紫外和可见光吸收光谱

紫外和可见光吸收光谱

1.紫外光谱及其产生

⑴紫外光的波长范围

紫外光的波长范围为4-400nm。

200-400为近紫外区,4-200nm为远紫外区。

由于波长很短的紫外光会被空气中氧和二氧化碳吸收,研究远紫外区的吸收光谱很困难,一般的紫外光谱仅仅是用来研究近紫外区的吸收。

⑵紫外光谱

当把一束光通过有机化合物时,某一波长的光可能吸收很强,而对其他波长的光可能吸收很弱,或者根本不吸收。当化合物吸收一定波长的紫外光时,电子发生跃迁,所产生的吸收光谱叫做紫外吸收光谱,简称紫外光谱。

⑶电子跃迁的种类

在有机化合物分子中,由于化合物的价电子有三种类型,即σ键电子、π键电子和未成键的 n 电子,在电子吸收光谱中,电子跃迁主要是经下三种。

①σ-σ*跃迁

σ电子是结合得最牢固的价电子,在基态下,电子在成键轨道中,能级最低,而σ*态是最高能级。σ-σ*跃迁需要相当高的辐射能量。在一般情况下,仅在200nm以下约~150nm才能观察到,即在一般紫外光谱仪工作范围之外,只能用真空紫外光谱仪才可观察出来(在无氧和二氧化碳的情况下)。所以测紫外光谱时,常常用烷烃作溶剂。

② n电子的跃迁

n 电子是指象N,S,O,X 等原子上未共用的电子。它的跃迁有两种方式。

第一种方式:n-π* 跃迁

未共用电子激发跃入π*轨道,产生吸收带,称为R带(基团型的,Radikalartig德文),由n-π*引起的,在200 nm以上。

如:醛酮分子中羰基在275-295nm处有吸收带,为C=O中n-π*跃迁吸收带。

第二种方式是n→σ*跃迁,这种跃迁所需的能量大于n-π*,故醇醚均在远紫外区才出现吸收带。~ 200nm。如甲醇λmax183nm。

③π→π*跃迁

乙烯分子中π电子吸收光能量,跃迁到π*轨道。吸收带在远紫外区。

当双键上氢逐个被烯基取代后,由于共轭作用,π→π*能级减小。吸收带向长波递增。由共轭双键产生的吸收带称为K带,其特征是摩尔消光系数大于104。在近紫外区吸收,CH2=CH2 λmax162nm,CH2=CH-CH=CH2 λmax217nm。

https://www.360docs.net/doc/d319161693.html,mbert-Beer定律和紫外光谱图

⑴ Lambert-Beer(朗勃特-比尔)定律

当我们把一束单色光(I o)照射溶液时,一部分光(I)通过溶液,而另一部分先被溶液吸收了。这种吸收是与溶液中物质的浓度(c)和液层的厚度成正比的。这就是Lambert-Beer定律。透射光强度(I)和入射光强度(I0)之比,即I/I0为透射比。LogI/I0为透光率,A=- LogI/I0为吸光度(吸收度);c:溶液的摩尔浓度(mol/L)L:液层的厚度,单位cm;

ε:摩尔消光系数。从理论上说,ε的大小表示这个分子在吸收峰的波长可以发生能量转移(电子从能位低的分子轨道跃迁到能位高的分子轨道)的可能性。

ε值大于104是完全允许的跃迁,而小于103跃迁几率较低,若跃进迁是禁阻的,ε值小于几十。

当c为百分浓度时,ε为百分消光系数,以表示。

⑵紫外光谱图

以吸光度或消光系数(ε或logε)为纵坐标,以波长(单位nm)为横坐标作图得到的紫外光吸收曲线,即紫外光谱图(纵坐标常常用ε或logε)。

(1)处有一个最大吸收峰,位于波长280nm,用λmax280nm表示。最大吸收峰为化合物的特征数值。

在一般文献中,紫外吸收光谱的数据,多报导它的最大吸收峰的波长位置和摩尔消光系数。如:

表示样品在甲醇溶液中,在252nm处有最大吸收峰,这个吸收峰的摩尔消光系数为12300。当消光系数很大时,一般用logE或logε表示。

⑶紫外光谱图中常见的几种吸收带及常用光谱术语。

R 吸收带(来自德文 Radikalartig(基团)):为n→π*跃迁引起的吸收带如C=O,-NO2 ,-CHO.其特点εmax<100(logε<2),λmax 一般在270nm以上。

K 吸收带(来自德文 Konjugierte(共轭)):为π→π*跃迁引起的吸收带,如共轭双键。该带的特点εmax>10000。共轭双键增加,εmax向长波方向移动,εmax 随之增加。

B 吸收带(来自Benzenoid一词(苯系)):为苯的π→π*跃迁引起的特征吸收带,其波长在230-270nm之间,中心在254nm,ε约为204左右,

E 吸收带(Ethylenic(乙烯型)):也属于π→π*跃迁。可分为E1和 E2带,二者可以分别看成是苯环中的乙烯及共轭乙烯键所引起的。苯的E1为180nm,ε

max >10000; E2为200nm,2000<εmax<14000。

生色基(发色团):

共价键不饱和原子基团,能引起电子光谱特征吸收,一般为带π电子的基团。如:C=C、C=O、C=N、NO、 NO2等。

助色基(助色团)

饱和原子基团,本身在200nm以上没有吸收,但当它与发色基团连接时,可使发色团的最大吸收峰向长波方向移动,并且使强度增加,这样的基团叫助色团,如:--OH 、–NH2、–Cl、 -SH 等。一般为带p电子的原子或原子团。

3.紫外光谱与有机化合物分子结构的关系

一般紫外光谱是指200-400nm的近紫外区,只有π→π*n→π*跃迁才有实际意义,也就是说紫外光谱适用于分子中具有不饱和结构的,特别是共轭结构的化合物。

⑴共轭体系增长,吸收峰的波长向长波方向移动。如:

⑵共轭链的一端引入含有未共用电子的基团(如:-NH2,-OH)和烷基时,可以产生 p-π,σ-π超共轭,使λmax向长波方向移动。

4.紫外光谱的应用

⑴推断官能团(确定不饱和化合物的结构骨架)

如在200~250nm有强吸收带(ε>10000),可能含有双键的共轭单位;在250~300nm有弱吸收(ε<100)表示可能有羰基存在。

⑵检查化合物的纯度

紫外可见吸收光谱法

紫外可见吸收光谱法 开放分类:化学科学 收藏分享到顶[1]编辑词条 目录 ? 1 概述 ? 2 基本原理 ? 3 特点 ? 4 仪器组成 ? 5 应用 ? 6 影响因素 ?展开全部 摘要 紫外可见吸收光谱法是利用某些物质的分子吸收10~800nm光谱区的辐射来进行分析测定的方法,这种分子吸收光谱产生于价电子和分子轨道上的电子在电子能级间的跃迁,广泛用于有机和无机物质的定性和定量测定。该方法具有灵敏度高、准确度好、选择性优操作简便、分析速度好等特点。 紫外可见吸收光谱法-概述 图4.3

