文科数学专题_概率与统计复习
高考数学文科二轮(通用版)复习课件:第一部分 专题七 概率与统计 第2讲

因为(1.5+2.5)×0.1=0.4<0.5, 所以消费金额的中位数在[0.5,0.6)内,设中位数为 b, 则(1.5+2.5)×0.1+3(b-0.5)=0.5,
8 8 所以 b= 15 ,即中位数为 15 .
2.某工厂 36 名工人的年龄数据如下表.
①求线性回归方程的步骤:
解题 模板 ②解决概率与统计综来自问题的一般步骤:热点题型突破
题型一 抽样调查调查 调查
高考常常从以下两个角度命题: 命题 (1)系统抽样的概念.
规律 (2)分层抽样中的数值计算.
多为选择、填空题,偶尔以解答题的一问呈现,难度不
(1)在系统抽样的过程中,要注意分段间隔,需要抽取 N 总体就需要分成n个组 ,则分段间隔即为 (N为总体容量 n 确定在第一组中抽取的个体的号码数,再从后面的每组中 方法 取每个个体. 点拨 (2)解决此类题目的关键是深刻理解各种抽样方法的特 围.但无论哪种抽样方法,每一个个体被抽到的概率都是相 等于样本容量与总体容量的比值.
【变式考法】(1)在本例的条件下,在这些购物者中,消费金额在区间[0.5,0.9]内 的购物者的人数为_____. (2)在本例的条件下,求消费金额的众数和中位数.
解析:(1)区间[0.3,0.5]内的频率为 0.1×1.5+0.1×2.5=0.4,故[0.5,0.9]内的频率 为 1-0.4=0.6. 因此,消费金额在区间[0.5,0.9]内的购物者的人数为 0.6×10 000=6 000. 答案:6 000 (2)消费金额的众数是
y 95 级的女生有 y 人, 由分层抽样的定义可知 1600 200 ,解得 y=760.所以该校高三年级的女
高中数学经典概率与统计(解析版)

概率与统计统计与概率是高考文科中的一个重要的一环高考对概率与统计内容的考查一般以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向.概率应用题侧重于古典概率,近几年的高考有以概率应用题替代传统应用题的趋势,该题出现在解答题第二或第三题的位置,可见概率统计在高考中属于中档题.虽为中档题,但是实际生活背景在加强,阅读量大,所以快速阅读考题并准确理解题意是很重要的.对于这部分,我们还应当重视与传统内容的有机结合. 为了准确地把握2020年高考概率统计命题思想与趋势,在最后的复习中做到有的放矢,提高复习效率,纵观近五年的全国文科I卷,我们看到近几年每年一考,多出现在19题,分值12分;从难度上看:以中档题为主,重基础,考查的重点为统计图表的绘制与分析、数字特征的计算与分析、概率计算、线性回归分析,独立性检验等知识点,一般都会以实际问题为载体,代替传统建模题目.本专题我们把这些热点问题逐一说明,并提出备考指南,希望同学们在复习时抓住重点、事半功倍.【热点预测以及解题技巧】1 .抽样方法是统计学的基础,在复习时要抓住各种抽样方法的概念以及它们之间的区别与联系.茎叶图也成为高考的热点内容,应重点掌握.明确变量间的相关关系,体会最小二乘法和线性回归方法是解决两个变量线性相关的基本方法,就能适应高考的要求.2.求解概率问题首先确定是何值概型再用相应公式进行计算,特别对于解互斥事件(独立事件)的概率时,要注意两点:(1)仔细审题,明确题中的几个事件是否为互斥事件(独立事件),要结合题意分析清楚这些事件互斥(独立)的原因.(2)要注意所求的事件是包含这些互斥事件(独立事件)中的哪几个事件的和(积),如果不符合以上两点,就不能用互斥事件的和的概率.3.离散型随机变量的均值和方差是概率知识的进一步延伸,是当前高考的热点内容.解决均值和方差问题,都离不开随机变量的分布列,另外在求解分布列时还要注意分布列性质的应用.【考查题型】选择,填空,解答题【限时检测】(建议用时:45分钟)一、单选题1.(2020·上海闵行区·高三二模)某县共有300个村,现采用系统抽样方法,抽取15个村作为样本,调查农民的生活和生产状况,将300个村编上1到300的号码,求得间隔数3002015k==,即每20个村抽取一个村,在1到20中随机抽取一个数,如果抽到的是7,则从41到60这20个数中应取的号码数是( ) A .45B .46C .47D .48 【答案】C【分析】根据系统抽样的定义和性质即可得到结论.【详解】解:根据题意,样本间隔数3002015k ==,在1到20中抽到的是7, 则41到60为第3组,此时对应的数为7+2×20=47.故选:C.