高考概率统计9个考点解析
【名校推荐】专题25 概率与统计-三年高考(2016-2018)数学(文)试题分项版解析 Word版含解析

考纲解读明方向分析解读 本节内容是高考的重点考查内容之一,最近几年的高考有以下特点:1.古典概型主要考查等可能性事件发生的概率,也常与对立事件、互斥事件的概率及统计知识综合起来考查;2.几何概型试题也有所体现,可能考查会有所增加,以选择题、填空题为主.本节内容在高考中分值为5分左右,属容易题.分析解读从近几年的高考试题来看,本部分在高考中的考查点如下:1.主要考查分层抽样的定义,频率分布直方图,平均数、方差的计算,识图能力及借助概率知识分析、解决问题的能力;2.在频率分布直方图中,注意小矩形的高=频率/组距,小矩形的面积为频率,所有小矩形的面积之和为1;3.分析两个变量间的相关关系,通过独立性检验判断两个变量是否相关.本节内容在高考中分值为17分左右,属中档题.1.【2018年浙江卷】设0<p<1,随机变量ξ的分布列是则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.点睛:2.【2018年全国卷Ⅲ文】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A. 0.3B. 0.4C. 0.6D. 0.7【答案】B【解析】分析:由公式计算可得详解:设设事件A为只用现金支付,事件B为只用非现金支付,则,因为,所以,故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题。
3.【2018年全国卷II文】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D.【答案】D【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.4.【2018年江苏卷】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.5.【2018年江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.点睛:的平均数为.6.【2018年全国卷Ⅲ文】某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.【答案】分层抽样【解析】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样,故答案为:分层抽样。
2025年高考数学一轮复习讲义含答案解析 第4节 事件的相互独立性、条件概率与全概率公式

第四节事件的相互独立性、条件概率与全概率公式课标解读考向预测1.结合有限样本空间,了解两个随机事件独立性的含义.结合古典概型,利用独立性计算概率.2.结合古典概型,了解条件概率,能计算简单随机事件的条件概率.3.结合古典概型,了解条件概率与独立性的关系.4.结合古典概型,会利用乘法公式计算概率.5.结合古典概型,会利用全概率公式计算概率.6.了解贝叶斯公式.预计2025年高考将会以事件独立性的判断或条件概率、全概率公式计算在小题中单独考查,或与随机变量的分布列、数字特征相结合融合在解答题中考查.必备知识——强基础1.事件的相互独立性事件A 与事件B 相互独立对任意的两个事件A 与B ,如果P (AB )=01P (A )P (B )成立,则称事件A 与事件B 相互独立,简称为独立性质若事件A 与事件B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立,P (B |A )=02P (B ),P (A |B )=03P (A )2.条件概率条件概率的定义设A ,B 为两个随机事件,且P (A )>0,称P (B |A )=04P (AB )P (A )为在事件A 发生的条件下,事件B 发生的条件概率,简称条件概率条件概率的性质(1)P (Ω|A )=1;(2)如果B 和C 是两个互斥事件,则P (B ∪C |A )=05P (B |A )+P (C |A );(3)设B 与B 互为对立事件,则P (B |A )=1-P (B |A )3.全概率公式一般地,设A 1,A 2,…,A n 是一组两两互斥的事件,A 1∪A 2∪…∪A n =Ω,且P (A i )>0,i =1,2,…,n ,则对任意的事件B ⊆Ω,有P (B )=06∑ni =1P (A i )P (B |A i ),我们称上面的公式为全概率公式.1.两事件互斥是指两个事件不可能同时发生,两事件相互独立是指一个事件发生与否对另一事件发生的概率没有影响,两事件相互独立不一定互斥.2.计算条件概率除了应用公式P(B|A)=P(AB)外,还可以利用缩减公式法,即P(B|A)=P(A)n(AB),其中n(A)为事件A包含的样本点数,n(AB)为事件AB包含的样本点数.n(A)3.P(B|A)是在事件A发生的条件下事件B发生的概率,P(A|B)是在事件B发生的条件下事件A发生的概率.4.计算条件概率P(B|A)时,不能随便用事件B的概率P(B)代替P(AB).1.概念辨析(正确的打“√”,错误的打“×”)(1)若事件A,B互斥,则P(B|A)=1.()(2)若A,B相互独立,且P(A)=0.5,P(B)=0.4,则A,B都不发生的概率为0.3.()(3)抛掷2枚质地均匀的硬币,“第一枚为正面向上”为事件A,“第二枚为正面向上”为事件B,则A,B相互独立.()(4)P(A)=P(A)P(B|A)+P(A)P(B|A).()答案(1)×(2)√(3)√(4)×2.小题热身(1)一个电路上装有甲、乙两根保险丝,甲熔断的概率为0.85,乙熔断的概率为0.74,甲、乙两根保险丝熔断与否相互独立,则两根保险丝都熔断的概率为()A.1B.0.629C.0D.0.74或0.85答案B解析由题意知甲、乙两根保险丝熔断与否相互独立,所以甲、乙两根保险丝都熔断的概率为0.85×0.74=0.629.(2)(人教B选择性必修第二册4.1.1例2改编)根据历年的气象数据,某市5月份发生中度雾霾的概率为0.25,刮四级以上大风的概率为0.4,既发生中度雾霾又刮四级以上大风的概率为0.2.则在发生中度雾霾的情况下,刮四级以上大风的概率为()A.0.8B.0.625C.0.5D.0.1答案A解析设“发生中度雾霾”为事件A ,“刮四级以上大风”为事件B ,由题意知,P (A )=0.25,P (B )=0.4,P (AB )=0.2,则在发生中度雾霾的情况下,刮四级以上大风的概率为P (B |A )=P (AB )P (A )=0.20.25=0.8.(3)(2023·河南安阳二模)某班计划在下周一至周三中的某一天去参观党史博物馆,若选择周一、周二、周三的概率分别为0.3,0.4,0.3,根据天气预报,这三天下雨的概率分别为0.4,0.2,0.5,且这三天是否下雨相互独立,则他们参观党史博物馆的当天不下雨的概率为()A .0.25B .0.35C .0.65D .0.75答案C解析他们参观党史博物馆的当天下雨的概率为0.3×0.4+0.4×0.2+0.3×0.5=0.35,所以不下雨的概率为1-0.35=0.65.(4)(多选)(人教A 选择性必修第三册7.1.1练习T3改编)一个袋子中装有除颜色外完全相同的5个球,其中有3个红球,2个白球,每次从中随机摸出1个球,则下列结论中正确的是()A .若不放回地摸球2次,则第一次摸到红球的概率为310B .若不放回地摸球2次,则在第一次摸到红球的条件下第二次摸到红球的概率为12C .若有放回地摸球3次,则仅有前2次摸到红球的概率为18125D .若有放回地摸球3次,则恰有2次摸到红球的概率为54125答案BCD解析对于A ,第一次摸到红球的概率为35,故A 错误;对于B ,不放回地摸球2次,则在第一次摸到红球的条件下第二次摸到红球的概率P =24=12,故B 正确;对于C ,有放回地摸球3次,则仅有前2次摸到红球的概率为35×35×25=18125,故C 正确;对于D ,有放回地摸球3次,则恰有2次摸到红球的概率为C 23×25=54125,故D 正确.故选BCD.考点探究——提素养考点一事件的相互独立性(多考向探究)考向1事件独立性的判定例1(2023·江苏常州一中期初检测)袋子里装有形状大小完全相同的4个小球,球上分别标有数字1,2,3,4,从中有放回地随机取两次,每次取1个球,A 表示事件“第一次取出的球上数字是1”,B 表示事件“第二次取出的球上数字是2”,C 表示事件“两次取出的球上数字之和是5”,D 表示事件“两次取出的球上数字之和是6”,通过计算,则可以得出()A .B 与D 相互独立B .A 与D 相互独立C .B 与C 相互独立D .C 与D 相互独立答案C解析由题意可得P (A )=14,P (B )=14,有放回地随机取两次,每次取1个球,两次取出的球上数字之和是5的情况有(1,4),(4,1),(2,3),(3,2),共4种,所以P (C )=44×4=14;两次取出的球上数字之和是6的情况有(2,4),(4,2),(3,3),共3种,故P (D )=34×4=316.对于A ,P (BD )=14×4=116,P (B )P (D )=14×316=364,则P (BD )≠P (B )P (D ),故B 与D 不是相互独立事件,故A 错误;对于B ,P (AD )=0,P (A )P (D )=14×316=364,则P (AD )≠P (A )P (D ),故A与D 不是相互独立事件,故B 错误;对于C ,P (BC )=14×4=116,P (B )P (C )=14×14=116,则P (BC )=P (B )P (C ),故B 与C 是相互独立事件,故C 正确;对于D ,P (CD )=0,P (C )P (D )=14×316=364,则P (CD )≠P (C )P (D ),故C 与D 不是相互独立事件,故D 错误.【通性通法】判断两个事件是否相互独立的方法(1)直接法:直接判断一个事件发生与否是否影响另一事件发生的概率.(2)定义法:判断P (AB )=P (A )P (B )是否成立.(3)转化法:由事件A 与事件B 相互独立知,A 与B ,A 与B ,A 与B 也相互独立.【巩固迁移】1.(2024·河北唐山模拟)已知一个古典概型的样本空间Ω和事件A ,B 如图所示.其中n (Ω)=12,n (A )=6,n (B )=4,n (A ∪B )=8,则事件A 与事件B ()A .是互斥事件,不是独立事件B .不是互斥事件,是独立事件C .既是互斥事件,也是独立事件D .既不是互斥事件,也不是独立事件答案B解析因为n (Ω)=12,n (A )=6,n (B )=4,n (A ∪B )=8,所以n (A ∩B )=2,n (A ∩B )=4,n (B )=8,所以事件A 与事件B 不是互斥事件;P (AB )=412=13,P (A )P (B )=612×812=13,所以P (AB )=P (A )P (B ),所以事件A 与事件B 是独立事件.故选B.考向2相互独立事件的概率例2(2023·山西太原二模)某产品需要通过两类质量检验才能出货.已知该产品第一类检验单独通过率为34,第二类检验单独通过率为p (0<p <1),规定:第一类检验不通过则不能进入第二类检验,每类检验未通过可修复后再检验一次,修复后无需从头检验,通过率不变且每类检验最多两次,且各类检验间相互独立.若该产品能出货的概率为56,则p =()A .25B .12C .23D .56答案C解析设A i 表示第i 次通过第一类检验,B i 表示第i 次通过第二类检验(i =1,2),由题意得P (A 1B 1+A 1A 2B 1+A 1B 1B 2+A 1A 2B 1B 2)=56,即34p +14×34p +34×(1-p )p +14×34×(1-p )p =56,解得p=23或p =43(舍去).【通性通法】求相互独立事件同时发生的概率的方法(1)相互独立事件同时发生的概率等于它们各自发生的概率之积.(2)当正面计算较复杂或难以入手时,可从其对立事件入手计算.【巩固迁移】2.(多选)(2023·新课标Ⅱ卷)在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为α(0<α<1),收到0的概率为1-α;发送1时,收到0的概率为β(0<β<1),收到1的概率为1-β.考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1)()A.采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为(1-α)(1-β)2 B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为β(1-β)2C.采用三次传输方案,若发送1,则译码为1的概率为β(1-β)2+(1-β)3D.当0<α<0.5时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率答案ABD解析对于A,依次发送1,0,1,则依次收到1,0,1的事件是发送1收到1,发送0收到0,发送1收到1这3个事件的积事件,它们相互独立,所以所求概率为(1-β)(1-α)(1-β)=(1-α)(1-β)2,A正确;对于B,三次传输,发送1,相当于依次发送1,1,1,则依次收到1,0,1的事件是发送1收到1,发送1收到0,发送1收到1这3个事件的积事件,它们相互独立,所以所求概率为(1-β)β(1-β)=β(1-β)2,B正确;对于C,三次传输,发送1,则译码为1的事件是依次收到1,1,0、1,0,1、0,1,1和1,1,1的和事件,它们两两互斥,由选项B知,所求的概率为C23(1-β)2β+(1-β)3=(1-β)2(1+2β),C错误;对于D,由C项知,三次传输,发送0,则译码为0的概率P=(1-α)2(1+2α),单次传输发送0,则译码为0的概率P′=1-α,而0<α<0.5,因此P-P′=(1-α)2(1+2α)-(1-α)=α(1-α)(1-2α)>0,即P>P′,D正确.故选ABD.考点二条件概率例3现有甲、乙、丙、丁4人到九嶷山、阳明山、云冰山、舜皇山4处景点旅游,每人只去一处景点,设事件A为“4人去的景点各不相同”,事件B为“只有甲去了九嶷山”,则P(A|B)=()A.59B.49C.29D.13答案C解析由题意,4人去4个不同的景点,总样本点数为4×4×4×4=256,事件B包含的样本点数为1×3×3×3=27,则事件B发生的概率为P(B)=27256,事件A与事件B的交事件AB为“甲去了九嶷山,另外三人去了另外三个不同的景点”,事件AB包含的样本点数为1×A33=6,则事件AB 发生的概率为P (AB )=6256=3128,即P (A |B )=P (AB )P (B )=312827256=29.【通性通法】求条件概率的常用方法(1)定义法:P (B |A )=P (AB )P (A ).