分子的紫外可见吸收光谱法是基于分子内电子跃迁产生的吸收光谱进行分析的一种常用的光谱分析法。分子在紫外-可见区的吸收与其电子结构紧密相关。紫外光谱的研究对象大多是具有共轭双键结构的分子。如(图4.3),胆甾酮(a)与异亚丙基丙酮(b)分子结构差异很大,但两者具有相似的紫外吸收峰。两分子中相同的O=C-C=C共轭结构是产生紫外吸收的关键基团。 紫外-可见以及近红外光谱区域的详细划分如图4.4所示。紫外-可见光区一般用波长(nm)表示。其研究对象大多在200-380 nm的近紫外光区和/或380-780 nm的可见光区有吸收。紫外-可见吸收测定的灵敏度取决于产生光吸收分子的摩尔吸光系数。该法仪器设备简单,应用十分广泛。如医院的常规化验中,95%的定量分析都用紫外-可见分光光度法。在化学研究中,如平衡常数的测定、求算主-客体结合常数等都离不开紫外-可见吸收光谱。[1] (图)图4.4 紫外可见吸收光谱法-基本原理 紫外可见吸收光谱的基本原理是利用在光的照射下待测样品内部的电子跃迁,电子跃迁类型有: (1)σ→σ* 跃迁指处于成键轨道上的σ电子吸收光子后被激发跃迁到σ*反键轨道 (2)n→σ* 跃迁指分子中处于非键轨道上的n电子吸收能量后向σ*反键轨道的跃迁 (3)π→π* 跃迁指不饱和键中的π电子吸收光波能量后跃迁到π*反键轨道。 (4)n→π* 跃迁指分子中处于非键轨道上的n电子吸收能量后向π*反键轨道的跃迁。

紫外可见吸收光谱原理及应用

为什么是连续的带状光谱? 分子光谱来源于分子内部不同电子能级、振动能级和转动能级之间的跃迁,转动能级差最小(10-3-10-6eV),振动能级差次之(10-2-1eV),电子能级差最大(1-20eV)。电子光谱的波长在紫外可见区(100-800nm),也称为紫外可见光谱。在发生电子能级跃迁的同时,振动能级和转动能级也不可避免地会发生跃迁,如图1所示。各个能级之间的能量差是非常小的,所以产生的谱线就会非常密集,当仪器分辨率不高的时候,往往会看到一个较宽的带状光谱。如果在惰性溶剂(如饱和烃类等)或者气态中测定,就会看到因振动吸收而产生的锯齿状精细结构。 图1:不同种类分子光谱所在波场(左)和三种能级跃迁示意图(右)(图片来自网络) 特征吸收峰是如何产生的? 有机化合物分子中涉及三种电子:形成单键的σ电子、形成不饱和键的π电子、未成键的孤对电子(n电子)。处于低能态的成键电子吸收合适的能量后,可以跃迁到一个较高的反键轨道。 如图2:

图2:电子跃迁的相对能量示意图 饱和烃分子(甲烷等)只能发生σ-σ*跃迁,σ电子不易激发,所以需要的能量大,需要在波长较短的辐射才能发生,吸收波长<150nm,处于远紫外区。 分子中存在C=C双键时可以发生π-π*跃迁,跃迁所需能量较σ电子小,吸收波长<200nm,如果分子中存在共轭体系,π电子的成键轨道与反键轨道能级差降低,使得π-π*所需的能量减少,因此吸收波长会向长波长移动,随着共轭体系的增长,吸收波长可由近紫外区转向可见光区。例如乙烯的λmax=185nm,而1,3-丁二烯其λmax=217nm。 分子中存在C=O、N=O、N=N等基团,除了可以进行π-π*跃迁外,还可以进行n-π*跃迁,这种跃迁所需能量较少,吸收波长大于200nm。例如丙酮的n-π*跃迁吸收带λmax=279nm,它的π-π*跃迁需要更高的能量,其吸收带λmax≈279nm。 所以紫外谱中特征吸收峰的出现与化合物本身的结构密切相关,这些特征可用于初步对化合物进行分析鉴定。 紫外可见吸收光谱有哪些应用呢? 1.有机化合物结构推测 (1)在210~250nm波长范围内有强吸收峰,则可能含有2个共轭双键;若在260~350nm 波长范围内有强吸收峰,则说明该有机物含有3-5个共轭双键。 (2)若在250~300mm波长范围内有中等强度的吸收峰伴有振动精细结构则可能含有苯环。 (3)若在250~300mm波长范围内有低强度吸收峰,且增加溶剂极性会蓝移,则可能含有带孤对电子的未共轭基团,比如羧基。 2.同分异构体的判别