【点睛】本题主要考查系统抽样的应用,样本间距是解决本题的关键,比较基础.2.(2020·上海松江区·高三其他模拟)已知6260126(1)x a a x a x a x +=+++⋯+,在0,a 1,a 2,a ,⋅⋅⋅6a 这7个数中,从中任取两数,则所取的两数之和为偶数的概率为( )A .12B .37C .47D .821【答案】B【分析】根据6260126(1)x a a x a x a x +=+++⋯+,将0,a 1,a 2,a ,⋅⋅⋅6a 计算出来,分清几个奇数,几个偶数, 得到从中任取两数的种数;所取的两数之和为偶数的种数,代入古典概型的概率公式求解.【详解】因为6260126(1)x a a x a x a x +=+++⋯+,0,a 1,a 2,a ,⋅⋅⋅6a 这7个数分别为:061,C =166,C =2615,C =3620,C =4615,C =566,C =661,C =. 4个奇数,3个偶数;从中任取两数共有:2721C =种;所取的两数之和为偶数的有:22439C C +=;∴所取的两数之和为偶数的概率为:93217=. 故选:B.【点睛】本题主要考查二项式系数和古典概型的概率,还考查了运算求解的能力,属于基础题.3.(2019·上海杨浦区·高三一模)某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加一个象棋比赛,则选出的2人中恰有1人是女队员的概率为( )A .310B .35C .25D .23【答案】B【分析】直接利用概率公式计算得到答案.【详解】11322563105C C P C ⨯=== ,故选:B 【点睛】本题考查了概率的计算,属于简单题.4.(2019·上海黄浦区·高三二模)在某段时间内,甲地不下雨的概率为1P (101P <<),乙地不下雨的概率为2P (201P <<),若在这段时间内两地下雨相互独立,则这段时间内两地都下雨的概率为( ) A .12PPB .121PP -C .12(1)P P -D .12(1)(1)P P -- 【答案】D【分析】根据相互独立事件的概率,可直接写出结果.【详解】因为甲地不下雨的概率为1P ,乙地不下雨的概率为2P ,且在这段时间内两地下雨相互独立, 所以这段时间内两地都下雨的概率为()()1211P P P =--.故选D【点睛】本题主要考查相互独立事件的概率,熟记概念即可,属于基础题型.二、填空题5.(2020·上海奉贤区·高三一模)某工厂生产A 、B 两种型号的不同产品,产品数量之比为2:3.用分层抽样的方法抽出一个样本容量为n 的样本,则其中A 种型号的产品有14件.现从样本中抽出两件产品,此时含有A 型号产品的概率为__________. 【答案】1117【分析】先由分层抽样抽样比求B 种型号抽取件数,以及n ,再根据古典概型公式求概率. 【详解】设B 种型号抽取m 件,所以1423m =,解得:21m =,142135n =+=, 从样本中抽取2件,含有A 型号产品的概率2111414212351117C C C P C +==.故答案为:11176.(2019·上海市建平中学高三月考)一个总体分为A ,B 两层,其个体数之比为4:1,用分层抽样方法从总体中抽取一个容量为10的样本.已知B 层中甲、乙都被抽到的概率为128,则总体中的个体数为 _____ . 【答案】40【解析】设B 层中的个体数为n ,则211828nn C =⇒=,则总体中的个体数为8540.⨯=7.(2020·上海黄浦区·高三二模)某社区利用分层抽样的方法从140户高收入家庭、280户中等收入家庭、80户低收入家庭中选出100户调查社会购买力的某项指标,则中等收入家庭应选________户.【答案】56【分析】由分层抽样的计算方法有,中等收入家庭的户数占总户数的比例再乘以要抽取的户数,即可得到答案.【详解】该社区共有14028080500++=户.利用分层抽样的方法, 中等收入家庭应选28010056500⨯=户,故答案为:56 【点睛】本题考查分层抽样,注意抽取比例是解决问题的关键,属于基础题.8.(2020·上海高三其他模拟)某校三个年级中,高一年级有学生400人,高二年级有学生360人,高三年级有学生340人,现采用分层抽样的方法从高一年级学生中抽出20人,则从高三年级学生中抽取的人数为________.【答案】17【分析】由于分层抽样是按比例抽取,若设高三年级的学生抽取了x 人,则有40034020x=,求出x 的值即可【详解】解:设高三年级的学生抽取了x 人,则由题意得 40034020x=,解得17x =,故答案为:17 【点睛】此题考查分层抽样,属于基础题.9.