半导体生产工艺流程
半导体制造工艺流程

半导体制造工艺流程
《半导体制造工艺流程》
半导体制造工艺流程是一项复杂而精密的过程,它涉及到众多工艺步骤和高科技设备的运用。
从原料准备到最终产品的制造,整个过程需要严格的控制和监测。
以下是一般的半导体制造工艺流程:
1. 原料准备:半导体材料通常是硅晶圆,因此首先需要准备高纯度的硅原料。
这些原料经过一系列的化学处理,确保其纯度和稳定性。
2. 晶圆生长:通过化学气相沉积或其他方法,在硅片上生长一层极薄的绝缘层或者介质层,作为半导体器件的基质。
3. 掩模制作:使用光刻技术,在晶圆表面涂覆液体光刻胶、曝光和显影,以形成所需的芯片图案。
4. 电子束和离子注入:使用电子束或离子注入技术,将芯片上的电器元件按设计要求添加掺杂剂。
5. 清洗和去除残留物:使用化学溶液或气体等方法,将晶圆表面的零散杂质和残留物清洗干净。
6. 金属沉积:在晶圆上涂覆一层金属,形成导电线路和引脚。
7. 碳化层形成:在晶圆表面生成一层碳化物薄膜,以增加晶圆
的表面硬度和耐高温性能。
8. 封装和测试:将晶圆切割成单个的芯片,然后进行封装和测试,确保半导体器件的性能符合标准要求。
半导体制造工艺流程需要高度的自动化和精密控制,以确保产品质量和生产效率。
同时,对于半导体行业而言,不断的技术创新和设备更新也是不可或缺的。
随着科技的不断进步,半导体制造工艺流程也在不断优化和改进,以满足市场的需求和提高产品性能。
半导体芯片生产工艺

半导体芯片生产工艺半导体芯片生产工艺是一种非常复杂和精细的过程,涉及到多个步骤和环节。
下面我将简要介绍一下半导体芯片生产的主要工艺流程。
1. 半导体晶圆制备:半导体芯片是通过在硅晶圆上制造微小的电子元件来实现的。
首先,从纯度极高的硅单晶中制备出晶圆,通常使用Czochralski方法。
在这个过程中,将纯净的硅溶液熔化并冷却,形成单晶硅棒,然后将其切割成薄片,即晶圆。
2. 晶圆化学处理:经过切割后的晶圆表面可能存在一些杂质和缺陷,需要经过一系列化学处理步骤来去除这些杂质。
这包括去除氧化物和有机污染物,以保证晶圆表面的纯度。
常用的处理方法包括酸洗、碱洗和溅射处理等。
3. 肖特基势阻撕开初步形成晶体管:肖特基势阻撕开是半导体芯片制造的核心步骤之一。
这一步骤是在晶圆表面制造出MOSEFET晶体管,用于控制电流的通断。
首先,利用光刻技术将光刻胶涂在晶圆表面,并通过曝光和显影来形成晶体管的图案。
然后,使用化学气相沉积(CVD)技术在晶体管上沉积一层绝缘层和栅极材料。
4. 金属线路制造:在晶体管上形成的电子元件需要连接起来,以形成电路。
这一步骤是利用化学气相沉积技术将金属层沉积在晶圆上,形成电路之间的连线。
然后,使用电子束或激光器去除多余的金属,形成所需的线路模式。
5. 固化和封装:在完成金属线路制造后,需要对芯片进行固化和封装,以保护芯片并提供外部引脚。
首先,将芯片放入高温炉中加热,将金属线路的材料烧结在一起,形成一个坚固的结构。
然后,使用薄膜封装技术将芯片封装在塑料或陶瓷外壳中,并连接外部引脚。
6. 测试和包装:最后一步是对芯片进行测试和包装。
芯片会经过一系列的测试来检查其电性能和功能。
一旦通过测试,芯片将被放置在塑料或陶瓷封装中,并进行标签和贴片等最后的包装工作。
以上是半导体芯片生产的主要工艺流程。
这个过程需要非常高的精度和控制,因为任何微小的错误都可能导致芯片的失效。
随着技术的发展,半导体芯片生产工艺不断在改进和创新,以满足不断增长的需求和不断提高的性能要求。
半导体生产工艺流程

半导体生产工艺流程半导体生产工艺是一项复杂而精密的过程,它涉及到许多工艺步骤和技术要求。