光谱中红外,紫外,可见光的光谱范围

可见光 指能引起视觉的电磁波。可见光的波长范围在0.77~0.39微米之间。波长不同的电磁波,引起人眼的颜色感觉不同。0.77~0.622微米,感觉为红色;0.622~0.597微米,橙色;0.597~0.577微米,黄色;0.577~0.492微米,绿色;0.492~0.455微米,蓝靛色;0.455~0.39微米,紫色。 可见光是电磁波谱中人眼可以感知的部分,可见光谱没有精确的范围;一般人的眼睛可以感知的电磁波的波长在400到700纳米之间,但还有一些人能够感知到波长大约在380到780纳米之间的电磁波。正常视力的人眼对波长约为555纳米的电磁波最为敏感,这种电磁波处于光学频谱的绿光区域 人眼可以看见的光的范围受大气层影响。大气层对于大部分的电磁波辐射来讲都是不透明的,只有可见光波段和其他少数如无线电通讯波段等例外。不少其他生物能看见的光波范围跟人类不一样,例如包括蜜蜂在内的一些昆虫能看见紫外线波段,对于寻找花蜜有很大帮助。 红外光谱 红外光谱(infrared spectra),以波长或波数为横坐标以强度或其他随波长变化的性质为纵坐标所得到的反映红外射线与物质相互作用的谱图。按红外射线的波长范围,可粗略地分为近红外光谱(波段为0.8~2.5微米)、中红外光谱(2.5~25微米)和远红外光谱(25~1000微米)。对物质自发发射或受激发射的红外射线进行分光,可得到红外发射光谱,物质的红外发射光谱主要决定于物质的温度和化学组成;对被物质所吸收的红外射线进行分光,可得到红外吸收光谱。每种分子都有由其组成和结构决定的独有的红外吸收光谱,它是一种分子光谱。分子的红外吸收光谱属于带状光谱。原子也有红外发射和吸收光谱,但都是线状光谱。 量子场论或量子电动力学可以正确地描述和解释红外射线(一种电磁辐射)与物质的相互作用。若采用半经典的理论处理方法,即对组成物质的分子和原子作为量子力学体系来处理,辐射场作为一种经典物理中的电磁波并忽略其光子的特征,则分子红外光谱是由分子不停地作振动和转动而产生的。分子振动是指分子中各原子在平衡位置附近作相对运动,多原子分子可组成多种振动模式。当孤立分子中各原子以同一频率、同一相位在平衡位置附近作简谐振动时,这种振动方式称简正振动。含N个原子的分子应有3N-6个简正振动方式;如果是线性分子,只有3N-5个简正振动方式。图中示出非线性3原子分子仅有的3种简正振动模式。分子的转动指的是分子绕质心进行的运动。分子振动和转动的能量不是连续的,而是量子化的。当分子由一种振动(或转动)状态跃迁至另一种振动(或转动)状态时,就要吸收或发射与其能级差相应的光。 研究红外光谱的方法主要是吸收光谱法。使用的光谱有两种类型。一种是单通道或多通道测量的棱镜或光栅色散型光谱仪,另一种是利用双光束干涉原理并进行干涉图的傅里叶变换数学处理的非色散型的傅里叶变换红外光谱仪。 红外光谱具有高度的特征性,不但可以用来研究分子的结构和化学键,如力常数的测定等,而且广泛地用于表征和鉴别各种化学物种。 紫外光谱 紫外光谱是分子中某些价电子吸收了一定波长的电磁波,由低能级跃近到高能级而产生的一种光谱,也称之为电子光谱。目前使用的紫外光谱仪波长范围是200~800nm。其基本原理是用不同波长的近紫外光(200~400nm)依次照一定浓度的被测样品溶液时,就会发现部分波长的光被吸收。如果以波长λ为横坐标(单位nm),吸收度(absorbance)A为纵坐标作图,即得到紫外光谱(ultra violet spectra,简称UV)。

