成都七中实验学校必修第二册第五单元《概率》检测卷(有答案解析)
新人教版高中数学必修第二册第五单元《概率》测试卷(有答案解析)(3)

一、选择题1.甲、乙、丙、丁四位同学站成一排照相,则甲.乙两人中至少有一人站在两端的概率为( ) A .56B .12C .13 D .232.某地有A ,B ,C ,D 四人先后感染了传染性肺炎,其中只有A 到过疫区,B 确定是受A 感染的.对于C 因为难以判定是受A 还是受B 感染的,于是假定他受A 和B 感染的概率都是12.同样也假定D 受A ,B 和C 感染的概率都是13.在这种假定下,B ,C ,D 中恰有两人直接受A 感染的概率是( ) A .16B .13C .12D .233.如图,已知电路中4个开关闭合的概率都是12,且是互相独立的,灯亮的概率为( )A .316B .34C .1316D .144.设两个独立事件A 和B 同时不发生的概率是p ,A 发生B 不发生与A 不发生B 发生的概率相同,则事件A 发生的概率为( ) A .2pB .2p C .1p D .12p 5.排球比赛的规则是5局3胜制(无平局),在某次排球比赛中,甲队在每局比赛中获胜的概率都相等,均为23,前2局中乙队以2:0领先,则最后乙队获胜的概率是( ) A .49 B .1927C .1127D .40816.党的十八提出:倡导“富强、民主、文明、和谐、自由、平等、公正、法治、爱国、敬业、诚信、友善”社会主义核心价值观.现将这十二个词依次..写在六张规格相同的卡片的正反面(无区分),(如“富强、民主”写在同一张卡片的两面),从中任意抽取1张卡片,则写有“爱国”“诚信”两词中的一个的概率是( )A.13B.16C.56D.237.甲、乙二人进行围棋比赛,采取“三局两胜制”,已知甲每局取胜的概率为23,则甲获胜的概率为 ( ).A.22213221333C⎛⎫⎛⎫⎛⎫+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B.22232233C⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭C.22112221333C⎛⎫⎛⎫⎛⎫+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D.21112221333C⎛⎫⎛⎫⎛⎫+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭8.将一颗质地均匀的骰子先后抛掷3次,至少出现一次6点向上的概率是()A.91216B.31216C.25216D.52169.已知甲,乙,丙三人去参加某公司面试,他们被该公司录取的概率分别是16,14,13,且三人录取结果相互之间没有影响,则他们三人中至少有一人被录取的概率为()A.3172B.712C.2572D.157210.学校足球赛决赛计划在周三、周四、周五三天中的某一天进行,如果这一天下雨则推迟至后一天,如果这三天都下雨则推迟至下一周,已知这三天下雨的概率均为12,则这周能进行决赛的概率为A.18B.38C.58D.7811.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率为710的事件是()A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡12.某普通高校招生体育专业测试合格分数线确定为60分,甲、乙、丙三名考生独立参加测试,他们能达到合格的概率分别是0.9,0.8,0.75,则三人中至少有一人达标的概率为()A.0.015 B.0.005 C.0.985 D.0.99513.自新型冠状病毒爆发以来,全国各地医护人员勇当“逆行者”支援湖北.重庆第一批共派出甲、乙、丙、丁4支医疗队分成三组奔赴三个地方,每组至少一支医疗队,则甲、乙分在同一组的概率为()A.13B.12C.29D.16二、解答题14.在新高考中我市采用了“3+1+2”模式,对化学、生物、地理和政治等四门选考科目,制定了计算转换T分(即记入高考总分的分数)的“等级转换赋分规则”(详见附1和附2),具体的转换步骤为:①原始分Y等级转换;②原始分等级内等比例转换赋分.我校高二年级在期末考试后,政治、化学两选考科目的原始分分布如表:等级A B C D E比例约15%约35%约35%约13%约2%政治学科各等级对应的原始分区间[81,98][72,80][66,71][63,65][60,62]化学学科各等级对应的原始分区间[90,100][77,89][69,76][66,68][63,65]政治:64,72,66,92,78,66,82,65,76,67,74,80,70,69,84,75,68,71,60,79化学:72,79,86,75,83,89,64,98,73,67,79,84,77,94,71,81,74,69,91,70并根据上述数据制作了如下的茎叶图:(1)茎叶图中各序号位置应填写的数字分别是:①应填___________,②应填___________,③应填___________,④应填___________,⑤应填___________,⑥应填___________.(2)甲同学选考政治学科,其原始分为82分,乙同学选考化学学科,其原始分为91分.基于新高考实测的转换赋分模拟,试分别探究这两位同学的转换分,并从公平性的角度谈谈你对新高考这种“等级转换赋分法”的看法.(3)若从我校政治、化学学科等级为A的学生中,随机挑选2人次(两科都选,且两科成绩都为A等的学生,可有两次被选机会),试估计这2人次挑选,其转换分都不少于91分的概率.附1:等级转换的等级人数占比与各等级的转换分赋分区间.等级A B C D E原始分从高到低排序的等级人数占约15%约35%约35%约13%约2%比转换分T的赋分区间[86,100][71,85][56,70][41,55][30,40]附2:计算转换分T的等比例转换赋分公式:2211Y Y T TY Y T T--=--(其中:Y1,Y2别表示原始分Y对应等级的原始分区间下限和上限;T1,T2分别表示原始分对应等级的转换分赋分区间下限和上限.T的计算结果按四舍五入取整).15.2020年是全面建成小康社会目标实现之年,是全面打赢脱贫攻坚战收官之年.为帮助某村巩固扶贫成果,该村的结对帮扶共建企业在该村建立了一座精米加工厂,并对粮食原料进行深加工,研发出一种新产品,已知该产品的质量以某项指标值()60100k k≤<为衡量标准,质量指标的等级划分如表:质量指标值k90100k≤<8090k≤<7080k≤<6070k≤<产品等级A B C D件产品的指标值,得到如下的产品质量指标值的频率分布直方图;设M=频率组距,当[)()10,101068,k n n n n N∈+≤≤∈时,满足52200nM-=.(1)试估计样本质量指标值k的中位数m;(2)从样本质量指标值不小于80的产品中采用分层抽样的方法抽取7件产品,然后从这7件产品中任取2件产品,求至少有1件A级品的概率.16.一个不透明的袋子中装有5个小球,其中有3个红球,2个白球,这些球除颜色外完全相同.(1)记事件A为“一次摸出2个球,摸出的球为一个红球,一个白球”.求()P A;(2)记事件B为“第一次摸出一个球,记下颜色后将它放回袋中,再次摸出一个球,两次摸出的球为不同颜色的球”,记事件C 为“第一次摸出一个球,不放回袋中,再次摸出一个球,两次摸出的球为不同颜色的球”,求证:1()()()5P C P B P A -=. 17.进行垃圾分类收集可以减少垃圾处理量和处理设备,降低处理成本,减少土地资源的消耗,具有社会、经济、生态等多方面的效益,是关乎生态文明建设全局的大事.为了普及垃圾分类知识,某学校举行了垃圾分类知识考试,试卷中只有两道题目,已知甲同学答对每题的概率都为p ,乙同学答对每题的概率都为()q p q >,且在考试中每人各题答题结果互不影响.已知每题甲,乙同时答对的概率为12,恰有一人答对的概率为512. (1)求p 和q 的值;(2)试求两人共答对3道题的概率.18.在新冠肺炎疫情期间,为了认真贯彻落实北京市教委关于做好中小学生延期开学期间“停课不停学”工作要求,各校以教师线上指导帮助和学生居家自主学习相结合的教学模式积极开展工作.为了解学生居家自主学习的情况,从某校高二年级随机抽取了100名学生,获得了他们一天中用于居家自主学习的时间分别在[)[)[)0,1,1,2,2,3,[)[)[)3,4,4,5,5,6,[)[]677,8,,(单位:小时)的数据,整理得到的数据绘制成频率分布直方图(如图).(1)由图中数据,求a 的值,并估计从该校高二年级中随机抽取一名学生,这名学生该天居家自主学习的时间在[)3,4的概率;(2)现从抽取的100名学生该天居家自主学习的时间在[)0,1和[)1,2的人中任选2人,进一步了解学生的具体情况,求其中学习时间在[)0,1中至少有1人的概率;(3)假设同一时间段中的每个数据可用该时间段的中点值代替,试估计样本中的100名学生该天居家自主学习时间的平均数.19.随着我国中医学的发展,药用昆虫的使用越来越多,每年春暖以后至寒冬前,昆虫大量活动与繁殖,易于采集各种药用昆虫,已知某种药用昆虫的产卵数y (单位:个)与一定范围内的温度x (单位:°C )有关,于是科研人员在3月份的31天中随机挑选了5天进行研究,收集了该种药用昆虫的5组观测数据如下表: 日期 2日 7日 15日 22日 30日 温度x 10 11 13 12 8 产卵数y2325302616m ,n ,求事件“m ,n 均不小于26”的概率;(2)科研人员确定的研究方案是:先从这5组数据中任选2组,用剩下的3组数据建立y 关于x 的线性回归方程,再对被选取的2组数据进行检验;①若选取的是3月2日和30日这两组数据,请根据7日、15日、22日这3组数据求出y 关于x 的线性回归方程;②若由线性回归方程得到的估计产卵数与所选出的检验数据的误差不超过2个,则认为得到的线性回归方程是可靠的.按照此标准①中得到的线性回归方程是否可靠?说明理由.参考公式:最小二乘法求线性回归方程系数公式:()()()121ˆniii nii x x y y bx x ==--=-∑∑,ˆˆay bx =-. 20.高考改革后,学生除了语数外三门必选外,可在A 类科目:物理、化学、生物和B 类科目:政治、地理、历史共6个科目中任选3门. (1)求小明同学选A 类科目数X 的分布列.(2)求小明同学从A 类和B 类科目中均至少选择1门科目的概率.21.某校从高一年级的一次月考成绩中随机抽取了50名学生的成绩,这50名学生的成绩都在[50,100]内,按成绩分为[50,60),[60,70),[70,80),[80,90),[90,100]五组,得到如图所示的频率分布直方图.(1)求图中的a 值;(2)根据频率分布直方图估计该校高一年级本次考试成绩的中位数;(3)用分层抽样的方法从成绩在[80,100]内的学生中抽取6人,再从这6人中随机抽取2名学生进行调查,求月考成绩在[90,100]内至少有1名学生被抽到的概率.22.甲、乙去某公司应聘面试.该公司的面试方案为:应聘者从6道备选题中一次性随机抽取3道题,按照答对题目的个数为标准进行筛选.已知6道备选题中应聘者甲有4道题能正确完成,2道题不能完成;应聘者乙每题正确完成的概率都是23,且每题正确完成与否互不影响.(1)分别求甲、乙两人正确完成面试题数的分布列,并计算其数学期望; (2)请分析比较甲、乙两人谁的面试通过的可能性较大?23.已知从树人中学高三年级的8名优秀年青教师(男教师6名,女教师2名)中任选3名参加养老院志愿服务活动.(1)求“8名优秀年青教师中,优秀年青教师甲和优秀年青教师乙均被选到”的概率. (2)若所选3名优秀年青教师中女教师人数为ξ,求ξ的分布列.24.某中学高一年级举行了一次数学竞赛,从中随机抽取了一批学生的成绩,经统计,这批学生的成绩全部介于50至100之间,将数据按照[)50,60,[)60,70,[)70,80,[)80,90,[]90,100的分组作出频率分布直方图如图所示.(1)求频率分布直方图中a 的值,并估计本次竞赛成绩的第80百分位数;(2)若按照分层随机抽样从成绩在[)80,90,(]90,100的两组中抽取6人,再从这6人中随机抽取2人,求至少有1人的成绩在[]90,100内的概率.25.为了丰富业余生活,甲、乙、丙三人进行羽毛球比赛.比赛规则如下:①每场比赛有两人参加,并决出胜负;②每场比赛获胜的人与未参加此场比赛的人进行下一场的比赛;③依次循环,直到有一个人首先获得两场胜利,则本次比赛结束,此人为本次比赛的冠军.已知在每场比赛中,甲胜乙的概率为23,甲胜丙的概率为35,乙胜丙的概率为12.(1)求甲和乙先赛且共进行4场比赛的概率;(2)请通过计算说明,哪两个人进行首场比赛时,甲获得冠军的概率最大?26.2020年是全面建成小康社会目标实现之年,也是全面打赢脱贫攻坚战收官之年.某乡镇在2014年通过精准识别确定建档立卡的贫困户共有500户,结合当地实际情况采取多项精准扶贫措施,每年新脱贫户数如下表(1)根据2015-2019年的数据,求出y关于x的线性回归方程y bx a=+,并预测到2020年底该乡镇500户贫困户是否能全部脱贫;(2)2019年的新脱贫户中有20户五保户,20户低保户,60户扶贫户.该乡镇某干部打算按照分层抽样的方法对2019年新脱贫户中的5户进行回访,了解生产生活、帮扶工作开展情况.为防止这些脱贫户再度返贫,随机抽取这5户中的2户进行每月跟踪帮扶,求抽取的2户中至少有1户是扶贫户的概率.参考数据:5115526838049251001299 i iix y==⨯+⨯+⨯+⨯+⨯=∑参考公式:()()()1122211n ni i i ii in ni ii ix y nx y x x y ybx nx x x====---==--∑∑∑∑,a y bx=-【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】本题先求基本事件总数,再求要求事件是基本事件个数,最后根据古典概型解题即可.【详解】∵甲、乙、丙、丁四位同学站成一排照相,基本事件总数4424n A==,甲、乙两人中至少有一人站在两端包含的基本事件个数42242220m A A A =-=∴甲,乙两人中至少有一人站在两端的概率为:205246mPn===..故选:A. 【点睛】本题考查古典概型,是简单题.2.C解析:C 【分析】设,,B C D 直接受A 感染为事件B 、C 、D ,分析题意得出()1P B =,1()2P C =,1()3P D =,B ,C ,D 中恰有两人直接受A 感染为事件CD CD +,利用公式求得结果. 【详解】根据题意得出:因为直接受A 感染的人至少是B , 而C 、D 二人也有可能是由A 感染的, 设,,B C D 直接受A 感染为事件B 、C 、D , 则事件B 、C 、D 是相互独立的,()1P B =,1()2P C =,1()3P D =, 表明除了B 外,,C D 二人中恰有一人是由A 感染的, 所以12111()()()23232P CD CD P CD P CD +=+=⨯+⨯=, 所以B 、C 、D 中直接受A 传染的人数为2的概率为12, 故选:C. 【点睛】该题考查的是有关概率的问题,涉及到的知识点有随机事件发生的概率,相互独立事件同时发生的概率公式和互斥事件有一个发生的概率公式,属于简单题目.3.C解析:C 【分析】灯泡不亮包括四个开关都开,或下边的2个都开,上边的2个中有一个开,这三种情况是互斥的,每一种情况中的事件是相互独立的,根据概率公式得到结果. 【详解】由题意知,本题是一个相互独立事件同时发生的概率,灯泡不亮包括四个开关都开,或下边的2个都开,上边的2个中有一个开, 这三种情况是互斥的,每一种情况中的事件是相互独立的,∴灯泡不亮的概率是111111111322222222216111222⨯+⨯⨯⨯+⨯⨯⨯⨯=⨯,灯亮和灯不亮是两个对立事件,∴灯亮的概率是31311616-=, 故选:C . 【点睛】本题结合物理的电路考查了有关概率的知识,考查对立事件的概率和项和对立事件的概率,本题解题的关键是看出事件之间的关系,灯亮的情况比较多,需要从反面来考虑,属于中档题.4.C解析:C 【分析】利用A 发生B 不发生与A 不发生B 发生的概率相同,事件A 和B 同时不发生的概率是p ,建立方程,即可求得事件A 发生的概率. 【详解】根据题意设事件A 发生的概率为a ,事件B 发生的概率为b , 则有(1)(1)(1)(1)a b p a b a b --=⎧⎨-=-⎩①②由②知a b =,代入①得1a =故选:C . 【点睛】本题主要考查相互独立事件的概率的计算,解题的关键是正确理解题意,列出方程,属于中档题.5.B解析:B 【分析】最后乙队获胜的概率含3种情况:第三局乙胜,第三局甲胜第四局乙胜,第三局和第四局都是甲胜,第五局乙胜,由此能求出最后乙队获胜的概率. 【详解】最后乙队获胜事件含3种情况:第三局乙胜,其概率为13; 第三局甲胜,第四局乙胜,其概率为212339⨯=; 第三局和第四局都是甲胜,第五局乙胜22143327⎛⎫⨯= ⎪⎝⎭;故最后乙队获胜的概率12419392727P =++=, 故选:B . 【点睛】本题主要考查概率的求法,解题时要认真审题,注意互斥事件概率加法公式的合理运用,属于中档题.6.A解析:A【分析】由题意知,基本事件有6个,其中抽取到含有“爱国”“诚信”两词中的一个的事件有2个基本事件,根据古典概型概率公式计算即可.【详解】由题意,基本事件为抽到写有富强、民主;文明、和谐;自由、平等;公正、法治;爱国、敬业;诚信、友善的卡片,共有6个,其中抽到写有“爱国”“诚信”两词中的一个的事件为:抽到写有爱国、敬业的卡片,抽到写有诚信、友善的卡片,共有2个,所以由古典概型概率公式知:2163 P==,故选:A【点睛】本题主要考查了古典概型概率的求法,属于中档题.7.C解析:C【分析】先确定事件“甲获胜”包含“甲三局赢两局”和“前两局甲赢”,再利用独立重复试验的概率公式和概率加法公式可求出所求事件的概率.【详解】事件“甲获胜”包含“甲三局赢两局”和“前两局甲赢”,若甲三局赢两局,则第三局必须是甲赢,前面两局甲赢一局,所求概率为2121233C⎛⎫⋅⋅ ⎪⎝⎭,若前两局都是甲赢,所求概率为223⎛⎫⎪⎝⎭,因此,甲获胜的概率为22112221333C⎛⎫⎛⎫⎛⎫+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C.【点睛】本题考查独立重复事件的概率,考查概率的加法公式,解题时要弄清楚事件所包含的基本情况,考查分类讨论思想,考查计算能力,属于中等题.8.A解析:A【解析】【分析】事件“至少出现一次6点向上”的对立事件是“出现零次6点向上”,由此借助对立事件的概率进行求解.【详解】由题事件“至少出现一次6点向上”的对立事件是“出现零次6点向上”所以至少出现一次6点向上的概率0303111259111166216216p C ⎛⎫⎛⎫=--=-= ⎪ ⎪⎝⎭⎝⎭故选A. 【点睛】本题考查应用对立事件求概率,属于一般题.9.B解析:B 【分析】由题意,可先求得三个人都没有被录取的概率,接下来求至少有一人被录取的概率,利用对立事件的概率公式,求得结果. 【详解】甲、乙、丙三人都没有被录取的概率为11115(1)(1)(1)64312P =-⨯-⨯-=, 所以三人中至少有一人被录取的概率为17112P P =-=, 故选B. 【点睛】该题考查的是有关概率的求解问题,关键是掌握对立事件的概率加法公式()()1P A P A +=,求得结果.10.D解析:D 【分析】本周能进行决赛意味着能在周三或周四或周五进行,分别求概率,求和即可得解. 【详解】设在这周能进行决赛为事件A ,恰好在周三、周四、周五进行决赛分别为事件3A ,4A ,5A ,则345A A A A =⋃⋃,又事件3A ,4A ,5A 两两互斥, 则有()()()()34511111171112222228P A P A P A P A ⎛⎫⎛⎫⎛⎫=++=+-⨯+-⨯-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故选:D . 【点睛】本题主要考查了互斥关系的概率问题,属于基础题.11.A解析:A 【分析】概率710的事件可以认为是概率为310的对立事件. 【详解】事件“2张全是移动卡”的概率是310,由对立事件的概率和为1,可知它的对立事件的概率是710,事件为“2张不全是移动卡”,也即为“2张至多有一张是移动卡”. 故选:A . 【点睛】关键点点睛:本题考查对立事件,解题关键是掌握对立事件的概率性质:即对立事件的概率和为1,考查学生的逻辑推理能力,属于基础题.12.D解析:D 【分析】设出每一个每一个考生达标的事件,并求其对立事件的概率,根据相互独立事件的概率的和事件求解出答案. 【详解】设 “甲考生达标” 为事件A , “乙考生达标” 为事件B , “丙考生达标” 为事件C ,则()0.9P A =,()0.8P B =,()0.75P C =,()10.90.1P A =-=,()10.80.2P B =-=,()10.750.25P C =-=,设 “三人中至少有一人达标” 为事件D ,则()()110.10.20.2510.0050.995P D P ABC =-=-⨯⨯=-=, 故选:D. 【点睛】本题以实际问题为背景考查相互独立事件的概念及其发生的概率的计算,考查分析问题和解决问题的能力,属于中档题.13.D解析:D 【分析】列出所有分成三组的情况,共有6种,进而可得概率. 【详解】4支队伍分成三组,有(甲乙、丙、丁),(甲丙、乙、丁),(甲丁、乙、丙),(乙丙、甲、丁),(乙丁、甲、丙),(丙丁、甲、乙),共6种情况,而甲乙在一组共1种情况,∴16P =. 故选: D.【点睛】本题考查了古典概型,考查了计算能力,属于一般题目.二、解答题14.(1)①6,②7,③8,④9,⑤8,⑥9;(2)甲乙两位同学的转换分都为87分,看法答案见解析;(3)15. 【分析】(1)根据已知数据与茎叶图的关系得出答案.(2)根据高考实测的转换赋分模拟公式及结果得出答案. (3)列举法写出所有基本事件,然后按概率公式计算. 【详解】解:(1)由题意知①6②7③8④9⑤8⑥9(2)甲同学选考政治学科可以的等级A ,根据等比例转换赋分公式:9882100828186TT --=--得T =87乙同学选考化学学科可以的等级A ,根据等比例转换赋分公式:10091100919086TT --=--得T =87故甲乙两位同学的转换分都为87分.从公平性的角度谈谈你对新高考这种“等级转换赋分法”的看法:一,从茎叶图可得甲乙同学原始分都排第三,转换后都是87分,因此高考这种“等级转换赋分法”具有公平性与合理性.二,甲同学与乙同学原始分差9分,但转换后都是87分,高考这种“等级转换赋分法”对尖子生不利.(3)政治学科等级为A 的学生有82,84,92根据等比例转换赋分公式:87,88,95 该校化学学科等级为A 的学生有91,94,98根据等比例转换赋分公式:87,92,97 设转换分都不少于91分为M法一:(列举法)所有基本事件:(82,84)(82,92)(82,91)(82,94))(82,98)(84,92)(84,91)(84,94)(84,98)(92,91)(92,94)(92,98)(91,94) (91,98)(94,98)共15个基本事件,时间M 包含3个基本事件 所以P (M )=31155= 法二:政治学科等级为A 的学生有82,84,92三人,转换分不少于91分有1人;政治学科等级为A 的学生有91,94,98三人,转换分不少于91分有2人.由古典概型23261()5C P M C ==.【点睛】思路点睛:此题是概率统计综合题,需要理清题目信息,正确理解相关概念.15.(1)85m =;(2)57. 【分析】(1)计算出各产品等级的频率,利用中位数左边的矩形面积之和为0.5可求得m 的值; (2)计算得出7件产品中A 级品共3件,分别记为1A 、2A 、3A ,B 级品共4件,分别记为1B 、2B 、3B 、4B ,列举出所有的基本事件,并确定事件“所抽的2件产品中至少有1件A 级品”所包含的基本事件数,利用古典概型的概率公式可求得所求事件的概率. 【详解】(1)当6n =时,[)60,70k ∈,1100M =,频率为11100.1100p =⨯=; 当7n =时,[)70,80k ∈,150M =,频率为21100.250p =⨯=; 当8n =时,[)80,90k ∈,125M =,频率为31100.425p =⨯=. 各产品等级的频率如下表所示:0.10.20.50.10.20.4+<<++,80,90m ∴∈,所以,800.10.20.40.510m -++⨯=,解得85m =; (2)所抽取的7件产品中,A 级品的数量为0.3730.30.4⨯=+,分别记为1A 、2A 、3A ,B 级品的数量为4,分别记为1B 、2B 、3B 、4B ,从这7件产品中任取2件产品,所有的基本事件有:12A A 、13A A 、11A B 、12A B 、13A B 、14A B 、23A A 、21A B 、22A B 、23A B 、24A B 、31A B 、32A B 、33A B 、34A B 、12B B 、13B B 、14B B 、23B B 、24B B 、34B B ,共21个基本事件,其中,事件“所抽的2件产品中至少有1件A 级品”包含15个基本事件, 因此,所求事件的概率为155217P ==. 【点睛】方法点睛:求解古典概型概率的方法如下: (1)列举法; (2)列表法; (3)数状图法; (4)排列组合数的应用.16.(1)35;(2)证明见解析. 【分析】(1)列举出从袋中一次摸出2个球的所有基本事件,找出其中满足事件A 的基本事件有6个,即可求解()P A ;(2)同样列举出从袋中第一次摸出一个球,记下颜色后将它放回袋中,再次摸出一个球的所有基本事件,找出其中满足事件B 的基本事件;同理列举出从袋中第一次摸出一个球,不放回袋中,再次摸出一个球的所有基本事件,找出其中满足事件C 的基本事件,即可计算出1()()()5P C P B P A -=. 【详解】解:(1)记这3个红球为123,,a a a ,2个白球记为12,b b ,则从袋中一次摸出2个球的所有基本事件为:()12,a a ,()13,a a ,()11,a b ,()12,a b ,()23,a a ,()21,a b ,()22,a b ,()31,a b ,()32,a b ,()12,b b 共10个,其中满足事件A 的基本事件有6个,所以()63105P A ==. (2)从袋中第一次摸出一个球,记下颜色后将它放回袋中,再次摸出一个球的所有基本事件为()11,a a ,()12,a a ,()13,a a ,()11,a b ,()12,a b ,()21,a a ,()22,a a ,()23,a a ,()21,a b ,()22,a b ,()31,a a ,()32,a a ,()33,a a ,()31,a b ,()32,a b ,()11,b a ,()12,b a ,()13,b a ,()11,b b ,()12,b b ,()21,b a ,()22,b a ,()23,b a ,()21,b b ,()22,b b 共25个,满足事件B 的基本事件有12个,所以()1225P B =. 从袋中第一次摸出一个球,不放回袋中,再次摸出一个球的所有基本事件为()12,a a ,()13,a a ,()11,a b ,()12,a b ,()21,a a ,()23,a a ,()21,a b ,()22,a b ,()31,a a ,()32,a a ,()31,a b ,()32,a b ,()11,b a ,()12,b a ,()13,b a ,()12,b b ,()21,b a ,()22,b a ,()23,b a ,()21,b b 共20个,满足事件C 的基本事件有12个,所以()123205P C ==. 因此:()()312352525P C P B -=-=, 又()35P A =,所以()()()15P C P B P A -=.【点晴】方法点晴:等可能事件概率一般用列举法列举出所有基本事件,找出满足所求事件的基本事件个数,直接用公式求得概率.17.(1)34p =,23q =;(2)512.【分析】(1)由互斥事件和对立事件的概率公式列方程组可解得,p q ;(2)分别求出两人答对1道的概率,答对两道题的概率,两人共答对3道题,则是一人答对2道题另一人答对1道题,由互斥事件和独立事件概率公式可得结论. 【详解】解:(1)设A ={甲同学答对第一题},B ={乙同学答对第一题},则()P A p =,()P B q =.设C ={甲、乙二人均答对第一题},D {甲、乙二人中恰有一人答对第一题},则C AB =,D AB AB =+.由于二人答题互不影响,且每人各题答题结果互不影响,所以A 与B 相互独立,AB 与AB 相互互斥,所以()()()()P C P AB P A P B ==,()()P D P AB AB =+()()()()()()()()()()()()11P AB P AB P A P B P A P B P A P B P A P B =+=+=-+-.由题意可得()()1,2511,12pq p q q p ⎧=⎪⎪⎨⎪-+-=⎪⎩即1,217.12pq p q ⎧=⎪⎪⎨⎪+=⎪⎩解得3,42,3p q ⎧=⎪⎪⎨⎪=⎪⎩或2,33.4p q ⎧=⎪⎪⎨⎪=⎪⎩由于p q >,所以34p =,23q =.(2)设=i A {甲同学答对了i 道题},i B ={乙同学答对了i 道题},0i =,1,2. 由题意得,()11331344448P A =⨯+⨯=,()23394416P A =⨯=, ()12112433339P B =⨯+⨯=,()2224339P B =⨯=.设E ={甲乙二人共答对3道题},则1221E A B A B =+. 由于i A 和i B 相互独立,12A B 与21A B 相互互斥,所以()()()()()()()12211221349458916912P E P A B P A B P A P B P A P B =+=+=⨯+⨯=. 所以,甲乙二人共答对3道题的概率为512. 【点睛】关键点点睛:本题考查互斥事件与独立事件的概率公式,解题关键是把所求概率事件用互斥事件表示,然后求概率,如设A ={甲同学答对第一题},B ={乙同学答对第一题},设C ={甲、乙二人均答对第一题},D {甲、乙二人中恰有一人答对第一题},则C AB =,D AB AB =+.同样两人共答对3题分拆成甲答对2题乙答对1题与甲答对1题乙答对2题两个互斥事件.18.(1)0.1a =;0.1;(2)710;(3)5.38小时.【分析】(1)由频率之和等于1求出a 的值,这名学生该天居家自主学习的时间在[)3,4的概率; (2)由频率分布直方图可知自主学习时间在[)0,1和[)1,2的人分别有2人和3人,设在[)0,1的2人分别为,a b ,在[)1,2的3人分别,,A B C ,利用列举法结合古典概型的概率公式得出概率;(3)由频率分布直方图中的数据,求解平均数即可. 【详解】解:(1)因为(0.02+0.03+0.05+0.1520.20.3)11a +⨯++⨯=,所以0.1a =. 由图可得:随机抽取的100名学生中居家自主学习时间该天在[)3,4的频率为0.110.1⨯= 所以从该校高二年级中随机抽取一名学生,这名学生该天居家自主学习时间在[)3,4的概率为0.1.(2)设“抽取的2人其中学习时间在[)0,1中至少有1人”为事件A由图中数据可知:该天居家自主学习时间在[)0,1和[)1,2的人分别有2人和3人. 设在[)0,1的2人分别为,a b ,在[)1,2的3人分别,,A B C则从这5人中任选2人的样本空间{}ab,aA,aB,aC,bA,bB,bC,AB,AC,BC =, 共有10个,样本点事件A {}ab,aA,aB,aC,bA,bB,bC =, 共有7个样本点()710P A =所以学习时间在[)0,1中至少有1人的概率为710(3)样本平均数:()0.50.02 1.50.03 2.50.05 3.50.1 4.57.50.15 5.50.2 6.50.3x =⨯+⨯+⨯+⨯++⨯+⨯+⨯5.38=.样本中的100名学生该天居家自主学习时间的平均数为5.38小时. 【点睛】关键点睛:在第一问中,关键是利用频率之和等于1求出a 的值,在第二问中主要是利用列举法求解概率.。
成都电子科技大学实验中学必修第二册第五单元《概率》测试(包含答案解析)

(2)从样本数据用时不超过 分钟的工人中随机抽取 个,求至少有一个工人是优秀员工的概率.