在半导体生产工艺流程中,主要包括晶圆加工、光刻、薄膜沉积、离子注入、退火、化学机械抛光等环节。
下面将逐一介绍这些工艺步骤及其在半导体生产中的作用。
首先是晶圆加工。
晶圆加工是半导体生产的第一步,它主要包括晶圆切割、清洗、去除氧化层等工艺。
晶圆切割是将单晶硅锭切割成薄片,然后对其进行清洗和去除氧化层处理,以便后续工艺的进行。
接下来是光刻工艺。
光刻工艺是通过光刻胶和掩模板,将图形影像转移到晶圆表面的工艺。
它的主要作用是定义芯片上的电路图形和结构,为后续的薄膜沉积和离子注入提供图形依据。
然后是薄膜沉积。
薄膜沉积是将各种材料的薄膜沉积到晶圆表面,以实现半导体器件的功能。
常见的薄膜沉积工艺包括化学气相沉积(CVD)、物理气相沉积(PVD)等,它们可以实现对材料的精确控制和沉积。
离子注入是半导体工艺中的重要步骤。
离子注入是通过加速器将掺杂原子注入到晶体中,改变其导电性能和器件特性。
离子注入工艺可以实现对晶体材料中杂质原子的控制,从而实现对半导体器件性能的调控。
退火是半导体生产中的一个重要环节。
退火工艺是将晶圆在高温条件下进行热处理,以消除材料内部的应力和缺陷,提高晶体的结晶质量和电学性能。
最后是化学机械抛光。
化学机械抛光是将晶圆表面的氧化层和残留杂质去除,使晶圆表面变得光滑平整,以便后续的工艺步骤和器件制作。
总的来说,半导体生产工艺流程是一个复杂而精密的过程,它涉及到多个工艺步骤和技术要求。
每一个工艺步骤都对半导体器件的性能和质量有着重要的影响,需要严格控制和优化。
只有在严格遵循工艺流程和技术要求的前提下,才能生产出高性能、高可靠性的半导体器件。
半导体制造工艺流程大全

半导体制造工艺流程大全1.半导体材料准备:制造过程的第一步是准备半导体材料。
常用的半导体材料包括硅、砷化镓和磷化镓等。
这些材料需要通过晶体生长技术来制备出高纯度的单晶硅片或外延片。
2.掩膜制备:接下来,需要在半导体材料上制备一层掩膜。
掩膜是一种特殊的光刻胶,能够帮助定义出待制造的电子器件结构。
通过光刻技术,在掩膜上曝光并使用化学溶解剂去除暴露区域的光刻胶,从而形成所需的图案。
3.制造掩模:根据所需的器件结构,需要制造掩模。
掩模通常由透明的石英板和掩模背面涂上的金属膜组成。
使用电子束或激光刻蚀技术将所需的图案转移到金属膜上,然后再去除背面的掩膜光刻胶。
4.器件制造:将制造好的掩模放在准备好的半导体材料上,通过离子注入、物理气相沉积或化学气相沉积等技术,在材料上制备出所需的器件结构和电路连接电路。
5.清洗和拷贝:在制造过程中,需要定期清洗掉不需要的杂质和残留物,以确保器件性能的稳定。
此外,对于大规模集成电路制造,还需要使用光刻和蚀刻等技术进行电路拷贝。
6.热处理和退火:在器件制造的后期,还需要进行一系列的热处理和退火工艺。
这些工艺可以改变器件的电学和结构特性,以提高性能和可靠性。
7.电极制造:最后一步是制造电极。
使用金属薄膜沉积技术,在器件上制备出电极连接电路。
这些电极可以用于对器件进行电压和电流的刺激和测量。
半导体制造是一个高度精密和复杂的过程,需要使用多种材料和技术。
根据所制备器件的不同,工艺流程也会有所不同。
此外,随着科技的发展,新的材料和工艺技术也在不断涌现,使半导体制造工艺变得更加多样化和复杂化。
以上只是半导体制造工艺流程的一个简要概述,实际的制造过程会更加复杂和详细。
不同的半导体制造公司和研发机构可能会有特定的流程和工艺参数。
因此,在实际应用中,需要根据具体需求和材料特性来设计和优化制造工艺流程。
半导体生产工艺流程

半导体生产工艺流程半导体生产工艺流程半导体是现代电子设备的基础,通过精细加工和控制,在硅、锗、砷化镓等材料上制造出晶体管、集成电路等微小电子器件。