(2)样本点法:P (B |A )=n (AB )n (A ).(3)缩样法:去掉第一次抽到的情况,只研究剩下的情况,用古典概型求解.【巩固迁移】3.(多选)(2024·滨州模拟)为庆祝建党节,讴歌中华民族实现伟大复兴的奋斗历程,增进全体党员干部职工对党史知识的了解,某单位组织开展党史知识竞赛活动,以支部为单位参加比赛,某支部在5道党史题中(有3道选择题和2道填空题)不放回地依次随机抽取2道题作答,设事件A 为“第1次抽到选择题”,事件B 为“第2次抽到选择题”,则下列结论中正确的是()A .P (A )=35B .P (AB )=310C .P (B |A )=12D .P (B |A -)=12答案ABC解析P (A )=C 13C 15=35,故A正确;P (AB )=C 13C 12C 15C 14=310,故B 正确;P (B |A )=P (AB )P (A )=31035=12故C 正确;P (A -)=1-P (A )=1-35=25,P (A -B )=C 12C 13C 15C 14=310,P (B |A -)=P (A -B )P (A -)=31025=34,故D 错误.考点三全概率公式的应用例4某保险公司将其公司的被保险人分为三类:“谨慎的”“一般的”“冒失的”.统计资料表明,这三类人在一年内发生事故的概率依次为0.05,0.15,0.30.若该保险公司的被保险人中“谨慎的”被保险人占20%,“一般的”被保险人占50%,“冒失的”被保险人占30%,则该保险公司的一个被保险人在一年内发生事故的概率是()A .0.155B .0.175C .0.016D .0.096答案B解析设事件B 1表示“被保险人是‘谨慎的’”,事件B 2表示“被保险人是‘一般的’”,事件B 3表示“被保险人是‘冒失的’”,则P (B 1)=20%,P (B 2)=50%,P (B 3)=30%.设事件A 表示“被保险人在一年内发生事故”,则P (A |B 1)=0.05,P (A |B 2)=0.15,P (A |B 3)=0.30.由全概率公式,得P (A )=∑3i =1P (B i )·P (A |B i )=20%×0.05+50%×0.15+30%×0.30=0.175.【通性通法】利用全概率公式的思路(1)按照确定的标准,将一个复合事件分解为若干个互斥事件A i (i =1,2,…,n ).(2)求P (A i )和所求事件B 在各个互斥事件A i 发生条件下的概率P (B |A i ).(3)代入全概率公式计算.【巩固迁移】4.葫芦山庄襟渤海之辽阔,仰天角之雄奇,勘葫芦之蕴涵,显人文之魅力,是渤海湾著名的人文景区,是葫芦岛市“葫芦文化与关东民俗文化”代表地和中小学综合实践教育基地.山庄中葫芦品种分为亚腰、瓢、长柄锤、长筒、异型、花皮葫芦等系列.其中亚腰葫芦具有天然迷彩花纹,果实形状不固定,观赏性强,每株亚腰葫芦可结出果实20~80颗.2024年初葫芦山庄播种用的一等亚腰葫芦种子中混有2%的二等种子,1.5%的三等种子,1%的四等种子,一、二、三、四等种子长出的葫芦秧结出50颗以上果实的概率分别为0.5,0.15,0.1,0.05,则这批种子所生长出的葫芦秧结出50颗以上果实的概率为________.答案0.4825解析设从这批种子中任选一颗是一、二、三、四等种子的事件分别是A 1,A 2,A 3,A 4,则Ω=A 1∪A 2∪A 3∪A 4,且A 1,A 2,A 3,A 4两两互斥,设事件B 表示“从这批种子中任选一颗,所生长出的葫芦秧结出50颗以上果实”,则P (B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2)+P (A 3)·P (B |A 3)+P (A 4)P (B |A 4)=95.5%×0.5+2%×0.15+1.5%×0.1+1%×0.05=0.4825.课时作业一、单项选择题1.甲、乙两个袋子中装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球、2个白球,乙袋装有1个红球、5个白球.现分别从甲、乙两袋中各抽取1个球,则取出的两个球都是红球的概率为()A .512B .56C .19D .1318答案C解析由题意知,“从甲袋中取出红球”和“从乙袋中取出红球”两个事件相互独立,从甲袋中取出红球的概率为46=23,从乙袋中取出红球的概率为16,故所求事件的概率为23×16=19.2.若P (AB )=19,P (A -)=23,P (B )=13,则事件A 与B 的关系是()A .互斥B .对立C .相互独立D .既互斥又相互独立答案C解析∵P (A )=1-P (A -)=1-23=13,∴P (AB )=P (A )P (B )=19≠0,∴事件A 与B 相互独立,事件A 与B 不互斥,故不对立.3.某考生回答一道四选一的考题,假设他知道正确答案的概率为0.5,知道正确答案时答对的概率为100%,而不知道正确答案时猜对的概率为0.25,那么他答对题目的概率为()A .0.625B .0.75C .0.5D .0答案A解析用A 表示事件“考生答对题目”,用B 表示“考生知道正确答案”,用B 表示“考生不知道正确答案”,则P (B )=0.5,P (B )=0.5,P (A |B )=100%,P (A |B )=0.25,则P (A )=P (AB )+P (AB )=P (A |B )P (B )+P (A |B )P (B )=1×0.5+0.25×0.5=0.625.4.(2023·全国甲卷)有50人报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球俱乐部的概率为()A .0.8B .0.4C .0.2D .0.1答案A解析报名两个俱乐部的人数为50+60-70=40,记“某人报足球俱乐部”为事件A ,“某人报乒乓球俱乐部”为事件B,则P(A)=5070=57,P(AB)=4070=47,所以P(B|A)=P(AB)P(A)=4757=0.8.故选A.5.在公元前100年左右,我国古代数学著作《周髀算经》中有这样的表述:“髀者股也,正晷者勾也.”并且指出:“若求斜至日者,以日下为勾,日高为股,勾、股各自乘,并而开方除之,得斜至日”,这就是我们熟知的勾股定理,勾股数组是指满足a2+b2=c2的正整数组(a,b,c).现将一枚质地均匀的骰子抛掷三次,则三次向上的点数恰好组成勾股数组的概率是()A.136B.160C.1108D.1216答案A解析由题意知,骰子点数能够成勾股数组的为3,4,5,∴第一次掷骰子得到其中一个数的概率为12,第二次掷骰子得到两个数中的一个的概率为13,第三次掷骰子得到最后一个数的概率为16,∴三次向上的点数恰好组成勾股数组的概率为12×13×16=136.6.(2024·湖南湘潭摸底)设某芯片制造厂有甲、乙两条生产线均生产5nm规格的芯片,现有20块该规格的芯片,其中甲、乙生产线生产的芯片分别为12块、8块,且乙生产线生产该芯片的次品率为120,现从这20块芯片中任取一块芯片,若取得芯片的次品率为0.08,则甲生产线生产该芯片的次品率为()A.15B.110C.115D.120答案B解析设A1,A2分别表示取得的芯片是由甲生产线、乙生产线生产的,B表示取得的芯片为次品,甲生产线生产该芯片的次品率为p,则P(A1)=35,P(A2)=25,P(B|A1)=p,P(B|A2)=120,则由全概率公式得P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)=35×p+25×120=0.08,解得p=110.7.在一个质地均匀的正四面体木块的四个面上分别标有数字1,2,3,4.连续抛掷这个正四面体木块两次,并记录每次正四面体木块朝下的面上的数字,记事件A为“两次记录的数字之和为奇数”,事件B 为“第一次记录的数字为奇数”,事件C 为“第二次记录的数字为偶数”,则下列结论正确的是()A .事件B 与事件C 是对立事件B .事件A 与事件B 不是相互独立事件C .P (A )P (B )P (C )=18D .P (ABC )=18答案C解析对于A ,事件B 与事件C 是相互独立事件,但不是对立事件,故A 错误;对于B ,P (A )=12,P (B )=12,P (AB )=14,事件A 与事件B 是相互独立事件,故B 错误;对于C ,连续抛掷这个正四面体木块两次,记录的结果一共有4×4=16种,其中,事件A 发生,则两次朝下的点数为一奇一偶,有2×2+2×2=8种,所以P (A )=816=12,因为抛掷正四面体向下的数字为奇数和偶数的方法种数相同,所以P (B )=24=12,P (C )=24=12,所以P (A )P (B )P (C )=18,故C 正确;对于D ,事件ABC 表示“第一次记录的数字为奇数,第二次记录的数字为偶数”,故P (ABC )=2×24×4=14,故D 错误.8.(2022·全国乙卷)某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为p 1,p 2,p 3,且p 3>p 2>p 1>0.记该棋手连胜两盘的概率为p ,则()A .p 与该棋手和甲、乙、丙的比赛次序无关B .该棋手在第二盘与甲比赛,p 最大C .该棋手在第二盘与乙比赛,p 最大D .该棋手在第二盘与丙比赛,p 最大答案D解析设棋手在第二盘与甲比赛连胜两盘的概率为P 甲,在第二盘与乙比赛连胜两盘的概率为P 乙,在第二盘与丙比赛连胜两盘的概率为P 丙.由题意得P 甲=p 1[p 2(1-p 3)+p 3(1-p 2)]=p 1p 2+p 1p 3-2p 1p 2p 3,P 乙=p 2[p 1(1-p 3)+p 3(1-p 1)]=p 1p 2+p 2p 3-2p 1p 2p 3,P 丙=p 3[p 1(1-p 2)+p 2(1-p 1)]=p 1p 3+p 2p 3-2p 1p 2p 3,所以P 丙-P 甲=p 2(p 3-p 1)>0,P 丙-P 乙=p 1(p 3-p 2)>0,所以P丙最大.故选D.二、多项选择题9.已知A -,B -分别为随机事件A ,B 的对立事件,P (A )>0,P (B )>0,则下列说法正确的是()A .P (B |A )+P (B -|A )=1B .P (B |A )+P (B |A -)=1C .若A ,B 独立,则P (A |B )=P (A )D .若A ,B 互斥,则P (B |A )=P (A |B )答案ACD解析对于A ,P (B |A )+P (B -|A )=P (AB )+P (A B -)P (A )=P (A )P (A )=1,故A 正确;对于B ,设A ,B 独立,则P (B |A )+P (B |A -)=2P (B ),而P (B )显然不一定为12,故B 错误;对于C ,A ,B 独立,则P (AB )=P (A )P (B ),则P (A |B )=P (AB )P (B )=P (A ),故C 正确;对于D ,A ,B 互斥,P (AB )=0,则根据条件概率公式得P (B |A )=P (A |B )=0,故D 正确.10.抛掷一红一绿两枚质地均匀的骰子,记下骰子朝上面的点数.用x 表示红色骰子的点数,用y 表示绿色骰子的点数,用(x ,y )表示一次试验的结果.定义:事件A =“x +y =7”,事件B =“xy 为奇数”,事件C =“x >3”,则下列结论正确的是()A .A 与B 互斥B .A 与B 对立C .P (B |C )=13D .A 与C 相互独立答案AD解析对于A ,因为x +y =7,所以x 与y 必是一奇一偶,又当xy 为奇数时,x 与y 都是奇数,所以事件A 和B 不能同时发生,即A 与B 互斥,故A 正确;对于B ,因为事件A 和B 不能同时发生,但它们可以同时不发生,如x =1,y =2,即A 与B 不对立,故B 不正确;对于C ,(x ,y )的所有可能结果有36种,其中P (C )=1836=12,P (BC )=336=112,所以P (B |C )=P (BC )P (C )=16,故C 不正确;对于D ,P (A )=636=16,P (C )=1836=12,P (AC )=336=112,则有P (AC )=P (A )P (C ),A 与C 相互独立,故D 正确.故选AD.三、填空题11.已知m 是一个三位正整数,若m 的十位数字大于个位数字,百位数字大于十位数字,则称m 为递增数.已知a ,b ,c ∈{0,1,2,3,4},设事件A =“由a ,b ,c 组成三位正整数”,事件B =“由a ,b ,c 组成的三位正整数为递增数”,则P (B |A )=________.答案110解析所有三位正整数的个数为4×5×5=100,即n (A )=100,满足三位正整数为递增数的有以下三类:①当百位数为2时,有1个;②当百位数为3时,有C 23=3个;③当百位数为4时,有C 24=6个.所以n (AB )=1+3+6=10,故P (B |A )=n (AB )n (A )=110.12.(2023·河南濮阳一模)已知甲、乙两人进行羽毛球比赛,比赛规则是3局2胜,即先赢2局者胜.甲每局获胜的概率为34,则本次比赛甲获胜的概率为________.答案2732解析本次比赛甲获胜有3种可能:①1,3甲胜,2乙胜;②2,3甲胜,1乙胜;③1,2甲胜.则本次比赛甲获胜的概率为P =34×14×34+14×34×34+34×34=2732.13.(2024·黑龙江哈尔滨质量监测)盒子中有大小形状相同的7个小球,其中有4个白球,3个黑球,先随机从盒子中取出两个小球,再从该盒中取出一个小球,则最后取出的小球为白球的概率是________.答案47解析记A 1为先取出的两个小球都为白球,A 2为先取出的两个小球为一白一黑,A 3为先取出的两个小球都为黑球,B 为最后取出的小球为白球,则P (B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2)+P (A 3)P (B |A 3)=C 24C 27×25+C 14C 13C 27×35+C 23C 27×45=27×25+47×35+17×45=47.14.有一种投掷骰子走跳棋的游戏:棋盘上标有第1站、第2站、第3站、…、第10站,共10站,设棋子跳到第n 站的概率为P n ,若一枚棋子开始在第1站,棋手每次投掷骰子一次,棋子向前跳动一次.若骰子点数小于等于3,棋子向前跳一站;否则,棋子向前跳两站,直到棋子跳到第9站(失败)或者第10站(获胜)时,游戏结束.则P 3=________;该棋手获胜的概率为________.答案3485256解析由题意,P 3=12+12×12=34.因为P n =12P n -2+12P n -1(3≤n ≤8),故P n -P n -1P n -1-P n -2=-12,由P 2-P 1=-12,所以P n -P n -1-1,n ≥2,累加可得P 8=1+…=1=85128,所以P 10=12P 8=85256.