23.某电讯企业为了了解某地区居民对电讯服务质量评价情况,随机调查100名用户,根据这100名用户对该电讯企业的评分,绘制频率分布直方图,如图所示,其中样本数据分组为 , ,…… .
21.某电子产品厂商新推出一款产品,邀请了男女各1000名消费者进行试用,并评分(满分为5分),得到了评分的频数分布表如下:
男性:
评分结果
频数
50
200
350
300
100
女性:
评分结果
频数
250
300
150
100
200
(1)根据频数分布表,完成下列频率分布直方图,并根据频率分布直方图分别比较男女消费者评分的中位数的相对大小,以及方差的相对大小(其中方差的相对大小给出判断即可,不必说明理由);
厨余垃圾”箱
可回收物”箱
其他垃圾”箱
厨余垃圾
400
100
100
可回收物
30
240
30
其他垃圾
20
20
60
A.厨余垃圾投放正确的概率为
B.居民生活垃圾投放错误的概率为
C.该市三类垃圾箱中圾”箱、“可回收物”箱、“其他垃圾”箱的投放量的方差为20000
16.甲、乙两队举行围棋擂台赛,规则如下:两队各出3人,排定1,2,3号.第一局,双方1号队员出场比赛,负的一方淘汰,该队下一号队员上场比赛.当某队3名队员都被淘汰完,比赛结束,未淘汰完的一方获胜.如图表格中,第m行、第n列的数据是甲队第m号队员能战胜乙队第n号队员的概率.
0.5
0.3
成都七中实验学校九年级数学上册第五单元《概率初步》检测卷(有答案解析)

一、选择题1.下列事件是必然事件的是( ) A .打开电视机,正在播放动画片 B .2022年世界杯德国队一定能夺得冠军 C .某彩票中奖率是1%,买100张一定会中奖 D .在一只装有5个红球的袋中摸出1球,一定是红球2.现有两道数学选择题,他们都是单选题,并且都含有A 、B 、C 、D 四个选项,瞎猜这两道题,这两道题恰好全部猜对的概率是( ) A .14B .12C .18D .1163.在不透明的布袋中,装有三个颜色分别为红色、白色、绿色的小球,所有小球除颜色外其他都相同,若分别从两个布袋中随机各取出一个小球,则所取出的两个小球颜色相同的概率是( ) A .13B .12C .23D .14.小明制作了5张卡片,上面分别写了一个条件:①AB BC =;②AB BC ⊥;③AD BC =;④AC BD ⊥,⑤AC BD =.从中随机抽取一张卡片,能判定ABCD 是菱形的概率为( )A .15B .25C .35D .455.下列说法中正确的是( )A .“打开电视,正在播放《新闻联播》”是必然事件B .“x 2<0(x 是实数)”是随机事件C .掷一枚质地均匀的硬币10次,可能有5次正面向上D .为了了解夏季冷饮市场上冰淇淋的质量情况,宜采用普查方式调查6.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是( )A .16B .14C .13D .127.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,“从中任意摸出2个球,它们的颜色相同”这一事件是( )A.必然事件B.不可能事件C.随机事件D.确定事件8.如图,在4×4的正方形网格中,黑色部分的图形构成了一个轴对称图形,现在任意取一个白色小正方形涂黑,使黑色部分仍然是一个轴对称图形的概率是()A.613B.513C.413D.3139.在一个不透明的口袋中装有5个黑棋子和若干个白棋子,它们除颜色外完全相同,小明与他的朋友经过多次摸棋子试验后,发现摸到白色棋子的频率稳定在80%附近,则口袋中白色棋子的个数可能是()A.25个B.24个C.20个D.16个10.在智力竞答节目中,某参赛选手答对最后两题单选题就能利通关,两题均有四个选项,此选手只能排除第1题的一个错误选项,第2题完全不会,他还有两次“求助”机会(使用可去掉一个错误选项),为提高通关概率,他的求助使用策略为()A.两次求助都用在第1题B.两次求助都用在第2题C.在第1第2题各用一次求助D.无论如何使用通关概率都相同11.甲袋中装有3个白球和2个红球,乙袋中装有30个白球和20个红球,这些球除颜色外都相同.把两只袋子中的球搅匀,并分别从中任意摸出一个球,从甲袋中摸出红球记为事件A,从乙袋中摸出红球记为事件B,则A.P(A)>P(B) B.P(A)<P(B) C.P(A)=P(B) D.无法确定12.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.如图是对某球员罚球训练时命中情况的统计:下面三个推断:①当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;②随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;③由于该球员“罚球命中”的频率的平均值是0.809,所以“罚球命中”的概率是0.809.其中合理的是()A.①B.②C.①③D.②③第II卷(非选择题)请点击修改第II卷的文字说明参考答案二、填空题13.如图,点O为正方形的中心,点E、F分别在正方形的边上,且∠EOF=90°,随机地往图中投一粒米,则米粒落在图中阴影部分的概率是___________.14.小明、小虎、小红三人排成一排拍照片,小明站在中间的概率是____________.15.如图所示的转盘分成8等份,若自由转动转盘一次,停止后,指针落在阴影区域内的概率是_______.16.有四张不透明卡片,分别写有实数14,﹣1,-1-5,15,除正面的数不同外其余都相同,将它们背面朝上洗匀后,从中任取一张卡片,取到的数是无理数的可能性大小是__.17.一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是_____.18.有如图四张卡片,除卡片上的图案不同其余完全相同,现把这些卡片有图案的一面朝下搅匀,随机抽出一张,上面的图案能够围成一个正方体的概率是________.19.大成蔬菜公司以2.1元/千克的成本价购进10000kg番茄,公司想知道番茄的损坏率,从所有随机抽取若干进行统计,部分结果如表:番茄总质量()m kg1002003004005001000损坏番茄质量()m kg10.6019.4230.6339.2449.54101.10番茄损坏的频率 0.106 0.097 0.102 0.098 0.099 0.101估计这批番茄损坏的概率为______(精确到0.1),据此,若公司希望这批番茄能获得利润15000元,则销售时(去掉损坏的番茄)售价应至少定为______元/千克.20.已知a 为正整数,且二次函数()273y x a x =+-+的对称轴在y 轴右侧,则a 使关于y 的分式方程4211ay yy y--=--有正整数解的概率为_______. 三、解答题21.学校想知道九年级学生对我国倡导的“一带一路”的了解程度,随机抽取部分九年级学生进行问卷调查,问卷设有4个选项(每位被调查的学生必选且只选一项):A .非常了解.B .了解.C .知道一点.D .完全不知道.将调查的结果绘制如下两幅不完整的统计图,请根据两幅统计图中的信息, 解答下列问题:(1)求本次共调查了多少学生? (2)补全条形统计图;(3)在“非常了解”的3人中,有2名女生,1名男生,老师想从这3人中任选两人做宣传员,请用列表或画树状图法求出被选中的两人恰好是一男生一女生的概率.22.电影《我和我的家乡》和《姜子牙》分别夺得国庆档8天票房的冠、亚军.周末,小明和爸爸一起去看电影,但是小明想看《姜子牙》爸爸想看《我和我的家乡》,于是他们决定采用摸牌的办法决定去看哪部电影.摸牌规则如下:把一副新扑克牌中的红桃2,3,4,5四张背面朝上洗匀后放置在桌面上,小明从中随机摸出一张牌,记下数字后放回,爸爸再从中摸出一张牌,记下数字若两次数字之和为奇数,则看《我和我的家乡》,若两次数字之和为偶数,则看《姜子牙》.(1)请用列表或画树状图的方法表示出两数和的所有可能的结果; (2)请判断这个游戏是否公平.23.如图,依据闯关游戏规则,请你探究“闯关游戏”的奥秘:(1)用列表的方法表示有可能的闯关情况;(2)求出闯关成功的概率.24.将图中的A型(正方形)、B型(菱形)、C型(等腰直角三角形)纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,盒中的纸片既是轴对称图形又是中心对称图形的概率是;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的2个盒子中摸出1个盒子,把摸出的2个盒中的纸片长度相等的边拼在一起,求拼成的图形是轴对称图形的概率.(不重叠无缝隙拼接)25.2019年5月,某校八年级部分同学参加了学校首届“中国诗词大会”活动,根据学生的成绩划分为A、B、C、D四个等级,并绘制了不完整的两种统计图.根据图中提供的信息,回答下列问题:(1)请把条形图补充完整.(2)扇形统计图中,m=______.(3)某班要从B等级中的小明和小刚中选一人参加复赛,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.26.随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:①洗手监督岗,②戴口罩监督岗,③就餐监督岗,④操场活动监督岗.李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗.(1)李老师被分配到“洗手监督岗”的概率为;(2)用列表法或面树状图法,求李老师和王老师被分配到同一个监督岗的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据随机事件和必然事件定义一一判定即可,必然事件就是一定发生的事件,即发生的概率是1的事件.【详解】解:A. 打开电视机,正在播放动画片,可能发生,也可能不发生,是随机事件,故此项错误;B. 2022年世界杯德国队一定能夺得冠军,可能发生,也可能不发生,是随机事件,故此项错误;C. 某彩票中奖率是1%,买100张一定会中奖,可能发生,也可能不发生,是随机事件,故此项错误;D. 在一只装有5个红球的袋中摸出1球,一定是红球,一定发生,所以是必然事件.故选:D.【点睛】该题考查的是对必然事件的概念的理解;必然事件指在一定条件下一定发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.D解析:D【分析】根据题意画树状图或者列表找出所有可能出现的情况总数,以及两道题恰好全部猜对的数量即可求出.【详解】解:用列表法表示所有可能出现的结果情况如下:共有16种等可能出现的结果情况,其中两道题恰好全部猜对的只有1种,所以,两道题恰好全部猜对的概率为1 16,故选:D.【点睛】本题考查画树状图法或列表法求事件发生的概率,根据题意正确画树状图或列表是解题的关键.3.A解析:A【分析】先画出树状图,从而可得从两个布袋中各取出一个小球的所有可能结果,再找出所取出的两个小球颜色相同的结果,然后利用概率公式进行计算即可得.【详解】由题意,画树状图如下:由此可知,从两个布袋中各取出一个小球的所有可能结果共有9种,它们每一种出现的可能性都相等,其中,所取出的两个小球颜色相同的结果共有3种,则所求的概率为3193P==,故选:A.【点睛】本题考查了利用列举法求概率,依据题意,正确画出树状图是解题关键.4.B解析:B【分析】根据菱形的判定方法求解即可.【详解】解::①AB BC=;根据有一组邻边相等的平行四边形是菱形,可判定ABCD是菱形;⊥;根据有一个内角是直角的平行四边形是矩形,可判定ABCD是矩形;②AB BC=;是ABCD本身具有的性质,无法判定ABCD是菱形;③AD BC⊥,根据对角线互相垂直的平行四边形是菱形,可判定ABCD是菱形;④AC BD=.根据对角线相等的平行四边形是矩形,可判定ABCD是矩形⑤AC BD∴共有5种等可能结果,其中符合题意的有2种∴能判定ABCD是菱形的概率为25故选:B.【点睛】本题考查概率的计算及菱形的判定,掌握菱形的判定方法正确分析推理是解题关键.5.C解析:C【解析】试题分析:选项A中的事件是随机事件,故选项A错误;.选项B中的事件是不可能事件,故选项B错误;.选项C中的事件是随机事件,故选项C正确;.选项D中的事件应采取抽样调查,普查不合理,故选D错误;.故选C.考点:概率的意义;全面调查与抽样调查;随机事件;探究型.6.C解析:C【分析】由一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,观察图可得:它有6种路径,且获得食物的有2种路径,然后利用概率公式求解即可求得答案.【详解】∵一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,∴它有6种路径,∵获得食物的有2种路径,∴获得食物的概率是:21=,63故选:C.【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.7.C解析:C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,“从中任意摸出2个球,它们的颜色相同”这一事件是随机事件,故选:C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.B解析:B【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有16种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【详解】解:∵由题意,共16-3=13种等可能情况,其中构成轴对称图形的有如下5个图所示的5种情况,∴概率为:513P ;故选:B.【点睛】本题考查了求概率的方法:先列表展示所有等可能的结果数n,再找出某事件发生的结果数m,然后根据概率的定义计算出这个事件的概率=mn.9.C解析:C 【分析】首先设口袋中白色棋子有x 个,再结合题目已知可得口袋中摸到白色棋子的概率为80%,然后利用白色棋子的个数除以棋子的总个数列方程求解即可,注意分式方程要验根. 【详解】解:设口袋中白色棋子有x 个,因为摸到白色棋子的频率稳定在80%附近,所以从口袋中摸到白色棋子的概率为80%,所以,80%5xx =+ 解得:x=20经检验,x=24是原方程的解, 所以口袋中白色棋子的个数可能是20个 故选:C 【点睛】本题考查的是利用频率估计概率,解答此类题目的关键是熟练掌握利用频率估计概率的知识,由题目信息得到口袋中摸到白色棋子的概率为80%,这是解题的突破口.10.A解析:A 【分析】根据题意,分类讨论,然后分别画出树状图,根据概率公式求出每一种情况下的概率,即可判断. 【详解】解:①若两次求助都用在第1题,根据题意可知,第1题肯定能答对,第2题答对的概率为14故此时该选手通关的概率为:14; ②若在第1第2题各用一次求助,画树状图如下:上层A 、B 表示第一题剩下的两个选项,下层A 、B 、C 表示第二题剩下的三个选项,共有6种等可能的结果,其中该选手通关的可能只有1种,故此时该选手通关的概率为:16; ③两次求助都用在第2题画树状图如下:上层A 、B 、C 表示第一题剩下的三个选项,下层A 、B 表示第二题剩下的二个选项,共有6种等可能的结果,其中该选手通关的可能只有1种,故此时该选手通关的概率为:16.∵14>16∴两次求助都用在第1题,该选手通关的概率大,故选A.【点睛】此题考查的是求概率问题,掌握画树状图的方法、概率公式和分类讨论的数学思想是解决此题的关键.11.C解析:C【分析】根据P(A)=mn分别计算事件发生的概率,进行比较.【详解】解:P(A)=22=3+25,P(B)=20230205=+∴P(A)=P(B)故选:C.【点睛】掌握事件发生的概率的求法P(A)=mn是本题的解题关键.12.B解析:B【分析】根据图形和各个小题的说法可以判断是否正确,从而解答本题【详解】当罚球次数是500时,该球员命中次数是411,所以此时“罚球命中”的频率是:411÷500=0.822,但“罚球命中”的概率不一定是0.822,故①错误;随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812.故②正确;虽然该球员“罚球命中”的频率的平均值是0.809,但是“罚球命中”的概率不是0.809,故③错误.故选:B.【点睛】此题考查了频数和频率的意义,解题的关键在于利用频率估计概率.二、填空题13.【分析】先证△OAE ≌△OBF 四边形EOFC 的面积=三角形AOE 面积+四边形AOFC 面积=三角形BOF 面积+四边形AOFC 面积=正方形AOBC 的面积=S 大正方形米粒落在图中阴影部分的概率就是阴影部分解析:14【分析】先证△OAE ≌△OBF ,四边形EOFC 的面积=三角形AOE 面积+四边形AOFC 面积=三角形BOF 面积+四边形AOFC 面积=正方形AOBC 的面积=14S 大正方形,米粒落在图中阴影部分的概率就是阴影部分的面积同正方形总面积的比. 【详解】解:过O 作OA ⊥CE 于A ,OB ⊥CF 交CF 延长线于B , ∵点O 为正方形的中心,∴OA=OB ,∠OAE=∠OBF=90º=∠AOB , ∵∠EOF =90°,∴∠EOA+∠AOF=90º,∠AOF+∠FOB=90º, ∴∠EOA=∠FOB , ∴△EOA ≌△FOB ,S四边形EOFC =S△AOE +S四边形AOFC =S△BOF +S四边形AOFC =S正方形AOBC =14S 大正方形, S 四边形EOFC =S 正方形AOBC =14S 大正方形, 如图所示:,P=EOFC AOBC S 1=S S 4S 四边形正方形大正方形大正方形, 因此米粒落在图中阴影部分的概率是14. 故答案为:14【点睛】本题考查点投阴影部分的概率,掌握利用几何图形面积来确定概率的方法,不规则图形用全等三角形转化为正方形规则图形是解题关键.14.【分析】列举出所有情况让小明站在中间的情况数除以总情况数即为所求的概率【详解】解:根据题意得:设三名同学为ABC小明为A;则可能的情况有:ABCACBBACBCACABCBA∴共6种情况小明在中间的解析:1 3【分析】列举出所有情况,让小明站在中间的情况数除以总情况数即为所求的概率.【详解】解:根据题意得:设三名同学为A、B、C,小明为A;则可能的情况有:ABC,ACB,BAC,BCA,CAB,CBA,∴共6种情况,小明在中间的有BAC,CAB这两种情况;∴小明站在中间的概率是13.故答案为:13.【点睛】本题考查列表法与树状图法.15.【分析】用阴影部分的份数除以总份数即可得【详解】解:由图可知自由转动转盘一次停止后指针落在阴影区域的概率是故答案为:【点睛】本题考查了概率公式解题的关键是掌握随机事件A的概率P(A)=事件A可能出现解析:5 8【分析】用阴影部分的份数除以总份数即可得.【详解】解:由图可知自由转动转盘一次,停止后,指针落在阴影区域的概率是58,故答案为:58.【点睛】本题考查了概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.16.【解析】四个数中无理数只有则取到的数是无理数的可能性大小是解析:1 4【解析】四个数中,无理数只有-1-52,则取到的数是无理数的可能性大小是1417.【分析】画树状图展示所有16种等可能的结果数再找出两次摸出的球的编号之和为偶数的结果数然后根据概率公式求解【详解】解:根据题意画图如下:共有16种等情况数其中两次摸出的球的编号之和为偶数的有10种则解析:5 8【分析】画树状图展示所有16种等可能的结果数,再找出两次摸出的球的编号之和为偶数的结果数,然后根据概率公式求解.【详解】解:根据题意画图如下:共有16种等情况数,其中两次摸出的球的编号之和为偶数的有10种,则两次摸出的球的编号之和为偶数的概率是1016=58.故答案为:58.【点睛】此题考查列树状图求概率问题,难度一般.18.【分析】能围成正方体的有3种再根据概率公式进行计算即可得出答案【详解】解:依题意得:能围成正方体的有3种故上面的图案能够围成一个正方体的概率是:故答案为:【点睛】此题主要考查了概率公式和正方体展开图解析:3 4【分析】能围成正方体的有3种,再根据概率公式进行计算,即可得出答案.【详解】解:依题意得:能围成正方体的有3种,故上面的图案能够围成一个正方体的概率是:3 4故答案为:3 4【点睛】此题主要考查了概率公式和正方体展开图,,关键是掌握随机事件A 的概率的计算公式.19.01【分析】利用频率估计概率可求出这批番茄损坏的概率;根据概率计算出完好番茄的重量设每千克番茄的销售价为x 元根据总利润=每千克利润×完好番茄的重量列方程解答【详解】解:根据表中番茄损坏的频率估计这批解析:0.1 11330【分析】利用频率估计概率可求出这批番茄损坏的概率;根据概率计算出完好番茄的重量,设每千克番茄的销售价为x 元,根据“总利润=每千克利润×完好番茄的重量”列方程解答. 【详解】解:根据表中番茄损坏的频率估计这批番茄损坏的概率为0.1,所以估计在购进的10000kg 番茄中,完好番茄的重量为:()1000010.19000kg ⨯-=, 设每千克番茄的销售价为x 元, 由题意得:()15000 2.19000x =-⨯, 解得:11330x =, 即销售时(去掉损坏的番茄)售价应至少定为11330元/千克, 故答案为:0.1,11330. 【点睛】本题考查了利用频率估计概率,一元一次方程的应用,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率.20.【分析】利用二次函数对称轴公式求得从而确定a 所有的正整数解然后解关于y 的方程得然后确定符合题意的a 的值然后根据概率公式求解【详解】解:由题意可知:解得因为为正整数∴a 可以取123456共6种等可能结解析:13【分析】利用二次函数对称轴公式求得702a -->,从而确定a 所有的正整数解,然后解关于y 的方程,得21y a =-,然后确定符合题意的a 的值,然后根据概率公式求解. 【详解】 解:由题意可知:702a -->,解得7a < 因为a 为正整数,∴a 可以取1,2,3,4,5,6共6种等可能结果解4211ay yy y--=--化为:42(1)ay y y---=-解得:21 ya=-当a=2或3时,y有正整数解,符合题意共2种∴a使关于y的分式方程4211ay yy y--=--有正整数解的概率为21=63故答案为:13.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了根的判别式和分式方程的解.三、解答题21.(1)30名;(2)见解析;(3)2 3【分析】(1)由D选项的人数及其百分比可得总人数;(2)总人数减去A、C、D选项的人数求得B的人数即可;(3)画树状图列出所有等可能结果,根据概率公式求解可得.【详解】解:(1)本次调查的学生人数为620%30÷=(名);(2)B选项的人数为3039612---=(名),补全图形如下:(3)画树状图如下:由树状图可知,共有6种等可能结果,其中两人恰好是一男生一女生的有4种,∴被选中的两人恰好是一男生一女生的概率为4263=.【点睛】本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(1)答案见解析;(2)这个游戏公平.【分析】(1)利用树状图展示所有16种等可能的等可能的结果数;(2)找出两次数字之和为奇数的结果数和两次数字之和为偶数的结果数,然后根据概率公式计算即可.【详解】解:(1)画树状图如下:共16种等可能的结果.(2)由(1)得共有16种结果,每种结果出现的可能性相同,两次数字之和为奇数的结果有8种.∴看《我和我的家乡》的概率为81 162=.两次数字之和为偶数的结果有8种,∴看《姜子牙》的概率为81 162=.1122=∴这个游戏公平.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.23.(1)(1,1),(1,2),(2,1),(2,2);(2)14.【分析】(1)用列举法列举出可能闯关的所有情况,即可得出答案;(2)根据图表得出所有可能,进而得出闯关成功的概率.【详解】(1)所有可能闯关的情况列表如下:121(1,1)(1,2)2(2,1)(2,2)(2)只有(1,2)组合才能闯关,故闯关成功的可能性为14.【点睛】此题主要考查了列表法求概率,用到的知识点为:概率=所求情况数与总情况数之比.24.(1)23;(2)见解析,13.【分析】(1)依据搅匀后从中摸出1个盒子,可能为A型(正方形)、B型(菱形)或C型(等腰直角三角形)这3种情况,其中既是轴对称图形又是中心对称图形的有2种,即可得到盒中的纸片既是轴对称图形又是中心对称图形的概率;(2)依据共有6种等可能的情况,其中拼成的图形是轴对称图形的情况有2种:A和C,C和A,即可得到拼成的图形是轴对称图形的概率.【详解】(1)搅匀后从中摸出1个盒子,可能为A型(正方形)、B型(菱形)或C型(等腰直角三角形)这3种情况,其中既是轴对称图形又是中心对称图形的有2种,∴盒中的纸片既是轴对称图形又是中心对称图形的概率是23;故答案为23;(2)画树状图为:共有6种等可能的情况,其中拼成的图形是轴对称图形的情况有2种:A和C,C和A,∴拼成的图形是轴对称图形的概率为21 63 =.【点睛】本题主要考查了概率公式,列举法(树状图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树状图.。
人教版高中数学必修第二册第五单元《概率》测试(含答案解析)(1)