(2016·上海杨浦区·复旦附中高三月考)如图所示,一家面包销售店根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,若一个月以30天计算,估计这家面包店一个月内日销售量不少于150个的天数为________.【答案】9【分析】根据频率分布直方图计算出日销售量不少于150个的频率,然后乘以30即可.【详解】根据频率分布直方图可知,一个月内日销售量不少于150个的频率为()0.0040.002500.3+⨯=, 因此,这家面包店一个月内日销售量不少于150个的天数为300.39⨯=.故答案为9.【点睛】本题考查频率分布直方图的应用,解题时要明确频数、频率和样本容量三者之间的关系,考查计算能力,属于基础题.10.(2020·上海高三专题练习)中位数为1010的一组数构成等差数列,其末项为 2015,则该数列的首项为__________.【答案】5.【解析】设数列的首项为1a ,则12015210102020a+=⨯=,所以15a =,故该数列的首项为5,所以答案应填:5.【考点定位】等差中项.11.(2020·上海浦东新区·高三一模)在7(2)x +的二项展开式中任取一项,则该项系数为有理数的概率为_________.(用数字作答)【答案】12【分析】根据二项展开式的通项,确定有理项所对应的r 的值,从而确定其概率. 【详解】7(2)x +展开式的通项为()77217722rr rr rr r T C x C x --+==,07,r r N ≤≤∈, 当且仅当r 为偶数时,该项系数为有理数,故有0,2,4,6r =满足题意,故所求概率4182P ==.【点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.12.(2020·上海松江区·高三一模)从包含学生甲的1200名学生中随机抽取一个容量为80的样本,则学生甲被抽到的概率___.【答案】115【分析】基本事件总数801200n C =,学生甲被抽到包含的基本事件个数79112001m C C =,由此能求出学生甲被抽到的概率.【详解】解:从包含学生甲的1200名学生中随机抽取一个容量为80的样本,基本事件总数801200n C =, 学生甲被抽到包含的基本事件个数79112001m C C =,∴学生甲被抽到的概率79111991801200115C C m P n C ===. 故答案为:115. 【点睛】方法点睛:求概率常用的方法是:先定性(六种概率:古典概型的概率、几何概型的概率、独立事件的概率、互斥事件的概率、条件概率和独立重复试验的概率),再定量.13.(2019·上海市建平中学高三月考)已知方程221x y a b+=表示的曲线为C ,任取a 、{}1,2,3,4,5b ∈,则曲线C 表示焦距等于2的椭圆的概率等于________. 【答案】825【分析】计算出基本事件的总数,并列举出事件“曲线C 表示焦距等于2的椭圆”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【详解】所有可能的(),a b 的组数为:5525⨯=,又因为焦距22c =,所以1c =,所以1a b -=±, 则满足条件的有:()1,2、()2,3、()3,4、()4,5、()5,4、()4,3、()3,2、()2,1,共8组, 所以概率为:825P =.故答案为:825. 【点睛】方法点睛:计算古典概型概率的方法如下:(1)列举法;(2)数状图法;(3)列表法;(4)排列、组合数的应用.14.(2020·上海徐汇区·高三一模)小王同学有4本不同的数学书,3本不同的物理书和3本不同的化学书,从中任取2本,则这2本书属于不同学科的概率为______________(结果用分数表示). 【答案】1115【分析】利用古典概型公式计算概率.【详解】共43310++=本不同的数,任取2本包含21045C =种方法,若从中任取两本,这2本书属于不同学科的情况有11111143433333C C C C C C ⋅+⋅+⋅=,所以这2本书属于不同学科的概率33114515P ==. 故答案为:111515.(2020·上海高三一模)近年来,人们的支付方式发生了巨大转变,使用移动支付购买商品已成为一部分人的消费习惯.某企业为了解该企业员工A 、B 两种移动支付方式的使用情况,从全体员工中随机抽取了100人,统计了他们在某个月的消费支出情况.