紫外-可见吸收光谱与红外光谱

紫外-可见吸收光谱与红外光谱 基本概念 紫外-可见吸收光谱:让不同波长的光通过待测物,经待测物吸收后,测量其对不同波长光的吸收程度(吸光度A),以吸光度A为纵坐标,辐射波长为横坐标作图,得到该物质的吸收光谱或吸收曲线,即为紫外—可见吸收光谱。 红外光谱:又称为分子振动转动光谱,属分子吸收光谱。样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,使振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,记录百分透过率T%对波数或波长的曲线,即为红 外光谱。 两者都是红分了的吸收光谱图。 区别--起源不同 1.紫外吸收光谱由电子能级跃迁引起紫外线波长短、频率高、光子能量大,能引起分子外层电子的能级跃迁。电子跃迁虽然伴随着振动及转动能级跃迁,但因后者能级差小,常被紫外曲线所淹没。除某些化合物蒸气(如苯等)的紫外吸收光谱会显现振动能级跃起迁外,一般不显现。因此,紫外吸收光谱属电子光谱。光谱简单。 2.中红外吸收光谱由振—转能级跃迁引起? 红外线的波长比紫外线长,光子能量比紫外线小得多,只能收起分子的振动能级并伴随转动能级的跃迁,因而中红外光谱是振动—转动光谱,光谱复杂。 适用范围 紫外吸收光谱法只适用于芳香族或具有共轭结构的不饱和脂肪族化合物及某些无物的定性分析,不适用于饱和有机化合物。红外吸收光谱法不受此限,在中红外区,能测得所有有机化合物的特征红外光谱,用于定性分析及结构研究,而且其特征性远远高于紫外吸收光谱,除此之外,红外光谱还可以用于某些无机物的研究。 紫外分光光度法测定对象的物态以溶液为主,以及少数物质的蒸气;而红外分光光度法的测定对象比紫外分光光度法广泛,可以测定气、液、固体样品,并以测定固体样品最为方便。 红外分光光度法主要用于定性鉴及测定有机化合物的分子结构,紫外分光光度法主要用于定量分析及测定某些化合物的类别等。 特性 红外光谱的特征性比紫外光谱强。因为紫外光谱主要是分子的∏电子或n电子跃迁所产生的吸收光谱。因此,多数紫外光谱比较简单,特征性差。 UV-Vis主要用于分子的定量分析,但紫外光谱(UV)为四大波谱之一,是鉴定许多化合物,尤其 是有机化合物的重要定性工具之一。 红外光谱主要用于化合物鉴定及分子结构表征,亦可用于定量分析。 应用实例: 紫外光谱的一些图:

紫外可见光吸收光谱

紫外可见光吸收光谱 紫外可见光吸收光谱是一种重要的分析方法,广泛应用于化学、光学、生物学等领域。下面我将从什么是紫外可见光吸收光谱、应用领域、分析方法、仪器设备、典型实验步骤以及注意事项等方面进行介绍。 一、什么是紫外可见光吸收光谱 紫外可见光吸收光谱又称紫外可见吸收光谱,是物质分子在紫外、可 见光区的吸收光谱。简单来说,就是利用物质吸收光的特性进行分析。 二、应用领域 紫外可见光吸收光谱被广泛应用于分析化学、光学、生物医学、环境 监测等领域。如利用紫外可见吸收光谱对生物大分子如DNA、蛋白质 等进行分析、对环境中的水质、空气等进行检测,还可用于药物研究 等方面。 三、分析方法 紫外可见光吸收光谱的分析方法是利用物质吸收光的特性进行分析。 通过分析不同波长的光线在样品中的吸收情况,可以了解样品所含的 化学物质的组成及浓度。 四、仪器设备 紫外可见光吸收光谱的仪器设备主要有:紫外可见分光光度计,样品池,光源,检测器。

五、典型实验步骤 (1)准备样品:取少量样品并将其溶解在适量的溶液中,使其达到稳 定状态。 (2)将溶液倒入样品池中,并将样品池放置于紫外可见分光光度计中。(3)选择波长:根据样品的特性选择合适的波长进行分析。 (4)根据波长设置仪器参数:包括选择光路、调整光栅、检测器增益等。 (5)记录吸收光谱:启动分光光度计进行测试并记录数据。 (6)数据处理:利用计算机等工具对数据进行处理和分析。 六、注意事项 (1)在记录数据前,应先了解仪器的基本操作流程,以便能更准确地 记录数据。 (2)在取样时应注意取样量,建议取量小,避免影响测试结果。 (3)在进行测试时,应尽可能排除环境因素的影响,以保障测试结果 的准确性。