一、选择题1.甲、乙、丙、丁四位同学站成一排照相,则甲.乙两人中至少有一人站在两端的概率为()A.56B.12C.13D.232.将一颗质地均匀的骰子(各面上分别标有点数1,2,3,4,5,6)先后抛掷3次,至少出现1次6点向上的概率是().A.5216B.25216C.31216D.912163.从分别写有a,b,c,d,e的5个乒乓球中,任取2个,这2个乒乓球上的字母恰好是按字母顺序相邻排列的概率为().A.25B.15C.35D.3104.如图,已知电路中4个开关闭合的概率都是12,且是互相独立的,灯亮的概率为()A.316B.34C.1316D.145.近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000t生活垃圾.经分拣以后数据统计如下表(单位:t):根据样本估计本市生活垃圾投放情况,下列说法错误的是()厨余垃圾”箱可回收物”箱其他垃圾”箱厨余垃圾400100100可回收物3024030其他垃圾202060A.厨余垃圾投放正确的概率为2 3B.居民生活垃圾投放错误的概率为3 10C.该市三类垃圾箱中投放正确的概率最高的是“可回收物”箱D.厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量的方差为20000 6.从一批产品中取出三件产品,设事件A为“三件产品全不是次品”,事件B为“三件产品全是次品”,事件C为“三件产品不全是次品”,则下列结论正确的是()A.事件A与C互斥B.事件B与C互斥C.任何两个事件均互斥D.任何两个事件均不互斥7.学校足球赛决赛计划在周三、周四、周五三天中的某一天进行,如果这一天下雨则推迟至后一天,如果这三天都下雨则推迟至下一周,已知这三天下雨的概率均为12,则这周能进行决赛的概率为A.18B.38C.58D.788.某班有50名学生,其中有45名学生喜欢乒乓球或羽毛球,32名学生喜欢乒乓球,26名学生喜欢羽毛球,则该班既喜欢乒乓球又喜欢羽毛球的学生数占该班学生总数的比例是()A.38% B.26% C.19% D.15%9.如图所示,1,2,3表示三个开关,若在某段时间内它们每个正常工作的概率都是0.9,那么此系统的可靠性是()A.0.999 B.0.981 C.0.980 D.0.72910.已知在10件产品中可能存在次品,从中抽取2件检查,记次品数为X,已知16(1)45P X==,且该产品的次品率不超过40%,则这10件产品的次品数为()A.2件B.4件C.6件D.8件11.六个人排队,甲乙不能排一起,丙必须排在前两位的概率为()A.760B.16C.1360D.1412.某校3名教师和5名学生共8人去北京参加学习方法研讨会,需乘坐两辆车,每车坐4人,则恰有两名教师在同一车上的概率()A.78B.67C.37D.1313.中国古典乐器一般按“八音”分类.这是我国最早按乐器的制造材料来对乐器进行分类的方法,最先见于《周礼•春官•大师》,分为“金、石、土、革、丝、木、匏(páo)、竹”八音.其中“金、石、木、革”为打击乐器,“土、匏、竹”为吹奏乐器,“丝”为弹拨乐器,现从“金、石、土、革、丝、木”任取“两音”,则“两音”同为打击乐器的概率为()A .15B .25C .35D .27二、解答题14.2020年国庆节期间,甲、乙等5名游客准备从庐山、三清山、婺源、井冈山4个景点中选取一个景点游览,设每人只选择一个景点,且选择任一个景点是等可能的. (1)分别求“恰有2人选择井冈山”和“甲选择井冈山且乙不选择庐山”的概率; (2)记X 表示5人中选择景点的个数,求X 的分布列与数学期望.15.进行垃圾分类收集可以减少垃圾处理量和处理设备,降低处理成本,减少土地资源的消耗,具有社会、经济、生态等多方面的效益,是关乎生态文明建设全局的大事.为了普及垃圾分类知识,某学校举行了垃圾分类知识考试,试卷中只有两道题目,已知甲同学答对每题的概率都为p ,乙同学答对每题的概率都为()q p q >,且在考试中每人各题答题结果互不影响.已知每题甲,乙同时答对的概率为12,恰有一人答对的概率为512. (1)求p 和q 的值;(2)试求两人共答对3道题的概率.16.6月17日是联合国确定的“世界防治荒漠化和干旱日”,为增强全社会对防治荒漠化的认识与关注,聚焦联合国2030可持续发展目标——实现全球土地退化零增长.自2004年以来,我国荒漠化和沙化状况呈现整体遏制、持续缩减、功能增强、成效明显的良好态势.治理沙漠离不开优质的树苗,现从苗埔中随机地抽测了200株树苗的高度(单位:cm ),得到以下频率分布直方图.(1)求直方图中a 的值及众数、中位数; (2)估计苗埔中树苗的平均高度;(3)在样本中从205cm 及以上的树苗中按分层抽样抽出5株,再从5株中抽出两株树苗,其中含有215cm及以上树苗的概率.17.“工资条里显红利,个税新政人民心”,随着2021年新年钟声的敲响,我国自1980年以来,力度最大的一次个人所得税(简称个税)改革至2019年实施以来发挥巨大作用.个税新政主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除;(3)专项附加扣除包括住房、子女教育和赡养老人等.新旧个税政策下每月应纳税所得额(含税)计算方法及其对应的税率表如表:年的人均月收入24000元.统计资料还表明,他们均符合住房专项扣除;同时,他们每人至多只有一个符合子女教育扣除的孩子,并且他们之中既不符合子女教育扣除又不符合赡养老人扣除、只符合子女教育扣除但不符合赡养老人扣除、只符合赡养老人扣除但不符合子女教育扣除、即符合子女教育扣除又符合赡养老人扣除的人数之比是2:1:1:1;此外,他们均不符合其他专项附加扣除.新个税政策下该市的专项附加扣除标准为:住房1000元/月,子女教育每孩1000元/月,赡养老人2000元/月等.假设该市该收入层级的IT 从业者都独自享受专项附加扣除,将预估的该市该收入层级的IT 从业者的人均月收入视为其个人月收入.根据样本估计总体的思想,解决如下问题:(1)求该市该收入层级的IT 从业者2021年月缴个税的所有可能及其概率.(2)根据新旧个税方案,估计从2021年1月开始,经过多少个月,该市该收入层级的IT 从业者各月少缴交的个税之和就超过2019年的月收入?18.某班倡议假期每位学生每天至少锻炼一小时.为了解学生的锻炼情况,对该班全部34名学生在某周的锻炼时间进行了调查,调查结果如下表:(Ⅱ)若从锻炼8小时的学生中任选2人参加一项活动,求选到男生和女生各1人的概率;(Ⅲ)试判断该班男生锻炼时长的方差21s 与女生锻炼时长的方差22s 的大小.(直接写出结果)19.日前,《北京传媒蓝皮书:北京新闻出版广电发展报告(2016~2017)》公布,其中提到,2015年9月至2016年9月,北京市年度综合阅读率较上年增长1%,且数字媒体阅读率首次超过了纸质图书阅读率.为了调查某校450名高一学生(其中女生210名)对这两种阅读方式的时间分配情况,该校阅读研究小组通过按性别分层抽样的方式随机抽取了15名学生进行调查,得到这15名学生分别采用这两种阅读方式的平均每周阅读时间,数据如下(单位:小时):(2)请用茎叶图表示上面的数据,并通过观察茎叶图,对这两种阅读方式进行比较,写出两个统计结论;(3)平均每周纸质阅读时长超过数字阅读时长的学生中,随机抽取两名学生,求这两名学生中至少有一名学生数字阅读时间不超过40小时的概率.20.树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,现从参与调查的人群中随机选出20人的样本,并将这20人按年龄分组:第1组[)15,25,第2组[)25,35,第3组[)35,45,第4组[)45,55,第5组[]55,65,得到的频率分布直方图如图所示(1)求a 的值.(2)根据频率分布直方图,估计参与调查人群的样本数据的中位数(保留两位小数). (3)若从年龄在[)15,35的人中随机抽取两位,求两人恰有一人的年龄在[)25,35内的概率.21.高考改革后,学生除了语数外三门必选外,可在A 类科目:物理、化学、生物和B 类科目:政治、地理、历史共6个科目中任选3门. (1)求小明同学选A 类科目数X 的分布列.(2)求小明同学从A 类和B 类科目中均至少选择1门科目的概率.22.2018年,在《我是演说家》第四季这档节目中,英国华威大学留学生游斯彬的“数学之美”的演讲视频在微信朋友圈不断被转发,他的视角独特,语言幽默,给观众留下了深刻的印象.某机构为了了解观众对该演讲的喜爱程度,随机调查了观看了该演讲的140名观众,得到如下的列联表:(单位:名)男 女 总计 喜爱 40 60 100 不喜爱 20 20 40 总计6080140(1)根据以上列联表,问能否在犯错误的概率不超过0.05的前提下认为观众性别与喜爱该演讲有关.(精确到0.001)(2)从这60名男观众中按对该演讲是否喜爱采取分层抽样,抽取一个容量为6的样本,然后随机选取两名作跟踪调查,求选到的两名观众都喜爱该演讲的概率. 附:临界值表()20P K k ≥ 0.100.05 0.025 0.010 0.005参考公式:22()=)()()()n ad bcKa b c d a c b d(-++++,+n a b c d=++.23.“每天锻炼一小时,健康工作五十年,幸福生活一辈子.”一科研单位为了解员工爱好运动是否与性别有关,从单位随机抽取30名员工进行了同卷调查,得到了如下列联表:(1)请将上面的列联表补充完整(在答题卡上直接填写结果,不需要写求解过程);(2)能否有95%的把握认为爱好运动与性别有关?(3)若在接受调查的所有男生中按照“爱好与不爱好运动”进行分层抽样,现随机抽取8人,再从8人中抽取3人,求至少有2人“爱好运动”的概率.附:()()()()()22n ad bcKa b c d a c b d-=++++24.随着科学技术的飞速发展,手机的功能逐渐强大,很大程度上代替了电脑电视.为了了解某高校学生平均每天使用手机的时间与性别是否有关,某调查小组随机抽取了30名男生,20名女生进行为期一周的跟踪调查,调查结果如表所示:(1)能否在犯错误的概率不超过0.01的前提下认为学生使用手机的时间长短与性别有关?(2)在这20名女生中,调查小组发现共有15人使用国产手机,在未使用国产手机的人中,平均每天使用手机不超过3小时的共有2人.从未使用国产手机的人中任意选取3人,求至多有一人使用手机不超过3小时的概率.参考公式:()()()()()22n ad bc K a c b d a b c d -=++++(n a b c d =+++).25.某综艺节目邀请嘉宾进行答题闯关挑战,每位嘉宾挑战时,节目组用电脑出题的方式,从题库中随机出4道题,编号为1A ,2A ,3A ,4A ,电脑依次出题,嘉宾按规则作答,挑战规则如下:①嘉宾每答对一道题目得5分,每答错一道题目扣3分;②嘉宾若答对第i A 题,则继续作答第1i A +题;嘉宾若答错第i A 题,则失去第1i A +题的答题机会,从第2i A +题开始继续答题;直到4道题目出完,挑战结束;③每位嘉宾初始分为0分,若挑战结束后,累计得分不低于7分,则嘉宾闯关成功,否则闯关失败.嘉宾小源即将参与挑战,已知小源答对题库中每道题的概率均为23,各次作答结果相互独立,且他不会主动放弃任何一次作答机会,求: (Ⅰ)挑战结束时,小源共答对3道题的概率1P ; (Ⅱ)挑战结束时,小源恰好作答了3道题的概率2P ; (Ⅲ)小源闯关成功的概率3P .26.为了丰富业余生活,甲、乙、丙三人进行羽毛球比赛.比赛规则如下:①每场比赛有两人参加,并决出胜负;②每场比赛获胜的人与未参加此场比赛的人进行下一场的比赛;③依次循环,直到有一个人首先获得两场胜利,则本次比赛结束,此人为本次比赛的冠军.已知在每场比赛中,甲胜乙的概率为23,甲胜丙的概率为35,乙胜丙的概率为12.(1)求甲和乙先赛且共进行4场比赛的概率;(2)请通过计算说明,哪两个人进行首场比赛时,甲获得冠军的概率最大?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】本题先求基本事件总数,再求要求事件是基本事件个数,最后根据古典概型解题即可. 【详解】∵甲、乙、丙、丁四位同学站成一排照相,基本事件总数4424n A ==,甲、乙两人中至少有一人站在两端包含的基本事件个数42242220m A A A =-= ∴甲,乙两人中至少有一人站在两端的概率为:205246m P n ===.. 故选:A. 【点睛】本题考查古典概型,是简单题.2.D解析:D 【分析】根据正难则反原则,先求出“抛掷3次都没有出现6点向上”事件的概率,由对立事件的概率性质,计算可得答案. 【详解】解:将一颗质地均匀的骰子先后掷3次,这3次之间是相互独立, 记事件A 为“抛掷3次,至少出现一次6点向上”, 则A 为“抛掷3次都没有出现6点向上”,记事件i B 为“第i 次中,没有出现6点向上”,1,2,3i =,则123A B B B =,又()56i P B =,所以()351256216P A ⎛⎫== ⎪⎝⎭,所以()()1259111216216P A P A =-=-=. 故选:D. 【点睛】本题考查对立事件的性质和概率计算,利用了正难则反的原则,属于基础题.3.A解析:A 【分析】基本事件总数2510n C==,利用列举法求出这2个乒乓球上的字母恰好是按字母顺序相邻排列包含的基本事件有4个,由此能求出这2个乒乓球上的字母恰好是按字母顺序相邻排列的概率.【详解】解:从分别写有a,b,c,d,e的5个乒乓球中,任取2个,基本事件总数2510n C==,这2个乒乓球上的字母恰好是按字母顺序相邻排列包含的基本事件有:ab,bc,cd,de,共4个,∴这2个乒乓球上的字母恰好是按字母顺序相邻排列的概率为42105p==.故选:A.【点睛】本题考概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.4.C解析:C【分析】灯泡不亮包括四个开关都开,或下边的2个都开,上边的2个中有一个开,这三种情况是互斥的,每一种情况中的事件是相互独立的,根据概率公式得到结果.【详解】由题意知,本题是一个相互独立事件同时发生的概率,灯泡不亮包括四个开关都开,或下边的2个都开,上边的2个中有一个开,这三种情况是互斥的,每一种情况中的事件是相互独立的,∴灯泡不亮的概率是111111111322222222216 111222⨯+⨯⨯⨯+⨯⨯⨯⨯=⨯,灯亮和灯不亮是两个对立事件,∴灯亮的概率是31311616 -=,故选:C.【点睛】本题结合物理的电路考查了有关概率的知识,考查对立事件的概率和项和对立事件的概率,本题解题的关键是看出事件之间的关系,灯亮的情况比较多,需要从反面来考虑,属于中档题.5.D解析:D【分析】由表格可求得:厨余垃圾投放正确的概率,可回收物投放正确的概率,其他垃圾投放正确的概率,再结合选项进行分析即可.【详解】由表格可得:厨余垃圾投放正确的概率40024001001003==++;可回收物投放正确的概率240424030305==++;其他垃圾投放正确的概率6032020605==++.对A ,厨余垃圾投放正确的概率为23,故A 正确; 对B ,生活垃圾投放错误有200602020300+++=,故生活垃圾投放错误的概率为3003100010=,故B 正确; 对C ,该市三类垃圾箱中投放正确的概率最高的是“可回收物”箱,故C 正确. 对D ,厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的的投放量的平均数600300100100033x ++==,可得方差22221100010001000[(600)(300)(100)]3333s =⨯-+-+-=380000200009≠,故D 错误;故选:D . 【点睛】本题考查概率与统计的计算,考查推理能力与数据处理能力,属于中档题. 6.B解析:B 【分析】根据互斥事件的定义,逐个判断,即可得出正确选项. 【详解】A 为三件产品全不是次品,指的是三件产品都是正品,B 为三件产品全是次品,C 为三件产品不全是次品,它包括一件次品,两件次品,三件全是正品三个事件由此知:A 与B 是互斥事件;A 与C 是包含关系,不是互斥事件;B 与C 是互斥事件,故选B . 【点睛】本题主要考查互斥事件定义的应用. 7.D解析:D 【分析】本周能进行决赛意味着能在周三或周四或周五进行,分别求概率,求和即可得解. 【详解】设在这周能进行决赛为事件A ,恰好在周三、周四、周五进行决赛分别为事件3A ,4A ,5A ,则345A A A A =⋃⋃,又事件3A ,4A ,5A 两两互斥, 则有()()()()34511111171112222228P A P A P A P A ⎛⎫⎛⎫⎛⎫=++=+-⨯+-⨯-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故选:D . 【点睛】本题主要考查了互斥关系的概率问题,属于基础题.8.B解析:B 【分析】记“喜欢乒乓球“为事件A ,“喜欢羽毛球”为事件B ,则“喜欢乒乓球或羽毛球”为事件A B +,“既喜欢乒乓球又喜欢羽毛球”为事件A B ⋅,根据题意求出()P A 、()P B 、()P A B +,再根据()()()()P A B P A P B P A B ⋅=+-+可求得结果.【详解】记“喜欢乒乓球“为事件A ,“喜欢羽毛球”为事件B ,则“喜欢乒乓球或羽毛球”为事件A B +,“既喜欢乒乓球又喜欢羽毛球”为事件A B ⋅,依题意可知3216()5025P A ==,2613()5025P B ==,459()5010P A B +==, 因为()()()()P A B P A P B P A B +=+-⋅,所以()()()()P A B P A P B P A B ⋅=+-+16139252510=+-2626%100==. 故选:B 【点睛】关键点点睛:利用和事件与积事件的概率关系求解是解题关键.9.B解析:B 【分析】求出开关1、2均正常工作的概率及开关3正常工作的概率,由相互独立事件概率公式、对立事件的概率公式即可得解. 【详解】由题意,开关1、2在某段时间内均正常工作的概率10.90.90.81P =⨯=, 开关3正常工作的概率20.9P =,故该系统正常工作的概率()()()()12111110.8110.90.981P P P =---=--⨯-=, 所以该系统的可靠性为0.981. 故选:B.10.A解析:A 【分析】设10件产品中存在n 件次品,根据题意列出方程求出n 的值. 【详解】设10件产品中存在n 件次品,从中抽取2件,其次品数为X ,由16(1)45P X ==得,11102101645n n C C C -=, 化简得210160n n -+=, 解得2n =或8n =;又该产品的次品率不超过40%,4n ∴;应取2n =, 故选:A 【点睛】本题考查了古典概型的概率计算问题,也考查了离散型随机变量的分布列问题,是基础题.11.C解析:C 【分析】根据题意,结合排列组合,利用插空法和特殊位置法,先排丙,再插甲乙,即可得解. 【详解】丙排第一,除甲乙外还有3人,共33A 种排法,此时共有4个空,插入甲乙可得24A ,此时共有3234=612=72A A ⋅⨯种可能;丙排第二,甲或乙排在第一位,此时有1424C A 排法,甲和乙不排在第一位, 则剩下3人有1人排在第一位,则有122323C A A 种排法, 此时故共有1412224323+=84C A C A A 种排法. 故概率6672841360P A +==. 故选:C. 【点睛】本题考查了排列组合,考查了插空法和特殊位置法,在解题过程中注意各种情况的不重不漏,有一定的计算量,属于较难题.12.B解析:B 【分析】易得出8人乘车,每车4人的乘车方法是48C ,然后考虑从3名教师中选2人,从5名学生中选2人乘同一辆车,注意有两辆车,求出方法后可得概率. 【详解】8人乘车,每车4人的乘车方法是4870C =,从3名教师中选2人,从5名学生中选2人乘同一辆车的方法娄得2235260C C ⨯=,∴所求概率为606707P ==. 故选:B . 【点睛】本题考查古典概型,解题关键是求出事件“恰有两名教师在同一车上”的方法数,易错点是不考虑两辆车.13.B解析:B 【分析】由条件列举从“金、石、土、革、丝、木”中任取“两音”的所有基本事件的个数,再计算“两音”同为打击乐器所包含的所有基本事件个数,最后求其概率. 【详解】从“金、石、土、革、丝、木”中任取“两音”,组成的基本事件包含:{金、石},{金、土},{金、革},{金、丝},{金、木},{石、土},{石、革},{石、丝},{石、木},{土、革},{土、丝},{土、木},{革、丝},{革、木},{丝、木},共15种情况,其中“两音”同为打击乐器的有{金、石},{金、革},{金、木},{石、革},{石、木},{革、木},共包含6种情况,则“两音”同为打击乐器的概率62155P ==. 故选:B 【点睛】本题考查数学文化与古典概型相结合的考查,重点考查读懂题意,属于基础题型.二、解答题14.(1)316;(2)分布列见解析,781256. 【分析】(1)利用排列组合计算方法种数,利用古典概型求概率;(2)先分析X 的所有可能取值,计算概率,写出分布列,套公式计算数学期望即可. 【详解】(1)所有可能的选择方式有54种,“恰有2人选择井冈山”的方式有235C 3⋅种,从而“恰有2人选择井冈山”的概率为2355C 31354512⋅=. “甲选择井冈山且乙不选择庐山”的方式有334⋅种,从而“甲选择井冈山且乙不选择庐山”的概率为35343416⋅=.(2)X 的所有可能值为1,2,3,4.又145C 1(1)4256P X ===, ()2324245252545(2)4256C C A C A P X +===, 2233335343535C C C A C ?A 2!150(3)4256P X ⎛⎫+ ⎪⎝⎭===, 24545C ?A 60(4)4256P X ===. 故X 的分布列为X ∴的数学期望()1234256256256256256E X =⨯+⨯+⨯+⨯=. 【点睛】求离散型随机变量的分布列,应按以下三个步骤进行:(1)明确离散型随机变量的所有可能取值以及取每个值所表示的意义; (2)利用概率的有关知识求出随机变量每个取值的概率; (3)按规范形式写出分布列并用分布列的性质进行检验. 15.(1)34p =,23q =;(2)512.【分析】(1)由互斥事件和对立事件的概率公式列方程组可解得,p q ;(2)分别求出两人答对1道的概率,答对两道题的概率,两人共答对3道题,则是一人答对2道题另一人答对1道题,由互斥事件和独立事件概率公式可得结论. 【详解】解:(1)设A ={甲同学答对第一题},B ={乙同学答对第一题},则()P A p =,()P B q =.设C ={甲、乙二人均答对第一题},D {甲、乙二人中恰有一人答对第一题},则C AB =,D AB AB =+.由于二人答题互不影响,且每人各题答题结果互不影响,所以A 与B 相互独立,AB 与AB 相互互斥,所以()()()()P C P AB P A P B ==,()()P D P AB AB =+()()()()()()()()()()()()11P AB P AB P A P B P A P B P A P B P A P B =+=+=-+-.由题意可得()()1,2511,12pq p q q p ⎧=⎪⎪⎨⎪-+-=⎪⎩即1,217.12pq p q ⎧=⎪⎪⎨⎪+=⎪⎩解得3,42,3p q ⎧=⎪⎪⎨⎪=⎪⎩或2,33.4p q ⎧=⎪⎪⎨⎪=⎪⎩由于p q >,所以34p =,23q =.(2)设=i A {甲同学答对了i 道题},i B ={乙同学答对了i 道题},0i =,1,2. 由题意得,()11331344448P A =⨯+⨯=,()23394416P A =⨯=, ()12112433339P B =⨯+⨯=,()2224339P B =⨯=.设E ={甲乙二人共答对3道题},则1221E A B A B =+. 由于i A 和i B 相互独立,12A B 与21A B 相互互斥,所以()()()()()()()12211221349458916912P E P A B P A B P A P B P A P B =+=+=⨯+⨯=. 所以,甲乙二人共答对3道题的概率为512. 【点睛】关键点点睛:本题考查互斥事件与独立事件的概率公式,解题关键是把所求概率事件用互斥事件表示,然后求概率,如设A ={甲同学答对第一题},B ={乙同学答对第一题},设C ={甲、乙二人均答对第一题},D {甲、乙二人中恰有一人答对第一题},则C AB =,D AB AB =+.同样两人共答对3题分拆成甲答对2题乙答对1题与甲答对1题乙答对2题两个互斥事件.16.(1)0.025a =,众数为190,中位数为190;(2)189.8cm ;(3)25.【分析】(1)利用频率分布直方图中所有矩形的面积之和为1可求得a 的值,利用最高矩形底边的中点值为众数可求得样本的众数,利用中位数左边矩形的面积和为0.5可求得样本的中位数;(2)将每个矩形底边的中点值乘以对应矩形的面积,再将所得结果全加可得样本的平均数,即为所求;(3)计算可知5株中在株高205215-这一组抽取的有4株,记为1a 、2a 、3a 、4a ,在株高215225-抽取1株,记为b ,列举出所有的基本事件,并确定事件“抽取的2株中含有215cm 及以上树苗”所包含的基本事件数,利用古典概型的概率公式可求得所求事件的概率. 【详解】(1)由频率分布直方图中所有矩形的面积之和为1可得()0.00150.0110.02250.030.0080.0015101a ++++++⨯=,解得0.025a =.众数为1851952+=190, 设中位数为x ,因为()0.00150.01100.0225100.350.5++⨯=<,()0.00150.01100.02250.030100.650.5+++⨯=>,则185195x <<, ()()0.00150.01100.0225100.0301850.5x ++⨯+⨯-=,解得190x =;(2)1600.0151700.111800.2251900.32000.252100.082200.02x =⨯+⨯+⨯+⨯+⨯+⨯+⨯()189.8cm =.因此,估计苗埔中树苗的平均高度为189.8cm ; (3)在株高205215-这一组应抽取:0.08540.080.02⨯=+株,在株高215225-这一组应抽取:0.02510.080.02⨯=+株,用1a 、2a 、3a 、4a 表示在株高205215-这一组的4株,用b 表示在株高215225-这一组的1株,从中抽调2株的抽法:12a a 、13a a 、14a a 、1a b 、23a a 、24a a 、2a b 、34a a 、3a b 、4a b ,共10个基本事件,设抽取2株中含有株高215225-这一组1株为A 事件,A 包含4个基本事件,()42105P A ∴==. 【点睛】方法点睛:计算古典概型概率的方法如下: (1)列举法; (2)列表法; (3)树状图法; (4)排列组合数的应用.17.(1)答案见解析;(2)经过12个月. 【分析】(1)计算出题中四类人群每月应纳税所得额,结合题意求出每类人群的月缴个税及其概率;(2)计算出在旧政策下,该收入阶层的IT 从业者每月应纳税所得额,可求得新政策下,每月少缴个税额,设经过x 个月该市该收入阶层的IT 从业者各月少缴交的个税之和就超过2019年的月收入,根据已知条件可得出关于x 的不等式,结合x ∈N 可求得结果.【详解】(1)由题意,既不符合子女教育扣除又不符合赡养老人扣除、只符合子女教育扣除但不符合赡养老人扣除、只符合赡养老人扣除但不符合子女教育扣除、即符合子女教育扣除又符合赡养老人扣除的人数之比是2:1:1:1.①既不符合子女教育扣除又不符合赡养老人扣除的人群每月应纳税所得额为240005000100018000--=元,月缴个税为30000.0390000.160000.22190⨯+⨯+⨯=元,其概率为25; ②只符合子女教育扣除但不符合赡养老人扣除的人群每月应纳税所得额为2400050001000100017000---=元,月缴个税为30000.0390000.150000.21990⨯+⨯+⨯=元,其概率为15; ③只符合赡养老人扣除但不符合子女教育扣除的人群每月应纳税所得额为2400050001000200016000---=元,月缴个税为30000.0390000.140000.21790⨯+⨯+⨯=元,其概率为15; ④既符合子女教育扣除又符合赡养老人扣除的人群每月应纳税所得额为24000500010001000200015000----=元,月缴个税为30000.0390000.130000.21590⨯+⨯+⨯=元,其概率为15; (2)在旧政策下,该收入阶层的IT 从业者每月应纳税所得额为24000350020500-=元,故月缴个税为15000.0330000.145000.2115000.254120⨯+⨯+⨯+⨯=元, 在新政策下,该收入阶层的IT 从业者每月应纳税所得额为()212190199017901590195055⨯+++⨯=元,每月少缴个税412019502170-=元,设经过x 个月该市该收入阶层的IT 从业者各月少缴交的个税之和就超过2019年的月收入,则217024000x ≥,又x ∈N ,解得()12x x N ≥∈,所以经过12个月,该市该收入阶层的IT 从业者各月少缴交的个税之和就超过2019年的月收入. 【点睛】关键点点睛:解决本题第一问的关键在于理解题中个税新旧政策中的扣税方案,并依据题意计算出各类人群所扣的税额;解决本题第二问的关键在于求出新旧政策下所扣的税额,并结合题意列不等式求解. 18.(Ⅰ)6.5小时(Ⅱ)35(Ⅲ)2212s s > 【分析】。
新人教版高中数学必修第二册第五单元《概率》测试题(包含答案解析)(2)