半导体生产工艺流程是一个非常复杂的过程,通常包括以下几个步骤。
首先是材料制备。
半导体材料通常是通过高纯度的硅、锗等原料制备而成。
原料经过多道精细的提纯工艺,去除杂质,使得半导体材料的纯度达到极高的水平。
其次是掩膜工艺。
所谓掩膜工艺,是指在半导体材料表面进行掩膜(Mask)处理,以形成具有特定结构和形状的器件,用于分离、连接和传导电流。
这个工艺是半导体生产中的核心步骤,决定了器件的性能和功能。
然后是光刻工艺。
光刻工艺是利用光刻胶、光罩和紫外光等来制作图案的一种工艺。
通过将光刻胶涂覆在半导体材料表面上,然后使用光刻机来曝光和显影,最终得到所需要的图案。
这个阶段的精度要求非常高,可以制作出微米级以上的图案。
随后是化学气相沉积工艺。
化学气相沉积工艺是一种将气体通过化学反应转化成固体颗粒的工艺。
通过将具有特定功能的化学物质蒸发,使其在半导体表面上形成薄膜。
这个工艺主要用于制备氧化物、金属等材料的膜层,用于提高器件的性能和稳定性。
最后是制程测试和封装工艺。
在半导体生产过程中,需要对器件进行严格的测试和调试来确保其质量和性能。
同时,还需要对器件进行封装,以保护器件免受外界环境的影响,同时方便与其他设备的连接。
以上就是半导体生产工艺流程的大致步骤。
当然,实际的生产过程会更加复杂和精细,并且随着技术的不断进步和创新,生产工艺也在不断演化和改进。
半导体工艺的高精度、高纯度要求使得半导体生产成本较高,但受益于这一产业的规模效应和技术进步,半导体设备的性能越来越高,应用范围也越来越广泛。
半导体生产工艺流程详解

半导体生产工艺流程详解半导体生产工艺流程可真是个有趣又复杂的事儿啊!咱今儿就来好好聊聊这个。
一、硅片制备这可是半导体生产的基础哦。
一般是从石英砂里提炼出高纯度的多晶硅,然后通过一些神奇的方法把它变成单晶硅棒。
就像变魔术一样,把那些杂乱的硅原子排列得整整齐齐的。
接着呢,把单晶硅棒切割成一片片很薄很薄的硅片,这硅片就像是建造大楼的地基,后续的各种工序都要在它上面进行。
而且啊,这硅片的质量可是至关重要的,要是有一点点瑕疵,那后面生产出来的半导体可能就不好用啦。
二、光刻光刻这一步就像是给硅片“画画”。
首先要有一个光刻掩模版,上面有设计好的电路图案。
然后呢,通过紫外线或者其他光线,把掩模版上的图案投影到硅片上。
这时候,硅片上会涂上一层特殊的光刻胶,光线照射到的地方,光刻胶的性质就会发生变化。
接着再用化学药水把不需要的光刻胶洗去,这样就把电路图案留在硅片上啦。
这一步可是非常精细的,就好比在米粒上雕刻花纹,稍微有点偏差,那整个电路可就乱套咯。
三、蚀刻光刻完了,接下来就是蚀刻啦。
这一步是要把硅片上没有被光刻胶保护的部分去掉,就像用雕刻刀把多余的部分刻掉一样。
蚀刻的方法有很多种,常见的有湿法蚀刻和干法蚀刻。
湿法蚀刻就是用化学药水把不需要的硅材料腐蚀掉,而干法蚀刻则是用等离子体等方法来进行蚀刻。
蚀刻完之后,再把光刻胶去掉,这样硅片上就留下了我们想要的电路结构啦。
四、掺杂为了让硅片具有半导体的特性,还需要进行掺杂。
掺杂就是在硅片中加入一些杂质原子,比如硼、磷等。
这些杂质原子可以改变硅的导电性,让它变成P型半导体或者N型半导体。
这就好比给硅片注入了神奇的力量,让它能够按照我们的要求来导电。
掺杂的方法也有很多种,像扩散、离子注入等。
五、薄膜沉积在半导体生产中,还常常需要在硅片上沉积一些薄膜。
这些薄膜可以起到很多作用,比如保护电路、改善电气性能等。
薄膜沉积的方法有化学气相沉积、物理气相沉积等。
就像是给硅片穿上一层保护衣,让它更加坚固耐用。
半导体制造工艺流程

半导体制造工艺流程一、引言随着现代科技的飞速发展,半导体技术成为了各个领域中不可或缺的重要基础。