紫外和可见光吸收光谱

紫外和可见光吸收光谱 1. 紫外光谱及其产生 ⑴紫外光的波长范围 紫外光的波长范围为4-400nm。 200-400为近紫外区,4-200nm为远紫外区。 由于波长很短的紫外光会被空气中氧和二氧化碳吸收,研究远紫外区的吸收光谱很困难,一般的紫外光谱仅仅是用来研究近紫外区的吸收。 ⑵紫外光谱 当把一束光通过有机化合物时,某一波长的光可能吸收很强,而对其他波长的光可能吸收很弱,或者根本不吸收。当化合物吸收一定波长的紫外光时,电子发生跃迁,所产生的吸收光谱叫做紫外吸收光谱,简称紫外光谱。 ⑶电子跃迁的种类 在有机化合物分子中,由于化合物的价电子有三种类型,即σ 键电子、π 键电子和未成键的 n 电子,在电子吸收光谱中,电子跃迁主要是经下三种。 ①σ-σ*跃迁 σ电子是结合得最牢固的价电子,在基态下,电子在成键轨道中,能级最低,而σ*态是最高能级。σ-σ*跃迁需要相当高的辐射能量。在一般情况下,仅在200nm以下约~150nm才能观察到,即在一般紫外光谱仪工作范围之外,只能用真空紫外光谱仪才可观察出来(在无氧和二氧化碳的情况下)。所以测紫外光谱时,常常用烷烃作溶剂。

② n电子的跃迁 n 电子是指象N,S,O,X 等原子上未共用的电子。它的跃迁有两种方式。 第一种方式:n-π* 跃迁 未共用电子激发跃入π* 轨道,产生吸收带,称为R带(基团型的,Radikalartig德文),由n-π*引起的,在200 nm以上。 如:醛酮分子中羰基在275-295nm处有吸收带,为C=O中n-π*跃迁吸收带。 第二种方式是n→σ*跃迁,这种跃迁所需的能量大于n-π*,故醇醚均在远紫外区才出现吸收带。~ 200nm。如甲醇λmax183nm。 ③π→π*跃迁 乙烯分子中π电子吸收光能量,跃迁到π*轨道。吸收带在远紫外区。 当双键上氢逐个被烯基取代后,由于共轭作用,π→π*能级减小。吸收带向长波递增。由共轭双键产生的吸收带称为K带,其特征是摩尔消光系数大于104。在近紫外区吸收,CH2=CH2 λmax162nm,CH2=CH-CH=CH2 λmax217nm。 https://www.360docs.net/doc/d319161693.html,mbert-Beer定律和紫外光谱图 ⑴ Lambert-Beer(朗勃特-比尔)定律 当我们把一束单色光(Io)照射溶液时,一部分光(I)通过溶液,而另一部分先被溶液吸收了。这种吸收是与溶液中物质的浓度(c)和液层的厚度成正比的。这就是Lambert-Beer定律。透射光强度(I)和入射光强度(I0)之比,即I/I0为透射比。LogI/I0为透光率,A=- LogI/I0为吸光度(吸收度);c:溶液的摩尔浓度(mol/L)L:液层的厚度,单位cm;