一、选择题1.法国的数学家费马(PierredeFermat )曾在一本数学书的空白处写下一个看起来很简单的猜想:当整数2n >时,找不到满足n n n x y z +=的正整数解.该定理史称费马最后定理,也被称为费马大定理.现任取{},,,1,2,3,4,5x y z n ∈,则等式n n n x y z +=成立的概率为( )A .112B .12625C .14625D .76252.下列命题正确的是( )A .用事件A 发生的频率()n f A 估计概率()P A ,重复试验次数n 越大,估计的就越精确.B .若事件A 与事件B 相互独立,则事件A 与事件B 相互独立.C .事件A 与事件B 同时发生的概率一定比A 与B 中恰有一个发生的概率小.D .抛掷一枚均匀的硬币,如前两次都是反面,那么第三次出现正面的可能性就比反面大. 3.从装有若干个大小相同的红球、白球和黄球的袋中随机摸出1个球,摸到红球、白球和黄球的概率分别为111,,236,从袋中随机摸出一个球,记下颜色后放回,连续摸3次,则记下的颜色中有红有白,但没有黄的概率为( )A .536B .56C .512D .124.袋中装有标号为1,2,3,4,5,6且大小相同的6个小球,从袋子中一次性摸出两个球,记下号码并放回,如果两个号码的和是3的倍数,则获奖,若有5人参与摸球,则恰好2人获奖的概率是( ) A .40243B .70243C .80243D .382435.从1,2,3,4这四个数字中依次取(不放回)两个数字,a b ,使得()()lg 3lg 4a b ≥成立的概率是( ) A .13B .512C .12D .7126.已知{0,1,2}a ∈,{1,1,35}b ∈-,,则函数2()2f x ax bx =-在区间(1,)+∞上为增函数的概率是( ) A .512B .13C .14D .167.将-颗骰子先后投掷两次分别得到点数,a b ,则关于,x y 方程组228040ax by x y +-=⎧⎨+-=⎩,有实数解的概率为( )A .29 B .79 C .736 D .9368.学校将5个不同颜色的奖牌分给5个班,每班分得1个,则事件“1班分得黄色的奖牌”与“2班分得黄色的奖牌”是( )A.对立事件B.不可能事件C.互斥但不对立事件D.不是互斥事件9.我国古代数学名著《数学九章》有“米谷粒分”题,现有类似的题:粮仓开仓收粮,有人送来532石,验得米内夹谷,抽样取米一把,数得54粒内夹谷6粒,则这批米内夹谷约为()A.59石B.60石C.61石D.62石10.学校足球赛决赛计划在周三、周四、周五三天中的某一天进行,如果这一天下雨则推迟至后一天,如果这三天都下雨则推迟至下一周,已知这三天下雨的概率均为12,则这周能进行决赛的概率为A.18B.38C.58D.7811.“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为8元,被随机分配为1.72元,1.83元,2.28元,1.55元,0.62元, 5份供甲、乙等5人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于3元的概率是()A.310B.25C.12D.35第II卷(非选择题)请点击修改第II卷的文字说明参考答案12.在3张卡片上分别写上3位同学的学号后,再把卡片随机分给这3位同学,每人1张,则恰有1位学生分到写有自己学号卡片的概率为()A.16B.13C.12D.2313.已知在10件产品中可能存在次品,从中抽取2件检查,记次品数为X,已知16(1)45P X==,且该产品的次品率不超过40%,则这10件产品的次品数为()A.2件B.4件C.6件D.8件二、解答题14.某校高一年级组织“知识竞答”活动.每位参赛者第一关需回答三个问题,第一个问题回答正确得10分,回答错误得0分;第二个问题回答正确得20分,回答错误得10-分;第三个问题回答正确得30分,回答错误得20-分.规定,每位参赛者回答这三个问题的总得分不低于30分就算闯关成功.若某位参赛者回答前两个问题正确的概率都是23,回答第三个问题正确的概率是12,且各题回答正确与否相互之间没有影响. (1)求这位参赛者仅回答正确两个问题的概率;(2)求这位参赛者回答这三个问题的总得分ξ的分布列和期望; (3)求这位参赛者闯关成功的概率.15.空气质量指数是定量描述空气质量状况的指数,空气质量指数的值越高,就代表空气污染越严重,其分级如下表: 空气质量指数 050 51100 101150 151200 201300300>空气质量类别优良轻度污染中度污染重度污染严重污染现分别从甲、乙两个城市12月份监测的空气质量指数的数据中随机抽取6天的数据,记录如下: 甲 48 65 104 132 166 79乙80 67 10815020562(2)分别从甲、乙两个城市的统计数据中任取一个,求这两个数据对应的空气质量类别都为轻度污染的概率;(3)记甲城市这6天空气质量指数的方差为20S .从甲城市12月份空气质量指数的数据中再随机抽取一个记为a ,若99a =,与原有的6天的数据构成新样本的方差记为21S ;若169a =,与原有的6天的数据构成新样本的方差记为22S ,试比较20S 、21S 、22S 的大小.(结论不要求证明)16.为了更好地刺激经济复苏,增加就业岗位,多地政府出台支持“地摊经济”的举措.某市城管委对所在城市约6000个流动商贩进行调查统计,发现所售商品多为小吃、衣帽、果蔬、玩具、饰品等,各类商贩所占比例如图1.(1)该市城管委为了更好地服务百姓,打算从流动商贩经营点中随机抽取100个进行政策问询.如果按照分层抽样的方法随机抽取,请问应抽取小吃类、果蔬类商贩各多少家? (2)为了更好地了解商贩的收入情况,工作人员还对某果蔬经营点最近40天的日收入(单位:元)进行了统计,所得频率分布直方图如图2.若从该果蔬经营点的日收入超过200元的天数中机抽取两天,求这两天的日收入至少有一天超过250元的概率.17.某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于65分到145分之间(满分150分),将统计结果按如下方式分成八组:第一组[65,75),第二组[75,85),第八组[135,145],如图是按上述分组方法得到的频率分布直方图的一部分.(1)根据图表,计算第七组的频率,并估计该校的2000名学生这次考试成绩的平均分(同一组中的数据用该组区间的中点值代表该组数据平均值);(2)若从样本成绩属于第六组和第八组的所有学生中随机抽取2名,求他们的分差的绝对值小于10分的概率.18.2018年2月9~25日,第23届冬奥会在韩国平昌举行,4年后,第24届冬奥会将在中国北京和张家口举行,为了宣传冬奥会,某大学在平昌冬奥会开幕后的第二天,从全校学生中随机抽取了120名学生,对是否收看奥运会开幕式进行了问卷调查,统计数据如下:收看 没收看 男生 60 20 女生2020(1)根据上表说明,能否有99%的把握认为,收看开幕式与性别有关?(2)现从参与收看了开幕式的学生中,采用分层抽样的方法选取8人,参加2022年北京冬奥会志愿者宣传活动. ①问男、女学生各选取多少人?②若从这8人中随机选取2人到校广播站宣传冬奥会,求恰好选到一名男生为主播一名女生为副播的概率P .附:22()()()()()n ad bc k a b c d a c b d -=++++,其中n a b c d =+++.20()P K k ≥ 0.1000.050 0.025 0.010 0.005 0k2.7063.8415.0246.6357.87919.某校从高一年级的一次月考成绩中随机抽取了50名学生的成绩,这50名学生的成绩都在[50,100]内,按成绩分为[50,60),[60,70),[70,80),[80,90),[90,100]五组,得到如图所示的频率分布直方图.(1)求图中的a值;(2)根据频率分布直方图估计该校高一年级本次考试成绩的中位数;(3)用分层抽样的方法从成绩在[80,100]内的学生中抽取6人,再从这6人中随机抽取2名学生进行调查,求月考成绩在[90,100]内至少有1名学生被抽到的概率.20.国际电子竞技和围棋比赛通常采用双败淘汰制.双败淘汰制即一支队伍失败两场被淘汰出局,直到最后剩下一支队伍夺得冠军(决赛只赛一场).以八支战队的比赛为例(如图所示),第一轮比赛,由8支战队抽签后交战,获胜战队继续留在获胜组,失败战队则掉人失败组,进人下一轮比赛.失败战队在失败组一旦再失败即被淘汰,最后由胜者组和败者组的冠军决出总冠军.某项国际电子竞技比赛有甲等8名选手参加,比赛采用了双败淘汰制,若这8名选手相互之间每场比赛获胜的概率均为0.5.双败流程示意图(以八支战队为例)(1)求甲获得冠军的概率;(2)记甲在这次比赛中参加比赛的场次为X,求随机变量X的分布列和期望.21.某校高二期中考试后,教务处计划对全年级数学成绩进行统计分析,从男、女生中各随机抽取100名学生,分别制成了男生和女生数学成绩的频率分布直方图,如图所示.(1)若所得分数大于等于80分认定为优秀,求男、女生优秀人数各有多少人?(2)在(1)中的优秀学生中用分层抽样的方法抽取5人,从这5人中任意任取2人,求至少有1名男生的概率.22.11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X =4且甲获胜”的概率.23.为了丰富业余生活,甲、乙、丙三人进行羽毛球比赛.比赛规则如下:①每场比赛有两人参加,并决出胜负;②每场比赛获胜的人与未参加此场比赛的人进行下一场的比赛;③依次循环,直到有一个人首先获得两场胜利,则本次比赛结束,此人为本次比赛的冠军.已知在每场比赛中,甲胜乙的概率为23,甲胜丙的概率为35,乙胜丙的概率为12.(1)求甲和乙先赛且共进行4场比赛的概率;(2)请通过计算说明,哪两个人进行首场比赛时,甲获得冠军的概率最大?24.某企业为了解该企业工人组装某产品所用时间,对每个工人组装一个该产品的用时作了记录,得到大量统计数据.从这些统计数据中随机抽取了9个数据作为样本,得到如图所示的茎叶图(单位:分钟).若用时不超过40(分钟),则称这个工人为优秀员工.(1)求这个样本数据的中位数和众数;(2)从样本数据用时不超过50分钟的工人中随机抽取2个,求至少有一个工人是优秀员工的概率.25.为了解学生“课外阅读日”的活动情况,某校以10%的比例对高二年级500名学生按选修物理和选修历史进行分层抽样调查,测得阅读时间(单位:分钟)的频数统计图如下:(1)分别估计该校高二年级选修物理和选修历史的人数; (2)估计该校高二年级学生阅读时间在60分钟以上的概率; (3)从样本中阅读时间在6090分钟的选修物理的学生中任选2人,求至少有1人阅读时间在7590之间的概率.26.某重点中学为了了解学生在期末市统考中的数学考试情况,抽取了100名学生的数学成绩.以[)80,90,[)90,100,[)100,110,[)110,120,[)120130,,[)130140,,[]140,150分组的频率分布直方图如下图所示:(1)求直方图中x 的值; (2)求数学成绩的中位数;(3)在数学成绩为[)120130,,[)130140,,[]140,150的三组学生中,用分层抽样的方法抽取6名学生,在这6名学生中选出2名学生参加数学竞赛,求至少有一名学生在[)130140,分组的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据分步计数原理,得到基本事件总数,再利用列举法,求得所求事件所包含的基本事件的个数,利用古典概型的概率计算公式,即可求解. 【详解】由任取{},,,1,2,3,4,5x y z n ∈,使得n n n x y z +=,共有5555625⨯⨯⨯=种不同的情形,当1n =时,可得x y z +=, 可得112,123,134,145,213,224,235,314,325,415+=+=+=+=+=+=+=+=+=+=,共有10种情况,满足题意;当2n =时,可得222x y z +=,可得222222345,435+=+=,共有2种情况,满足题意; 当3,4,5n =时,没有满足n n n x y z +=成立的情况, 所以等式n n n x y z +=成立的概率为12625P =. 故选:B.【点睛】本题主要考查了古典概型的概率的计算,其中解答中求得基本事件的总数,利用列举法求得所求事件所包含的基本事件的个数是解答的关键,着重考查推理与运算能力.2.B解析:B【分析】根据概率的定义,事件的独立性概念判断各选项.【详解】在相同的条件下做大量重复试验,一个事件A出现的次数和总的试验次数n之比,称为事件A在这n次试验中出现的频率.当试验次数n很大时,频率将稳定在一个常数附近. n越大,频率偏离这个常数较大的可能性越小.这个常数称为这个事件的概率,并不是说n越大,估计的精度越精确,A错;事件A与事件B相互独立,即A是否发生与B是否发生无关,∴事件A是否发生与事件B是否发生也无关,它们相互独立,B正确;抛一枚骰子,出现的点数不大于5记为事件A,出现的点为不小于2记为事件B,则事件A与事件B同时发生是指点数为2,3,4,5,概率为4263=,而事件A与B中恰有一个发生是指点为1或6,概率为212633=<.C错;抛掷一枚均匀的硬币,如前两次都是反面,那么第三次出现正面的可能性与出现反面的可能性还是一样.D错.故选:B.【点睛】本题考查概率的定义,考查事件的独立性.掌握概念的定义是解题关键.3.C解析:C【分析】概率等于没有黄球的概率减去只有白球或只有红球的概率,计算到答案.【详解】根据题意:概率等于没有黄球的概率减去只有白球或只有红球的概率.即3331115 162312 p⎛⎫⎛⎫⎛⎫=---=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:C.【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力. 4.C解析:C【分析】先确定摸一次中奖的概率,5个人摸奖,相当于发生5次试验,根据每一次发生的概率,利用独立重复试验的公式得到结果. 【详解】从6个球中摸出2个,共有2615C =种结果,两个球的号码之和是3的倍数,共有(1,2),(1,5),(2,4),(3,6),(4,5)∴摸一次中奖的概率是51153=, 5个人摸奖,相当于发生5次试验,且每一次发生的概率是13, ∴有5人参与摸奖,恰好有2人获奖的概率是35222180()()33243C ⋅⋅=, 故选:C . 【点睛】本题主要考查了n 次独立重复试验中恰好发生k 次的概率,考查独立重复试验的概率,解题时主要是看清摸奖5次,相当于做了5次独立重复试验,利用公式做出结果,属于中档题.5.C解析:C 【分析】列出样本空间Ω,以及事件A =“()()lg 3lg 4a b ≥”包含的基本事件,计算概率. 【详解】因为()()lg 3lg 4a b ≥,所以34a b ≥.从1,2,3,4这四个数字中依次取两个数字的样本空间()()()()()()()()()()()(){}1,2,2,1,1,3,3,1 ,1,4,4,1,2,3,3,2,2,4,4,2,3,4,4,3Ω=,共12个样本点,符合条件34a b ≥的样本点有()()()()()()2,1,3,1,4,1,3,2,4,2,4,3,共6个,所以所求概率为12,故选C . 【点睛】本题考查了古典概型,考查了学生实际应用以及数学运算的能力,属于基础题.6.A解析:A 【分析】利用枚举法分情况将所有满足条件的情况举出,再利用古典概型求概率的方法求解即可. 【详解】{0,1,2}a ∈,{1,1,3,5}b ∈-,∴基本事件总数3412n =⨯=.用(,)a b 表示,a b 的取值.若函数2()2f x ax bx =-在区间(1,)+∞上为增函数,则①当0a =时,()2f x bx =-,符合条件的只有(0,1)-,即0a =,1b =-;②当0a ≠时,则由题意0a >,只需满足1ba,符合条件的有(1,1)-,(1,1),(2,1)-,(2,1),共4种.∴函数2()2f x ax bx =-在区间(1,)+∞上为增函数的概率512P =. 故选:A 【点睛】本题主要考查了分类讨论的思想以及古典概型求概率的方法,属于中等题型.7.B解析:B 【分析】利用圆心到直线的距离不大于半径可得,a b 的不等式关系,从而得到方程组有解的(),a b 个数,利用古典概型的概率公式可求概率. 【详解】因为方程组228040ax by x y +-=⎧⎨+-=⎩有解,故直线80ax by +-=与圆224x y +=有公共点,2≤即2216a b +≥,当1a =时,4,5,6b =,有3种情形;当2a =时,4,5,6b =,有3种情形; 当3a =时,3,4,5,6b =,有4种情形; 当4,5,6a =时,1,2,3,4,5,6b =,有18种情形;故方程有解有28种情形,而(),a b 共有36种不同的情形,故所求的概率为287369=. 故选:B. 【点睛】古典概型的概率的计算,关键是基本事件的总数和随机事件中基本事件的个数的计算,计算时可采用枚举法、树形图等帮助计数(个数较少时),也可以利用排列组合的方法来计数(个数较大时).8.C解析:C 【分析】对与黄色奖牌而言,可能是1班分得,可能是2班分得,也可能1班与2班均没有分得,然后根据对立事件和互斥事件的概念进行判断. 【详解】由题意,1班和2班不可能同时分得黄色的奖牌,因而这两个事件是互斥事件;又1班和2班可能都得不到黄色的奖牌,故这两个事件不是对立事件,所以事件“1班分得黄色的奖牌”与“2班分得黄色的奖牌”是互斥但不对立事件.故选C【点睛】本题考查了互斥事件和对立事件,关键是对概念的理解,属于基础题.9.A解析:A 【分析】运用抽样结果得到米内夹谷的概率,然后估算这批米内夹谷的结果 【详解】由题中54粒内夹谷6粒可得其概率为:61549=, 则这批米内夹谷为115325999⨯=,约为59石 故选A 【点睛】本题主要考查了抽样调查的实际运用,由抽样结果得到概率后然后估算其结果,较为简单.10.D解析:D 【分析】本周能进行决赛意味着能在周三或周四或周五进行,分别求概率,求和即可得解. 【详解】设在这周能进行决赛为事件A ,恰好在周三、周四、周五进行决赛分别为事件3A ,4A ,5A ,则345A A A A =⋃⋃,又事件3A ,4A ,5A 两两互斥, 则有()()()()34511111171112222228P A P A P A P A ⎛⎫⎛⎫⎛⎫=++=+-⨯+-⨯-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故选:D . 【点睛】本题主要考查了互斥关系的概率问题,属于基础题.11.D解析:D 【解析】 【分析】甲、乙二人抢到的金额之和包含的基本事件的总数2510n C ==,甲、乙二人抢到的金额之和不低于3元包含基本事件有6个,由此能求出甲、乙二人抢到的金额之和不低于3元的概率. 【详解】由题意,所发红包的总金额为8元,被随机分配为1.72元、1.83元、2.28元、1.55元、0.62元、5分,供甲、乙等5人抢,每人只能抢一次,甲乙二人抢到的金额之和包含的基本事件的总数为2510n C==,甲乙二人抢到的金额之和不低于3元包含的基本事件有6个,分别为(1.72,1.83),(1.72,2.28),(1.72,1.55),(1.83,2.28),(1.83,1.55),(2.28,1.55)所以甲乙二人抢到的金额之和不低于3元的概率为63105p==,故选D.【点睛】本题主要考查了古典概型及其概率的计算问题,其中解答中正确理解题意,找出基本事件的总数和不低于3元的事件中所包含的基本事件的个数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.12.C解析:C【分析】由题意列出所有可能的结果,然后利用古典概型计算公式即可求得满足题意的概率值.【详解】设三位同学分别为,,A B C,他们的学号分别为1,2,3,用有序实数列表示三人拿到的卡片种类,如()1,3,2表示A同学拿到1号,B同学拿到3号,C同学拿到2号.三人可能拿到的卡片结果为:()()()()()()1,2,3,1,3,2,2,1,3,2,3,1,3,1,2,3,2,1,共6种,其中满足题意的结果有()()()1,3,2,2,1,3,3,2,1,共3种,结合古典概型计算公式可得满足题意的概率值为:3162 p==.故选:C.【点睛】方法点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏.(2)注意区分排列与组合,以及计数原理的正确使用.13.A解析:A【分析】设10件产品中存在n件次品,根据题意列出方程求出n的值.【详解】设10件产品中存在n件次品,从中抽取2件,其次品数为X,由16(1)45P X==得,11102101645n nC CC-=,化简得210160n n -+=, 解得2n =或8n =;又该产品的次品率不超过40%,4n ∴;应取2n =, 故选:A 【点睛】本题考查了古典概型的概率计算问题,也考查了离散型随机变量的分布列问题,是基础题.二、解答题14.(1)49;(2)分布列见解析,195()9E ξ=;(3)49. 【分析】(1)设事件i A 这位参赛者回答对第i 个问题()1,2,3i =,则这位参赛者仅回答正确两个问题的情况有123A A A ,123A A A ,123A A A ,然后利用互斥事件的概率和公式求解即可; (2)由题意可得30,20,0,10,20,30,50,60ξ=--,然后依次求出各个的概率,列出分布列即可,从而可求出数学期望;(3)由(2)可得这位参赛者闯关成功的概率为(30)(50)(60)P P P P ξξξ==+=+= 【详解】(1)设事件i A 这位参赛者回答对第i 个问题()1,2,3i =, ∴()()()123123123P P A A A P A A A P A A A =++22121112143323323329=⋅⋅+⋅⋅+⋅⋅= (2)30,20,0,10,20,30,50,60ξ=-- ()1231(30)18P P A A A ξ=-==,()1231(20)9P P A A A ξ=-==, ()1231(0)9P P A A A ξ===,()1232(10)9P P A A A ξ===,()1231(20)18P P A A A ξ===,()1231(30)9P P A A A ξ===, ()1231(50)9P P A A A ξ===,()1232(60)9P P A A A ξ===, ∴ξ的分布列为:()30200102030506018999189999E ξ=-⨯-⨯+⨯+⨯+⨯+⨯+⨯+⨯=. (3)由(2)得这位参赛者闯关成功的概率为4(30)(50)(60)9P P P P ξξξ==+=+==. 【点睛】关键点点睛:此题考查互斥事件和独立事件的概率的求法,考查离散型随机变量的分布列,考查运算求解能力,解题的关键是正确理解题意,正确利用互斥事件和独立事件的概率公式,属于中档题 15.(1)13;(2)19;(3)222102S S S <<.【分析】(1)甲城市这6天内空气质量类别为良的有2天,利用频率估计概率的思想可求得结果; (2)列举出所有的基本事件,并利用古典概型的概率公式可求得结果; (3)根据题意可得出20S 、21S 、22S 的大小关系. 【详解】(1)甲城市这6天内空气质量类别为良的有2天,则估计甲城市12月份某一天空气质量类别为良的概率为13; (2)由题意,分别从甲、乙两个城市的统计数据中任取一个,所有的基本事件有:()48,80、()48,67、()48,108、()48,150、()48,205、()48,62、()65,80、()65,67、()65,108、()65,150、()65,205、()65,62、()104,80、()104,67、()104,108、()104,150、()104,205、()104,62、()132,80、()132,67、()132,108、()132,150、()132,205、()132,62、()166,80、()166,67、()166,108、()166,150、()166,205、()166,62、()79,80、()79,67、()79,108、()79,150、()79,205、()79,62,共36个,用A 表示“这两个数据对应的空气质量类别都为轻度污染”,则事件A 包含的基本事件有:()104,108、()104,150、()132,108、()132,150,共4个基本事件, 所以,()41369P A ==; (3)222102S S S <<. 【点睛】方法点睛:求解古典概型概率的问题有如下方法: (1)列举法; (2)列表法; (3)树状图法; (4)排列组合数的应用.16.(1)应抽取小吃类商贩40(家),果蔬类商贩15(家);(2)35. 【分析】(1)求出小吃类、果蔬类商贩的占比,再乘以100可得结果;(2)计算可知该果蔬经营点的日收入超过200元的天数为6天,其中超过250元的有2天,记为1a 、2a ,其余4天为1b 、2b 、3b 、4b ,列举出所有的基本事件,并确定事件“两天的日收入至少有一天超过250元”所包含的基本事件,利用古典概型的概率公式可计算出所求事件的概率. 【详解】(1)由题意知,小吃类商贩所占比例为125%15%10%5%5%40%-----=, 按照分层抽样的方法随机抽取,应抽取小吃类商贩:10040%40⨯=(家),果蔬类商贩:10015%15⨯=(家). (2)该果蔬经营点的日收入超过200元的天数为()0.0020.00150406+⨯⨯=天,其中超过250元的有400.001502⨯⨯=天,记日收入超过250元的2天为1a 、2a ,其余4天为1b 、2b 、3b 、4b ,随机抽取两天的所有可能情况有:()12,a a 、()11,a b 、()12,a b 、()13,a b 、()14,a b 、()21,a b 、()22,a b 、()23,a b 、()24,a b 、()12,b b 、()13,b b 、()14,b b 、()23,b b 、()24,b b 、()34,b b ,共15种,其中至少有一天超过250元的所有可能情况有:()12,a a 、()11,a b 、()12,a b 、()13,a b ,()14,a b 、()21,a b 、()22,a b 、()23,a b 、()24,a b ,共9种.所以,这两天的日收入至少有一天超过250的概率为93155P ==. 【点睛】方法点睛:求解古典概型概率的方法如下: (1)树状图法; (2)列举法; (3)列表法; (4)排列组合数的应用.17.(1)频率为:0.08;平均分为102;(2)25. 【分析】(1)利用所有组频率和为1即可求得第七组的频率,然后利用81i ii x x p ==∑(其中ix 表示第i 组的中间值,i p 表示该组的频率)求出平均值;(2)利用古典概率模型概率的计算方法求解即可. 【详解】解:(1)由频率分布直方图得第七组的频率为:()10.0040.0120.0160.0300.0200.0060.004100.08-++++++⨯=.用样本数据估计该校的2000名学生这次考试成绩的平均分为:700.04800.12900.161000.31100.21200.06x =⨯+⨯+⨯+⨯+⨯+⨯1300.081400.04102+⨯+⨯=.(2)样本成绩属于第六组的有0.00610503⨯⨯=人,设为,,A B C ,样本成绩属于第八组的有0.00410502⨯⨯=人,设为,a b ,从样本成绩属于第六组和第八组的所有学生中随机抽取2名, 基本事件有: AB ,AC ,Aa ,Ab ,BC ,Ba ,Bb ,Ca ,Cb ,ab 共10个 他们的分差的绝对值小于10分包含的基本事件个数AB ,AC ,BC ,ab 共 4个 ∴他们的分差的绝对值小于10分的概率42105p ==. 【点睛】本题考查利用频率分布直方图求解样本数据的平均值,考查古典模型概率的计算,难度一般.(1)计算样本数据的平均值时,只需利用每组中间值乘以本组频率求和即可得到答案; (2)古典概型的解答注意分析清楚基本事件总数及某事件成立时所包含的基本事件数. 18.(1)有99%的把握;(2)①男生6人,女生2人;②37. 【分析】(1)列出22⨯列联表,求出2k 的值,根据附表可得答案;(2)①根据分层抽样的方法可得,男、女学生各选取的人数;②从这8人中随机选取2人,共有28C 种不同的选法,其中恰好选到一名男生为主播一名女生为副播共有1162C C 种不同的选法,根据古典概型的概率计算公式可得概率. 【详解】(1)22⨯列联表:()22120602020207.5 6.63580408040k ⨯⨯-⨯==>⨯⨯⨯,∴有99%的把握认为,收看开幕式与性别有关. (2)①根据分层抽样的方法可得,男生抽取:860=680⨯(人),女生抽取:820=280⨯(人). ∴选取的8人中,男生6人,女生2人.②从这8人中随机选取2人,共有2828C =种不同的选法;其中恰好选到一名男生为主播一名女生为副播共有116212C C =种不同的选法.根据古典概型的概率计算公式可得,恰好选到一名男生为主播一名女生为副播的概率123287P ==. 【点睛】本题考查独立性检验、分层抽样和古典概型,属于中档题. 19.(1)0.016;(2)约为74.1;(3)35. 【分析】(1)由频率分布直方图中所有频率和为1可求得a ;(2)频率分布直方图中将所有小矩形面积二等分的点对应的值为中位数;(3)根据频率分布直方图求出成绩在[80,90)和[90,100]上的人数,然后利用对立事件的概率公式计算. 【详解】(1)由题意(0.0080.0240.0440.008)101a ++++⨯=,解得0.016a =; (2)在频率分布直方图中前两组频率和为(0.0080.024)100.32+⨯=, 第三组频率为0.044100.44⨯=,中位数在第三组,设中位数为x ,则70100.50.320.44x -=-,解得74.1x ≈;(3)由频率分布直方图成绩在[80,90)和[90,100]和频率分别是0.16和0.08,共抽取6人,∴成绩在[80,90)上的有4人,成绩在[90,100]上的有2人,从6人中任意抽取2人共有2615C =种方法,2人成绩都在[80,90)上的方法有246C =种,∴月考成绩在[90,100]内至少有1名学生被抽到的概率为631155P =-=. 【点睛】本题考查频率分布直方图,考查由频率分布直方图计算中位数,考查分层抽样与古典概型,,考查了学生的数据处理能力与运算求解能力,属于中档题.。
成都高新新源学校必修第二册第五单元《概率》测试卷(有答案解析)