四、解答题15.鲜花饼是以云南特有的食用玫瑰花入料的酥饼,是具有云南特色的云南经典点心代表,鲜花饼的保质期一般在三至四天.据统计,某超市一天鲜花饼卖出2箱的概率为12,卖出1箱的概率为15,没有卖出的概率为310,假设第一天该超市开始营业时货架上有3箱鲜花饼,为了保证顾客能够买到新鲜的鲜花饼,该超市规定当天结束营业后检查货架上存货,若卖出2箱,则需补货至3箱,否则不补货.(1)在第一天结束营业后货架上有2箱鲜花饼的条件下,求第二天结束营业时货架上有1箱鲜花饼的概率;(2)求第二天结束营业时货架上有1箱鲜花饼的概率.解设事件A 表示“第二天开始营业时货架上有3箱鲜花饼”,事件B 表示“第二天开始营业时货架上有2箱鲜花饼”,事件C 表示“第二天结束营业时货架上有1箱鲜花饼”.(1)因为第一天结束营业后货架上有2箱鲜花饼,所以第二天只卖出1箱,故P (C |B )=15.(2)由题意,P (A )=310+12=45,P (B )=15,P (C |A )=12,由全概率公式得P (C )=P (A )P (C |A )+P (B )P (C |B )=45×12+15×15=1125.16.溺水、触电等与学生安全有关的问题越来越受到社会的关注和重视,为了普及安全教育,某市组织了一次学生安全知识竞赛,规定每队3人,每人回答一个问题,答对得1分,答错得0分.在竞赛中,假设甲队每人回答问题的正确率均为23,乙队每人回答问题的正确率分别为12,23,34,且两队各人回答问题正确与否相互之间没有影响.(1)分别求甲队总得分为3分与1分的概率;(2)求甲队总得分为2分且乙队总得分为1分的概率.解(1)记“甲队总得分为3分”为事件A ,“甲队总得分为1分”为事件B .甲队得3分,即三人都回答正确,其概率P (A )=23×23×23=827,甲队得1分,即三人中只有1人回答正确,其余2人都回答错误,其概率P (B )=23××23××23=29.故甲队总得分为3分与1分的概率分别为827,29.(2)记“甲队总得分为2分”为事件C ,“乙队总得分为1分”为事件D .甲队得2分,即甲队三人中有2人回答正确,1人回答错误,则P (C )=23×23×+23××23+×23×23=49,乙队得1分,即乙队三人中只有1人回答正确,其余2人回答错误,则P (D )=12××23××34=14.由题意得事件C 与事件D 相互独立,则甲队总得分为2分且乙队总得分为1分的概率为P (CD )=P (C )P (D )=49×14=19.17.(多选)一个不透明的袋子中装有6个小球,其中有4个红球,2个白球,这些球除颜色外完全相同,则下列结论中正确的是()A .若一次摸出3个球,则摸出的球均为红球的概率是25B .若一次摸出3个球,则摸出的球为2个红球,1个白球的概率是35C .若第一次摸出一个球,记下颜色后将它放回袋中,再次摸出一个球,则两次摸出的球为不同颜色的球的概率是49D .若第一次摸出一个球,不放回袋中,再次摸出一个球,则两次摸出的球为不同颜色的球的概率是35答案BC解析对于A ,总事件数是C 36=20,摸出的球均为红球的事件数为C 34=4,所以摸出的球均为红球的概率是15,故A 错误.对于B ,总事件数是C 36=20,摸出的球为2个红球,1个白球的事件数为C24C12=12,所以摸出的球为2个红球,1个白球的概率是35,故B正确.对于C,①若第一次摸出红球,第二次摸出白球,则概率为46×26=836;②若第一次摸出白球,第二次摸出红球,则概率为26×46=836.故两次摸出的球为不同颜色的球的概率是836+836=49,故C正确.对于D,①若第一次摸出红球,第二次摸出白球,则概率为46×25=830;②若第一次摸出白球,第二次摸出红球,则概率为26×45=830.故两次摸出的球为不同颜色的球的概率是830+830=815,故D错误.18.(多选)骰子通常作为桌上游戏的小道具.最常见的骰子是六面骰,它是一个质地均匀的正方体,六个面上分别写有数字1,2,3,4,5,6.现有一款闯关游戏,共有4关,规则如下:在第n关要抛掷六面骰n次,每次观察向上面的点数并做记录,如果这n次抛掷所出现的点数之和大于2n+n,则算闯过第n关,n=1,2,3,4.假定每次闯关互不影响,则()A.直接挑战第2关并过关的概率为712B.连续挑战前两关并过关的概率为524C.若直接挑战第3关,设A=“三个点数之和等于15”,B=“至少出现一个5点”,则P(A|B)=1 13D.若直接挑战第4关,则过关的概率是351296答案ACD解析对于A,22+2=6,所以两次点数之和应大于6,即直接挑战第2关并过关的概率为P1=1+2+3+4+5+66×6=2136=712,故A正确;对于B,21+1=3,所以挑战第一关通过的概率为P2=12,则连续挑战前两关并过关的概率为P=P1P2=12×712=724,故B错误;对于C,由题意可知,抛掷3次的基本事件有63=216,抛掷3次至少出现一个5点的共有63-53=216-125=91种,故P(B)=91216,而事件AB包括:含5,5,5的有1种,含4,5,6的有6种,共7种,故P(AB)=7216,所以P(A|B)=P(AB)P(B)=7216×21691=113,故C正确;对于D,当n=4时,2n+n=24+4=20,基本事件有64个,而“4次点数之和大于20”包含以下35种情况:含5,5,5,6的有4种,含5,5,6,6的有6种,含6,6,6,6的有1种,含4,6,6,6的有4种,含5,6,6,6的有4种,含4,5,6,6的有12种,含3,6,6,6的有4种,所以P 4=356×6×6×6=351296,故D 正确.19.(2022·新高考Ⅰ卷节选)一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:不够良好良好病例组4060对照组1090从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的人患有该疾病”,P (B |A )P (B -|A )与P (B |A -)P (B -|A -)的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R .(1)证明:R =P (A |B )P (A -|B )·P (A -|B -)P (A |B -);(2)利用该调查数据,给出P (A |B ),P (A |B -)的估计值,并利用(1)的结果给出R 的估计值.解(1)证明:由题意R =P (B |A )P (B -|A )P (B |A -)P (B -|A -)=P (AB )P (A )P (A B -)P (A )÷P (A -B )P (A -)P (A -B -)P (A -)=P (AB )P (A B -)·P (A -B -)P (A -B ),而P (A |B )P (A -|B )·P (A -|B -)P (A |B -)=P (AB )P (B )P (A -B )P (B )·P (A -B -)P (B -)P (A B -)P (B -)=P (AB )P (A -B )·P (A -B -)P (A B -).故R =P (A |B )P (A -|B )·P (A -|B -)P (A |B -).(2)由调查数据可得P (A |B )=40100=25,P (A |B -)=10100=110,且P (A -|B )=1-P (A |B )=35,P (A -|B -)=1-P (A |B -)=910,。
高考一轮复习第9章计数原理概率随机变量及其分布第4讲随机事件的概率

第四讲 随机事件的概率知识梳理·双基自测 知识梳理知识点一 随机事件和确定事件(1)在条件S 下,__必然要发生__的事件,叫做相对于条件S 的必然事件,简称必然事件. (2)在条件S 下,__不可能发生__的事件,叫做相对于条件S 的不可能事件,简称不可能事件. (3)必然事件和不可能事件统称为相对于条件S 的确定事件,简称确定事件.(4)在条件S 下,__可能发生也可能不发生__的事件,叫做相对于条件S 的随机事件,简称随机事件. 知识点二 概率与频率(1)概率与频率的概念:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的__频数__,称事件A 出现的比例f n (A)=n An为事件A 出现的__频率__.(2)概率与频率的关系:对于给定的随机事件A ,由于事件A 发生的频率f n (A)随着试验次数的增加稳定于概率P(A),因此可以用__频率f n (A)__来估计概率P(A).知识点三 互斥事件与对立事件 事件的关系与运算 定义符号表示 包含 关系 若事件A__发生__,则事件B__一定发生__,这时称事件B 包含事件A(或称事件A 包含于事件B) __B ⊇A__ __(或A ⊆B)__ 相等 关系 若B ⊇A ,且__A ⊇B__,则称事件A 与事件B 相等 __A =B__ 并事件 (和事件) 若某事件发生__当且仅当事件A 发生或事件B 发生__,则称此事件为事件A 与事件B 的并事件(或和事件) __A ∪B__ __(或A +B)__ 交事件 (积事件) 若某事件发生__当且仅当事件A 发生且事件B 发生__,则称此事件为事件A 与事件B 的交事件(或积事件) __A∩B __ __(或AB)__ 互斥 事件 若A∩B 为__不可能__事件,则称事件A 与事件B 互斥 __A∩B=∅__ 对立 事件 若A∩B 为__不可能__事件,A ∪B 为__必然事件__,则称事件A 与事件B 互为对立事件__A∩B=∅,__ __且A ∪B =Ω__重要结论概率的几个基本性质(1)概率的取值范围:__0≤P(A)≤1__. (2)必然事件的概率:P(A)=__1__. (3)不可能事件的概率:P(A)=__0__.(4)概率的加法公式:若事件A 与事件B 互斥,则P(A ∪B)=__P(A)+P(B)__.(5)对立事件的概率:若事件A 与事件B 互为对立事件,则A ∪B 为必然事件.P(A ∪B)=__1__,P(A)=__1-P(B)__.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)事件发生的频率与概率是相同的.( × ) (2)在大量重复试验中,概率是频率的稳定值.( √ ) (3)两个事件的和事件是指两个事件都得发生.( × )(4)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能的.( × )(5)对立事件肯定是互斥事件、互斥事件不一定是对立事件.( √ ) 题组二 走进教材2.(P 121T4)一个人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是( D ) A .至多有一次中靶 B .两次都中靶 C .只有一次中靶D .两次都不中靶[解析] “至少有一次中靶”的对立事件是“两次都不中靶”.故选D . 3.(P 133T4)同时掷两个骰子,向上点数不相同的概率为__56__.[解析] 掷两个骰子一次,向上的点数共6×6=36(种)可能的结果,其中点数相同的结果共有6种,所以点数不相同的概率P =1-636=56.题组三 走向高考4.(2018·课标全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( B )A .0.3B .0.4C .0.6D .0.7[解析] 设事件A 为“不用现金支付”,事件B 为“既用现金支付也用非现金支付”,事件C 为“只用现金支付”,则P(A)=1-P(B)-P(C)=1-0.15-0.45=0.4故选B .5.(2020·新课标Ⅰ)设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( A )A .15B .25C .12D .45[解析] O ,A ,B ,C ,D 中任取3点,共有 C 35=10种,即OAB ,OAC ,OAD ,OBC ,OBD ,OCD ,ABC ,ABD ,ACD ,BCD 十种, 其中共线为A ,O ,C 和B ,O ,D 两种, 故取到的3点共线的概率为P =210=15,故选A .考点突破·互动探究考点一 随机事件的关系——自主练透例1 (1)(2020·辽宁六校协作体期中)从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( C )A .“至少有1个白球”和“都是红球”B .“至少有2个白球”和“至多有1个红球”C .“恰有1个白球”和“恰有2个白球”D .“至多有1个白球”和“都是红球”(2)(2021·中山模拟)从1,2,3,4,5这5个数中任取两个数,其中: ①恰有一个是偶数和恰有一个是奇数; ②至少有一个是奇数和两个都是奇数; ③至少有一个是奇数和两个都是偶数; ④至少有一个是奇数和至少有一个是偶数. 上述事件中,是对立事件的是( C ) A .① B .②④ C .③D .①③(3)设条件甲:“事件A 与事件B 是对立事件”,结论乙:“概率满足P(A)+P(B)=1”,则甲是乙的( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] (1)对于选项A ,“至少有1个白球”和“都是红球”是对立事件,不符合题意;对于选项B ,“至少有2个白球”表示取出2个球都是白色的,而“至多有1个红球”表示取出的球1个红球1个白球,或者2个都是白球,二者不是互斥事件,不符合题意;对于选项C ,“恰有1个白球”表示取出2个球1个红球1个白球,与“恰有2个白球”是互斥而不对立的两个事件,符合题意;对于选项D ,“至多有1个白球”表示取出的2个球1个红球1个白球,或者2个都是红球,与“都是红球”不是互斥事件,不符合题意.故选C .(2)从1,2,3,4,5这5个数中任取两个数有3种情况:一奇一偶,2个奇数,2个偶数.其中“至少有一个是奇数”包含一奇一偶或2个奇数这两种情况,它与两个都是偶数是对立事件.又①中的事件可以同时发生,不是对立事件,故选C .(3)若事件A 与事件B 是对立事件,则A ∪B 为必然事件,再由概率的加法公式得P(A)+P(B)=1;投掷一枚硬币3次,满足P(A)+P(B)=1,但A ,B 不一定是对立事件,如:事件A :“至少出现一次正面”,事件B :“出现3次正面”,则P(A)=78,P(B)=18,满足P(A)+P(B)=1,但A ,B 不是对立事件,故甲是乙的充分不必要条件.名师点拨(1)准确把握互斥事件与对立事件的概念:①互斥事件是不可能同时发生的事件,但也可以同时不发生;②对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,既有且仅有一个发生.