绪论紫外-可见吸收光谱习题与答案

第二章:紫外可见吸收光谱法 1. 紫外-可见光谱的产生是由外层价电子能级跃迁所致,其能级差的大小决定了(3) (1)吸收峰的强度(2)吸收峰的数目 (3)吸收峰的位置(4)吸收峰的形状 2. 紫外光谱是带状光谱的原因是由于 (1)紫外光能量大(2)波长短(3)电子能级差大 (4)电子能级跃迁的同时伴随有振动及转动能级跃迁的原因 3. 化合物中,下面哪一种跃迁所需的能量最高 (1)σ→σ*(2)π→π*(3)n→σ*(4)n→π* 4. π→π*跃迁的吸收峰在下列哪种溶剂中测量,其最大吸收波长最大 (1)水(2)甲醇(3)乙醇(4)正己烷 5. 下列化合物中,在近紫外区(200~400nm)无吸收的是 (1)(2)(3)(4) 6. 下列化合物,紫外吸收λmax值最大的是 (1)(2)(3)(4) 二、解答及解析题 1.为什么紫外吸收光谱是带状光谱?由于一般紫外可见分光光度计只能提供190-850nm 范围的单色光,因此,我们只能测量n→σ*的跃迁,n→π*跃迁和部分π→π*跃迁的吸收,而对只能产生200nm以下吸收的σ→σ*的跃迁则无法测量. 紫外吸收光谱是带状光谱,分子中在些吸收带已被确认,其中有K带、R带、B带、E1和 h E2带等. 2.紫外吸收光谱能提供哪些分子结构信息?紫外光谱在结构分析中有什么用途又有何局 限性?(1)如果在200~400nm区间无吸收峰,没该化合物应该无共轭双键系统,或为饱和有机化合物。(2)如果在270~350nm区间有一个很弱的吸收峰,并且在200nm以上无其他吸收,该化合物含有带孤电子的未共轭的发色轩。(3)如果在UV光谱中给出许多吸收峰,某些峰甚至出现在可见区,刚该化合物结构中可能具有长链共轭体系或稠环芳香发色团。如果化合物有颜色,则至少有4~5个相互共轭的发色团。(4)在UV光谱中,其长波吸收峰的强度在10000~20000之间时,示有α、β不饱和酮或共轭烯烃结构存在。

紫外可见吸收光谱测试

实验10紫外可见吸收光谱测试 【实验目的】 本实验的目的是使学生掌握材料(液态、固态粉末和薄膜材料)的光学特性,特别是紫外光区和可见光区的光学特性的检测方法,同时具有分析和运用材料紫外光区和可见光区光谱特性的能力。 【仪器用具】 UV-2550岛津紫外可见分光光度计 【实验原理】 研究物质在紫外-可见光区的分子吸收光谱的分析方法称为紫外-可见分光光度法。紫外-可见分光光度法是利用某些物质的分子吸收200~900 nm光谱区的辐射来进行分析测定的 方法。这种分子吸收光谱产生于价电子和分子轨道上的电子在电子能级间的跃迁,广泛用于无机和有机物质的定性和定量测定。 当光作用在物质上时,一部分被表面反射,一部分被物质吸收。改变入射光的波长时,不同物质对每种波长的光都有对应的吸收程度(A)或透过程度(T),可以做出这种物质在实验波长范围内的吸收光谱曲线或透过光谱曲线。用紫外-可见分光光度计可以作出材料在紫外光区和可见光区的对紫外光和可见光的吸收光谱曲线或透过光谱曲线。利用的是朗伯-比尔定律: (10-1) A abc A为吸光度,a为吸光系数,b为光路长度,c为物质浓度。 通过吸收光谱曲线或透过光谱曲线可以判断材料在紫外光区和可见光区的光学特性,为材料的应用作指导。例如,具有较高的紫外光吸收性能,可作为保温吸热等材料;如具有较高的紫外光反射特性,则可作为好的抗老化材料。除此以外,紫外-可见吸收光谱还可用于物质的定量分析、定性分析、纯度鉴定和结构分析等。 【仪器介绍】 UV-2550紫外可见分光光度计可进行光谱扫描、定量和动力学扫描,可用于无机化合物的分析,光学材料的特性测定等紫外可见分光分析。 ①测光类型:吸光度、透射率、反射率、能量;有固定波长测定,时间变化曲线测定(动 力学测定);光谱分析,定量测定。 ②基线校正:计算机自动校正。 ③软件功能:Windows、基本测试、文件处理、数据处理、定量测试等。 ④低杂散光:采用优异的双闪耀衍射光栅、双单色器技术,实现了超低杂散光和高光通量。