一、选择题1.甲、乙两人独立地对同一目标各射击一次,命中率分别为0.6和0.8,在目标被击中的条件下,甲、乙同时击中目标的概率为( ) A .2144B .1223C .1225D .21112.斐波那契数列(Fibonacci sequence )又称黄金分割数列,因数学家列昂纳多·斐波那契(Leonardoda Fibonacci )以兔子繁殖为例子而引入,故又称为“兔子数列”.在数学上,斐波纳契数列被以下递推的方法定义:数列{}n a 满足:121a a ==,21++=+n n n a a a ,现从数列的前2019项中随机抽取1项,能被3整除的概率是( ) A .14B .2522019C .5042019D .50520193.某城市2017年的空气质量状况如下表所示: 污染指数T 3060100110130140概率P110 16 13 730 215 130其中污染指数50T ≤时,空气质量为优;50100T <≤时,空气质量为良;100150T <≤时,空气质量为轻微污染,该城市2017年空气质量达到良或优的概率为( )A .35B .1180C .119D .564.在如图所示的电路中,5个格子表示保险匣,格子中所示数据表示通电时保险丝被熔断的概率,则当开关合上时,电路畅通的概率是( )A .2936B .551720C .2972D .291445.近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000t 生活垃圾.经分拣以后数据统计如下表(单位:t ):根据样本估计本市生活垃圾投放情况,下列说法错误的是( )A .厨余垃圾投放正确的概率为23B .居民生活垃圾投放错误的概率为310C .该市三类垃圾箱中投放正确的概率最高的是“可回收物”箱D .厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量的方差为20000 6.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A ,B 中至少有一件发生的概率是( ) A .512B .12C .712D .347.抛掷一颗质地均匀的骰子,记事件A 为“向上的点数为1或4”,事件B 为“向上的点数为奇数”,则下列说法正确的是( ) A .A 与B 互斥 B .A 与B 对立C .()23P A B +=D .()56P A B +=8.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率为710的事件是( ) A .至多有一张移动卡 B .恰有一张移动卡 C .都不是移动卡D .至少有一张移动卡9.某班有50名学生,其中有45名学生喜欢乒乓球或羽毛球,32名学生喜欢乒乓球,26名学生喜欢羽毛球,则该班既喜欢乒乓球又喜欢羽毛球的学生数占该班学生总数的比例是( ) A .38%B .26%C .19%D .15%10.已知在10件产品中可能存在次品,从中抽取2件检查,记次品数为X ,已知16(1)45P X ==,且该产品的次品率不超过40%,则这10件产品的次品数为( ) A .2件B .4件C .6件D .8件11.进入8月份后,我市持续高温,气象局一般会提前发布高温橙色预警信号(高温橙色预警标准为24小时内最高气温将升至37摄氏度以上),在今后的3天中,每一天最高气温在37摄氏度以上的概率是35.用计算机生成了20组随机数,结果如下,若用0,1,2,3,4,5表示高温橙色预警,用6,7,8,9表示非高温橙色预警,则今后的3天中恰有2天发布高温橙色预警信号的概率估计是()116 785 812 730 134 452 125 689 024 169334 217 109 361 908 284 044 147 318 027A.35B.12C.1320D.2512.我省明年高考将实行312++模式,即语文数学英语必修,物理、历史二选一,化学、生物、政治、地理四选二,今年高一的小明与小芳进行选科,假若他们对六科没有偏好,则他们选课没有相同科目的概率为()A.16B.112C.56D.111213.从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是()A.110B.310C.35D.910二、解答题14.2020年国庆节期间,甲、乙等5名游客准备从庐山、三清山、婺源、井冈山4个景点中选取一个景点游览,设每人只选择一个景点,且选择任一个景点是等可能的.(1)分别求“恰有2人选择井冈山”和“甲选择井冈山且乙不选择庐山”的概率;(2)记X表示5人中选择景点的个数,求X的分布列与数学期望.15.2021届高考体检工作即将开展,为了了解高三学生的视力情况,某校医务室提前对本校的高三学生视力情况进行调查,在高三年级1000名学生中随机抽取了100名学生的体检数据,并得到如下图的频率分布直方图.年级名次是否近视1~100101~1000近视4030不近视1020(1)若直方图中前四组的频数依次成等比数列,试估计全年级高三学生视力的中位数(精确到0.01);(2)该校医务室发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对抽取的100名学生名次在1~100名和101~1000名的学生的体检数据进行了统计,得到表中数据,根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?(3)在(2)中调查的不近视的学生中按照分层抽样抽取了6人,进一步调查他们良好的护眼习惯,求在这6人中任取2人,至少有1人的年级名次在1~100名的概率.2()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.16.2020年9月份,南京出台了<南京市生活垃圾管理条例>,提出2020年11月1日起,实现单位生活垃圾强制分类全覆盖,居民区普遍推行生活垃圾分类制度.为加强社区居民的垃圾分类意识,推动社区垃圾分类正确投放,某社区在健身广场举办了“垃圾分类,从我做起”生活垃圾分类大型宣传活动,号召社区居民用实际行动为建设绿色家园贡献一份力量,为此需征集一部分垃圾分类志愿者.已知某垃圾站的日垃圾分拣量y (千克)与垃圾分类志愿者人数x (人)满足线性回归直线方程ˆybx a =+,数据统计如下:(1)已知511405i i y y ===∑,120ii x==∑,1885i i i x y ==∑,根据所给数据求t 和线性回归直线方程ˆybx a =+. (2)用(1)中所求的线性回归方程得到与i x 对应的口垃圾分拣量的估计值ˆi y.当分拣数据i y 与估计值ˆi y满足ˆi i y y -≤2时,则将分拣数据(i x ,i y )称为一个“正常数据”.现从题中5个分拣数据中任取2个,求2个都是“正常数据”的概率.参考公式:()()()121ˆniii nii x x y y bx x ==--=-∑∑,ˆˆay bx =-. 17.日前,《北京传媒蓝皮书:北京新闻出版广电发展报告(2016~2017)》公布,其中提到,2015年9月至2016年9月,北京市年度综合阅读率较上年增长1%,且数字媒体阅读率首次超过了纸质图书阅读率.为了调查某校450名高一学生(其中女生210名)对这两种阅读方式的时间分配情况,该校阅读研究小组通过按性别分层抽样的方式随机抽取了15名学生进行调查,得到这15名学生分别采用这两种阅读方式的平均每周阅读时间,数据如下(单位:小时):(2)请用茎叶图表示上面的数据,并通过观察茎叶图,对这两种阅读方式进行比较,写出两个统计结论;(3)平均每周纸质阅读时长超过数字阅读时长的学生中,随机抽取两名学生,求这两名学生中至少有一名学生数字阅读时间不超过40小时的概率.18.已知某校甲、乙、丙三个兴趣小组的学生人数分别为36,24,12.现采用分层抽样的方法从中抽取6人,进行睡眠质量的调查.(Ⅰ)应从甲、乙、丙三个兴趣小组的学生中分别抽取多少人?(Ⅱ)现从6人中随机抽取2人做进一步的身体检查,求抽取的2人来自同一兴趣小组的概率.19.“每天锻炼一小时,健康工作五十年,幸福生活一辈子.”一科研单位为了解员工爱好运动是否与性别有关,从单位随机抽取30名员工进行了同卷调查,得到了如下列联表:(1)请将上面的列联表补充完整(在答题卡上直接填写结果,不需要写求解过程);(2)能否有95%的把握认为爱好运动与性别有关?(3)若在接受调查的所有男生中按照“爱好与不爱好运动”进行分层抽样,现随机抽取8人,再从8人中抽取3人,求至少有2人“爱好运动”的概率.附:()()()()()22n ad bcKa b c d a c b d-=++++20.某中学高一年级举行了一次数学竞赛,从中随机抽取了一批学生的成绩,经统计,这批学生的成绩全部介于50至100之间,将数据按照[)50,60,[)60,70,[)70,80,[)80,90,[]90,100的分组作出频率分布直方图如图所示.(1)求频率分布直方图中a 的值,并估计本次竞赛成绩的第80百分位数;(2)若按照分层随机抽样从成绩在[)80,90,(]90,100的两组中抽取6人,再从这6人中随机抽取2人,求至少有1人的成绩在[]90,100内的概率.21.某企业员工x 人参加“抗疫”宣传活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示.(1)上表是年龄的频数分布表,结合此表与频率分布直方图,求正整数x ,a ,b 的值;(2)假设同组中的每个数据用该组区间的右端点值代替,根据频率分布直方图估计该企业员工的平均年龄;(3)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,并且在第3组抽的人(其中一人叫甲)中再选出两人做演讲活动,求甲被选中的概率.22.树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,大量的统计数据表明,参与调查者中关注此问题的约占80%.现从参与调查的人群中随机选出200人,并将这200人按年龄分组:第1组[)15,25,第2组[)25,35,第3组[)35,45,第4组[)45,55,第5组[)55,65,得到的频率分布直方图如图所示:(1)求出样本的平均数(同一组数据用该区间的中点值作代表);(2)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求第2组中抽到2人的概率.23.某高校为了制定培养学生阅读习惯,指导学生提高阅读能力的方案,需了解全校学生的阅读情况,现随机调查了200名学生每周阅读时间X (单位:小时)并绘制如图所示的频率分布直方图.(1)求这200名学生每周阅读时间的中位数a (a 的值精确到0.01);(2)为查找影响学生阅读时间的因素,学校团委决定从每周阅读时间为[)6.5,7.5,[)7.5,8.5的学生中抽取6名参加座谈会.()i 你认为6个名额应该怎么分配?并说明理由;()ii 从这6名学生中随机抽取2人,求至多有一人每周读书时间在[)7.5,8.5的概率.24.盒子里放有外形相同且编号为1,2,3,4,5的五个小球,其中1号与2号是黑球,3号、4号与5号是红球,从中有放回地每次取出1个球,共取两次. (1)求取到的2个球中恰好有1个是黑球的概率; (2)求取到的2个球中至少有1个是红球的概率.25.某中学高二年级从甲、乙两个班中各选出7名学生参加数学竞赛,他们取得成绩的茎叶图如下,其中甲班学生的平均分是85分,乙班学生成绩的中位数是83.(1)求,x y的值;(2)在成绩高于90分的学生中任选两人,求这两人来自不同班级的概率.26.2020年开始,山东推行全新的高考制度,新高考不再分文理科,采用“3+3”模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还需要依据想考取的高校及专业要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科满分100分,2020年初受疫情影响,全国各地推迟开学,开展线上教学.为了了解高一学生的选科意向,某学校对学生所选科目进行线上检测,下面是100名学生的物理、化学、生物三科总分成绩,以组距20分成7组:[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],画出频率分布直方图如图所示.(1)求频率分布直方图中a的值;(2)由频率分布直方图;(i)求物理、化学、生物三科总分成绩的中位数;(ii)估计这100名学生的物理、化学、生物三科总分成绩的平均数(同一组中的数据用该组区间的中点值作代表);(3)为了进一步了解选科情况,由频率分布直方图,在物理、化学、生物三科总分成绩在[220,240)和[260,280)的两组中,用分层随机抽样的方法抽取7名学生,再从这7名学生中随机抽取2名学生进行问卷调查,求抽取的这2名学生来自不同组的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据题意,记甲击中目标为事件A ,乙击中目标为事件B ,目标被击中为事件C ,由相互独立事件的概率公式,计算可得目标被击中的概率,进而计算在目标被击中的情况下,甲、乙同时击中目标的概率,可得答案. 【详解】根据题意,记甲击中目标为事件A ,乙击中目标为事件B ,目标被击中为事件C , 则()()()()()1110.610.80.92P C P A P B =-=--⨯-=; 则在目标被击中的情况下,甲、乙同时击中目标的概率为0.60.80.921223P ⨯==. 故选:B. 【点睛】本题考查条件概率的计算,是基础题,注意认清事件之间的关系,结合条件概率的计算公式正确计算即可.属于基础题.2.C解析:C 【分析】依次写出数列各项除以3所得余数,寻找后可得结论. 【详解】根据斐波纳契数列的定义,数列各项除以3所得余数依次为:1,1,2,0,2,2,1,0,1,1,2,,余数数列是周期数列,周期为8,201925283=⨯+,所以数列的前2019项中能被3整除的项有2522504⨯=,所求概率为5042019P =. 故选:C . 【点睛】本题考查古典概型,考查斐波纳契数列,考查数列的周期性.解题关键是依次写出波纳契数列各项除以3所得余数形成的新数列.3.A解析:A 【分析】根据互斥事件的和的概率公式求解即可. 【详解】由表知空气质量为优的概率是110,由互斥事件的和的概率公式知,空气质量为良的概率为111632+=, 所以该城市2017年空气质量达到良或优的概率1131025P =+=, 故选:A 【点睛】本题主要考查了互斥事件,互斥事件和的概率公式,属于中档题.4.A解析:A 【分析】先求出A 至B 畅通的概率,再求出B 至C 畅通的概率,再利用独立事件的概率求法求出电路通畅的概率. 【详解】当开关合上时,电路畅通即表示A 至B 畅通且B 至C 畅通,A 至B 畅通的概率1111511114236P ⎡⎤⎛⎫⎛⎫=-⨯--⨯-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, B 至C 畅通的概率2112915630P =-⨯=, 所以电路畅通的概率125292963036P PP =⨯==, 故选:A. 【点睛】本题考查求独立事件的概率,需要学生有一定的计算分析能力,属于中档题.5.D解析:D 【分析】由表格可求得:厨余垃圾投放正确的概率,可回收物投放正确的概率,其他垃圾投放正确的概率,再结合选项进行分析即可. 【详解】由表格可得:厨余垃圾投放正确的概率40024001001003==++;可回收物投放正确的概率240424030305==++;其他垃圾投放正确的概率6032020605==++.对A ,厨余垃圾投放正确的概率为23,故A 正确; 对B ,生活垃圾投放错误有200602020300+++=,故生活垃圾投放错误的概率为3003100010=,故B 正确; 对C ,该市三类垃圾箱中投放正确的概率最高的是“可回收物”箱,故C 正确.对D ,厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的的投放量的平均数600300100100033x ++==,可得方差22221100010001000[(600)(300)(100)]3333s =⨯-+-+-=380000200009≠,故D 错误;故选:D . 【点睛】本题考查概率与统计的计算,考查推理能力与数据处理能力,属于中档题.6.C解析:C 【解析】试题分析:由题意可知,事件A 与事件B 是相互独立的,而事件A 、B 中至少有一件发生的事件包含AB 、AB 、AB ,又()12P A =,()16P B =,所以所事件的概率为()()()()11711112612P P AB P AB P AB P AB ⎛⎫⎛⎫=++=-=--⨯-= ⎪ ⎪⎝⎭⎝⎭,故选C .考点:相互独立事件概率的计算.7.C解析:C 【分析】根据互斥事件和对立事件的定义判断.求出事件A B +,然后计算概率. 【详解】A 与B 不互斥,当向上点数为1时,两者同时发生,也不对立,事件A B +表示向上点数为1,3,4,5之一,∴42()63P A B +==.故选:C . 【点睛】关键点点睛:本题考查互斥事件和对立事件,考查事件的和,掌握互斥事件和对立事件的定义是解题关键.判断互斥事件,就看在一次试验中两个事件能不能同时发生,只有互斥事件才可能是对立事件,如果一次试验中两个事件不能同时发生,但非此即彼,即必有一个发生,则它们为对立事件.而不互斥的事件的概率不能用概率相加,本题()()()P A B P A P B +≠+.8.A解析:A 【分析】概率710的事件可以认为是概率为310的对立事件. 【详解】事件“2张全是移动卡”的概率是310,由对立事件的概率和为1,可知它的对立事件的概率是710,事件为“2张不全是移动卡”,也即为“2张至多有一张是移动卡”. 故选:A . 【点睛】关键点点睛:本题考查对立事件,解题关键是掌握对立事件的概率性质:即对立事件的概率和为1,考查学生的逻辑推理能力,属于基础题.9.B解析:B 【分析】记“喜欢乒乓球“为事件A ,“喜欢羽毛球”为事件B ,则“喜欢乒乓球或羽毛球”为事件A B +,“既喜欢乒乓球又喜欢羽毛球”为事件A B ⋅,根据题意求出()P A 、()P B 、()P A B +,再根据()()()()P A B P A P B P A B ⋅=+-+可求得结果.【详解】记“喜欢乒乓球“为事件A ,“喜欢羽毛球”为事件B ,则“喜欢乒乓球或羽毛球”为事件A B +,“既喜欢乒乓球又喜欢羽毛球”为事件A B ⋅,依题意可知3216()5025P A ==,2613()5025P B ==,459()5010P A B +==, 因为()()()()P A B P A P B P A B +=+-⋅,所以()()()()P A B P A P B P A B ⋅=+-+16139252510=+-2626%100==. 故选:B 【点睛】关键点点睛:利用和事件与积事件的概率关系求解是解题关键.10.A解析:A 【分析】设10件产品中存在n 件次品,根据题意列出方程求出n 的值. 【详解】设10件产品中存在n 件次品,从中抽取2件,其次品数为X ,由16(1)45P X ==得,11102101645n n C C C -=, 化简得210160n n -+=, 解得2n =或8n =;又该产品的次品率不超过40%,4n ∴;应取2n =, 故选:A 【点睛】本题考查了古典概型的概率计算问题,也考查了离散型随机变量的分布列问题,是基础题.11.B解析:B 【分析】从20个随机数中观察随机数的三个数中恰有2个在0,1,2,3,4,5中的个数,然后可得概率. 【详解】观察20个随机数,其中有116,812,730,217,109,361,284,147,318,027共10个表示3天中恰有2天发布高温橙色预警信号, 因此所求概率为101202P ==. 故选:B . 【点睛】本题考查随机数表,解题关键是正确理解题意,从随机数中求得表示3天中恰有2天发布高温橙色预警信号的个数,从而得出概率.12.B解析:B 【分析】基本事件总数22221144144n C C C C ==,他们选课他们选课没有相同科目的基本事件个数122412m C C ==,由此能求出他们选课没有相同科目的概率.【详解】解:由题意知,基本事件总数22221144144n C C C C ==,他们选课没有相同科目包含的基本事件个数122412m C C ==∴他们选课没有相同科目的概率为:12114412m P n ===. 故选:B. 【点睛】本题考查了古典概型概率求解,考查了组合的思想,考查了分类的思想.本题的关键是结合组合的思想计算事件数量,属于中档题.13.D解析:D 【解析】试题分析:从装有3个红球,2个白球的袋中任取3个球,共有基本事件3510C =种,则全取红球的基本事件只有一种,所以所取3个球中至少有1个白球的概率为1911010-=,故选D.考点:古典概型及其概率的计算.二、解答题14.(1)316;(2)分布列见解析,781256. 【分析】(1)利用排列组合计算方法种数,利用古典概型求概率;(2)先分析X 的所有可能取值,计算概率,写出分布列,套公式计算数学期望即可. 【详解】(1)所有可能的选择方式有54种,“恰有2人选择井冈山”的方式有235C 3⋅种,从而“恰有2人选择井冈山”的概率为2355C 31354512⋅=. “甲选择井冈山且乙不选择庐山”的方式有334⋅种,从而“甲选择井冈山且乙不选择庐山”的概率为35343416⋅=.(2)X 的所有可能值为1,2,3,4.又145C 1(1)4256P X ===, ()2324245252545(2)4256C C A C A P X +===, 2233335343535C C C A C ?A 2!150(3)4256P X ⎛⎫+ ⎪⎝⎭===, 24545C ?A 60(4)4256P X ===. 故X 的分布列为X ∴的数学期望()1234256256256256256E X =⨯+⨯+⨯+⨯=. 【点睛】求离散型随机变量的分布列,应按以下三个步骤进行:(1)明确离散型随机变量的所有可能取值以及取每个值所表示的意义; (2)利用概率的有关知识求出随机变量每个取值的概率;(3)按规范形式写出分布列并用分布列的性质进行检验. 15.(1)4.74;(2)能;(3)35. 【分析】(1)根据题中所给的频率分布直方图中对应的数据,可以求得第三组、第六组、第五组的频数以及前四组的频数和,结合前四组的频数成等比数列,得出相应的数据,利用中位数的特征,两边各占一半,求得结果;(2)利用题中所给的列联表,求得2K 的值,与表中所给的临界值比较,得到结论; (3)根据题意,求出满足条件的基本事件数和总的基本事件数,利用古典概型概率公式求解即可. 【详解】(1)由图可知,第三组和第六组的频数为1000.80.216⨯⨯=人 第五组的频数为100 1.20.224⨯⨯=人 所以前四组的频数和为()100241660-+=人 而前四组的频数依次成等比数列故第一组的频数为4人,第二组的频数为8人,第四组的频数为32人 所以中位数落在第四组,设为x , 因此有4.650(4816)0.232x --++=(或1.6( 4.6)0.22x -=) 解得 4.7375x = 所以中位数是4.74(2)因为22100(40203010)50507030K ⨯⨯-⨯=⨯⨯⨯所以21004.76221K =≈ 所以2 3.841K >因此在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系(3)依题意按照分层抽样在不近视的学生中抽取了6人中年级名次在1~100名和101~1000名的分别有2人和4人从6人中任意抽取2人的基本事件共15个 至少有1人来自于1~100名的基本事件有9个 所以至少有1人的年级名次在1~100名的概率为93155P ==. 【点睛】方法点睛:该题考查的是有关概率与统计的问题,解题方法如下:(1)根据频率分布直方图中所给的数据求相应的量,利用中位数的定义求得结果; (2)利用公式求得2K 的值,结合临界值得到结果; (3)利用古典概型概率公式求得概率.16.(1)60t =,ˆ8.56yx =+;(2)310P = 【分析】(1)根据40y =,求t ,再根据参考公式求ˆˆ,ba ,求回归直线方程;(2)首先计算“正常数据”的个数,再求两个都是“正常数据”的概率. 【详解】 (1)由条件可知25304045405t++++=,解得:60t =,2045x ==, ()()()()()()()()51242540343040 (646040i)ii x x y y =--=--+--++--∑85=()()()()()()52222221243444546410i i x x =-=-+-+-+-+-=∑,()()()12185ˆ8.510niii ni i x x y y bx x==--∴===-∑∑,ˆˆ408.546a y bx=-=-⨯=, 所以回归直线方程是ˆ8.56yx =+; (2)12x =时,1ˆ23y=,232522-=≤,是正常数据,23x =时,2ˆ31.5y =,31.530 1.52-=≤是正常数据,34x =时,3ˆ40y=,404002-=≤,是正常数据, 45x =时,4ˆ48.5y= 48.545 3.52-=>,不是正常数据,56x =时,5ˆ57y =,576032-=>,不是在正常数据,则5个数据中正常数据是3个,不正常数据是2个, 现从题中5个分拣数据中任取2个,求2个都是“正常数据”的概率2325310C P C ==. 【点睛】关键点点睛:本题的关键是正确理解题意,并能根据参考公式计算求值. 17.(1)8;(2)答案见解析;(3)710. 【分析】(1)根据分层抽样的原理计算可得答案;(2)由已知数据得出被调查的15名学生分别采用两种阅读方式的平均每周阅读时间茎叶图,由表中的数据可得统计结论;(3)由表中数据可知平均每周纸质阅读时间超过数字阅读时间的学生的编号分别是1,2,3,5,6,其中数字阅读时间不超过40小时的学生的编号是1,3.运用列举法所有的基本事件,再由古典概率公式可得答案.【详解】 (1)450210158450-⨯=(名). 所以被调查的15名学生中共有8名男生.(2)被调查的15名学生分别采用两种阅读方式的平均每周阅读时间茎叶图如下:通过观察比较分析可知,平均每周的数字阅读时间比纸质阅读时间长,纸质阅读时间数据更集中;(3)由表中数据可知平均每周纸质阅读时间超过数字阅读时间的学生的编号分别是1,2,3,5,6,其中数字阅读时间不超过40小时的学生的编号是1,3.从这5名学生中,随机抽取两名学生,所有可能的抽取结果为(1,2),(1,3),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(5,6),共10个基本事件,设“从这5名学生中随机抽取两名学生,这两名学生中至少有一名学生数字阅读时间不超过40小时”为事件A ,共有7个基本事件,分别为(1,2),(1,3),(1,5),(1,6),(2,3),(3,5),(3,6),则7()10P A =. 【点睛】方法点睛:在解决概率统计的应用问题时,注意理解问题的情景,将生活中的数据转化成数学统计中的数据,再运用相应的统计知识解决. 18.(1)甲、乙、丙分别抽取3人、2人、1人;(2)415【分析】(1)根据分层抽样的比例原则,由36:24:123:2:1=即可求抽取6人从甲、乙、丙三个兴趣小组的学生中各抽取的人数;(2)从6人中随机抽取2人且来自同一兴趣小组的事件{来自甲小组,来自乙小组},根据无放回试验的概率,分别求出2人来自甲小组、来自乙小组的概率,它们的和即为所求 【详解】(1)由甲、乙、丙三个兴趣小组的学生人数分别为36,24,12,根据分层抽样原则 甲、乙、丙分别占总学生人数的比为12、13、16∴采用分层抽样的方法从中抽取6人中:甲中抽取1632⨯=人,乙中抽取1623⨯=人,丙中抽取1616⨯=人 (2)由(1)知:抽取的2人来自同一兴趣小组:{来自甲小组,来自乙小组} ∴2人为甲小组的概率:1121255P =⨯=;2人为乙小组的概率:21113515P =⨯= 故抽取的2人来自同一兴趣小组的概率:1211451515P P P =+=+= 【点睛】本题考查了概率,根据分层抽样的原则,按不同层次总体数量比例抽取固定数量个体,求各层次个体抽取的数量,利用无放回试验,结合概率加法公式求概率 19.(1)填表见解析;(2)没有;(3)57. 【分析】(1)根据题目所给的数据填写22⨯列联表即可;(2)利用公式计算K 的观测值2K ,对照题目表格中的数据,得出统计结论. (3)利用分层抽样可得抽取的8人中有5人爱好运动,3人不爱好运动,结合组合的应用,由古典概型概率公式计算概率即可; 【详解】 (1)列联表:由列联表的数据得k 的观测值(2)()()()()()()2223010866 1.158 3.84116141416n ad bc K a b a c a c b d -⨯⨯-⨯==≈<++++⨯⨯⨯∴没有95%的把握认为爱好运动与性别有关. (3)抽取的8人中有5人爱好运动,3人不爱好运动 设“从8人中抽取3人,至少有2人爱好运动”为事件A ,则()2135353857C C C P A C +==. 【点睛】本题主要考查列联表、古典概型概率公式以及独立性检验,属于中档题.独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,。