(2)判别互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两个事件为对立事件,对立事件一定是互斥事件.〔变式训练1〕(2021·宁夏检测)抽查10件产品,设事件A 为“至少有2件次品”,则事件A 的对立事件为( B ) A .至多有2件次品 B .至多有1件次品 C .至多有2件正品D .至少有2件正品[解析] ∵“至少有n 个”的反面是“至多有n -1个”,又∵事件A“至少有2件次品”,∴事件A 的对立事件为“至多有1件次品”.考点二 随机事件的概率——多维探究 角度1 频率与概率例2 (2018·北京高考)电影公司随机收集了电影的有关数据,经分类整理得到下表: 电影类型 第一类 第二类 第三类 第四类 第五类 第六类 电影部数 140 50 300 200 800 510 好评率0.40.20.150.250.20.1(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)随机选取1部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化.那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)[解析] (1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2 000, 第四类电影中获得好评的电影部数是200×0.25=50. 故所求概率为502 000=0.025.(2)由题意知,样本中获得好评的电影部数是140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1 =56+10+45+50+160+51 =372.故所求概率估计为1-3722 000=0.814.(3)增加第五类电影的好评率,减少第二类电影的好评率. 角度2 统计与概率例3 (2021·云南名校适应性月考)下边茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中有一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是( A )甲 乙 9 8 8 3 3 7 2 1 09● 9A .45B .25C .910D .710[解析] 记其中被污损的数字为x ,由题知甲的5次综合测评的平均成绩是15×(80×2+90×3+8+9+2+1+0)=90,乙的5次综合测评的平均成绩是15×(80×3+90×2+3+3+7+x +9)=442+x 5, 令90>442+x 5,解得x <8,即x 的取值可以是0~7,因此甲的平均成绩超过乙的平均成绩的概率是810=45.故选A .名师点拨概率和频率的关系概率可看成频率在理论上的稳定值,它从数量上反映了随机事件发生的可能性的大小,它是频率的科学抽象,当试验次数越来越多时频率向概率靠近,只要次数足够多,所得频率就近似地当作随机事件的概率.〔变式训练2〕(1)(2021·黑龙江大庆质检)某公司欲派甲、乙、丙3人到A ,B 两个城市出差,每人只去1个城市,且每个城市必须有人去,则A 城市恰好只有甲去的概率为( B )A .15B .16C .13D .14(2)(2021·吉林模拟)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.②估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;③如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?[解析] (1)总的派法有:(甲、乙A),(丙B);(甲、乙B),(丙A);(甲、丙A),(乙B);(甲、丙B),(乙A);(乙、丙A),(甲B);(乙、丙B),(甲A),共6种(或C 23A 22=6(种)),A 城市恰好只有甲去有一种,故所求概率P =16.(2)①从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001 000=0.2.②从统计表可以看出,在这1 000位顾客中有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3.③与①同理.可得:顾客同时购买甲和乙的概率可以估计为2001 000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6,顾客同时购买甲和丁的概率可以估计为1001 000=0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大. 考点三 互斥事件、对立事件的概率——师生共研例4 (1)某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A 、B 、C .求:①P(A),P(B),P(C); ②1张奖券的中奖概率;③1张奖券不中特等奖且不中一等奖的概率.(2)(2021·河南新乡模拟)从5个同类产品(其中3个正品,2个次品)中,任意抽取2个,下列事件发生概率为910的是( C )A .2个都是正品B .恰有1个是正品C .至少有1个正品D .至多有1个正品[解析] (1)①P(A)=11 000,P(B)=101 000=1100,P(C)=501 000=120.②因为事件A ,B ,C 两两互斥,所以P(A ∪B ∪C)=P(A)+P(B)+P(C)=11 000+1100+120=611 000.故1张奖券的中奖概率为611 000.③P(A ∪B )=1-P(A +B)=1-⎝⎛⎭⎪⎫11 000+1100=9891 000.故1张奖券不中特等奖且不中一等奖的概率为9891 000.(2)从5个产品中任取2个的取法有C 25=10种,其中2个都是正品的取法有C 23=3种,故2个都是正品的概率P 1=310;其对立事件是“至多有1个正品”,概率为P 2=1-P 1=1-310=710.恰有1个正品的取法有C 13·C 12=6种,故恰有1个正品的概率P 3=610=35.至少有1个正品的概率P 4=P 1+P 3=310+610=910.名师点拨求复杂的互斥事件的概率的两种方法(1)直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的概率求和公式计算.(2)间接求法,先求此事件的对立事件的概率,再用公式P(A)=1-P(A),即运用逆向思维(正难则反).特别是“至多”“至少”型题目,用间接求法就显得较简便.〔变式训练3〕(1)(2020·西安二模)2021年某省新高考将实行“3+1+2”模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.某同学已选了物理,记事件A:“他选择政治和地理”,事件B:“他选择化学和地理”,则事件A与事件B( A )A.是互斥事件,不是对立事件B.是对立事件,不是互斥事件C.既是互斥事件,也是对立事件D.既不是互斥事件也不是对立事件(2)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.则该地1位车主至少购买甲、乙两种保险中的一种的概率为__0.8__;该地1位车主甲、乙两种保险都不购买的概率为__0.2__.[解析](1)2021年某省新高考将实行“3 +1+2”模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.某同学已选了物理,记事件A:“他选择政治和地理”,事件B:“他选择化学和地理”,则事件A与事件B不能同时发生,但能同时不发生,故事件A和B是互斥事件,但不是对立事件,故A正确.故选A.(2)记A表示事件:该车主购买甲种保险;B表示事件:该车主购买乙种保险但不购买甲种保险;C表示事件:该车主至少购买甲、乙两种保险中的一种;D表示事件:该车主甲、乙两种保险都不购买.①由题意得P(A)=0.5,P(B)=0.3,又C=A∪B,所以P(C)=P(A∪B)=P(A)+P(B)=0.5+0.3=0.8.②因为D与C是对立事件,所以P(D)=1-P(C)=1-0.8=0.2.名师讲坛·素养提升用正难则反的思想求对立事件的概率例5 (1)(2020·浙江湖州期末,改编)现有5个不同编号的小球,其中黑色球2个,白色球2个,红色球1个,若将其随机排成一列,则相同颜色的球都不相邻的概率是__45__.(2)(2021·洛阳模拟)经统计,在某储蓄所一个营业窗口等候的人数及相应的概率如下:排队人数0 1 2 3 4 5人及5人以上概率0.1 0.16 0.3 0.3 0.1 0.04求:(1)至多2人排队等候的概率是多少?(2)至少3人排队等候的概率是多少?[解析](1)“相同颜色的球不都相邻”的对立事件为“相同颜色的球都相邻”,记为事件A.因5个不同编号的小球排列有A55=120种排法,“相同颜色的球都相邻”的排法有A22A22A33=24种排法,∴所求概率P=|-P(A)|=1-24120=45.(2)记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A,B,C,D,E,F互斥.①记“至多2人排队等候”为事件G,则G=A∪B∪C,所以P(G)=P(A∪B∪C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.②解法一:记“至少3人排队等候”为事件H,则H=D∪E∪F,所以P(H)=P(D∪E∪F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.解法二:记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.名师点拨“正难则反”的思想是一种常见的数学思想,如反证法、补集的思想都是“正难则反”思想的体现.在解决问题时,如果从问题的正面入手比较复杂或不易解决,那么尝试采用“正难则反”思想往往会起到事半功倍的效果,大大降低题目的难度.在求对立事件的概率时,经常应用“正难则反”的思想,即若事件A与事件B互为对立事件,在求P(A)或P(B)时,利用公式P(A)=1-P(B)先求容易的一个,再求另一个.〔变式训练4〕某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数(人) x 30 25 y 10结算时间(分钟/人)1 1.52 2.5 3(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)[解析](1)由已知得25+y+10=55,x+30=45,所以x=15,y= 20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟).(2)记A为事件“一位顾客一次购物的结算时间不超过2分钟”,A1,A2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P(A1)=20100=1 5,P(A2)=10100=110.P(A)=1-P(A1)-P(A2)=1-15-110=710.故一位顾客一次购物的结算时间不超过2分钟的概率为710.。
【精编版】2019高考数学九大核心考点与知识点总结

2019高考数学思想方法、九大考点与知识点总结高考数学九大核心考点回顾不管是什么考试,无非都是对各知识点的一个练习、总结,只要我们能够对各个知识点深刻了解,考试中拿高分并不难,你知道高考数学常考的知识点有哪些吗?我们不妨一起来了解一下。
九大核心的知识点:函数、三角函数,平面向量,不等式,数列,立体几何,解析几何,概率与统计,导数。
这些内容非常重要。
当然每章当中还有侧重,比如说拿函数来讲,函数概念必须清楚,函数图象变换是非常重要的一个核心内容。
此外就是函数的一种性质问题,单调性、周期性,包括后面我们还谈到连续性问题,像这些性质问题是非常重要的。
连同最值也是在函数当中重点考察的一些知识点,我想这些内容特别值得我们在后面要关注的。
再比如说像解析几何这个内容,不管理科还是文科,像直线和圆肯定是非常重要的一个内容。
理科和文科有一点差别了,比如说圆锥曲线方面,椭圆和抛物线理科必须达到的水平,双曲线理科只是了解状态就可以了。
而文科呢?椭圆是要求达到理解水平,抛物线和双曲线只是一般的了解状态就可以了。
这里需要有侧重点。
拿具体知识来讲,比如说直线当中,两条直线的位置关系,平行、垂直的关系怎么判断应该清楚。
直线和圆的位置关系应该清楚,椭圆、双曲线和抛物线的标准方程,参数之间的关系,再比如直线和椭圆的位置关系,这是值得我们特别关注的一个重要的知识内容。
这是从我的一个角度来说。
我们后面有六个大题,一般是侧重于六个重要的板块,因为现阶段不可能一个章节从头至尾,你没有时间了,必须把最重要的知识板块拿出来,比如说数列与函数以及不等式,这肯定是重要板块。
再比如说三角函数和平面向量应该是一个,解析几何和平面几何和平面向量肯定又是一个。
再比如像立体几何当中的空间图形和平面图形,这肯定是重要板块。
再后面是概率统计,在解决概率统计问题当中一般和计数原理综合在一起,最后还有一个板块是导数、函数、方程和不等式,四部分内容综合在一起。
应当说我们后面六个大题基本上是围绕着这样六个板块来进行。
高考数学《随机事件、频率与概率》课件

索引
3.已知随机事件 A,B 发生的概率满足条件 P(A∪B)=34,某人猜测事件A-∩B-发
生,则此人猜测正确的概率为( C )
A.1
B.12
C.14
D.0
解析 ∵事件A-∩B-与事件 A∪B 是对立事件,
∴事件A-∩B-发生的概率 P(A-∩B-)=1-P(A∪B)=1-34=14, 则此人猜测正确的概率为14.
业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整
理如下:
甲分厂产品等级的频数分布表
乙分厂产品等级的频数分布表
等级 A B C D
等级 A B C D
频数 40 20 20 20
频数 28 17 34 21
索引
(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率; 解 由试加工产品等级的频数分布表知, 甲分厂加工出来的一件产品为 A 级品的概率的估计值为14000=0.4; 乙分厂加工出来的一件产品为 A 级品的概率的估计值为12080=0.28.
中奖的概率.( ×)
解析 随机事件的概率是频率的稳定值,频率是概率的近似值,故(1)错. (4)中,甲中奖的概率与乙中奖概率相同.
索引
2.(2021·珠海期末)一个人打靶时连续射击两次,与事件“至少有一次中靶”互
斥的事件是( D )
A.至多有一次中靶
B.两次都中靶
C.只有一次中靶
D.两次都不中靶
解析 “两次都不中靶”和“至少有一次中靶”,不能同时发生,故D正确.