而半导体制造工艺流程则是半导体晶圆生产的关键环节之一、本文将详细介绍半导体制造工艺流程的基本步骤和各个环节所涉及的具体工艺。
二、半导体制造工艺流程1.半导体晶圆清洁:首先需要将半导体晶圆进行清洁处理,以去除表面的杂质和污染物。
这一步骤通常通过使用化学溶液进行清洗,如硝酸、氢氟酸等。
2.晶圆扩散:在晶圆表面进行扩散处理,将一些所需的杂质元素或金属离子引入到晶圆表面,以调整半导体材料的电学性能。
这一步骤通常使用扩散炉进行,通过加热晶圆并与所需气体反应,使其在晶圆表面沉积。
3.光罩制备:通过利用光刻技术,制备用于掩膜的光罩。
光罩是由光刻胶覆盖的晶片,通过在特定区域曝光和显影,形成所需的图案。
4.光刻:将光罩与晶圆进行对位,通过紫外线照射和显影,将光刻胶所曝光区域中的图案转移到晶圆表面。
这一步骤可以定义出晶圆上的电路结构。
5.蚀刻:通过使用化学腐蚀物溶液,将未被光刻胶保护的区域进行蚀刻,以便去除不需要的物质。
这一步骤通常使用干法或湿法蚀刻。
6.沉积:在晶圆表面沉积所需的物质层,如金属、氧化物等。
通过化学气相沉积或物理气相沉积的方法进行。
这一步骤用于制备导线、电容器等元件的电介质层或金属电极。
7.退火:通过加热晶圆并使用气体或纯净的其中一种环境,使其在特定温度和时间下进行退火处理。
这一步骤旨在消除应力,提高晶圆的导电性和结构完整性。
8.电镀:在晶圆表面涂覆金属层,通常使用电化学方法进行。
这一步骤主要用于形成连接器或其他需要导电层的电路结构。
9.封装测试:将晶圆进行切割和封装,形成单个芯片。
然后通过进行功能测试和可靠性测试,以确保芯片的质量和性能。
10.出厂测试:对封装好的芯片进行全面的测试和筛选,以确保只有符合规格要求的芯片进入市场。
三、结论以上是半导体制造工艺流程的基本步骤和环节。
每个步骤都是半导体制造中不可或缺的重要环节,一环扣一环,相互依赖。
半导体制造工艺流程指南

半导体制造工艺流程指南第一章半导体制造概述 (2)1.1 半导体材料简介 (2)1.2 半导体器件分类 (2)1.3 半导体制造工艺发展历程 (3)第二章晶圆制备 (3)2.1 晶圆生长 (3)2.2 晶圆切割与抛光 (4)2.3 晶圆清洗与检测 (4)第三章光刻工艺 (4)3.1 光刻原理 (4)3.2 光刻胶与光刻机 (5)3.2.1 光刻胶 (5)3.2.2 光刻机 (5)3.3 光刻过程控制 (6)第四章蚀刻工艺 (6)4.1 蚀刻原理 (6)4.2 蚀刻速率与选择比 (6)4.3 蚀刻过程控制 (7)第五章化学气相沉积 (7)5.1 CVD原理 (7)5.2 CVD设备与工艺 (8)5.3 CVD过程控制 (8)第六章物理气相沉积 (9)6.1 PVD原理 (9)6.2 PVD设备与工艺 (9)6.2.1 设备 (9)6.2.2 工艺 (9)6.3 PVD过程控制 (10)第七章离子注入 (10)7.1 离子注入原理 (10)7.1.1 离子加速 (10)7.1.2 离子注入过程 (11)7.2 离子注入设备 (11)7.2.1 离子源 (11)7.2.2 加速器 (11)7.2.3 扫描系统 (11)7.2.4 样品室 (11)7.3 离子注入过程控制 (11)7.3.1 注入能量 (12)7.3.2 注入剂量 (12)7.3.3 注入角度 (12)7.3.4 注入均匀性 (12)7.3.5 真空度 (12)第八章热处理工艺 (12)8.1 热处理原理 (12)8.2 热处理设备 (12)8.3 热处理过程控制 (13)第九章封装与测试 (14)9.1 封装工艺 (14)9.1.1 封装概述 (14)9.1.2 封装材料 (14)9.1.3 封装工艺流程 (14)9.2 测试方法与设备 (14)9.2.1 测试方法 (14)9.2.2 测试设备 (14)9.3 封装与测试过程控制 (15)9.3.1 过程控制原则 (15)9.3.2 过程控制措施 (15)第十章半导体制造发展趋势 (15)10.1 先进制程技术 (15)10.2 新材料应用 (16)10.3 半导体制造产业前景 (16)第一章半导体制造概述1.1 半导体材料简介半导体材料是电子工业中不可或缺的基础材料,其主要特点是导电功能介于导体和绝缘体之间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半导体的生产工艺流程微机电制作技术,尤其是最大宗以硅半导体为基础的微细加工技术(silicon-basedmicromachining),原本就肇源于半导体组件的制程技术,所以必须先介绍清楚这类制程,以免沦于夏虫语冰的窘态。
一、洁净室一般的机械加工是不需要洁净室(cleanroom)的,因为加工分辨率在数十微米以上,远比日常环境的微尘颗粒为大。
但进入半导体组件或微细加工的世界,空间单位都是以微米计算,因此微尘颗粒沾附在制作半导体组件的晶圆上,便有可能影响到其上精密导线布局的样式,造成电性短路或断路的严重后果。
为此,所有半导体制程设备,都必须安置在隔绝粉尘进入的密闭空间中,这就是洁净室的来由。
洁净室的洁净等级,有一公认的标准,以class10为例,意谓在单位立方英呎的洁净室空间内,平均只有粒径0.5微米以上的粉尘10粒。
所以class后头数字越小,洁净度越佳,当然其造价也越昂贵。
为营造洁净室的环境,有专业的建造厂家,及其相关的技术与使用管理办法如下:1、内部要保持大于一大气压的环境,以确保粉尘只出不进。
所以需要大型鼓风机,将经滤网的空气源源不绝地打入洁净室中。
2、为保持温度与湿度的恒定,大型空调设备须搭配于前述之鼓风加压系统中。
换言之,鼓风机加压多久,冷气空调也开多久。
3、所有气流方向均由上往下为主,尽量减少突兀之室内空间设计或机台摆放调配,使粉尘在洁净室内回旋停滞的机会与时间减至最低程度。
4、所有建材均以不易产生静电吸附的材质为主。
5、所有人事物进出,都必须经过空气吹浴(airshower)的程序,将表面粉尘先行去除。
6、人体及衣物的毛屑是一项主要粉尘来源,为此务必严格要求进出使用人员穿戴无尘衣,除了眼睛部位外,均需与外界隔绝接触(在次微米制程技术的工厂内,工作人员几乎穿戴得像航天员一样。
)当然,化妆是在禁绝之内,铅笔等也禁止使用。
7、除了空气外,水的使用也只能限用去离子水(DIwater,de-ionizedwater)。
一则防止水中粉粒污染晶圆,二则防止水中重金属离子,如钾、钠离子污染金氧半(MOS)晶体管结构之带电载子信道(carrierchannel),影响半导体组件的工作特性。
去离子水以电阻率(resistivity)来定义好坏,一般要求至17.5MΩ-cm以上才算合格;为此需动用多重离子交换树脂、RO逆渗透、与UV紫外线杀菌等重重关卡,才能放行使用。
由于去离子水是最佳的溶剂与清洁剂,其在半导体工业之使用量极为惊人!8、洁净室所有用得到的气源,包括吹干晶圆及机台空压所需要的,都得使用氮气(98%),吹干晶圆的氮气甚至要求99.8%以上的高纯氮!以上八点说明是最基本的要求,另还有污水处理、废气排放的环保问题,再再需要大笔大笔的建造与维护费用!二、晶圆制作硅晶圆(siliconwafer)是一切集成电路芯片的制作母材。
既然说到晶体,显然是经过纯炼与结晶的程序。
目前晶体化的制程,大多是采「柴可拉斯基」(Czycrasky)拉晶法(CZ法)。
拉晶时,将特定晶向(orientation)的晶种(seed),浸入过饱和的纯硅熔汤(Melt)中,并同时旋转拉出,硅原子便依照晶种晶向,乖乖地一层层成长上去,而得出所谓的晶棒(ingot)。