成都七中育才学校三圣分校必修第二册第五单元《概率》检测题(答案解析)

一、选择题1.抛掷一个质地均匀的骰子的试验,事件A 表示“小于5的偶数点出现”,事件B 表示“不小于5的点数出现”,则一次试验中,事件A 或事件B 至少有一个发生的概率为( ) A .23B .13C .1 2D .562.斐波那契数列(Fibonacci sequence )又称黄金分割数列,因为数学家昂纳多斐波那契以兔子繁殖为例子引入,故又称为“兔子数列”,在数学上斐波那契数列被以下递推方法定义:数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,现从该数列的前10项中随机的抽取一项,则该数除以3余数为1的概率为( ) A .18B .14C .38D .123.下列命题:①对立事件一定是互斥事件;②若A ,B 为两个随机事件,则P(A ∪B)=P(A)+P(B);③若事件A ,B ,C 彼此互斥,则P(A)+P(B)+P(C)=1;④若事件A ,B 满足P(A)+P(B)=1,则A 与B 是对立事件. 其中正确命题的个数是( ) A .1B .2C .3D .44.某城市2017年的空气质量状况如下表所示:其中污染指数50T ≤时,空气质量为优;50100T <≤时,空气质量为良;100150T <≤时,空气质量为轻微污染,该城市2017年空气质量达到良或优的概率为( )A .35B .1180C .119D .565.某次战役中,狙击手A 受命射击敌机,若要击落敌机,需命中机首2次或命中机中3次或命中机尾1次,已知A 每次射击,命中机首、机中、机尾的概率分别为0.2、0.4、0.1,未命中敌机的概率为0.3,且各次射击相互独立.若A 至多射击两次,则他能击落敌机的概率为( ) A .0.23B .0.2C .0.16D .0.16.一道竞赛题,A ,B ,C 三人可解出的概率依次为12,13,14,若三人独立解答,则仅有1人解出的概率为( )A .124 B .1124C .1724D .17.教室有4扇编号分别为a b c d ,,,的窗户和2扇编号分别为,x y 的门,窗户d 敞开,其余窗户和门均被关闭.为保持教室空气流通,班长在这些关闭的门和窗户中随机地敞开2扇,则至少有1扇门被敞开的概率为( ) A .23B .49C .710D .7128.学校将5个不同颜色的奖牌分给5个班,每班分得1个,则事件“1班分得黄色的奖牌”与“2班分得黄色的奖牌”是( ) A .对立事件B .不可能事件C .互斥但不对立事件D .不是互斥事件9.从1,2,3,4,5这5个数中任取两数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是( ) A .①B .②④C .③D .①③10.若从集合{}2,1,2A =-中随机取一个数a ,从集合{}1,1,3B =-中随机取一个数b ,则直线0ax y b -+=一定..经过第四象限的概率为( ) A .29B .13C .49D .5911.学校足球赛决赛计划在周三、周四、周五三天中的某一天进行,如果这一天下雨则推迟至后一天,如果这三天都下雨则推迟至下一周,已知这三天下雨的概率均为12,则这周能进行决赛的概率为 A .18B .38C .58D .7812.甲、乙两人独立地对同一目标各射击一次,其命中率分别为0.6,0.5,现已知目标被击中,则它是被甲击中的概率是( ) A .0.45B .0.6C .0.65D .0.7513.今年“五一”小长假期间,某博物馆准备举办-次主题展览,为了引导游客有序参观,该博物馆每天分别在10时,13时,16时公布实时观展的人数.下表记录了5月1日至5日的实时观展人数:通常用实时观展的人数与博物馆的最大承载量(同一时段观展人数的饱和量)之比来表示观展的舒适度,50%以下称为“舒适”,已知该博物馆的最大承载量是1万人.若从5月1日至5日中任选2天,则这2天中,恰有1天这3个时刻的观展舒适度都是“舒适”的概率为( ) A .12B .25C .35D .34二、解答题14.2020年是全面建成小康社会目标实现之年,是全面打赢脱贫攻坚战收官之年.为帮助某村巩固扶贫成果,该村的结对帮扶共建企业在该村建立了一座精米加工厂,并对粮食原料进行深加工,研发出一种新产品,已知该产品的质量以某项指标值()60100k k ≤<为衡量标准,质量指标的等级划分如表: 质量指标值k 90100k ≤< 8090k ≤<7080k ≤<6070k ≤<产品等级ABCD件产品的指标值,得到如下的产品质量指标值的频率分布直方图;设M =频率组距,当[)()10,101068,k n n n n N ∈+≤≤∈时,满足52200n M -=.(1)试估计样本质量指标值k 的中位数m ;(2)从样本质量指标值不小于80的产品中采用分层抽样的方法抽取7件产品,然后从这7件产品中任取2件产品,求至少有1件A 级品的概率.15.一个不透明的袋子中装有5个小球,其中有3个红球,2个白球,这些球除颜色外完全相同.(1)记事件A 为“一次摸出2个球,摸出的球为一个红球,一个白球”.求()P A ;(2)记事件B 为“第一次摸出一个球,记下颜色后将它放回袋中,再次摸出一个球,两次摸出的球为不同颜色的球”,记事件C 为“第一次摸出一个球,不放回袋中,再次摸出一个球,两次摸出的球为不同颜色的球”,求证:1()()()5P C P B P A -=. 16.有四个编有1、2、3、4的四个不同的盒子,有编有1、2、3、4的四个不同的小球,现把四个小球逐个随机放入四个盒子里.(1)小球全部放入盒子中有多少种不同的放法? (2)在(1)的条件下求恰有一个盒子没放球的概率?(3)若没有一个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法? 17.甲、乙两队举行围棋擂台赛,规则如下:两队各出3人,排定1,2,3号.第一局,双方1号队员出场比赛,负的一方淘汰,该队下一号队员上场比赛.当某队3名队员都被淘汰完,比赛结束,未淘汰完的一方获胜.如图表格中,第m 行、第n 列的数据是甲队第m 号队员能战胜乙队第n 号队员的概率. 0.5 0.3 0.2 0.6 0.5 0.3 0.8 0.7 0.63名队员都淘汰的概率;(2)比较第三局比赛,甲队队员和乙队队员哪个获胜的概率更大一些?18.树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,现从参与调查的人群中随机选出20人的样本,并将这20人按年龄分组:第1组[)15,25,第2组[)25,35,第3组[)35,45,第4组[)45,55,第5组[]55,65,得到的频率分布直方图如图所示(1)求a 的值.(2)根据频率分布直方图,估计参与调查人群的样本数据的中位数(保留两位小数). (3)若从年龄在[)15,35的人中随机抽取两位,求两人恰有一人的年龄在[)25,35内的概率.19.某校高二年级学生全部参加了居家线上趣味运动会的个人跳绳项目,现从中随机抽取40名学生的跳绳测试成绩,整理数据并按分数段[)40,50,[)50,60,[)60,70,[)70,80,[)80,90,[]90,100进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到跳绳成绩的折线图(如图).(1)跳绳成绩大于或等于90分的学生常被称为“跳绳小达人”.已知该校高二年级有1000名学生,试估计高二全年级中“跳绳小达人”的学生人数:(2)为了了解学生居家体育锻炼情况,现从跳绳成绩在[)60,70和[)80,90的样本学生中随机抽取2人,记X 表示在抽取的2名学生中体育成绩在[)60,70的学生人数,求X 的分布列:(3)假设甲、乙、丙三名学生的跳绳成绩分别为a ,b ,c ,且分别在[)70,80,[)80,90[]90,100三组中,其中a ,b ,c ∈N .当数据a ,b ,c 的方差2s 最小时,写出a ,b ,c 的值.(结论不要求证明)(注:()()()2222121ns x x x x xx n ⎡⎤=-+-+-⎢⎥⎣⎦,其中x 为数据1x ,2x ,…,n x 的平均数)20.为了解一大片经济林的生长情况,随机抽样测量其中20株树木的底部周长(单位cm ),得到如下频数分布表和频率分布直方图: 分组 [)85,95[)95,105[)105,115[)115,125[]125,135频数27ab2(1)请求出频数分布表中a ,b 的值;(2)估计这片经济林树木底部周长的平均值(同一组中的数据用该组区间的中点值作代表);(3)从样本中底部周长在115cm 以上的树木中任选2株进行嫁接试验,求至少有一株树木的底部周长在125cm 以上的概率.21.某综艺节目邀请嘉宾进行答题闯关挑战,每位嘉宾挑战时,节目组用电脑出题的方式,从题库中随机出4道题,编号为1A ,2A ,3A ,4A ,电脑依次出题,嘉宾按规则作答,挑战规则如下:①嘉宾每答对一道题目得5分,每答错一道题目扣3分;②嘉宾若答对第i A 题,则继续作答第1i A +题;嘉宾若答错第i A 题,则失去第1i A +题的答题机会,从第2i A +题开始继续答题;直到4道题目出完,挑战结束;③每位嘉宾初始分为0分,若挑战结束后,累计得分不低于7分,则嘉宾闯关成功,否则闯关失败.嘉宾小源即将参与挑战,已知小源答对题库中每道题的概率均为23,各次作答结果相互独立,且他不会主动放弃任何一次作答机会,求: (Ⅰ)挑战结束时,小源共答对3道题的概率1P ; (Ⅱ)挑战结束时,小源恰好作答了3道题的概率2P ; (Ⅲ)小源闯关成功的概率3P .22.某企业员工x 人参加“抗疫”宣传活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示.(1)上表是年龄的频数分布表,结合此表与频率分布直方图,求正整数x,a,b的值;(2)假设同组中的每个数据用该组区间的右端点值代替,根据频率分布直方图估计该企业员工的平均年龄;(3)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,并且在第3组抽的人(其中一人叫甲)中再选出两人做演讲活动,求甲被选中的概率.23.为了保证食品安全,保障公众身体健康和生命安全,2018年国家对《食品安全法》进行了修正.2020,年春节前夕,某市质检部门随机抽取了20包某种品牌的速冻水饺,对某项质量指标进行检测.经统计,质量指标均在区间[0,50]内,将其按[0,10)、[10,20)、[20,30)、[30,40)、[40,50]分成5组,制成如图所示的频率分布直方图.(1)求该频率分布直方图中x的值;(2)若同组中的每个数据用该组区间中点值代替,估计该品牌速冻水饺的该项质量指标的平均值:(3)从质量指标大于等于30的速冻水饺中任选2包,进行深度检测,求这2包处于不同区间的概率.24.一款小游戏的规则如下:每轮游戏要进行三次,每次游戏都需要从装有大小相同的2个红球,3个白球的袋中随机摸出2个球,一轮游戏中,若“摸出的两个都是红球”出现3次获得200积分,若“摸出的两个都是红球”出现1次或2次获得20积分,若“摸出的两个都是红球”出现0次则扣除10积分(即获得-10积分). (1)求每次游戏中,“摸出的两个都是红球”的概率p ; (2)设每轮游戏获得的积分为X ,求X 的分布列与数学期望;(3)玩过这款游戏的许多人发现,若干轮游戏后,与最初的积分0相比,积分没有增加反而减少了,请运用概率统计的相关知识分析解释上述现象.25.某重点中学为了了解学生在期末市统考中的数学考试情况,抽取了100名学生的数学成绩.以[)80,90,[)90,100,[)100,110,[)110,120,[)120130,,[)130140,,[]140,150分组的频率分布直方图如下图所示:(1)求直方图中x 的值; (2)求数学成绩的中位数;(3)在数学成绩为[)120130,,[)130140,,[]140,150的三组学生中,用分层抽样的方法抽取6名学生,在这6名学生中选出2名学生参加数学竞赛,求至少有一名学生在[)130140,分组的概率. 26.某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A ,B ,C ,D 四个等级.加工业务约定:对于A 级品、B 级品、C 级品,厂家每件分别收取加工费90元,50元,20元;对于D 级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表 等级 A B C D 频数40202020等级 A B C D 频数28173421(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由古典概型概率公式分别计算出事件A 和事件B 发生的概率,又通过列举可得事件A 和事件B 为互斥事件,进而得出事件A 或事件B 至少有一个发生的概率即为事件A 和事件B 的概率之和. 【详解】事件A 表示“小于5的偶数点出现”,事件B 表示“不小于5的点数出现”, ∴P (A )2163==,P (B )2163==, 又小于5的偶数点有2和4,不小于5的点数有5和6, 所以事件A 和事件B 为互斥事件,则一次试验中,事件A 或事件B 至少有一个发生的概率为 P (A ∪B )=P (A )+P (B )112333=+=, 故选:A . 【点睛】本题主要考查古典概型计算公式,以及互斥事件概率加法公式的应用,属于中档题.2.D解析:D 【分析】写出斐波那契数列的前10项,列举出被3除所得的余数,由概率公式可得答案. 【详解】数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,数列的前10项为:1,1,2,3,5,8,13,21,34,55 该数列被3除所得的余数为1,1,2,0,2,2,1,0,1,1 所以10项中共有5项满足除以3余数为1, 故概率为51102P . 故选:D 【点睛】本题考查概率的求法,考查列举法的应用,属于基础题.3.A解析:A【分析】根据互斥之间和对立事件的概念,及互斥事件和对立事件的关系和概率的计算,即可作出判断,得到答案.【详解】由题意①中,根据对立事件与互斥事件的关系,可得是正确;②中,当A与B是互斥事件时,才有P(A∪B)=P(A)+P(B),对于任意两个事件A,B满足P(A∪B)=P(A)+P(B)-P(AB),所以是不正确的;③也不正确.P(A)+P(B)+P(C)不一定等于1,还可能小于1;④也不正确.例如:袋中有大小相同的红、黄、黑、绿4个球,从袋中任摸一个球,设事件A={摸到红球或黄球},事件B={摸到黄球或黑球},显然事件A与B不互斥,但P(A)+P(B)=+=1.【点睛】本题主要考查了互斥事件和对立事件的基本概念、互斥事件与对立时间的关系及其应用,其中熟记互斥事件和对立事件的概念和关系是解答的关键,着重考查了推理与论证能力,属于基础题.4.A解析:A【分析】根据互斥事件的和的概率公式求解即可.【详解】由表知空气质量为优的概率是1 10,由互斥事件的和的概率公式知,空气质量为良的概率为111 632 +=,所以该城市2017年空气质量达到良或优的概率1131025P=+=,故选:A【点睛】本题主要考查了互斥事件,互斥事件和的概率公式,属于中档题.5.A解析:A【解析】A每次射击,命中机首、机中、机尾的概率分别为0.20.40.1、、,未命中敌机的概率为0.3,且各次射击相互独立,若A射击一次就击落敌机,则他击中利敌机的机尾,故概率为0.1;若A射击2次就击落敌机,则他2次都击中利敌机的机首,概率为0.20.20.04⨯=;或者A第一次没有击中机尾、且第二次击中了机尾,概率为0.90.1?0.09⨯=,若A至多射击两次,则他能击落敌机的概率为0.1?0.04?0.09?0.23++= ,6.B解析:B 【分析】根据题意,只有1人解出,则分三类,一是A 解出而其余两人没有解出,一是B 解出而其余两人没有解出,一是C 解出而其余两人没有解出,每一类用独立事件概率的乘法公式求解,然后这三类用互斥事件概率的加法求解. 【详解】()()()1231131211123423423424P P ABC P ABC P ABC =++=⨯⨯+⨯⨯+⨯⨯=.故选:B 【点睛】本题主要考查了独立事件的概率和互斥事件的概率,还考查了理解辨析问题的能力,属于基础题.7.C解析:C 【解析】 【分析】列出样本空间Ω,以及事件A =“至少有1扇门被敞开”包含的基本事件,计算概率. 【详解】 样本空间()()()()()()()()()(){},,,,,,,,,,,,,,,,,,,a b a c a x a y b c b x b y c x c y x y Ω=.记事件A =“至少有1扇门被敞开”,则()()()()()()(){},,,,,,,,,,,,,A a x a y b x b y c x c y x y =,所以()710P A =,故选C . 【点睛】本题考查了古典概型,考查了学生实际应用以及数学运算的能力,属于基础题.8.C解析:C 【分析】对与黄色奖牌而言,可能是1班分得,可能是2班分得,也可能1班与2班均没有分得,然后根据对立事件和互斥事件的概念进行判断. 【详解】由题意,1班和2班不可能同时分得黄色的奖牌,因而这两个事件是互斥事件;又1班和2班可能都得不到黄色的奖牌,故这两个事件不是对立事件,所以事件“1班分得黄色的奖牌”与“2班分得黄色的奖牌”是互斥但不对立事件.故选C 【点睛】本题考查了互斥事件和对立事件,关键是对概念的理解,属于基础题.9.C【解析】 【分析】依照对立事件的概念,依次判断即可. 【详解】∵在①恰有一个是偶数和恰有一个是奇数中,这两个事件是同一个事件, 在②至少有一个是奇数和两个都是奇数中,至少有一个是奇数包括两个都是奇数, 在③至少有一个是奇数和两个都是偶数中,至少有一个是奇数包括有一个奇数和有两个奇数,同两个都是偶数是对立事件,在④至少有一个是奇数和至少有一个是偶数中,都包含一奇数和一个偶数的结果, ∴只有第三所包含的事件是对立事件 故选C . 【点睛】本题主要考查对立事件的概念,意在考查学生的数学抽象能力.10.D解析:D 【分析】由题意,利用列举法求得基本事件(),a b 的总数,再列举出所求事件所包含的基本事件的个数,利用古典概型及其概率的计算公式,即可求解. 【详解】由题意,从集合{}2,1,2A =-中随机取一个数a ,从集合{}1,1,3B =-中随机取一个数b ,得到(),a b 的取值的所有可能了结果共有:()()()()()()()()()2,1,2,1,2,3,1,1,1,1,1,3,2,1,2,1,2,3------,共计9种结果,由直线0ax y b -+=,即y ax b =+,其中当00a b ≥⎧⎨≥⎩时,直线不过第四象限, 共有()()()()1,1,1,3,2,1,2,3,共计4种,所以当直线0ax y b -+=一定..经过第四象限时,共有5中情况, 所以概率为59P =,故选D. 【点睛】本题主要考查了古典概型及其概率的计算,以及直线方程的应用,其中解答中根据题意列举出基本事件的总数,进而利用古典概型及其概率的计算公式求解是解答的关键,着重考查了推理与计算能力,属于基础题.11.D解析:D 【分析】本周能进行决赛意味着能在周三或周四或周五进行,分别求概率,求和即可得解. 【详解】设在这周能进行决赛为事件A ,恰好在周三、周四、周五进行决赛分别为事件3A ,4A ,5A ,则345A A A A =⋃⋃,又事件3A ,4A ,5A 两两互斥, 则有()()()()34511111171112222228P A P A P A P A ⎛⎫⎛⎫⎛⎫=++=+-⨯+-⨯-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故选:D . 【点睛】本题主要考查了互斥关系的概率问题,属于基础题.12.D解析:D 【解析】根据题意,记甲击中目标为事件A ,乙击中目标为事件B ,目标被击中为事件C ,则()1()()1(10.6)(10.5)0.8P C P A P B =-=---=.∴目标是被甲击中的概率是0.60.750.8P == 故选D.13.C解析:C 【分析】5月1日至5日中,该博物馆每天在10时,13时,16时这3个时刻的观展舒适度都是“舒适”的有2天,从5月1日至5日中任选2天,基本事件总数2510n C ==,这2天中,恰有1天这3个时刻的观展舒适度都是"舒适"包含的基本事件个数11236m C C ==,由此能求出这2天中,恰有1天这3个时刻的观展舒适度都是“舒适”的概率. 【详解】5月1日至5日中,该博物馆每天在10时,13时,16时这3个时刻的观展舒适度都是“舒适”的有2天,分别为5月4日和5月5日, 从5月1日至5日中任选2天,基本事件总数2510n C ==,这2天中,恰有1天这3个时刻的观展舒适度都是“舒适”包含的基本事件个数11236m C C ==,所以这2天中,恰有1天这3个时刻的观展舒适度都是“舒适”的概率63105m P n ===. 故选:C 【点睛】本题主要考查了概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,二、解答题14.(1)85m =;(2)57. 【分析】(1)计算出各产品等级的频率,利用中位数左边的矩形面积之和为0.5可求得m 的值; (2)计算得出7件产品中A 级品共3件,分别记为1A 、2A 、3A ,B 级品共4件,分别记为1B 、2B 、3B 、4B ,列举出所有的基本事件,并确定事件“所抽的2件产品中至少有1件A 级品”所包含的基本事件数,利用古典概型的概率公式可求得所求事件的概率. 【详解】(1)当6n =时,[)60,70k ∈,1100M =,频率为11100.1100p =⨯=; 当7n =时,[)70,80k ∈,150M =,频率为21100.250p =⨯=; 当8n =时,[)80,90k ∈,125M =,频率为31100.425p =⨯=. 各产品等级的频率如下表所示:0.10.20.50.10.20.4+<<++,80,90m ∴∈,所以,800.10.20.40.510m -++⨯=,解得85m =; (2)所抽取的7件产品中,A 级品的数量为0.3730.30.4⨯=+,分别记为1A 、2A 、3A ,B 级品的数量为4,分别记为1B 、2B 、3B 、4B ,从这7件产品中任取2件产品,所有的基本事件有:12A A 、13A A 、11A B 、12A B 、13A B 、14A B 、23A A 、21A B 、22A B 、23A B 、24A B 、31A B 、32A B 、33A B 、34A B 、12B B 、13B B 、14B B 、23B B 、24B B 、34B B ,共21个基本事件,其中,事件“所抽的2件产品中至少有1件A 级品”包含15个基本事件, 因此,所求事件的概率为155217P ==. 【点睛】方法点睛:求解古典概型概率的方法如下: (1)列举法;(3)数状图法; (4)排列组合数的应用. 15.(1)35;(2)证明见解析. 【分析】(1)列举出从袋中一次摸出2个球的所有基本事件,找出其中满足事件A 的基本事件有6个,即可求解()P A ;(2)同样列举出从袋中第一次摸出一个球,记下颜色后将它放回袋中,再次摸出一个球的所有基本事件,找出其中满足事件B 的基本事件;同理列举出从袋中第一次摸出一个球,不放回袋中,再次摸出一个球的所有基本事件,找出其中满足事件C 的基本事件,即可计算出1()()()5P C P B P A -=. 【详解】解:(1)记这3个红球为123,,a a a ,2个白球记为12,b b ,则从袋中一次摸出2个球的所有基本事件为:()12,a a ,()13,a a ,()11,a b ,()12,a b ,()23,a a ,()21,a b ,()22,a b ,()31,a b ,()32,a b ,()12,b b 共10个,其中满足事件A 的基本事件有6个,所以()63105P A ==. (2)从袋中第一次摸出一个球,记下颜色后将它放回袋中,再次摸出一个球的所有基本事件为()11,a a ,()12,a a ,()13,a a ,()11,a b ,()12,a b ,()21,a a ,()22,a a ,()23,a a ,()21,a b ,()22,a b ,()31,a a ,()32,a a ,()33,a a ,()31,a b ,()32,a b ,()11,b a ,()12,b a ,()13,b a ,()11,b b ,()12,b b ,()21,b a ,()22,b a ,()23,b a ,()21,b b ,()22,b b 共25个,满足事件B 的基本事件有12个,所以()1225P B =. 从袋中第一次摸出一个球,不放回袋中,再次摸出一个球的所有基本事件为()12,a a ,()13,a a ,()11,a b ,()12,a b ,()21,a a ,()23,a a ,()21,a b ,()22,a b ,()31,a a ,()32,a a ,()31,a b ,()32,a b ,()11,b a ,()12,b a ,()13,b a ,()12,b b ,()21,b a ,()22,b a ,()23,b a ,()21,b b 共20个,满足事件C 的基本事件有12个,所以()123205P C ==. 因此:()()312352525P C P B -=-=, 又()35P A =,所以()()()15P C P B P A -=. 【点晴】方法点晴:等可能事件概率一般用列举法列举出所有基本事件,找出满足所求事件的基本事件个数,直接用公式求得概率.16.(1)256种;(2)916;(3)23种.【分析】(1)用分步乘法计数原理计算,考虑每个球的放法可得;(2)选取2球放在一起作为一个球,共3个球放到3个盒子中,用排列求得放法后由古典概型概率公式可计算出概率;(3)4个球的全排列数减去编号全相同的排法1即可得.【详解】(1)每个球都有4种方法,故有4444256⨯⨯⨯=种(2)从4个小球中选两个作为一个元素,同另外两个元素在三个位置全排列,故共有23 44144C A=种不同的放法.概率为:144925616=(3)每个盒子不空,共有4424A=,24123-=种.【点睛】关键点点睛:本题考查计数原理,古典概型,排列的应用.难点是事件“4个盒子中恰有一个盒子没放球”,解题关键是确定完成这件事的方法,4个球放到3个盒子中,其中有一个盒子中必有2个球,由此可选取2个球放在一起作为一个球,4个球看作3个球放入4个盒子中的3个中,用排列知识可求解.17.(1)0.045;(2)甲队队员获胜的概率更大一些.【分析】(1)甲队2号队员把乙队3名队员都淘汰这个事件的发生应是甲队1号输给乙队1号,然后甲队2号上场,三场全胜,由独立事件概率公式计算可得;(2)第三局比赛甲胜可分为3个互斥事件:甲队1号胜乙队3号,甲队2号胜乙队2号,甲队3号胜乙队1号,分别计算概率后相加可得.然后由对立事件概率得出乙队胜的概率,比较后要得结论.【详解】解:(1)甲队2号队员把乙队3名队员都淘汰的概率为0.50.60.50.30.045⨯⨯⨯=(2)第3局比赛甲队队员获胜可分为3个互斥事件(i)甲队1号胜乙队3号,概率为0.50.30.20.03⨯⨯=;(ii)甲队2号胜乙队2号,概率为0.50.70.50.50.60.50.325⨯⨯+⨯⨯=;(iii)甲队3号胜乙队1号,概率为0.50.40.80.16⨯⨯=故第3局甲队队员胜的概率为0.030.3250.160.515++=.则第3局乙队队员胜的概率为10.5150.485-=因为0.5150.485>,故甲队队员获胜的概率更大一些.【点睛】关键点点睛:本题考查相互独立事件的概率公式和互斥事件的概率公式.解题关键是把事件“第3局比赛甲队队员获胜”分斥成3个互斥事件,然后分别求得概率后易得出结论. 18.(1)0.035;(2)42.14;(3)35. 【分析】(1)由频率分布直方图的小矩形的面积和为1求解.(2)由频率分布直方图得[)15,35的频率,[)35,45的频率,然后再利用中位数的定义求解。
成都七中嘉祥外国语学校必修第二册第五单元《概率》检测题(有答案解析)