训练1 (2020·全国Ⅰ卷)某厂接受了一项加工业务,加工出来的产品(单位:件)
按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级
2020年高考“概率统计”经典问题聚焦

摇生墩理化解题篇经典题法高考数学2020年11月2020耳訝“辭紂”■江苏省扬州宝应中学王志民2020年高考对概率统计的考查主要围绕“抽样、频率分布直方图、样本的数字特征、独立性检验、古典概型、随机变量的分布列和期望的计算”等核心考点展开,重在考查同学们应用概率统计知识解决实际问题的能力。
聚焦1——样本的数字特征!!(2020年高考全国"卷文)设一组样本数据$1,$/,•••,$”的方差为0.01,则数据10$1,10$;,…,10$”的方差为()。
A.0.01B.0.1C.1 1.10解析:因为数据a$,$=1,2,…,”)的方差是数据$,$=1,2,…,”)的方差的a;倍,所以所求数据的方差为10;X0.01=1。
故选C。
素养:平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小。
当平均数相同时,再考查方差进行决策。
聚集2——用频率分布直方图的数据估计总体!"(2020年高考天津卷)从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组::5.31,5.33),[5.33, 5.35),…,0.45,5.47),0.47,5.49],并整理得到图1所示的频率分布直方图,则在被抽取的零件中,直径落在区间0.43,5.47)内0.225,则直径落在区间0.43,5.47)内的零件个数为80X0.225=18。
故选B。
素养:在频率分布直方图中,每一^b/J、矩形的面积就是相应的频率或概率,所有小矩形的面积之和为1,利用频率分布直方图估计总体的分布情况:$)最高的小长方形底边中点的横坐标即是众数&2)中位数左边和右边的小长方形的面积和是相等的;$)平均数等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和。
聚焦3一一古典概型!#(2020年高考全国I卷文)设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为()。
最新高考-2018届高考数学概率统计的解题技巧 精品

第八讲 概率统计的解题技巧【命题趋向】 概率统计命题特点:1.在近五年高考中,新课程试卷每年都有一道概率统计解答题,并且这五年的命题趋势是一道概率统计解答题逐步增加到一道客观题和一道解答题;从分值上看,从12分提高到17分;由其是实施新课标考试的省份, 增加到两道客观题和一道解答题.值得一提的是此累试题体现了考试中心提出的“突出应用能力考查”以及“突出新增加内容的教学价值和应用功能”的指导思想,在命题时,提高了分值,提高了难度,并设置了灵活的题目情境,如测试成绩、串联并联系统、计算机上网、产品合格率、温度调节等,所以在概率统计复习中要注意全面复习,加强基础,注重应用.2.就考查内容而言,用概率定义(除法)或基本事件求事件(加法、减法、乘法)概率,常以小题形式出现;随机变量取值-取每一个值的概率-列分布列-求期望方差常以大题形式出现.概率与统计还将在选择与填空中出现,可能与实际背景及几何题材有关. 【考点透视】1.了解随机事件的发生存在着规律性和随机事件概率的意义.2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率.3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.4.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归. 【例题解析】考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识:(1)等可能性事件(古典概型)的概率:P (A )=)()(I card A card =n m ;等可能事件概率的计算步骤:① 计算一次试验的基本事件总数n ;② 设所求事件A ,并计算事件A 包含的基本事件的个数m ; ③ 依公式()m P A n=求值;④ 答,即给问题一个明确的答复.(2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P ()=P (A +)=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B );特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件 互斥事件 独立事件 n 次独立重复试验即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算⎧⎨⎩和事件积事件即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.第三步,运用公式()()()()()()()()(1)k k n k n n m P A nP A B P A P B P A B P A P B P k C p p -⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解第四步,答,即给提出的问题有一个明确的答复.例1.(2018年上海卷文)在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示). [考查目的]本题主要考查概率的概念和等可能性事件的概率求法.[解答过程]0.3提示:1335C 33.C 102P ===例2.(2018年全国II 卷文)一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .[考查目的]本题主要考查用样本分析总体的简单随机抽样方式,同时考查概率的概念和等可能性事件的概率求法.用频率分布估计总体分布,同时考查数的区间497.5g~501.5的意义和概率的求法. [解答过程]1.20提示:51.10020P ==例3 (2018年全国I 卷文)从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g ):492 496 494 495 498 497 501 502 504 496 497 503 506 518 518 492 496 500 501 499根据的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g 之间的概率约为__________.[考查目的]本题主要考查用频率分布估计总体分布,同时考查数的区间497.5g~501.5的意义和概率的求法.[解答过程]在497.5g~501.5内的数共有5个,而总数是20个,所以有51.204=点评:首先应理解概率的定义,在确定给定区间的个体的数字时不要出现错误.例4. (2006年湖北卷)接种某疫苗后,出现发热反应的概率为0.80.现有5人接种该疫苗,至少有3人出现发热反应的概率为__________.(精确到0.01)[考查目的] 本题主要考查运用组合、概率的基本知识和分类计数原理解决问题的能力,以及推理和运算能力.[解答提示]至少有3人出现发热反应的概率为33244555550.800.200.800.200.800.94C C C ⋅⋅+⋅⋅+⋅=.故填0.94.例5.(2006年江苏卷)右图中有一个信号源和五个接收器.接收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号.若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把所有六组中每组的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是(A )454 (B )361 (C )154 (D )158[考查目的] 本题主要考查运用组合、概率知识,以及分步计数原理解决问题的能力,以及推理和运算能力.[解答提示]由题意,左端的六个接线点随机地平均分成三组有2226423315C C C A =种分法,同理右端的六个接线点也随机地平均分成三组有2226423315C C C A =种分法;要五个接收器能同时接收到信号,则需五个接收器与信号源串联在同一个线路中,即五个接收器的一个全排列,再将排列后的第一个元素与信号源左端连接,最后一个元素与信号源右端连接,所以符合条件的连接方式共有55120A =种,所求的概率是120822515P ==,所以选D.点评:本题要求学生能够熟练运用排列组合知识解决计数问题,并进一步求得概率问题,其中隐含着平均分组问题. 例6. (2018年全国II 卷文)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A :“取出的2件产品中至多有1件是二等品”的概率()0.96P A =. (1)求从该批产品中任取1件是二等品的概率p ;(2)若该批产品共100件,从中任意抽取2件,求事件B :“取出的2件产品中至少有一件二等品”的概率()P B .[考查目的]本小题主要考查相互独立事件、互斥事件等的概率计算,运用数学知识解决问题的能力,以及推理与运算能力.[解答过程](1)记0A 表示事件“取出的2件产品中无二等品”,1A 表示事件“取出的2件产品中恰有1件二等品”.则01A A ,互斥,且01A A A =+,故01()()P A P A A =+212012()()(1)C (1)1.P A P A p p p p =+=-+-=- 于是20.961p =-.解得120.20.2p p ==-,(舍去).(2)记0B 表示事件“取出的2件产品中无二等品”,则0B B =.若该批产品共100件,由(1)知其中二等品有1000.220⨯=件,故28002100C 316()C 495P B ==.00316179()()1()1.495495P B P B P B ==-=-=例7.(2006年上海卷)两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率 是 (结果用分数表示).[考查目的] 本题主要考查运用排列和概率知识,以及分步计数原理解决问题的能力,以及推理和运算能力.[解答提示]从两部不同的长篇小说8本书的排列方法有88A 种,左边4本恰好都属于同一部小说的的排列方法有442442A A A 种.所以, 将符合条件的长篇小说任意地排成一排,左边4本恰好都属于同一部小说的概率是 44244288135A A A P A ==种.所以,填135.例8.( 2006年浙江卷)甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n 个白球.由甲,乙两袋中各任取2个球.(Ⅰ)若n=3,求取到的4个球全是红球的概率;(Ⅱ)若取到的4个球中至少有2个红球的概率为43,求n.[考查目的]本题主要考查排列组合、概率等基本知识,同时考察逻辑思维能力和数学应用能力.[标准解答](I )记“取到的4个球全是红球”为事件A .22222245111().61060C C P A C C =⋅=⋅=(II )记“取到的4个球至多有1个红球”为事件B ,“取到的4个球只有1个红球”为事件1B ,“取到的4个球全是白球”为事件2B . 由题意,得31()1.44P B =-=2111122222122224242()n n n n C C C C C C P B C C C C ++⋅⋅=⋅+⋅22;3(2)(1)n n n =++ 22222242()n n C C P B C C +=⋅(1);6(2)(1)n n n n -=++ 所以, 12()()()P B P B P B =+22(1)3(2)(1)6(2)(1)n n n n n n n -=+++++14=,化简,得271160,n n --=解得2n =,或37n =-(舍去), 故 2n =.例9. (2018年全国I 卷文)某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率; (Ⅱ)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率.[考查目的]本小题主要考查相互独立事件、独立重复试验等的概率计算,运用数学知识解决问题的能力,以及推理与运算能力.[解答过程](Ⅰ)记A 表示事件:“3位顾客中至少1位采用一次性付款”,则A 表示事件:“3位顾客中无人采用一次性付款”.2()(10.6)0.064P A =-=, ()1()10.0640.936P A P =-=-=.(Ⅱ)记B 表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”.0B 表示事件:“购买该商品的3位顾客中无人采用分期付款”.1B 表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”.则01B B B =+.30()0.60.216P B ==,1213()0.60.40.432P B C =⨯⨯=.01()()P B P B B =+01()()P B P B =+0.2160.432=+0.648=.例10.(2006年北京卷)某公司招聘员工,指定三门考试课程,有两种考试方案. 方案一:考试三门课程,至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别是,,a b c ,且三门课程考试是否及格相互之间没有影响.(Ⅰ)分别求该应聘者用方案一和方案二时考试通过的概率;(Ⅱ)试比较该应聘者在上述两种方案下考试通过的概率的大小.(说明理由)[考查目的] 本题主要考查互斥事件有一个发生的概率和对立事件的概率,以及不等式等基本知识,同时考查逻辑思维能力和数学应用能力.[标准解答]记该应聘者对三门指定课程考试及格的事件分别为A ,B,C , 则P (A )=a ,P (B )=b ,P (C )=c. (Ⅰ) 应聘者用方案一考试通过的概率p 1=P (A·B ·C )+P (A ·B·C )+P (A ·B ·C )+P (A·B·C ) =a×b×(1-c)+(1-a)×b×c+a×(1-b)×c+a×b×c=ab+bc+ca-2abc. 应聘者用方案二考试通过的概率p 2=31P (A·B )+ 31P (B·C )+ 31P (A·C )= 31×(a×b+b×c+c×a)= 31 (ab+bc+ca)(Ⅱ) p 1- p 2= ab+bc+ca-2abc-31 (ab+bc+ca)= 23( ab+bc+ca-3abc)≥23]3abc =0≥.∴p 1≥p 2例11.(2018年陕西卷文)某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为54、53、52、51,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手进入第四轮才被淘汰的概率;(Ⅱ)求该选手至多进入第三轮考核的概率. (注:本小题结果可用分数表示)[考查目的]本小题主要考查相互独立事件、独立重复试验的概率计算,运用数学知识解决问题的能力,以及推理与运算能力.[解答过程](Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(1234)i A i =,,,,则14()5P A =,23()5P A =,32()5P A =,41()5P A =,∴该选手进入第四轮才被淘汰的概率412341234432496()()()()()5555625P P A A A A P A P A P A P P ===⨯⨯⨯=.(Ⅱ)该选手至多进入第三轮考核的概率3112123()P P A A A A A A =++112123()()()()()()P A P A P A P A P A P A =++142433101555555125=+⨯+⨯⨯=. 