晶棒的阻值如果太低,代表其中导电杂质(impuritydopant)太多,还需经过FZ法(floating-zone)的再结晶(re-crystallization),将杂质逐出,提高纯度与阻值。
三、半导体制程设备半导体制程概分为三类:(1)薄膜成长,(2)微影罩幕,(3)蚀刻成型。
设备也跟着分为四类:(a)高温炉管,(b)微影机台,(c)化学清洗蚀刻台,(d)电浆真空腔室。
其中(a)~(c)机台依序对应(1)~(3)制程,而新近发展的第(d)项机台,则分别应用于制程(1)与(3)。
由于坊间不乏介绍半导体制程及设备的中文书籍,故本文不刻意锦上添花,谨就笔者认为较有趣的观点,描绘一二!(一)氧化(炉)(Oxidation)对硅半导体而言,只要在高于或等于1050℃的炉管中,如图2-3所示,通入氧气或水汽,自然可以将硅晶的表面予以氧化,生长所谓干氧层(dryz/gateoxide)或湿氧层(wet/fieldoxide),当作电子组件电性绝缘或制程掩膜之用。
氧化是半导体制程中,最干净、单纯的一种;这也是硅晶材料能够取得优势的特性之一(他种半导体,如砷化镓GaAs,便无法用此法成长绝缘层,因为在550℃左右,砷化镓已解离释放出砷!)硅氧化层耐得住850℃~1050℃的后续制程环境,系因为该氧化层是在前述更高的温度成长;不过每生长出1微米厚的氧化层,硅晶表面也要消耗掉0.44微米的厚度。
以下是氧化制程的一些要点:(1)氧化层的成长速率不是一直维持恒定的趋势,制程时间与成长厚度之重复性是较为重要之考量。
(2)后长的氧化层会穿透先前长的氧化层而堆积于上;换言之,氧化所需之氧或水汽,势必也要穿透先前成长的氧化层到硅质层。
故要生长更厚的氧化层,遇到的阻碍也越大。
3)干氧层主要用于制作金氧半(MOS)晶体管的载子信道(channel);而湿氧层则用于其它较不严格讲究的电性阻绝或制程罩幕(masking)。
前者厚度远小于后者,1000~1500埃已然足够。
(4)对不同晶面走向的晶圆而言,氧化速率有异:通常在相同成长温度、条件、及时间下,{111}厚度≧{110}厚度>{100}厚度。
(5)导电性佳的硅晶氧化速率较快。
(6)适度加入氯化氢(HCl)氧化层质地较佳;但因容易腐蚀管路,已渐少用。
(7)氧化层厚度的量测,可分破坏性与非破坏性两类。
前者是在光阻定义阻绝下,泡入缓冲过的氢氟酸(BOE,BufferedOxideEtch,系HF与NH4F以1:6的比例混合而成的腐蚀剂)将显露出来的氧化层去除,露出不沾水的硅晶表面,然后去掉光阻,利用表面深浅量测仪(surfaceprofileroralphastep),得到有无氧化层之高度差,即其厚度。
(8)非破坏性的测厚法,以椭偏仪(ellipsometer)或是毫微仪(nano-spec)最为普遍及准确,前者能同时输出折射率(refractiveindex;用以评估薄膜品质之好坏)及起始厚度b与跳阶厚度a(总厚度t=ma+b),实际厚度(需确定m之整数值),仍需与制程经验配合以判读之。
后者则还必须事先知道折射率来反推厚度值。
(9)不同厚度的氧化层会显现不同的颜色,且有2000埃左右厚度即循环一次的特性。
有经验者也可单凭颜色而判断出大约的氧化层厚度。
不过若超过1.5微米以上的厚度时,氧化层颜色便渐不明显。
(二)扩散(炉)(diffusion)1、扩散搀杂半导体材料可搀杂n型或p型导电杂质来调变阻值,却不影响其机械物理性质的特点,是进一步创造出p-n接合面(p-njunction)、二极管(diode)、晶体管(transistor)、以至于大千婆娑之集成电路(IC)世界之基础。