一、选择题1.下列命题正确的是( )A .用事件A 发生的频率()n f A 估计概率()P A ,重复试验次数n 越大,估计的就越精确.B .若事件A 与事件B 相互独立,则事件A 与事件B 相互独立.C .事件A 与事件B 同时发生的概率一定比A 与B 中恰有一个发生的概率小.D .抛掷一枚均匀的硬币,如前两次都是反面,那么第三次出现正面的可能性就比反面大. 2.早在17世纪人们就知道用事件发生的“频率”来估计事件的“概率”.18世纪末有人用投针试验的方法来估计圆周率π,20世纪40年代电子计算机的出现使得用数学方法在计算机上大量、快速地模拟这样的试验成为可能,这种模拟方法称为蒙特卡罗方法或随机模拟方法.如图所示的程序框图就是利用随机模拟方法估计圆周率π,(其中()rand 是产生[0,1]内的均匀随机数的函数,*k N ∈),则π的值约为( )A .m kB .2m kC .4m k-D .4m k3.一道竞赛题,A ,B ,C 三人可解出的概率依次为12,13,14,若三人独立解答,则仅有1人解出的概率为( )A .124 B .1124C .1724D .14.甲、乙两人对同一个靶各射击一次,设事件A =“甲击中靶”,事件B =“乙击中靶”,事件E =“靶未被击中”,事件F=“靶被击中”,事件G =“恰一人击中靶”,对下列关系式(A 表示A 的对立事件,B 表示B 的对立事件):①E AB =,②F AB =,③F A B =+,④G A B =+,⑤G AB AB =+,⑥()()1P F P E =-,⑦()()()P F P A P B =+.其中正确的关系式的个数是( ) A .3B .4C .5D .65.某城市有连接8个小区A 、B 、C 、D 、E 、F 、G 、H 和市中心O 的整齐方格形道路网,每个小方格均为正方形,如图所示,某人从道路网中随机地选择一条最短路径,由小区A 前往小区H ,则他经过市中心O 的概率是( )A .13B .23C .14D .346.甲、乙二人进行围棋比赛,采取“三局两胜制”,已知甲每局取胜的概率为23,则甲获胜的概率为 ( ).A .22213221333C ⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .22232233C ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭C .22112221333C ⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .21112221333C ⎛⎫⎛⎫⎛⎫+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭7.已知甲,乙,丙三人去参加某公司面试,他们被该公司录取的概率分别是16,14,13,且三人录取结果相互之间没有影响,则他们三人中至少有一人被录取的概率为( ) A .3172B .712C .2572D .15728.学校足球赛决赛计划在周三、周四、周五三天中的某一天进行,如果这一天下雨则推迟至后一天,如果这三天都下雨则推迟至下一周,已知这三天下雨的概率均为12,则这周能进行决赛的概率为 A .18B .38C .58D .789.箱子里有3双颜色不同的手套(红蓝黄各1双),有放回地拿出2只,记事件A 表示“拿出的手套一只是左手的,一只是右手的,但配不成对”,则事件A 的概率为( ) A .16B .13C .15D .2510.在3张卡片上分别写上3位同学的学号后,再把卡片随机分给这3位同学,每人1张,则恰有1位学生分到写有自己学号卡片的概率为( ) A .16B .13C .12D .2311.某班有50名学生,其中有45名学生喜欢乒乓球或羽毛球,32名学生喜欢乒乓球,26名学生喜欢羽毛球,则该班既喜欢乒乓球又喜欢羽毛球的学生数占该班学生总数的比例是( ) A .38%B .26%C .19%D .15%12.在20张百元纸币中混有4张假币,从中任意抽取2张,将其中一张在验钞机上检验发现是假币,则这两张都是假币的概率是( ) A .335B .338C .217D .以上都不正确13.数学与文学有许多奇妙的联系,如诗中有回文诗:“垂帘画阁画帘垂,谁系怀思怀系谁?”既可以顺读也可以逆读,数学中有回文数,如343、12521等,两位数的回文数有11、22、33、…、99共9个,则三位数的回文数中为偶数的概率是( ) A .19B .29C .39D .49二、解答题14.2020年是全面建成小康社会目标实现之年,是全面打赢脱贫攻坚战收官之年.为帮助某村巩固扶贫成果,该村的结对帮扶共建企业在该村建立了一座精米加工厂,并对粮食原料进行深加工,研发出一种新产品,已知该产品的质量以某项指标值()60100k k ≤<为衡量标准,质量指标的等级划分如表:件产品的指标值,得到如下的产品质量指标值的频率分布直方图;设M =频率组距,当[)()10,101068,k n n n n N ∈+≤≤∈时,满足52200n M -=.(1)试估计样本质量指标值k的中位数m;(2)从样本质量指标值不小于80的产品中采用分层抽样的方法抽取7件产品,然后从这7件产品中任取2件产品,求至少有1件A级品的概率.15.某校的课外兴趣小组的同学们进行了一次关于全市“双创双修”知识答题的问卷调查活动,收集到的200张问卷统计得分汇总制成了一张频率直方图.(1)求问卷得分的中位数和平均数;(2)若得分不低于80则为优秀,按分层抽样再次回访8名参加过问卷调查并得分优秀的人,在这8人中还需随机挑选2人做深入访谈,求这两名访谈对象中至少有一人问卷得分超过90的概率.16.新冠肺炎疫情期间,为确保“停课不停学”,各校精心组织了线上教学活动.开学后,某校采用分层抽样的方法从高中三个年级的学生中抽取一个容量为150的样本进行关于线上教学实施情况的问卷调查. 已知该校高一年级共有学生660人,高三年级共有540人,抽取的样本中高二年级有50人. 下表是根据抽样调查情况得到的高二学生日睡眠时间(单位:h)的频率分布表.分组频数频率[6,6.5)50.10x y z的值(2)求频率分布表中实数,,(3)已知日睡眠时间在区间[6,6.5)内的5名高二学生中,有2名女生,3名男生,若从中任选3人进行面谈,求选中的3人恰好为两男一女的概率.A B C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种17.海关对同时从,,商品的数量(单位:件)如下表所示,工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.18.在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.(1)摸出的3个球为白球的概率是多少?(2)摸出的3个球为2个黄球1个白球的概率是多少?(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?19.某校从高一年级的一次月考成绩中随机抽取了50名学生的成绩,这50名学生的成绩都在[50,100]内,按成绩分为[50,60),[60,70),[70,80),[80,90),[90,100]五组,得到如图所示的频率分布直方图.(1)求图中的a值;(2)根据频率分布直方图估计该校高一年级本次考试成绩的中位数;(3)用分层抽样的方法从成绩在[80,100]内的学生中抽取6人,再从这6人中随机抽取2名学生进行调查,求月考成绩在[90,100]内至少有1名学生被抽到的概率.20.已知某校甲、乙、丙三个兴趣小组的学生人数分别为36,24,12.现采用分层抽样的方法从中抽取6人,进行睡眠质量的调查.(Ⅰ)应从甲、乙、丙三个兴趣小组的学生中分别抽取多少人?(Ⅱ)现从6人中随机抽取2人做进一步的身体检查,求抽取的2人来自同一兴趣小组的概率.21.已知从树人中学高三年级的8名优秀年青教师(男教师6名,女教师2名)中任选3名参加养老院志愿服务活动.(1)求“8名优秀年青教师中,优秀年青教师甲和优秀年青教师乙均被选到”的概率.(2)若所选3名优秀年青教师中女教师人数为ξ,求ξ的分布列.22.“每天锻炼一小时,健康工作五十年,幸福生活一辈子.”一科研单位为了解员工爱好运动是否与性别有关,从单位随机抽取30名员工进行了同卷调查,得到了如下列联表:男性女性合计爱好6不爱好6合计1630(1)请将上面的列联表补充完整(在答题卡上直接填写结果,不需要写求解过程);(2)能否有95%的把握认为爱好运动与性别有关?(3)若在接受调查的所有男生中按照“爱好与不爱好运动”进行分层抽样,现随机抽取8人,再从8人中抽取3人,求至少有2人“爱好运动”的概率.附:()()()()()22n ad bcKa b c d a c b d-=++++()20P k k ≥0.05 0.010 0.005 0k3.8416.6357.87923.2020年新冠肺炎疫情期间,某区政府为了解本区居民对区政府防疫工作的满意度,从本区居民中随机抽取若干居民进行评分(满分100分),根据调查数据制成如下表格和频率分布直方图已知评分在[]80,100的居民有900人. 满意度评分 [)40,60[)60,80[)80,90[]90,100满意度等级不满意基本满意满意非常满意(1)求频率分布直方图中a 的值及所调查的总人数;(2)定义满意度指数η=(满意程度的平均分)/100,若0.8η<,则防疫工作需要进行大的调整,否则不需要大调整根据所学知识判断该区防疫工作是否需要进行大调整? (3)为了解部分居民不满意的原因,从不满意的居民(评分在[)40,50、[)50,60)中用分层抽样的方法抽取6名居民,倾听他们的意见,并从6人中抽取2人担任防疫工作的监督员,求这2人都是对防疫工作的评分在[)50,60内的概率.24.在全面抗击新冠肺炎疫情这一特殊时期,某大型企业组织员工进行爱心捐款活动.原则上以自愿为基础,每人捐款不超过300元,捐款活动负责人统计全体员工数据后,随机抽取的10名员工的捐款数额如下表: 员工编号 1 2 3 4 5 6 7 8 9 10 捐款数额120802155013019530090200225(1)若从这10名员工中随机选取2人,则选取的人中捐款恰有一人高于200元,一人低于200元的概率;(2)若从这10名员工中任意选取4人,记选到的4人中捐款数额大于200元的人数为X,求X的分布列和数学期望.25.为了丰富业余生活,甲、乙、丙三人进行羽毛球比赛.比赛规则如下:①每场比赛有两人参加,并决出胜负;②每场比赛获胜的人与未参加此场比赛的人进行下一场的比赛;③依次循环,直到有一个人首先获得两场胜利,则本次比赛结束,此人为本次比赛的冠军.已知在每场比赛中,甲胜乙的概率为23,甲胜丙的概率为35,乙胜丙的概率为12.(1)求甲和乙先赛且共进行4场比赛的概率;(2)请通过计算说明,哪两个人进行首场比赛时,甲获得冠军的概率最大?26.某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据概率的定义,事件的独立性概念判断各选项.【详解】在相同的条件下做大量重复试验,一个事件A 出现的次数和总的试验次数n 之比,称为事件A 在这n 次试验中出现的频率.当试验次数n 很大时,频率将稳定在一个常数附近. n 越大,频率偏离这个常数较大的可能性越小.这个常数称为这个事件的概率,并不是说n 越大,估计的精度越精确,A 错;事件A 与事件B 相互独立,即A 是否发生与B 是否发生无关,∴事件A 是否发生与事件B 是否发生也无关,它们相互独立,B 正确;抛一枚骰子,出现的点数不大于5记为事件A ,出现的点为不小于2记为事件B ,则事件A 与事件B 同时发生是指点数为2,3,4,5,概率为4263=,而事件A 与B 中恰有一个发生是指点为1或6,概率为212633=<.C 错;抛掷一枚均匀的硬币,如前两次都是反面,那么第三次出现正面的可能性与出现反面的可能性还是一样.D 错. 故选:B . 【点睛】本题考查概率的定义,考查事件的独立性.掌握概念的定义是解题关键.2.D解析:D 【分析】根据[0,1]x ∈,[0,1]y ∈,而221x y +<表示14个圆,则4m k π=,故4mkπ=. 【详解】根据程序框图,知[0,1]x ∈,[0,1]y ∈,而221x y +<表示14个圆,如图所示:则落在阴影部分的面积与正方形面积比为4m k π=,得4mkπ=. 故选:D. 【点睛】本题考查了程序框图,几何概型,频率的理解与应用,属于中档题.3.B解析:B 【分析】根据题意,只有1人解出,则分三类,一是A 解出而其余两人没有解出,一是B 解出而其余两人没有解出,一是C 解出而其余两人没有解出,每一类用独立事件概率的乘法公式求解,然后这三类用互斥事件概率的加法求解. 【详解】()()()1231131211123423423424P P ABC P ABC P ABC =++=⨯⨯+⨯⨯+⨯⨯=.故选:B 【点睛】本题主要考查了独立事件的概率和互斥事件的概率,还考查了理解辨析问题的能力,属于基础题.4.B解析:B 【分析】根据事件关系,靶为被击中即甲乙均未击中;靶被击中即至少一人击中,分为恰有一人击中或两人都击中,依次判定即可. 【详解】由题可得:①E AB =,正确;②事件F=“靶被击中”,AB 表示甲乙同时击中,F AB AB AB =++,所以②错误;③F A B =+,正确,④A B +表示靶被击中,所以④错误;⑤G AB AB =+,正确;⑥,E F 互为对立事件,()()1P F P E =-,正确;⑦()()()()P F P A P B P AB =+-,所以⑦不正确. 正确的是①③⑤⑥. 故选:B 【点睛】此题考查事件关系和概率关系的辨析,需要熟练掌握事件的关系及其运算,弄清事件特征及其概率特征准确辨析.5.B解析:B 【分析】列举出所有的基本事件,记“此人经过市中心O ”为事件M ,确定事件M 所包含的基本事件,然后利用古典概型的概率公式可计算出所求事件的概率. 【详解】此人从小区A 前往H 的所有最短路径为:A B C E H →→→→,A B O E H →→→→,A B O G H →→→→,A D O E H →→→→,A D O G H →→→→,A D F G H →→→→,共6条.记“此人经过市中心O ”为事件M ,则M 包含的基本事件为:A B O E H →→→→,A B O G H →→→→,A D O E H →→→→,A D O G H →→→→,共4条.()4263P M ∴==,即他经过市中心的概率为23. 故选:B. 【点睛】本题考查概率的应用,是中等题.解题时要认真审题,仔细解答,注意列举法的灵活运用.6.C解析:C 【分析】先确定事件“甲获胜”包含“甲三局赢两局”和“前两局甲赢”,再利用独立重复试验的概率公式和概率加法公式可求出所求事件的概率. 【详解】事件“甲获胜”包含“甲三局赢两局”和“前两局甲赢”,若甲三局赢两局,则第三局必须是甲赢,前面两局甲赢一局,所求概率为2121233C ⎛⎫⋅⋅ ⎪⎝⎭,若前两局都是甲赢,所求概率为223⎛⎫ ⎪⎝⎭,因此,甲获胜的概率为22112221333C ⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C . 【点睛】本题考查独立重复事件的概率,考查概率的加法公式,解题时要弄清楚事件所包含的基本情况,考查分类讨论思想,考查计算能力,属于中等题.7.B解析:B 【分析】由题意,可先求得三个人都没有被录取的概率,接下来求至少有一人被录取的概率,利用对立事件的概率公式,求得结果. 【详解】甲、乙、丙三人都没有被录取的概率为11115(1)(1)(1)64312P =-⨯-⨯-=, 所以三人中至少有一人被录取的概率为17112P P =-=, 故选B. 【点睛】该题考查的是有关概率的求解问题,关键是掌握对立事件的概率加法公式()()1P A P A +=,求得结果.8.D解析:D 【分析】本周能进行决赛意味着能在周三或周四或周五进行,分别求概率,求和即可得解. 【详解】设在这周能进行决赛为事件A ,恰好在周三、周四、周五进行决赛分别为事件3A ,4A ,5A ,则345A A A A =⋃⋃,又事件3A ,4A ,5A 两两互斥, 则有()()()()34511111171112222228P A P A P A P A ⎛⎫⎛⎫⎛⎫=++=+-⨯+-⨯-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故选:D . 【点睛】本题主要考查了互斥关系的概率问题,属于基础题.9.B解析:B 【分析】本题可以先算出在六个手套中取回两个有多少种可能,再计算出事件A 中有多少种可能,最后得出结果. 【详解】分别设3双手套为:121212a a b b c c 、、,111a b c 、、分别代表左手手套,222a b c 、、分别代表右手手套;从箱子里的3双不同的手套中,随机拿出2只,所有的基本事件是:n 6636=⨯=,共有36个基本事件;事件A 包含:()()()()()122112212112a b b a a c c a a b b a ,、,、,、,、,、,、()()()()()()211212212112a c c a b c c b b c c b ,、,、,、,、,、,一共12个基本事件,故事件A 的概率为()121P 363A ==,故选B . 【点睛】在计算过程中,一定要注意左右手的手套是不一样的.10.C解析:C 【分析】由题意列出所有可能的结果,然后利用古典概型计算公式即可求得满足题意的概率值. 【详解】设三位同学分别为,,A B C ,他们的学号分别为1,2,3,用有序实数列表示三人拿到的卡片种类,如()1,3,2表示A 同学拿到1号,B 同学拿到3号,C 同学拿到2号.三人可能拿到的卡片结果为:()()()()()()1,2,3,1,3,2,2,1,3,2,3,1,3,1,2,3,2,1,共6种,其中满足题意的结果有()()()1,3,2,2,1,3,3,2,1,共3种, 结合古典概型计算公式可得满足题意的概率值为:3162p ==. 故选:C. 【点睛】 方法点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数. (1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏. (2)注意区分排列与组合,以及计数原理的正确使用.11.B解析:B 【分析】记“喜欢乒乓球“为事件A ,“喜欢羽毛球”为事件B ,则“喜欢乒乓球或羽毛球”为事件A B +,“既喜欢乒乓球又喜欢羽毛球”为事件A B ⋅,根据题意求出()P A 、()P B 、()P A B +,再根据()()()()P A B P A P B P A B ⋅=+-+可求得结果.【详解】记“喜欢乒乓球“为事件A ,“喜欢羽毛球”为事件B ,则“喜欢乒乓球或羽毛球”为事件A B +,“既喜欢乒乓球又喜欢羽毛球”为事件A B ⋅,依题意可知3216()5025P A ==,2613()5025P B ==,459()5010P A B +==, 因为()()()()P A B P A P B P A B +=+-⋅,所以()()()()P A B P A P B P A B ⋅=+-+16139252510=+-2626%100==. 故选:B 【点睛】关键点点睛:利用和事件与积事件的概率关系求解是解题关键.12.A解析:A 【解析】设事件A 表示“抽到的两张都是假钞”,事件B 表示“抽到的两张至少有一张假钞”, 则所求的概率即P(A|B).又()()()211244164222020,C C C C P AB P A P B C C +===, 由公式()()()24211441663|641635P AB C P A B P B C C C ====++⨯.本题选择A 选项.点睛:条件概率的求解方法:(1)利用定义,求P (A )和P (AB ),则()()(|)n AB P B A n A =.(2)借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件A 与事件B 的交事件中包含的基本事件数n (AB ),得()()(|)n AB P B A n A =.13.D解析:D 【分析】利用列举法列举出所有的三位回文数的个数,再列举出其中所有的偶数的个数,由此能求出结果 【详解】解:三位数的回文数为ABA ,A 共有1到9共9种可能,即11B 、22B 、33B ⋯B 共有0到9共10种可能,即0A A 、1A A 、2A A 、3A A 、⋯ 共有91090⨯=个,其中偶数为A 是偶数,共4种可能,即22B ,44B ,66B ,88B , B 共有0到9共10种可能,即0A A 、1A A 、2A A 、3A A 、⋯ 其有41040⨯=个,∴三位数的回文数中,偶数的概率404909P ==; 故选:D . 【点睛】本题考查概率的求法,注意列举法在使用时一定做到不重不漏,属于中档题.二、解答题14.(1)85m =;(2)57. 【分析】(1)计算出各产品等级的频率,利用中位数左边的矩形面积之和为0.5可求得m 的值; (2)计算得出7件产品中A 级品共3件,分别记为1A 、2A 、3A ,B 级品共4件,分别记为1B 、2B 、3B 、4B ,列举出所有的基本事件,并确定事件“所抽的2件产品中至少有1件A 级品”所包含的基本事件数,利用古典概型的概率公式可求得所求事件的概率. 【详解】(1)当6n =时,[)60,70k ∈,1100M =,频率为11100.1100p =⨯=;当7n =时,[)70,80k ∈,150M =,频率为21100.250p =⨯=; 当8n =时,[)80,90k ∈,125M =,频率为31100.425p =⨯=. 各产品等级的频率如下表所示:0.10.20.50.10.20.4+<<++,80,90m ∴∈,所以,800.10.20.40.510m -++⨯=,解得85m =; (2)所抽取的7件产品中,A 级品的数量为0.3730.30.4⨯=+,分别记为1A 、2A 、3A , B 级品的数量为4,分别记为1B 、2B 、3B 、4B ,从这7件产品中任取2件产品,所有的基本事件有:12A A 、13A A 、11A B 、12A B 、13A B 、14A B 、23A A 、21A B 、22A B 、23A B 、24A B 、31A B 、32A B 、33A B 、34A B 、12B B 、13B B 、14B B 、23B B 、24B B 、34B B ,共21个基本事件,其中,事件“所抽的2件产品中至少有1件A 级品”包含15个基本事件, 因此,所求事件的概率为155217P ==. 【点睛】方法点睛:求解古典概型概率的方法如下: (1)列举法; (2)列表法; (3)数状图法; (4)排列组合数的应用.15.(1)中位数是72.5,平均值为72;(2)1328. 【分析】(1)求出频率0.5对应的数值即为中位数,取各组数据中间值乘以频率相加即得平均值; (2)按分层抽样求出[80,90),[90,100]两组为抽取的人数,然后求挑选2的方法数和至少有一人问卷得分超过90的方法数后可计算出概率. 【详解】(1)由题意分数在[50,70)间的频率为(0.0150.025)100.4+⨯=, 因此中位数在[70,80]间,设中位数为x ,则700.50.4100.4x --=,解得72.5x =. 平均值为:(550.015650.025750.04850.015950.005)10⨯+⨯+⨯+⨯+⨯⨯=72;(2)由频率分布直方图知[80,90),[90,100]两组人数比为0.1530.051=,因此8人中[80,90)这组有6人,[90,100]这组有2人,∴所求概率为112622281328C C C P C +==. 【点睛】关键点点睛:本题考查频率分布直方图,由频率分布直方图求中位数,均值等,考查古典概型.解题关键是正确认识频率分布直方图,由频率分布直方图确定所有数据.然后根据各个数据特征进行计算.16.(1)600人;(2)8;0.16;10;(3)35. 【分析】(1)利用样本中高二年级人数与高二年级总人数之比=样本中高一年级、高二年级人数之和与高一、高二年级总人数之和之比求解;(2)先根据频率分布表求出z 的值,再根据高二年级学生样本人数计算出x ,从而得到其频率y 的值;(3)记5名高二学生中女生为1a ,2a ,男生为123,,b b b ,先列出从这5名高二学生中任选3人进行面谈的所有可能情况,以及恰好有两男一女的情况数,然后根据古典概率模型概率的计算公式求解. 【详解】解:(1)设该校高二学生的总数为n ,由题意5015050660540n -=+,解得=600n ,所以该校高二学生总数为600人.(2)由题意0.2050z=,解得10z =, 50(57128)8x z =-++++=,0.1650xy ==. (3)记“选中的3人恰好为两男一女”为事件A ,记5名高二学生中女生为1a ,2a ,男生为1b ,2b ,3b ,从中任选3人有以下情况: 121,,a a b ;122,,a a b ;123,,a a b ;112,,a b b ;113,,a b b ;123,,a b b ;212,,a b b ;213,,a b b ;223,,a b b ;123,,b b b ,共10种情况,基本事件共有10个,它们是等可能的,事件A 包含的基本事件有6个,分别为:112,,a b b ;113,,a b b ;123,,a b b ;212,,a b b ;213,,a b b ;223,,a b b ,故63()105P A ==,所以选中的3人恰好为两男一女的概率为35. 【点睛】(1)解决分层抽样问题时,常用的公式有: ①n N =样本容量该层抽取的个体数总体个数该层个体数;②总体中某两层的个数比等于样本中这两层抽取的个体数之比; (2)求解古典概率模型时,基本步骤如下:①利用列举法、列表法、树状图等方法求出基本事件总数n ; ②求出事件A 所包含的基本事件个数m ; ③代入公式mP n=,求出概率值. 17.(1)1,3,2;(2)415. 【分析】(1)由分层抽样的性质运算即可得解;(2)利用列举法,结合古典概型概率的计算公式,即可得解. 【详解】(1)由题意,样品中来自A 地区商品的数量为650150150100⨯=++,来自B 地区商品的数量为6150350150100⨯=++,来自C 地区商品的数量为6100250150100⨯=++;(2)设来自A 地区的样品编号为a ,来自B 地区的样品编号为1b ,2b ,3b , 来自C 地区的样品编号为1c ,2c ,则从6件样品中抽取2件产品的所有基本事件为:()1,a b ,()2,a b ,()3,a b ,()1,a c ,()2,a c ,()12,b b ,()13,b b ,()11,b c ,()12,b c ,()23,b b ,()21,b c ,()22,b c ,()31,b c ,()32,b c ,()12,c c ,共15个;抽取的这2件产品来自相同地区的基本事件有:()12,b b ,()13,b b ,()23,b b ,()12,c c ,共4个;故所求概率415P =. 【点睛】本题考查了分层抽样的应用及古典概型概率的求解,考查了运算求解能力,属于中档题. 18.(1)0.05;(2)0.45;(3)1200. 【分析】(1)先列举出所有的事件共有20种结果,摸出的3个球为白球只有一种结果,根据概率公式得到要求的概率,本题应用列举来解,是一个好方法;(2)先列举出所有的事件共有20种结果,摸出的3个球为1个黄球2个白球从前面可以看出共有9种结果种结果,根据概率公式得到要求的概率;(3)先列举出所有的事件共有20种结果,根据摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱,算一下摸出的球是同一色球的概率,估计出结果. 【详解】把3只黄色乒乓球标记为A 、B 、C ,3只白色的乒乓球标记为1、2、3.从6个球中随机摸出3个的基本事件为:ABC 、AB1、AB2、AB3、AC1、AC2、AC3、A12、A13、A23、BC1、BC2、BC3、B12、B13、B23、C12、C13、C23、123,共20个. (1)事件E={摸出的3个球为白球},事件E 包含的基本事件有1个,即摸出123号3个球,P (E )=120=0.05. (2)事件F={摸出的3个球为2个黄球1个白球},事件F 包含的基本事件有9个,P (F )=920=0.45. (3)事件G={摸出的3个球为同一颜色}={摸出的3个球为白球或摸出的3个球为黄球},P (G )=220=0.1,假定一天中有100人次摸奖, 由摸出的3个球为同一颜色的概率可估计事件G 发生有10次,不发生90次. 则一天可赚,每月可赚1200元.考点:1.互斥事件的概率加法公式;2.概率的意义 19.(1)0.016;(2)约为74.1;(3)35. 【分析】(1)由频率分布直方图中所有频率和为1可求得a ;(2)频率分布直方图中将所有小矩形面积二等分的点对应的值为中位数;(3)根据频率分布直方图求出成绩在[80,90)和[90,100]上的人数,然后利用对立事件的概率公式计算. 