考点2离散型随机变量的分布列 1.随机变量及相关概念①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示.②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量.2.离散型随机变量的分布列①离散型随机变量的分布列的概念和性质一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值i x (=i 1,2,……)的概率P (i x =ξ)=i P ,则称下表.为随机变量ξ的概率分布,简称ξ的分布列.由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质: (1)0≥i P ,=i 1,2,…;(2)++21P P …=1. ②常见的离散型随机变量的分布列: (1)二项分布n 次独立重复试验中,事件A 发生的次数ξ是一个随机变量,其所有可能的取值为0,1,2,…n ,并且kn k k n k q p C k P P -===)(ξ,其中n k ≤≤0,p q -=1,随机变量ξ的分布列如下:称这样随机变量ξ服从二项分布,记作),(~p n B ξ,其中n 、p 为参数,并记:),;(p n k b q p C kn k k n =- .(2) 几何分布在独立重复试验中,某事件第一次发生时所作的试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示在第k 次独立重复试验时事件第一次发生. 随机变量ξ的概率分布为:例12.(2018年四川卷理)厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验,求至少有1件是合格的概率;(Ⅱ)若厂家发给商家20件产品中,其中有3件不合格,按合同规定该商家从中任取2件.都进行检验,只有2件都合格时才接收这批产品.否则拒收,求出该商家检验出不合格产品数ξ的分布列及期望ξE ,并求出该商家拒收这批产品的概率.[考查目的]本题考查相互独立事件、互斥事件等的概率计算,考察随机事件的分布列,数学期望等,考察运用所学知识与方法解决实际问题的能力.[解答过程](Ⅰ)记“厂家任取4件产品检验,其中至少有1件是合格品”为事件A 用对立事件A 来算,有()()4110.20.9984P A P A =-=-= (Ⅱ)ξ可能的取值为0,1,2. ()2172201360190C P C ξ===,()11317220511190C C P C ξ===,()2322032190C P C ξ===136513301219019019010E ξ=⨯+⨯+⨯=. 记“商家任取2件产品检验,都合格”为事件B ,则商家拒收这批产品的概率()136271119095P P B =-=-=.所以商家拒收这批产品的概率为2795.例13.(2018年陕西卷理)某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰. 已知某选手能正确回答第一、二、三轮的问题的概率分别为54、53、52,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手被淘汰的概率;(Ⅱ)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数学期望.(注:本小题结果可用分数表示)[考查目的]本题考查相互独立事件、互斥事件等的概率计算,考察随机事件的分布列,数学期望等,考察运用所学知识与方法解决实际问题的能力.[解答过程]解法一:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(123)i A i =,,,则14()5P A =,23()5P A =,32()5P A =, ∴该选手被淘汰的概率112223112123()()()()()()()P P A A A A A A P A P A P A P A P A P A =++=++142433101555555125=+⨯+⨯⨯=. (Ⅱ)ξ的可能值为123,,,11(1)()5P P A ξ===,1212428(2)()()()5525P P A A P A P A ξ====⨯=,12124312(3)()()()5525P P A A P A P A ξ====⨯=.ξ∴的分布列为1812571235252525E ξ∴=⨯+⨯+⨯=.解法二:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(123)i A i =,,,则14()5P A =,23()5P A =,32()5P A =. ∴该选手被淘汰的概率1231231()1()()()P P A A A P A P A P A =-=-4321011555125=-⨯⨯=.(Ⅱ)同解法一.考点3 离散型随机变量的期望与方差 随机变量的数学期望和方差(1)离散型随机变量的数学期望:++=2211p x p x E ξ…;期望反映随机变量取值的平均水平. ⑵离散型随机变量的方差:+-+-=222121)()(p E x p E x D ξξξ…+-+n n p E x 2)(ξ…; 方差反映随机变量取值的稳定与波动,集中与离散的程度.⑶基本性质:b aE b a E +=+ξξ)(;ξξD a b a D 2)(=+.(4)若ξ~B(n ,p),则 np E =ξ ; D ξ =npq (这里q=1-p ) ;如果随机变量ξ服从几何分布,),()(p k g k P ==ξ,则pE 1=ξ,D ξ =2pq 其中q=1-p.例14.甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为ε、η,ε和η的分布列如下:则比较两名工人的技术水平的高低为 .思路启迪:一是要比较两名工人在加工零件数相等的条件下出次品数的平均值,即期望;二是要看出次品数的波动情况,即方差值的大小.解答过程:工人甲生产出次品数ε的期望和方差分别为:7.0103210111060=⨯+⨯+⨯=εE , 891.0103)7.02(101)7.01(106)7.00(222=⨯-+⨯-+⨯-=εD ; 工人乙生产出次品数η的期望和方差分别为:7.0102210311050=⨯+⨯+⨯=ηE ,664.0102)7.02(103)7.01(105)7.00(222=⨯-+⨯-+⨯-=ηD 由Eε=Eη知,两人出次品的平均数相同,技术水平相当,但Dε>Dη,可见乙的技术比较稳定.小结:期望反映随机变量取值的平均水平;方差反映随机变量取值的稳定与波动,集中与离散的程度.例15.(2018年全国I 理)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ; (Ⅱ)求η的分布列及期望E η.[考查目的] 本小题主要考查概率和离散型随机变量分布列和数学期望等知识.考查运用概率知识解决实际问题的能力.[解答过程](Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”. 知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=, ()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯240=(元). 小结:离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.本题考查离散型随机变量分布列和数学期望等概念,考查运用概率知识解决实际问题的能力. 例16.某班有48名学生,在一次考试中统计出平均分为70分,方差为75,后来发现有2名同学的成绩有误,甲实得80分却记为50分,乙实得70分却记为100分,更正后平均分和方差分别是A.70,25B.70,50C.70,1.04D.65,25 解答过程:易得x 没有改变,x =70, 而s 2=481[(x 12+x 22+…+502+1002+…+x 482)-48x 2]=75, s ′2=481[(x 12+x 22+…+802+702+…+x 482)-48x 2] =481[(75×48+48x 2-12500+11300)-48x 2] =75-481200=75-25=50. 答案:B考点4 抽样方法与总体分布的估计抽样方法1.简单随机抽样:设一个总体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样). 3.分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样. 总体分布的估计由于总体分布通常不易知道,我们往往用样本的频率分布去估计总体的分布,一般地,样本容量越大,这种估计就越精确.总体分布:总体取值的概率分布规律通常称为总体分布.当总体中的个体取不同数值很少时,其频率分布表由所取样本的不同数值及相应的频率表示,几何表示就是相应的条形图.当总体中的个体取值在某个区间上时用频率分布直方图来表示相应样本的频率分布. 总体密度曲线:当样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,即总体密度曲线. 典型例题例17.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为2:3:5.现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号产品有16件.那么此样本的容量n= . 解答过程:A 种型号的总体是210,则样本容量n=1016802⨯=.例18.一个总体中有100个个体,随机编号0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m k +的个位数字相同,若6m =,则在第7组中抽取的号码是 .解答过程:第K 组的号码为(1)10k - ,(1)101k -+,…,(1)109k -+,当m=6时,第k 组抽取的号的个位数字为m+k 的个位数字,所以第7组中抽取的号码的个位数字为3 ,所以抽取号码为63. 例19.考查某校高三年级男生的身高,随机抽取40名高三男生,实测身高数据(单位:cm )如下:171 163 163 166 166 168 168 160 168 165171 169 167 169 151 168 170 160 168 174165 168 174 159 167 156 157 164 169 180176 157 162 161 158 164 163 163 167 161⑴作出频率分布表;⑵画出频率分布直方图.思路启迪:确定组距与组数是解决“总体中的个体取不同值较多”这类问题的出发点.解答过程:⑴最低身高为151,最高身高180,其差为180-151=29。
新高考 核心考点与题型 概率 第2讲 古典概型 - 解析

第2讲 古典概型【考情考向分析】全国卷对古典概型每年都会考查,主要考查实际背景的可能事件,通常与互斥事件、对立事件一起考查.在高考中单独命题时,通常以选择题、填空题形式出现,属于中低档题;与统计等知识结合在一起考查时,以解答题形式出现,属中档题。
知 识 梳 理1.基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型 具有以下两个特征(1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果.如从1,2,3,…,100这100个整数中任意取出一个整数,求取到偶数的概率.(2)每一个试验结果出现的可能性相同.如向上抛掷一枚不均匀的旧硬币,求正面朝上的概率;3.如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n ;如果某个事件A 包括的结果有m 个,那么事件A 的概率P (A )=m n .4.古典概型的概率公式P (A )=事件A 包含的可能结果数试验的所有可能结果数.[微点提醒]概率的一般加法公式P (A ∪B )=P (A )+P (B )-P (A ∩B )中,易忽视只有当A ∩B =∪, 即A ,B 互斥时,P (A ∪B )=P (A )+P (B ),此时P (A ∩B )=0.考点一 基本事件及古典概型的判断【例1】 袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其他球的编号,从中摸出一个球.(1)有多少种不同的摸法?如果把每个球的编号看作一个基本事件建立概率模型,该模型是不是古典概型? (2)若按球的颜色为划分基本事件的依据,有多少个基本事件?以这些基本事件建立概率模型,该模型是不是古典概型?解(1)由于共有11个球,且每个球有不同的编号,故共有11种不同的摸法.因为所有球大小相同,因此每个球被摸中的可能性相等,故以球的编号为基本事件的概率模型为古典概型. (2)由于11个球共有3种颜色,因此共有3个基本事件,分别记为A :“摸到白球”,B :“摸到黑球”,C :“摸到红球”,又因为所有球大小相同,所以一次摸球每个球被摸中的可能性均为111,而白球有5个,故一次摸球摸到白球的可能性为511,同理可知摸到黑球、红球的可能性均为311,显然这三个基本事件出现的可能性不相等,故以颜色为划分基本事件的依据的概率模型不是古典概型. 规律方法 古典概型中基本事件个数的探求方法:(1)枚举法:适合于给定的基本事件个数较少且易一一列举出的问题.(2)树状图法:适合于较为复杂的问题,注意在确定基本事件时(x ,y )可看成是有序的,如(1,2)与(2,1)不同,有时也可看成是无序的,如(1,2)与(2,1)相同.(3)排列组合法:在求一些较复杂的基本事件个数时,可利用排列或组合的知识.【变式】 甲、乙两人用4张扑克牌(分别是红桃2、红桃3、红桃4、方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽1张. (1)写出甲、乙抽到牌的所有情况.(2)甲、乙约定,若甲抽到的牌的数字比乙大,则甲胜,否则乙胜,你认为此游戏是否公平?为什么? 解 (1)设(i ,j )表示(甲抽到的牌的数字,乙抽到的牌的数字),则甲、乙二人抽到的牌的所有情况(方片4用4′表示)为(2,3),(2,4),(2,4′),(3,2),(3,4),(3,4′),(4,2),(4,3),(4,4′),(4′,2),(4′,3),(4′,4),共12种.(2)由(1)可知甲抽到的牌的牌面数字比乙大有(3,2),(4,2),(4,3),(4′,2),(4′,3),共5种情况,∪甲胜的概率p =512,∪512≠12,∪此游戏不公平.考点二 简单的古典概型的概率【例2】 (1)两名同学分3本不同的书,其中一人没有分到书,另一人分得3本书的概率为( ) A.12B.14C.13D.16(2)设袋子中装有3个红球,2个黄球,1个蓝球,规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分,现从该袋子中任取(有放回,且每球取得的机会均等)2个球,则取出此2球所得分数之和为3分的概率为________.解析 (1)两名同学分3本不同的书,基本事件有(0,3),(1a ,2),(1b ,2),(1c ,2),(2,1a ),(2,1b ),(2,1c ),(3,0),共8个,其中一人没有分到书,另一人分到3本书的基本事件有2个,∪一人没有分到书,另一人分得3本书的概率p =28=14.(2)袋子中装有3个红球,2个黄球,1个蓝球,规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分,现从该袋子中任取(有放回,且每球取得的机会均等)2个球,基本事件总数n =6×6=36,取出此2球所得分数之和为3分,包含第一次抽到红球,第二次抽到黄球或者第一次抽到黄球,第二次抽到红球,基本事件个数m =2×3+3×2=12,所以取出此2球所得分数之和为3分的概率p =m n =1236=13.