上适当的离⼦选择电极作电位滴定分析时,以达到终点电位显⽰。

以pH玻璃电极作指⽰电极,⽢汞电极作参⽐电极,插⼊溶液中即组成测定pH值的原电池。

在⼀定条件下,电池电动势E是试液中pH值的线性函数。

测量E时,若参⽐电极(⽢汞电极)为正极,则E=K+0.059pH(25℃)当pH玻璃-⽢汞电极对分别插⼊pHS标准缓冲溶液和pH x未知溶液中,电动势E S和Ex 分别为E S=K+0.059pHS(25℃)Ex=K+0.059pH x(25℃)两式相减,得(25℃)三. 仪器设备及试剂仪器:容量瓶(50mL),吸量管(10mI),移液管(25mL),烧杯(50mL),锥形瓶(250mL),碱式滴定管(50mL),pHs-3C型酸度计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验七 学生实验报告
系别 计算机工程系 课程名称 数字逻辑设计实验
专业 08网络工程 实验名称 AD转换实验
班级 A班 小组情况 一人组
姓名 张志福 实验时间 2010.6.2
学号 28030501061 指导教师 吕燚
报 告 内 容
1. 给出实现3位并行比较型ADC逻辑电路并通过LED显示结果的逻辑图,分
析其原理。

上图是采用自然二制码的3位并行比较型ADC的原理图。它由电阻分压器、
电压比较器A1~A7、寄存器和编码电路构成。数字电路教学平台利用比较器
LM339和电阻实现了电阻分压器和电压比较器两部分,电路原理图如图2所示。
当转动电位器R80时,A_VIN的电压就产生变化,根据电压的变化,LM339比
较输出的结果为Out1~Out8,Out1~Out8接到FPGA的管脚上,利用FPGA实现
寄存器和编码电路,就能实现A/D转换。Out[8..1]是比较器LM339输出的值
C1~C8,delay2是D触发器的时钟输入端,接到375Hz(系统时钟512分频)的时
钟信号上,LED[7..0]是比较器输出的结果,当比较结果为1时,输出1,对应的
LED灯灭。
2. 给出实现3位并行比较型ADC逻辑电路并通过数码管显示结果的逻辑图,
分析其原理。

当比较器输出的结果经过寄存器输出8位数据,对8位数据进行编码输出到数
码管上,显示转换结果(0~6)。数字电路教学平台的数码管是共阳极,段驱动电
平是低电平有效(7448是输出高电平有效)

成绩 教师签名 批改时间 年 月 日

相关文档
最新文档