而扩散是达成导电杂质搀染的初期重要制程。
众所周知,扩散即大自然之输送现象(transportphenomena);质量传输(masstransfer)、热传递(heattransfer)、与动量传输(momentumtransfer;即摩擦拖曳)皆是其实然的三种已知现象。
本杂质扩散即属于质量传输之一种,唯需要在850oC以上的高温环境下,效应才够明显。
由于是扩散现象,杂质浓度C(concentration;每单位体积具有多少数目的导电杂质或载子)服从扩散方程式如下:这是一条拋物线型偏微分方程式,同时与扩散时间t及扩散深度x有关。
换言之,在某扩散瞬间(t固定),杂质浓度会由最高浓度的表面位置,往深度方向作递减变化,而形成一随深度x变化的浓度曲线;另一方面,这条浓度曲线,却又随着扩散时间之增加而改变样式,往时间无穷大时,平坦一致的扩散浓度分布前进!既然是扩散微分方程式,不同的边界条件(boundaryconditions)施予,会产生不同之浓度分布外形。
固定表面浓度(constantsurfaceconcentration)与固定表面搀杂量(constantsurfacedosage),是两种常被讨论的具有解析精确解的扩散边界条件(参见图2-4):2、前扩散(pre-deposition)第一种定浓度边界条件的浓度解析解是所谓的互补误差函数(complementaryerrorfunction),其对应之扩散步骤称为「前扩散」,即我们一般了解之扩散制程;当高温炉管升至工作温度后,把待扩散晶圆推入炉中,然后开始释放扩散源(p型扩散源通常是固体呈晶圆状之氮化硼【boron-nitride】芯片,n型则为液态POCl3之加热蒸气)进行扩散。
其浓度剖面外形之特征是杂质集中在表面,表面浓度最高,并随深度迅速减低,或是说表面浓度梯度(gradient)值极高。
3、后驱入(postdrive-in)第二种定搀杂量的边界条件,具有高斯分布(Gaussiandistribution)的浓度解析解。
对应之扩散处理程序叫做「后驱入」,即一般之高温退火程序;基本上只维持炉管的驱入工作温度.(二)微影(Photo-Lithography)1、正负光阻微影光蚀刻术起源于照相制版的技术。
自1970年起,才大量使用于半导体制程之图形转写复制。
原理即利用对紫外线敏感之聚合物,或所谓光阻(photo-resist)之受曝照与否,来定义该光阻在显影液(developer)中是否被蚀除,而最终留下与遮掩罩幕,即光罩(mask)相同或明暗互补之图形;相同者称之「正光阻」(positiveresist),明暗互补者称之「负光阻」(negativeresist),如图2-6所示。
一般而言,正光阻,如AZ-1350、AZ-5214、FD-6400L等,其分辨率及边缘垂直度均佳,但易变质,储存期限也较短(约半年到一年之间),常用于学术或研发单位;而负光阻之边缘垂直度较差,但可储存较久,常为半导体业界所使用。
2、光罩前段述及的光罩制作,是微影之关键技术。
其制作方式经几十年之演进,已由分辨率差的缩影机(由数百倍大的红胶纸【rubby-lith】图样缩影)技术,改良为直接以计算机辅助设计制造(CAD/CAM)软件控制的雷射束(laser-beam)或电子束(E-beam)书写机,在具光阻之石英玻璃板上进行书写(曝光),分辨率(最小线宽)也改进到微米的等级。
由于激光打印机的分辨率越来越好,未来某些线宽较粗的光罩可望直接以打印机出图。
举例而言,3386dpi的出图机,最小线宽约为七微米。
3、对准机/步进机在学术或研发单位中之电路布局较为简易,一套电路布局可全部写在一片光罩中,或甚至多重复制。