紫外-可见和红外吸收光谱分析

第二章紫外-可见吸收光谱 【教学内容】 1. 紫外-可见吸收光谱概述 2. 紫外-可见光谱的仪器原理 3.紫外-可见吸收光谱的原理 4.常用术语 5 有机化合物紫外-可见光谱的吸收峰 6 吸收谱带的四种类型 7 常见有机化合物生色团的紫外吸收峰 8 紫外-可见光谱的影响因素 9.紫外-可见光谱的定性和定量应用 【掌握内容】 1.掌握紫外-可见光谱的基本概念1 2.掌握有机化合物中电子跃迁的基本类型。 3.掌握紫外-可见光谱的定性分析方法 4.掌握紫外-可见光谱的定量分析方法 【熟悉内容】 熟悉紫外-可见光谱仪的基本原理 【了解内容】 了解无机化合物的紫外-可见吸收光谱 【教学重点和难点】 教学重点:紫外-可见吸收光谱的基本概念、定性和定量分析方法 【教学目标】 掌握紫外-可见光谱的基本概念,紫外-可见光谱的定性和定量分析方法。 【教学手段】课堂讲授,辅以多媒体幻灯图片 【教学过程】 1 紫外-可见吸收光谱概述 紫外—可见分光光度法是利用某些物质分子能够吸收200 ~ 800 nm光谱区的辐射来进行分析测定的方法。这种分子吸收光谱源于价电子或分子轨道上电子的电子能级间跃迁,广泛用于无机和有机物质的定量测定,辅助定性分析(如配合IR)。 1.1 分子吸收光谱的产生 在分子中,除了电子相对于原子核的运动外,还有核间相对位移引起的振动和转动。这三种运动能量都是量子化的,并对应有一定能级。下图为分子的能级示意图。

图1. 分子中电子能级、振动能级和转动能级示意图 分子总能量:E分子= E电子+ E振动+ E转动 当用频率为ν的电磁波照射分子,而该分子的较高能级与较低能级之差△E恰好等于该电磁波的能量hν时,即有: △ E = hν(h为普朗克常数) 此时,在微观上出现分子由较低能级跃迁到较高的能级;在宏观上则透射光的强度变小。 用一连续-辐射的电磁波照射分子,将照射前后光强度的变化转变为电信号,并记录下来,然后以波长为横坐标,以电信号(吸光度A)为纵坐标,就可以得到一张光强度变化对波长的关系曲线图-紫外吸收光谱图,如下: A称为吸光度(absorbance),吸收度或光密度(OD,optical density),a称为吸收系数 (absorotiviry),是化合物分子的特性,它与浓度(c)和光透过介质的厚度(b)无关。当c为摩尔浓度,b以厘米为单位(l),a即以ε来表示,称为摩尔吸光系数或摩尔消光系数(molar absorptivity)。 按Lambert-Beer定律可进行定量测定。测量时盛溶液的吸收池厚度为b,若浓度c已知,测得吸光度A即可计算出ε值,后者为化合物的物理常数。若已知ε值,则由测得的吸光度可计算溶液的浓度。 由上诉可见,当测定一个化合物的吸收光谱时,被吸收光的波长和摩尔吸光系数的两个重要的参数,前者表示吸收能量的大小,后者反映能级跃迁的几率,属于化合物的特性。1.2分子吸收光谱类型 分子的转动能级差一般在0.005 ~ 0.05eV。能级跃迁需吸收波长约为250 ~ 25μm的远红外光,因此,形成的光谱称为转动光谱或远红外光谱。 分子的振动能级差一般在0.05 ~ 1 eV,需吸收波长约为25 ~ 1.25μm的红外光才能产生跃迁。在分子振动时同时有分子的转动运动。称为振-转光谱。就是前面的红外光谱。

相关文档
最新文档