规律方法 计算古典概型事件的概率可分三步:(1)计算基本事件总个数n ;(2)计算事件A 所包含的基本事件的个数m ;(3)代入公式求出概率p .【变式1】 同学聚会上,某同学从《爱你一万年》《十年》《父亲》《单身情歌》四首歌中选出两首歌进行表演,则《爱你一万年》未被选取的概率为( ) A.13B.12C.23D.56【变式2】用1,2,3,4,5组成无重复数字的五位数, 若用a 1,a 2,a 3,a 4,a 5分别表示五位数的万位、千位、百位、十位、个位数字,则出现a 1<a 2<a 3>a 4>a 5的五位数的概率为________.解析 (1)从四首歌中任选两首共有C 24=6种选法,不选取《爱你一万年》的方法有C 23=3种,故所求的概率为p =36=12.(2)用1,2,3,4,5组成无重复数字的五位数,基本事件总数n =A 55,用a 1,a 2,a 3,a 4,a 5分别表示五位数的万位、千位、百位、十位、个位数字,出现a 1<a 2<a 3>a 4>a 5的五位数有:12543,13542,23541,34521,24531,14532,共6个,∪出现a 1<a 2<a 3>a 4>a 5的五位数的概率p =6A 55=120.考点三 古典概型的交汇问题多维探究角度1 古典概型与平面向量的交汇【例1】 设平面向量a =(m ,1),b =(2,n ),其中m ,n ∪{1,2,3,4},记“a ∪(a -b )”为事件A ,则事件A 发生的概率为( ) A.18B.14C.13D.12解析 有序数对(m ,n )的所有可能情况为4×4=16个,由a ∪(a -b )得m 2-2m +1-n =0,即n =(m -1)2.由于m ,n ∪{1,2,3,4},故事件A 包含的基本事件为(2,1)和(3,4),共2个,所以P (A )=216=18.角度2 古典概型与解析几何的交汇【例2】 将一颗骰子先后投掷两次分别得到点数a ,b ,则直线ax +by =0与圆(x -2)2+y 2=2有公共点的概率为________.解析 依题意,将一颗骰子先后投掷两次得到的点数所形成的数组(a ,b )有6×6=36种,其中满足直线ax +by =0与圆(x -2)2+y 2=2有公共点,即满足2aa 2+b2≤2,即a ≤b 的数组(a ,b )有(1,1),(1,2),(1,3),(1,4),…,(6,6),共6+5+4+3+2+1=21种,因此所求的概率为2136=712.角度3 古典概型与函数的交汇【例3】 已知函数f (x )=13x 3+ax 2+b 2x +1,若a 是从1,2,3三个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为( ) A.79B.13C.59D.23解析 f ′(x )=x 2+2ax +b 2,由题意知f ′(x )=0有两个不等实根,即Δ=4(a 2-b 2)>0,∪a >b ,有序数对(a ,b )所有结果为3×3=9种,其中满足a >b 有(1,0),(2,0),(3,0),(2,1),(3,1),(3,2)共6种,故所求概率p =69=23.角度4 古典概型与统计的交汇【例4】某中学组织了一次数学学业水平模拟测试,学校从测试合格的男、女生中各随机抽取100人的成绩进行统计分析,分别制成了如图所示的男生和女生数学成绩的频率分布直方图.(注:分组区间为[60,70),[70,80),[80,90),[90,100])(1)若得分大于或等于80认定为优秀,则男、女生的优秀人数各为多少?(2)在(1)中所述的优秀学生中用分层抽样的方法抽取5人,从这5人中任意选取2人,求至少有一名男生的概率.解 (1)由题可得,男生优秀人数为100×(0.01+0.02)×10=30,女生优秀人数为100×(0.015+0.03)×10=45. (2)因为样本容量与总体中的个体数的比是530+45=115,所以样本中包含的男生人数为30×115=2,女生人数为45×115=3.则从5人中任意选取2人共有C 25=10种,抽取的2人中没有一名男生有C 23=3种,则至少有一名男生有C 25-C 23=7种.故至少有一名男生的概率为p =710,即选取的2人中至少有一名男生的概率为710. 规律方法 求解古典概型的交汇问题,关键是把相关的知识转化为事件,然后利用古典概型的有关知识解决,一般步骤为:(1)将题目条件中的相关知识转化为事件; (2)判断事件是否为古典概型; (3)选用合适的方法确定基本事件个数; (4)代入古典概型的概率公式求解.【变式】 已知某中学高三理科班学生的数学与物理的水平测试成绩抽样统计如下表:若抽取学生n 人,成绩分为A (优秀),B (良好),C (及格)三个等级,设x ,y 分别表示数学成绩与物理成绩,例如:表中物理成绩为A 等级的共有14+40+10=64人,数学成绩为B 等级且物理成绩为C 等级的共有8人.已知x 与y 均为A 等级的概率是0.07.(1)设在该样本中,数学成绩的优秀率是30%,求a ,b 的值;(2)已知a ≥7,b ≥6,求数学成绩为A 等级的人数比C 等级的人数多的概率. (1)由题意知14n=0.07,解得n =200,∪14+a +28200×100%=30%,解得a =18,易知a +b =30,所以b =12.(2)由14+a +28>10+b +34得a >b +2,又a +b =30且a ≥7,b ≥6,则(a ,b )的所有可能结果为(7,23),(8,22),(9,21),…,(24,6),共18种,而a >b +2的可能结果为(17,13),(18,12),…,(24,6),共8种,则所求概率p =818=49.基础巩固题组 (建议用时:40分钟)一、选择题1.集合A ={2,3},B ={1,2,3},从A ,B 中各任意取一个数,则这两数之和等于4的概率是( ) A.23B.12C.13D.16解析 从A ,B 中任意取一个数,共有C 12·C 13=6种情形,两数和等于4的情形只有(2,2),(3,1)两种,∪p =26=13. 2.设m ,n ∪{0,1,2,3,4},向量a =(-1,-2),b =(m ,n ),则a ∪b 的概率为( ) A.225B.325C.320D.15解析 a ∪b ∪-2m =-n ∪2m =n ,所以⎩⎪⎨⎪⎧m =0,n =0或⎩⎪⎨⎪⎧m =1,n =2或⎩⎪⎨⎪⎧m =2,n =4,因此概率为35×5=325.3.某同学先后投掷一枚骰子两次,第一次向上的点数记为x ,第二次向上的点数记为y ,在平面直角坐标系xOy 中,以(x ,y )为坐标的点在直线2x -y =1上的概率为( ) A.112B.19C.536D.16解析 先后投掷一枚骰子两次,共有6×6=36种结果,满足题意的结果有3种,即(1,1),(2,3),(3,5),所以所求概率为336=112.4.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为( ) A.13B.14C.15D.16解析 分别用A ,B ,C 表示齐王的上、中、下等马,用a ,b ,c 表示田忌的上、中、下等马,现从双方的马匹中随机选一匹进行一场比赛有Aa ,Ab ,Ac ,Ba ,Bb ,Bc ,Ca ,Cb ,Cc 共9场比赛,其中田忌马获胜的有Ba ,Ca ,Cb 共3场比赛,所以田忌马获胜的概率为13.5.将一个骰子连续掷3次,它落地时向上的点数依次成等差数列的概率为( ) A.112B.19C.115D.118解析 一个骰子连续掷3次,落地时向上的点数可能出现的组合数为63=216种.落地时向上的点数依次成等差数列,当向上点数若不同,则为(1,2,3),(1,3,5),(2,3,4),(2,4,6),(3,4,5),(4,5,6),共有2×6=12种情况;当向上点数相同,共有6种情况.故落地时向上的点数依次成等差数列的概率为12+6216=112. 二、填空题6.小明忘记了微信登录密码的后两位,只记得最后一位是字母A ,a ,B ,b 中的一个,另一位是数字4,5,6中的一个,则小明输入一次密码能够成功登陆的概率是________.解析 小明输入密码后两位的所有情况有C 14·C 13=12种,而能成功登陆的密码只有一种,故小明输入一次密码能够成功登陆的概率是112. 7.若m 是集合{1,3,5,7,9,11}中任意选取的一个元素,则椭圆x 2m +y 22=1的焦距为整数的概率为________.解析 m 是集合{1,3,5,7,9,11}中任意选取的一个元素,∪基本事件总数为6,又满足椭圆x 2m +y 22=1的焦距为整数的m 的取值有1,3,11,共有3个,∪椭圆x 2m +y 22=1的焦距为整数的概率p =36=12.8.某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为________.解析 甲同学从四种水果中选两种,选法种数有C 24,乙同学的选法种数为C 24,则两同学的选法种数为C 24·C 24,两同学各自所选水果相同的选法种数为C 24,由古典概型概率计算公式可得,甲、乙两同学各自所选的两种水果相同的概率为p =C 24C 24C 24=16.三、解答题9.如图所示的茎叶图记录了甲、乙两组各四名同学的植树棵数,其中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率. 解 (1)当X =8时,由茎叶图可知,乙组四名同学的植树棵数分别是8,8,9,10,故x -=8+8+9+104=354,s 2=14×⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫8-3542×2+⎝⎛⎭⎫9-3542+⎝⎛⎭⎫10-3542=1116.(2)当X =9时,记甲组四名同学分别为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学分别为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,其包含的基本事件为{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 1,B 4},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 2,B 4},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 3,B 4},{A 4,B 1},{A 4,B 2},{A 4,B 3},{A 4,B 4},共16个.设“选出的两名同学的植树总棵数为19”为事件C ,则事件C 中包含的基本事件为{A 1,B 4},{A 2,B 4},{A 3,B 2},{A 4,B 2},共4个.故P (C )=416=14.10.某市A ,B 两所中学的学生组队参加辩论赛,A 中学推荐了3名男生、2名女生,B 中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队.(1)求A 中学至少有1名学生入选代表队的概率;(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,求参赛女生人数不少于2人的概率.解 (1)由题意,参加集训的男、女生各有6名.参赛学生全从B 中学抽取(等价于A 中学没有学生入选代表队)的概率为C 33C 34C 36C 36=1100,因此,A 中学至少有1名学生入选代表队的概率为1-1100=99100.(2)设“参赛的4人中女生不少于2人”为事件A ,记“参赛女生有2人”为事件B ,“参赛女生有3人”为事件C .则P (B )=C 23C 23C 46=35,P (C )=C 33C 13C 46=15.由互斥事件的概率加法公式,得P (A )=P (B )+P (C )=35+15=45,故所求事件的概率为45.能力提升题组 (建议用时:20分钟)11.已知函数f (x )=12ax 2+bx +1,其中a ∪{2,4},b ∪{1,3},从f (x )中随机抽取1个,则它在(-∞,-1]上是减函数的概率为( ) A.12B.34C.16D.0解析 f (x )共有四种等可能基本事件即(a ,b )取(2,1),(2,3),(4,1),(4,3),记事件A 为f (x )在(-∞,-1]上是减函数,由条件知f (x )是开口向上的函数,对称轴是x =-ba ≥-1,事件A 共有三种(2,1),(4,1),(4,3)等可能基本事件,所以P (A )=34.12.甲在微信群中发布6元“拼手气”红包一个,被乙、丙、丁三人抢完.若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领取的钱数不少于其他任何人)的概率是( ) A.34B.13C.310D.25解析 6元分成整数元有3份, 可能性有(1,1,4),(1,2,3),(2,2,2),第一个分法有3种,第二个分法有6种,第三个分法有1种,其中符合“最佳手气”的有4种,故概率为410=25.13.从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,则经过两次这样的调换后,甲在乙左边的概率是__________.解析 从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,则经过两次这样的调换,基本事件总数为n =C 23·C 23=9,从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,第一次调换后,对调后的位置关系有三种:甲丙乙、乙甲丙、丙乙甲,第二次调换后甲在乙的左边对应的关系有:丙甲乙、甲乙丙;丙甲乙、甲乙丙;甲丙乙、丙甲乙,∪经过两次这样的调换后,甲在乙的左边包含的基本事件个数m =6,∪经过这样的调换后,甲在乙左边的概率:p =m n =69=23.14.某快递公司收取快递费用的标准如下:质量不超过1 kg 的包裹收费10元;质量超过1 kg 的包裹,除1 kg 收费10元之外,超过1 kg 的部分,每1 kg(不足1 kg ,按1 kg 计算)需再收5元. 该公司对近60天, 每天揽件数量统计如下表:(1)某人打算将A (0.3 kg),B (1.8 kg),C (1.5 kg)三件礼物随机分成两个包裹寄出,求该人支付的快递费不超过30元的概率;(2)该公司从收取的每件快递的费用中抽取5元作为前台工作人员的工资和公司利润,剩余的作为其他费用.前台工作人员每人每天揽件不超过150件,工资100元,目前前台有工作人员3人,那么公司将前台工作人员裁员1人对提高公司利润是否更有利? 解 (1)由题意,寄出方式有以下三种可能:所有3种可能中,有1种可能快递费未超过30元,根据古典概型概率计算公式,所求概率为13.(2)由题目中的天数得出频率,如下:若不裁员,则每天可揽件的上限为450件,公司每日揽件数情况如下:故公司每日利润为260×5-3×100=1 000(元);若裁员1人,则每天可揽件的上限为300件,公司每日揽件数情况如下:故公司每日利润为235×5-2×100=975(元).综上,公司将前台工作人员裁员1人对提高公司利润不利.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考概率与统计 9 个考点解析概率与统计试题是高考的必考内容。
它是以实际应用问题为载体,以排列组合和概率统计等知识为工具,以考查对五个概率事件的判断识别及其概率的计算和随机变量概率分布列性质及其应用为目标的中档师,预计这也是今后高考概率统计试题的考查特点和命题趋向。
下面对其常见题型和考点进行解析。
考点 1 考查等可能事件概率计算在一次实验中可能出现的结果有n 个,而且所有结果出现的可能性都相等。
如果事件A 包含的结果有m 个,那么P(A)= m。
这就是等可能事件的判断方法及其概率的计n算公式。