【详解】(1)由题意(0.0080.0240.0440.008)101a ++++⨯=,解得0.016a =; (2)在频率分布直方图中前两组频率和为(0.0080.024)100.32+⨯=, 第三组频率为0.044100.44⨯=,中位数在第三组,设中位数为x ,则70100.50.320.44x -=-,解得74.1x ≈;(3)由频率分布直方图成绩在[80,90)和[90,100]和频率分别是0.16和0.08,共抽取6人,∴成绩在[80,90)上的有4人,成绩在[90,100]上的有2人,从6人中任意抽取2人共有2615C =种方法,2人成绩都在[80,90)上的方法有246C =种,∴月考成绩在[90,100]内至少有1名学生被抽到的概率为631155P =-=. 【点睛】本题考查频率分布直方图,考查由频率分布直方图计算中位数,考查分层抽样与古典概型,,考查了学生的数据处理能力与运算求解能力,属于中档题. 20.(1)甲、乙、丙分别抽取3人、2人、1人;(2)415【分析】(1)根据分层抽样的比例原则,由36:24:123:2:1=即可求抽取6人从甲、乙、丙三个兴趣小组的学生中各抽取的人数;(2)从6人中随机抽取2人且来自同一兴趣小组的事件{来自甲小组,来自乙小组},根据无放回试验的概率,分别求出2人来自甲小组、来自乙小组的概率,它们的和即为所求 【详解】(1)由甲、乙、丙三个兴趣小组的学生人数分别为36,24,12,根据分层抽样原则 甲、乙、丙分别占总学生人数的比为12、13、16∴采用分层抽样的方法从中抽取6人中:甲中抽取1632⨯=人,乙中抽取1623⨯=人,丙中抽取1616⨯=人 (2)由(1)知:抽取的2人来自同一兴趣小组:{来自甲小组,来自乙小组} ∴2人为甲小组的概率:1121255P =⨯=;2人为乙小组的概率:21113515P =⨯= 故抽取的2人来自同一兴趣小组的概率:1211451515P P P =+=+= 【点睛】本题考查了概率,根据分层抽样的原则,按不同层次总体数量比例抽取固定数量个体,求各层次个体抽取的数量,利用无放回试验,结合概率加法公式求概率 21.(1)328;(2)答案详见解析. 【分析】(1)根据古典概型的概率公式可计算出答案; (2)求出随机变量及其概率,列出分布列即可. 【详解】(1)据题意,从8名优秀年青教师中任选3名共有3856C =种,其中优秀年青教师甲和优秀年青教师乙均被选到的共有166C =种,设A=“8名优秀年青教师中,优秀年青教师甲和优秀年青教师乙均被选到”,所求概率635628p A ==(). (2)ξ的所有可能取值为0,1,2,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.抛掷一个质地均匀的骰子的试验,事件A 表示“小于5的偶数点出现”,事件B 表示“不小于5的点数出现”,则一次试验中,事件A 或事件B 至少有一个发生的概率为( ) A .23B .13C .1 2D .562.甲乙两运动员进行乒乓球比赛,采用7局4胜制.在一局比赛中,先得11分的运动员为胜方,但打到10平以后,先多得2分者为胜方.在10平后,双方实行轮换发球法,每人每次只发1个球.若在某局比赛中,甲发球时甲得分的概率为23,乙发球时甲得分的概率为12,各球的结果相互独立,在某局双方10:10平后,甲先发球,则甲以13:11赢下此局的概率为( ) A .29B .19C .16D .1183.若5个人按原来站的位置重新站成一排,恰有两人站在自己原来的位置上的概率为( ) A .12B .14C .16D .184.从1,2,3,4这四个数字中依次取(不放回)两个数字,a b ,使得()()lg 3lg 4a b ≥成立的概率是( ) A .13B .512C .12D .7125.设两个独立事件A 和B 同时不发生的概率是p ,A 发生B 不发生与A 不发生B 发生的概率相同,则事件A 发生的概率为( )A .2pB .2p C .1 D .16.设A ,B ,C 是三个事件,给出下列四个事件:(Ⅰ)A ,B ,C 中至少有一个发生; (Ⅱ)A ,B ,C 中最多有一个发生; (Ⅲ)A ,B ,C 中至少有两个发生; (Ⅳ)A ,B ,C 最多有两个发生;其中相互为对立事件的是( ) A .Ⅰ和ⅡB .Ⅱ和ⅢC .Ⅲ和ⅣD .Ⅳ和Ⅰ7.从一批产品中取出三件产品,设事件A 为“三件产品全不是次品”,事件B 为“三件产品全是次品”,事件C 为“三件产品不全是次品”,则下列结论正确的是( ) A .事件A 与C 互斥 B .事件B 与C 互斥 C .任何两个事件均互斥D .任何两个事件均不互斥8.“三个臭皮匠,赛过诸葛亮”,这是我们常说的口头禅,主要是说集体智慧的强大. 假设李某智商较高,他独自一人解决项目M 的概率为10.3P =;同时,有n 个水平相同的人也在研究项目M ,他们各自独立地解决项目M 的概率都是0.1.现在李某单独研究项目M ,且这n 个人组成的团队也同时研究项目M ,设这个n 人团队解决项目M 的概率为2P ,若21P P ≥,则n 的最小值是( ) A .3B .4C .5D .69.下列说法正确的是( )A .天气预报说明天下雨的概率为0900,则明天一定会下雨B .不可能事件不是确定事件C .统计中用相关系数r 来衡量两个变量的线性关系的强弱,若[]0.75,1,r ∈则两个变量正相关很强D .某种彩票的中奖率是11000,则买1000张这种彩票一定能中奖 10.“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为8元,被随机分配为1.72元,1.83元,2.28元,1.55元,0.62元, 5份供甲、乙等5人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于3元的概率是 ( ) A .310B .25C .12D .35第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案11.在3张卡片上分别写上3位同学的学号后,再把卡片随机分给这3位同学,每人1张,则恰有1位学生分到写有自己学号卡片的概率为( ) A .16B .13C .12D .2312.五一节放假期间,甲去北京旅游的概率为13,乙、丙去北京旅游的概率分别为14、15,假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为( )A .5960B .35C .12D .16013.自新型冠状病毒爆发以来,全国各地医护人员勇当“逆行者”支援湖北.重庆第一批共派出甲、乙、丙、丁4支医疗队分成三组奔赴三个地方,每组至少一支医疗队,则甲、乙分在同一组的概率为( )A.1 3B.12C.29D.16二、解答题14.在新高考中我市采用了“3+1+2”模式,对化学、生物、地理和政治等四门选考科目,制定了计算转换T分(即记入高考总分的分数)的“等级转换赋分规则”(详见附1和附2),具体的转换步骤为:①原始分Y等级转换;②原始分等级内等比例转换赋分.我校高二年级在期末考试后,政治、化学两选考科目的原始分分布如表:等级A B C D E比例约15%约35%约35%约13%约2%政治学科各等级对应的原始分区间[81,98][72,80][66,71][63,65][60,62]化学学科各等级对应的原始分区间[90,100][77,89][69,76][66,68][63,65]政治:64,72,66,92,78,66,82,65,76,67,74,80,70,69,84,75,68,71,60,79化学:72,79,86,75,83,89,64,98,73,67,79,84,77,94,71,81,74,69,91,70并根据上述数据制作了如下的茎叶图:(1)茎叶图中各序号位置应填写的数字分别是:①应填___________,②应填___________,③应填___________,④应填___________,⑤应填___________,⑥应填___________.(2)甲同学选考政治学科,其原始分为82分,乙同学选考化学学科,其原始分为91分.基于新高考实测的转换赋分模拟,试分别探究这两位同学的转换分,并从公平性的角度谈谈你对新高考这种“等级转换赋分法”的看法.(3)若从我校政治、化学学科等级为A的学生中,随机挑选2人次(两科都选,且两科成绩都为A等的学生,可有两次被选机会),试估计这2人次挑选,其转换分都不少于91分的概率.附1:等级转换的等级人数占比与各等级的转换分赋分区间.等级AB C D E 原始分从高到低排序的等级人数占比约15% 约35%约35%约13% 约2% 转换分T 的赋分区间[86,100][71,85] [56,70][41,55][30,40]附2:计算转换分T 的等比例转换赋分公式:2211Y Y T TY Y T T --=--(其中:Y 1,Y 2别表示原始分Y 对应等级的原始分区间下限和上限;T 1,T 2分别表示原始分对应等级的转换分赋分区间下限和上限.T 的计算结果按四舍五入取整).15.2021年起,辽宁省将实行“3+1+2”高考模式,为让学生适应新高考的赋分模式某校在一次校考中使用赋分制给高三年级学生的化学成绩进行赋分,具体赋分方案如下:先按照考生原始分从高到低按比例划定A 、B 、C 、D 、E 共五个等级,然后在相应赋分区间内利用转换公式进行赋分A 等级排名占比15%,赋分分数区间是86-100;B 等级排名占比35%,赋分分数区间是71-85;C 等级排名占比35%,赋分分数区间是56-70;D 等级排名占比13%,赋分分数区间是41-55;E 等级排名占比2%,赋分分数区间是30-40;现从全年级的化学成绩中随机抽取100名学生的原始成绩(未赋分)进行分析,其频率分布直方图如图所示:(1)求图中a 的值;(2)用样本估计总体的方法,估计该校本次化学成绩原始分不少于多少分才能达到赋分后的C 等级及以上(含C 等级)?(结果保留整数)(3)若采用分层抽样的方法,从原始成绩在[40,50)和[50,60)内的学生中共抽取5人,查看他们的答题情况来分析知识点上的缺漏,再从中选取2人进行调查分析,求这2人中恰有一人原始成绩在[40,50)内的概率.16.“工资条里显红利,个税新政人民心”,随着2021年新年钟声的敲响,我国自1980年以来,力度最大的一次个人所得税(简称个税)改革至2019年实施以来发挥巨大作用.个税新政主要内容包括: (1)个税起征点为5000元;(2)每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除;(3)专项附加扣除包括住房、子女教育和赡养老人等.新旧个税政策下每月应纳税所得额(含税)计算方法及其对应的税率表如表:年的人均月收入24000元.统计资料还表明,他们均符合住房专项扣除;同时,他们每人至多只有一个符合子女教育扣除的孩子,并且他们之中既不符合子女教育扣除又不符合赡养老人扣除、只符合子女教育扣除但不符合赡养老人扣除、只符合赡养老人扣除但不符合子女教育扣除、即符合子女教育扣除又符合赡养老人扣除的人数之比是2:1:1:1;此外,他们均不符合其他专项附加扣除.新个税政策下该市的专项附加扣除标准为:住房1000元/月,子女教育每孩1000元/月,赡养老人2000元/月等.假设该市该收入层级的IT从业者都独自享受专项附加扣除,将预估的该市该收入层级的IT从业者的人均月收入视为其个人月收入.根据样本估计总体的思想,解决如下问题:(1)求该市该收入层级的IT从业者2021年月缴个税的所有可能及其概率.(2)根据新旧个税方案,估计从2021年1月开始,经过多少个月,该市该收入层级的IT 从业者各月少缴交的个税之和就超过2019年的月收入?17.某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于65分到145分之间(满分150分),将统计结果按如下方式分成八组:第一组[65,75),第二组[75,85),第八组[135,145],如图是按上述分组方法得到的频率分布直方图的一部分.(1)根据图表,计算第七组的频率,并估计该校的2000名学生这次考试成绩的平均分(同一组中的数据用该组区间的中点值代表该组数据平均值);(2)若从样本成绩属于第六组和第八组的所有学生中随机抽取2名,求他们的分差的绝对值小于10分的概率.18.树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,现从参与调查的人群中随机选出20人的样本,并将这20人按年龄分组:第1组[)15,25,第2组[)25,35,第3组[)35,45,第4组[)45,55,第5组[]55,65,得到的频率分布直方图如图所示(1)求a 的值.(2)根据频率分布直方图,估计参与调查人群的样本数据的中位数(保留两位小数). (3)若从年龄在[)15,35的人中随机抽取两位,求两人恰有一人的年龄在[)25,35内的概率.19.甲、乙去某公司应聘面试.该公司的面试方案为:应聘者从6道备选题中一次性随机抽取3道题,按照答对题目的个数为标准进行筛选.已知6道备选题中应聘者甲有4道题能正确完成,2道题不能完成;应聘者乙每题正确完成的概率都是23,且每题正确完成与否互不影响.(1)分别求甲、乙两人正确完成面试题数的分布列,并计算其数学期望;(2)请分析比较甲、乙两人谁的面试通过的可能性较大?20.国际电子竞技和围棋比赛通常采用双败淘汰制.双败淘汰制即一支队伍失败两场被淘汰出局,直到最后剩下一支队伍夺得冠军(决赛只赛一场).以八支战队的比赛为例(如图所示),第一轮比赛,由8支战队抽签后交战,获胜战队继续留在获胜组,失败战队则掉人失败组,进人下一轮比赛.失败战队在失败组一旦再失败即被淘汰,最后由胜者组和败者组的冠军决出总冠军.某项国际电子竞技比赛有甲等8名选手参加,比赛采用了双败淘汰制,若这8名选手相互之间每场比赛获胜的概率均为0.5.双败流程示意图(以八支战队为例)(1)求甲获得冠军的概率;(2)记甲在这次比赛中参加比赛的场次为X,求随机变量X的分布列和期望.21.某综艺节目邀请嘉宾进行答题闯关挑战,每位嘉宾挑战时,节目组用电脑出题的方式,从题库中随机出4道题,编号为1A,2A,3A,4A,电脑依次出题,嘉宾按规则作答,挑战规则如下:①嘉宾每答对一道题目得5分,每答错一道题目扣3分;②嘉宾若答对第i A题,则继续作答第1i A+题;嘉宾若答错第i A题,则失去第1i A+题的答题机会,从第2i A +题开始继续答题;直到4道题目出完,挑战结束;③每位嘉宾初始分为0分,若挑战结束后,累计得分不低于7分,则嘉宾闯关成功,否则闯关失败.嘉宾小源即将参与挑战,已知小源答对题库中每道题的概率均为23,各次作答结果相互独立,且他不会主动放弃任何一次作答机会,求: (Ⅰ)挑战结束时,小源共答对3道题的概率1P ; (Ⅱ)挑战结束时,小源恰好作答了3道题的概率2P ; (Ⅲ)小源闯关成功的概率3P .22.5月4日,修水第二届“放肆青春放肆跑”全民健身彩跑活动在信华城举行,全程约5.4km ,共有2500余名参与者.某单位为了解员工参加彩跑活动是否与性别有关,从单位随机抽取30名员工进行问卷调查,得到了如下22⨯列联表:已知在这30人中随机抽取1人抽到参加彩跑活动的员工的概率是815. (1)完成答题卡上的22⨯列联表,并判断能否有90%的把握认为参加彩跑活动与性别有关?(2)已知参加彩跑的女性中共有4人跑完了全程,若从参加彩跑的6名女性中任选两人,求选出的两人均跑完了全程的概率.附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.23.为了丰富业余生活,甲、乙、丙三人进行羽毛球比赛.比赛规则如下:①每场比赛有两人参加,并决出胜负;②每场比赛获胜的人与未参加此场比赛的人进行下一场的比赛;③依次循环,直到有一个人首先获得两场胜利,则本次比赛结束,此人为本次比赛的冠军.已知在每场比赛中,甲胜乙的概率为23,甲胜丙的概率为35,乙胜丙的概率为12.(1)求甲和乙先赛且共进行4场比赛的概率;(2)请通过计算说明,哪两个人进行首场比赛时,甲获得冠军的概率最大?24.树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,大量的统计数据表明,参与调查者中关注此问题的约占80%.现从参与调查的人群中随机选出200人,并将这200人按年龄分组:第1组[)15,25,第2组[)25,35,第3组[)35,45,第4组[)45,55,第5组[)55,65,得到的频率分布直方图如图所示:(1)求出样本的平均数(同一组数据用该区间的中点值作代表);(2)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求第2组中抽到2人的概率.25.某高校为了制定培养学生阅读习惯,指导学生提高阅读能力的方案,需了解全校学生的阅读情况,现随机调查了200名学生每周阅读时间X (单位:小时)并绘制如图所示的频率分布直方图.(1)求这200名学生每周阅读时间的中位数a (a 的值精确到0.01);(2)为查找影响学生阅读时间的因素,学校团委决定从每周阅读时间为[)6.5,7.5,[)7.5,8.5的学生中抽取6名参加座谈会.()i 你认为6个名额应该怎么分配?并说明理由;()ii 从这6名学生中随机抽取2人,求至多有一人每周读书时间在[)7.5,8.5的概率.26.2020年5月28日,十三届全国人大三次会议表决通过了《中华人民共和国民法典》,此法典被称为“社会生活的百科全书”,是新中国第一部以法典命名的法律,在法律体系中居于基础性地位,也是市场经济的基本法.民法典与百姓生活密切相关,某大学为了解学生对民法典的认识程度,选取了120人进行测试,测试得分情况如图所示.(1)试求出图中实数a 的值,并求出成绩落在[]90,100的人数;(2)如果抽查的测试平均分超过75分,就表示该学校通过测试.试判断该校能否通过测试;(3)如果在[)80,90中抽取3人,在[]90,100中抽取2人,再从抽取的5人中选取2人进行民法典的宣传,那么选取的2人中恰好1人成绩落在[]90,100的概率是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由古典概型概率公式分别计算出事件A 和事件B 发生的概率,又通过列举可得事件A 和事件B 为互斥事件,进而得出事件A 或事件B 至少有一个发生的概率即为事件A 和事件B 的概率之和. 【详解】事件A 表示“小于5的偶数点出现”,事件B 表示“不小于5的点数出现”, ∴P (A )2163==,P (B )2163==, 又小于5的偶数点有2和4,不小于5的点数有5和6, 所以事件A 和事件B 为互斥事件,则一次试验中,事件A 或事件B 至少有一个发生的概率为 P (A ∪B )=P (A )+P (B )112333=+=, 故选:A . 【点睛】本题主要考查古典概型计算公式,以及互斥事件概率加法公式的应用,属于中档题.2.C【分析】本题先判断所求事件的两种情况,根据事件的独立性,直接求解即可. 【详解】在比分为10:10后甲先发球的情况下,甲以13:11赢下此局分两种情况: ①后四球胜方依次为甲乙甲甲,概率为12121132329P =⋅⋅⋅=; ②后四球胜方依次为乙甲甲甲,概率为211211323218P =⋅⋅⋅=, 所以,所求事件概率为:121119186P P +=+=, 故选:C. 【点睛】本题考查事件的独立性,分类讨论思想,是中档题.3.C解析:C 【分析】根据题意,分2步分析:①先从5个人里选2人,其位置不变,其余3人都不在自己原来的位置,②分析剩余的3人都不在自己原来位置的站法数目,由分步计数原理计算可得答案. 【详解】根据题意,分2步分析:①先从5个人里选2人,其位置不变,有2510C =种选法,②对于剩余的三人,因为每个人都不能站在原来的位置上, 因此第一个人有两种站法,被站了自己位置的那个人只能站在第三个人的位置上, 因此三个人调换有2种调换方法,故不同的调换方法有10220⨯=种.而基本事件总数为55120A =,所以所求概率为2011206=, 故选C. 【点睛】该题考查的是有关古典概型求概率的问题,涉及到的知识点有分步计数原理,排列组合的综合应用,古典概型概率求解公式,属于简单题目.4.C解析:C 【分析】列出样本空间Ω,以及事件A =“()()lg 3lg 4a b ≥”包含的基本事件,计算概率.因为()()lg 3lg 4a b ≥,所以34a b ≥.从1,2,3,4这四个数字中依次取两个数字的样本空间()()()()()()()()()()()(){}1,2,2,1,1,3,3,1 ,1,4,4,1,2,3,3,2,2,4,4,2,3,4,4,3Ω=,共12个样本点,符合条件34a b ≥的样本点有()()()()()()2,1,3,1,4,1,3,2,4,2,4,3,共6个,所以所求概率为12,故选C . 【点睛】本题考查了古典概型,考查了学生实际应用以及数学运算的能力,属于基础题.5.C解析:C 【分析】利用A 发生B 不发生与A 不发生B 发生的概率相同,事件A 和B 同时不发生的概率是p ,建立方程,即可求得事件A 发生的概率. 【详解】根据题意设事件A 发生的概率为a ,事件B 发生的概率为b ,则有(1)(1)(1)(1)a b p a b a b --=⎧⎨-=-⎩①②由②知a b =,代入①得1a =故选:C . 【点睛】本题主要考查相互独立事件的概率的计算,解题的关键是正确理解题意,列出方程,属于中档题.6.B解析:B 【分析】利用互斥事件、对立事件的定义直接求解. 【详解】解:A ,B ,C 是三个事件,给出下列四个事件: (Ⅰ)A ,B ,C 中至少有一个发生; (Ⅱ)A ,B ,C 中最多有一个发生; (Ⅲ)A ,B ,C 中至少有两个发生 (Ⅳ)A ,B ,C 最多有两个发生;在A 中,Ⅰ和Ⅱ能同时发生,不是互斥事件,故A 中的两个事件不能相互为对立事件; 在B 中,Ⅱ和Ⅲ既不能同时发生,也不能同时不发生,故B 中的两个事件相互为对立事件;在C 中,Ⅲ和Ⅳ能同时发生,不是互斥事件,故C 中的两个事件不能相互为对立事件; 在D 中,Ⅳ和Ⅰ能同时发生,不是互斥事件,故D 中的两个事件不能相互为对立事件.【点睛】本题考查相互为对立事件的判断,考查互斥事件、对立事件的定义等基础知识,考查运算求解能力,属于基础题.7.B解析:B 【分析】根据互斥事件的定义,逐个判断,即可得出正确选项. 【详解】A 为三件产品全不是次品,指的是三件产品都是正品,B 为三件产品全是次品,C 为三件产品不全是次品,它包括一件次品,两件次品,三件全是正品三个事件由此知:A 与B 是互斥事件;A 与C 是包含关系,不是互斥事件;B 与C 是互斥事件,故选B . 【点睛】本题主要考查互斥事件定义的应用. 8.B解析:B 【解析】 【分析】设这个n 人团队解决项目M 的概率为2P ,则021(0.9)n n P C =-,由21P P ,得10.90.3n -, 由此能求出n 的最小值. 【详解】李某智商较高,他独自一人解决项目M 的概率为10.3P =,有n 个水平相同的人也在研究项目M ,他们各自独立地解决项目M 的概率都是0.1, 现在李某单独研究项目M ,且这n 个人组成的团队也同时研究M , 设这个n 人团队解决项目M 的概率为2P ,则021(0.9)n nP C =-, 21P P ,10.90.3n∴-, 解得4n ≥.n ∴的最小值是4.故选B . 【点睛】本题考查实数的最小值的求法,考查n 次独立重复试验中事件A 恰好发生k 次的概率的计算公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.9.C解析:C 【分析】运用概率的相关知识对四个选项逐一进行分析即可 【详解】对于A ,天气预报说明天下雨的概率为90%,表示下雨的可能性比较大,是不确定事件,在一定条件下可能下雨,也可能不下雨,但明天一定会下雨是不正确的,故错误; 对于B ,根据定义可知不可能事件是确定事件,故错误;对于C ,统计中用相关系数r 来衡量两个变量的线性关系的强弱,若[]0.75,1,r ∈则两个变量正相关很强,故正确; 对于D ,某种彩票的中奖率是11000,每一次买彩票的中奖是独立的,并不是买1000张这种彩票一定能中奖,故错误 故选C 【点睛】本题主要考查了辨别生活中的概率,理解并运用概率知识即可判断,较为基础.10.D解析:D 【解析】 【分析】甲、乙二人抢到的金额之和包含的基本事件的总数2510n C ==,甲、乙二人抢到的金额之和不低于3元包含基本事件有6个,由此能求出甲、乙二人抢到的金额之和不低于3元的概率. 【详解】由题意,所发红包的总金额为8元,被随机分配为1.72元、1.83元、2.28元、1.55元、0.62元、5分,供甲、乙等5人抢,每人只能抢一次, 甲乙二人抢到的金额之和包含的基本事件的总数为2510n C ==,甲乙二人抢到的金额之和不低于3元包含的基本事件有6个,分别为(1.72,1.83),(1.72,2.28),(1.72,1.55),(1.83,2.28),(1.83,1.55),(2.28,1.55)所以甲乙二人抢到的金额之和不低于3元的概率为63105p ==,故选D. 【点睛】本题主要考查了古典概型及其概率的计算问题,其中解答中正确理解题意,找出基本事件的总数和不低于3元的事件中所包含的基本事件的个数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.11.C解析:C 【分析】由题意列出所有可能的结果,然后利用古典概型计算公式即可求得满足题意的概率值. 【详解】设三位同学分别为,,A B C,他们的学号分别为1,2,3,用有序实数列表示三人拿到的卡片种类,如()1,3,2表示A同学拿到1号,B同学拿到3号,C同学拿到2号.三人可能拿到的卡片结果为:()()()()()()1,2,3,1,3,2,2,1,3,2,3,1,3,1,2,3,2,1,共6种,其中满足题意的结果有()()()1,3,2,2,1,3,3,2,1,共3种,结合古典概型计算公式可得满足题意的概率值为:3162 p==.故选:C.【点睛】方法点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏.(2)注意区分排列与组合,以及计数原理的正确使用.12.B解析:B【分析】根据甲、乙、丙去北京旅游的概率,得到他们不去北京旅游的概率,至少有1人去北京旅游的对立事件是没有人取北京旅游,根据三人的行动相互之间没有影响,根据相互独立事件和对立事件的概率得到结果.【详解】解:因甲、乙、丙去北京旅游的概率分别为13,14,15.∴他们不去北京旅游的概率分别为23,34,45,至少有1人去北京旅游的对立事件是没有人取北京旅游∴至少有1人去北京旅游的概率为234313455P=-⨯⨯=.故选:B.【点睛】本题考查相互独立事件和对立事件的概率,相互独立事件是指,两事件发生的概率互不影响,而对立事件是指同一次试验中,不会同时发生的事件,遇到求用至少来表述的事件的概率时,往往先求它的对立事件的概率.13.D解析:D【分析】列出所有分成三组的情况,共有6种,进而可得概率.【详解】4支队伍分成三组,有(甲乙、丙、丁),(甲丙、乙、丁),(甲丁、乙、丙),(乙丙、甲、丁),(乙丁、甲、丙),(丙丁、甲、乙),共6种情况,而甲乙在一组共1种情况,∴16P=.故选: D.【点睛】本题考查了古典概型,考查了计算能力,属于一般题目.二、解答题14.(1)①6,②7,③8,④9,⑤8,⑥9;(2)甲乙两位同学的转换分都为87分,看法答案见解析;(3)1 5 .【分析】(1)根据已知数据与茎叶图的关系得出答案.(2)根据高考实测的转换赋分模拟公式及结果得出答案.(3)列举法写出所有基本事件,然后按概率公式计算.【详解】解:(1)由题意知①6②7③8④9⑤8⑥9(2)甲同学选考政治学科可以的等级A,根据等比例转换赋分公式:9882100 828186TT--=--得T=87乙同学选考化学学科可以的等级A,根据等比例转换赋分公式:10091100 919086TT--=--得T=87故甲乙两位同学的转换分都为87分.从公平性的角度谈谈你对新高考这种“等级转换赋分法”的看法:一,从茎叶图可得甲乙同学原始分都排第三,转换后都是87分,因此高考这种“等级转换赋分法”具有公平性与合理性.二,甲同学与乙同学原始分差9分,但转换后都是87分,高考这种“等级转换赋分法”对尖子生不利.(3)政治学科等级为A的学生有82,84,92根据等比例转换赋分公式:87,88,95该校化学学科等级为A的学生有91,94,98根据等比例转换赋分公式:87,92,97设转换分都不少于91分为M法一:(列举法)所有基本事件:(82,84)(82,92)(82,91)(82,94))(82,98)(84,92)(84,91)(84,94)(84,98)(92,91)(92,94)(92,98)(91,94)(91,98)(94,98)共15个基本事件,时间M包含3个基本事件所以P(M)=31 155=。