高考常借助不同背景的材料考查等可能事件概率的计算方法以及分析和解决实际问题的能力。
例1(2004 天津)从 4 名男生和2 名女生中任选3 人参加演讲比赛.(I)求所选3 人都是男生的概率;(II)求所选3 人中恰有1 名女生的概率;(III)求所选3 人中至少有1 名女生的概率.考点 2 考查互斥事件至少有一个发生与相互独立事件同时发生概率计算不可能同时发生的两个事件 A、B 叫做互斥事件,它们至少有一个发生的事件为 A+B,用概率的加法公式P( A +B) =P( A) +P(B) 计算。
事件 A(或 B)是否发生对事件 B(或 A)发生的概率没有影响,则 A、B 叫做相互独立事件,它们同时发生的事件为A⋅B 。
用概率的法公式P(A⋅B)=P(A)⋅P(B)计算。
高考常结合考试竞赛、上网工作等问题对这两个事件的识别及其概率的综合计算能力进行考查。
例 2.(2005 全国卷Ⅲ)设甲、乙、丙三台机器是否需要照顾相互之间没有影响。
已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125,(Ⅰ)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少;(Ⅱ)计算这个小时内至少有一台需要照顾的概率.考点 3 考查对立事件概率计算-- 必有一个发生的两个互斥事件A、B 叫做互为对立事件。
即B =A 或A =B 。
用概率的减法公式P(A)=1 - ⎛_⎫P A⎪计算其概率。
⎝⎭高考常结合射击、电路、交通等问题对对立事件的判断识别及其概率计算进行考查。
例3.(2005 福建卷文)甲、乙两人在罚球线投球命中的概率分别为1与2.2 5(Ⅰ)甲、乙两人在罚球线各投球一次,求恰好命中一次的概率;(Ⅱ)甲、乙两人在罚球线各投球二次,求这四次投球中至少一次命中的概率.考点 4 考查独立重复试验概率计算若在次重复试验中,每次试验结果的概率都不依赖其它各次试验的结果,则此试验叫做n 次独立重复试验。
若在1 次试验中事件A 发生的概率为P,则在n 次独立惩处试验中,事件A 恰好发生k次的概率为P (k )=C k P k(1 -P)n-k 。
n n高考结合实际应用问题考查n 次独立重复试验中某事件恰好发生k 次的概率的计算方法和化归转化、分类讨论等数学思想方法的应用。
例4.(2005 湖北卷)某会议室用5 盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1 年以上的概率为p1,寿命为2 年以上的概率为p2.从使用之日起每满1 年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换 2 只灯泡的概率;(Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p1=0.8,p2=0.3 时,求在第二次灯泡更换工作,至少需要更换4 只灯泡的概率(结果保留两个有效数字).考点5 考查随机变量概率分布与期望计算解决此类问题时,首先应明确随机变量可能取哪些值,然后按照相互独立事件同时发生概率的法公式去计算这些可能取值的概率值即可等到分布列,最后根据分布列和期望、方差公式去获解。
以此考查离散型随机变量分布列和数学期望等概念和运用概率知识解决实际问题的能力。
例5.(2005 湖北卷)某地最近出台一项机动车驾照考试规定;每位考试者一年之内最多有4 次参加考试的机会,一旦某次考试通过,使可领取驾照,不再参加以后的考试,否则就一直考到第4 次为止。
如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9,求在一年内李明参加驾照考试次数ξ的分布列和ξ的期望,并求李明在一年内领到驾照的概率.考点 6 考查随机变量概率分布列与其他知识点结合1 考查随机变量概率分布列与函数结合例6.(2005 湖南卷)某城市有甲、乙、丙3 个旅游景点,一位客人游览这三个景点的概率分别是0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设ξ表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值.(Ⅰ)求ξ的分布及数学期望;(Ⅱ)记“函数f(x)=x2-3ξx+1 在区间[2,+∞ ) 上单调递增”为事件A,求事件A 的概率.2、考查随机变量概率分布列与数列结合例7 甲乙两人做射击游戏,甲乙两人射击击中与否是相互独立事件,规则如下:若射击一次击中,原射击者继续射击,若射击一次不中,就由对方接替射击。
已知甲乙两人7射击一次击中的概率均为,且第一次由甲开始射击。
8(1)求前4 次射击中,甲恰好射击3 次的概率。
→∞ (2) 若第n 次由甲射击的概率为a n ,求数列{a n }的通项公式;求lim a n ,并说明极n限值的实际意义。
3、考查随机变量概率分布列与线形规划结合例 8(2005 辽宁卷)某工厂生产甲、乙两种产品,每种产品都是经过第一和第二工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果均有 A 、B 两个等级.对每种产品,两道工序的加工结果都为 A 级时,产品为一等品,其余均为二等品.(Ⅰ)已知甲、乙两种产品每一道工序的加工结果为 A 级的概率如表一所示,分别求生产出的甲、乙产品为一等品的概率P 甲、P 乙; (Ⅱ)已知一件产品的利润如表二所示,用ξ、η分别表示一件甲、乙产品的利润,在(I ) 的条件下,求ξ、η的分布列及 E ξ、E η; (Ⅲ)已知生产一件产品需用的工人数和资金额如表三所示.该工厂有工人 40 名,可用资金60 万元.设x 、y 分别表示生产甲、乙产品的数量, 在(II )的条件下,x 、y 为何值时,z = xE ξ + yE η 最大?最大值是多少? (解答时须给出图示)考点 7 考查随机变量概率分布列性质应用设离散型随机变量的分布列为ξx 1 x 2x i PP 1 P 2P i它有下面性质:① P i ≥ 0(i = 1,2, )1 1 i i 1 i ② p 1 + p2 + + p i + = 1, 即总概率为 1;③期望 E ξ = x P + + x P + ; 方差 D ξ = (x - E ξ )2 P + + (x- E ξ )2P +离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和. 高考常结合应用问题对随机变量概率分布列及其性质的应用进行考查. a例 9 (2004 年湖北高考题)设随机变量的概率分布为 P (ξ = k )=a=5k,a 为常数,k=1,2, ,则例 10(2004 年全国高考题)某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:每题回 答正确得100 分,回答不正确得100 分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响.①求这名同学回答这三个问题的总得分的概率分布和数学期望. ②求这名同学总得分不为负分(即ξ ≥ 0) )的概率.例 11 (2002 年天津高考题) 甲、乙两种冬小麦试验品种连续 5 年的平均单位面积产量如下(单位:t/hm 2):其中产量比较稳定的小麦品种是 .1 i考点8 样本抽样识别与计算简单随机抽样,系统抽样,分层抽样得共同特点是不放回抽样,且各个体被抽取得概率相等,均为(N 为总体个体数,n 为样本容量).系统抽样,分层抽样的实质分别是等距抽样与按比例抽样,只需按照定义,适用范围和抽样步骤进行,就可得到符合条件的样本.高考常结合应用问题,考查构照抽样模型,识别图形,搜集数据,处理材料等研究性学习的能力.例12 (2005 年湖北湖北高考题)某初级中学有学生270 人,其中一年级108 人,二、①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270;关于上述样本的下列结论中,正确的是()A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样例13 (2005 年湖南高考题)一工厂生产了某种产品16800 件,它们来自甲.乙.丙3 条生产线,为检查这批产品的质量,决定采用分层抽样的方法进行抽样,已知甲.乙.丙三条生产线抽取的个体数组成一个等差数列,则乙生产线生产了件产品.考点9 考查直方图。
例 14.(2005 江西卷)为了解某校高三学生的视力情况,随机地抽查了该校100 名高三学生的视力情况,得到频率分布直方图,如右,由于不慎将部分数据丢失,但知道前4 组的频数成等比数列,后6 组的频数成等差数列,设最大频率为a,视力在4.6 到5.0 之间的学生数为b,则a, b 的值分别为()A.0,27,78 B.0,27,83 0.30.1 视力4.3 4.4 4.5 4.6 4.7 4.8 4.95.0 5.1 5.2C = C 2 4 = 3 3 5 C .2.7,78D .2.7,83例 1(2004 天津)本小题考查等可能事件的概率计算及分析和解决实际问题的能力.满分 12 分.3 1 (I) 解: 所选 3 人都是男生的概率为4 .65(II) 解:所选 3 人中恰有 1 名女生的概率为 C 1C 2 33 . 6C 1C 2 + C 2C 1 4 (III) 解:所选 3 人中至少有 1 名女生的概率为 2 4 24 = .6 52.(2005 全国卷Ⅲ)解:(Ⅰ)记甲、乙、丙三台机器在一小时需要照顾分别为事件 A 、B 、 C ,……1 分则 A 、B 、C 相互独立,由题意得: P (AB )=P (A )P (B )=0.05 P (AC )=P (A )P (C )=0.1P (BC )=P (B )P (C )=0.125....................................................................................... 4 分 解得:P (A )=0.2;P (B )=0.25;P (C )=0.5所以, 甲、乙、丙每台机器在这个小时内需要照顾的概率分别是 0.2、0.25、0.5……6 分(Ⅱ)∵A 、B 、C 相互独立,∴ A 、B 、C 相互独立,… ................................................... 7 分 ∴甲、乙、丙每台机器在这个小时内需都不需要照顾的概率为P (A ⋅ B ⋅C ) = P (A )P (B )P (C ) = 0.8⨯0.75⨯0.5 = 0.3......................................... 10 分∴这个小时内至少有一台需要照顾的概率为 p = 1- P (A ⋅ B ⋅C ) = 1- 0.3 = 0.7 ……12 分例 3.(2005 福建卷文)解:(Ⅰ)依题意,记“甲投一次命中”为事件 A ,“乙投一次命中”为事件B ,则P ( A ) = 1 , P (B ) = 2 , P ( A ) = 1 , P (B ) = 3.2 5 2 5C C1 55 33 1 甲、乙两人在罚球线各投球一次,恰好命中一次的概率为 .2(Ⅱ)∵事件“甲、乙两人在罚球线各投球二次均不命中”的概率为P = 1 ⨯ 1 ⨯ 3 ⨯ 3 = 92 2 5 5 1 0 0∴甲、乙两人在罚球线各投球两次至少有一次命中的概率P = 1 - P = 1 -9 100= 91 . 1 0 0 91答:甲、乙两人在罚球线各投球二次,至少有一次命中的概率为.100∵“甲、乙两人各投球一次,恰好命中一次”的事件为 A ⋅ B + A ⋅ B∴ P ( A ⋅ B + A ⋅ B ) = P ( A ⋅ B ) + P ( A ⋅ B ) = 1 ⨯ 3 + 1 ⨯ 2 = 1.2 5 2 5 2例 4.(2005 湖北卷)解:(I )在第一次更换灯泡工作中,不需要换灯泡的概率为 p 5 , 需要更换 2 只灯泡的概率为C 2 p 3 (1- p )2 ;5 11(II ) 对该盏灯来说,在第 1、2 次都更换了灯泡的概率为(1-p 1)2;在第一次未更换灯泡而在第二次需要更换灯泡的概率为 p 1(1-p 2),故所求的概率为p = (1 - p )2 + p (1 - p );112(III ) 至少换 4 只灯泡包括换 5 只和换 4 只两种情况,换 5 只的概率为p 5(其中 p 为(II )中所求,下同)换 4 只的概率为C 1 p 4 (1-p ),故至少换 4 只灯泡的概率为p = p 5 + C 1 p 4(1 - p ).又当p 1 = 0.8, p 2 = 0.3时, p = 0.22 + 0.8 ⨯ 0.7 = 0.6 ∴ p = 0.65 + 5 ⨯ 0.64 ⨯ 0.4 = 0.34. 即满2年至少需要换4只灯泡的概率为0.34.例 5.(2005 湖北卷)解:ξ 的取值分别为 1,2,3,4.ξ = 1,表明李明第一次参加驾照考试就通过了,故P (ξ = 1)=0.6.ξ= 2 ,表明李明在第一次考试未通过,第二次通过了,故P(ξ= 2) = (1 - 0.6) ⨯ 0.7 = 0.28.ξ=3,表明李明在第一、二次考试未通过,第三次通过了,故P(ξ= 3) = (1 - 0.6) ⨯ (1 - 0.7) ⨯ 0.8 = 0.096.ξ=4,表明李明第一、二、三次考试都未通过,故P(ξ= 4) = (1 - 0.6) ⨯ (1 - 0.7) ⨯ (1 - 0.8) = 0.024.∴李明实际参加考试次数ξ的分布列为∴ξ的期望Eξ=1×0.6+2×0.28+3×0.096+4×0.024=1.544.李明在一年内领到驾照的概率为1-(1-0.6)(1-0.7)(1-0.8)(1-0.9)=0.9976.例6.(2005 湖南卷)解:(I)分别记“客人游览甲景点”,“客人游览乙景点”,“客人游览丙景点”为事件A1,A2,A3. 由已知A1,A2,A3相互独立,P(A1)=0.4,P(A2)=0.5,P(A3)=0.6.客人游览的景点数的可能取值为0,1,2,3. 相应地,客人没有游览的景点数的可能取值为3,2,1,0,所以ξ的可能取值为1,3. P(ξ=3)=P(A1·A2·A3)+ P(A1 ⋅A2 ⋅A3 )= P(A1)P(A2)P(A3)+P(A1 )P( A2 )P( A3 ) )=2×0.4×0.5×0.6=0.24 ,P(ξ=1)=1-所以ξ的分布列为Eξ=1×0.76+3×0.24=1.48.(Ⅱ)解法一因为f (x) = (x -3ξ)2+ 1 -9 ξ2, 2 4105 2.5 P 0.680.322.5 1.5 P 0.60.4所以函数 f (x ) = x 2 - 3ξx +1在区间[3ξ ,+∞) 上单调递增,2要使 f (x )在[2,+∞) 上单调递增,当且仅当 43ξ ≤ 2,即ξ ≤ 4.23从而 P ( A ) = P (ξ ≤ ) = P (ξ = 1) = 0.76.3解法二:ξ 的可能取值为 1,3.当ξ =1 时,函数 f (x ) = x 2 - 3x + 1在区间[2,+∞) 上单调递增, 当ξ =3 时,函数 f (x ) = x 2 - 9x + 1在区间[2,+∞) 上不单调递增.0 所以 P ( A ) = P (ξ = 1) = 0.76.例 7 解:记A 为甲射击,B 为乙射击,则1) 前 4 次射击中甲恰好射击 3 次可列举为 AAAB ,AABA ,ABAA其概率为P= 7⨯ 8 7 ⨯ 1 + 8 8 7 ⨯ 1 ⨯ 1 8 8 8 + 1 ⨯ 1 ⨯ 7 8 8 8=63 5122) 第n + 1次由甲射击这一事件,包括第 n 次由甲射击,第n + 1次继续由甲射击这一事件以 第 n 次由乙射击,第 n +1 由甲射击这一事件,这两事件发生的概率是互斥的 7且发生的概率分别为 a 与 8 n 1 (1 - a 8 n ) 则有关系式 a n +1 = 7 a + 8 n 1 (1 - a 8 n ) = 3 a + 1 4 n 8 其中a = 1。