发现样本中A ,B 两种支付方式都没有使用过的有5人;使用了A 、B 两种方式支付的员工,支付金额和相应人数分布如下:依据以上数据估算:若从该公司随机抽取1名员工,则该员工在该月A 、B 两种支付方式都使用过的概率为______.【答案】310【分析】根据题意,计算出两种支付方式都使用过的人数,即可得到该员工在该月A 、B 两种支付方式都使用过的概率.【详解】解:依题意,使用过A 种支付方式的人数为:18292370++=,使用过B 种支付方式的人数为:10242155++=,又两种支付方式都没用过的有5人,所以两种支付方式都用过的有()()7055100530+--=,所以该员工在该月A 、B 两种支付方式都使用过的概率30310010p ==. 故答案为:310. 【点睛】本题考查了古典概型的概率,主要考查计算能力,属于基础题.16.(2020·上海大学附属中学高三三模)一名工人维护甲、乙两台独立的机床,在一小时内,甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,则一小时内没有一台机床需要维护的概率为________【答案】0.42【分析】根据甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,利用独立事件和对立事件的概率求法求解.【详解】因为甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,所以一小时内没有一台机床需要维护的概率为()()10.410.30.42-⨯-=,故答案为:0.42【点睛】本题主要考查独立事件和对立事件的概率,属于基础题.17.(2020·上海长宁区·高三三模)2021年某省将实行“312++”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为________ 【答案】14【分析】甲同学从物理、历史二选一,其中选历史的概率为12,从化学、生物、政治、地理四选二,有6种选法,其中选化学的有3种,从而可得四选二,选化学的概率为12,然后由分步原理可得同时选择历史和化学的概率.【详解】解:由甲同学选科没有偏好,且不受其他因素影响,所以甲同学从物理、历史二选一选历史的概率为12,甲同学从化学、生物、政治、地理四选二有:化学与生物,化学与政治,化学与地理,生物与政治,生物与地理,政治与地理共6种不同的选法,其中选化学的有3种,所以四选二中有化学的概率为12, 所以由分步原理可知甲同学同时选择历史和化学的概率为111=224⨯, 故答案为:14 【点睛】此题考查古典概型概率以及独立事件概率乘法公式的求法,考查理解运算能力,属于基础题. 18.(2019·上海市七宝中学高三三模)一名信息员维护甲乙两公司的5G 网络,一天内甲公司需要维护和乙公司需要维护相互独立,它们需要维护的概率分别为0.4和0.3,则至少有一个公司不需要维护的概率为________【答案】0.88【分析】根据相互独立事件概率计算公式和对立事件的概率计算公式直接求解即可.【详解】"至少有一个公司不需要维护"的对立事件是"两公司都需要维护",所以至少有一个公司不需要维护的概率为10.30.40.88p =-⨯=,故答案为0.88.【点睛】本题主要考查概率的求法以及相互独立事件概率计算公式和对立事件的概率计算公式的应用. 19.(2019·上海金山区·高三二模)若生产某种零件需要经过两道工序,在第一、二道工序中生产出废品的概率分别为0.01、0.02,每道工序生产废品相互独立,则经过两道工序后得到的零件不是废品的概率是________(结果用小数表示)【答案】0.9702【分析】利用对立事件概率计算公式和相互独立事件概率乘法公式能求出经过两道工序后得到的零件不是废品的概率.【详解】生产某种零件需要经过两道工序,在第一、二道工序中生产出废品的概率分别0.01、0.02, 每道工序生产废品相互独立,则经过两道工序后得到的零件不是废品的概率:p =(1﹣0.01)(1﹣0.02)=0.9702.故答案为0.9702.【点睛】本题考查概率的求法,考查对立事件概率计算公式和相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.三、解答题20.(2019·上海普陀区·)某城市自2014年至2019年每年年初统计得到的人口数量如表所示.(1)设第n 年的人口数量为n a (2014年为第1年),根据表中的数据,描述该城市人口数量和2014年至2018年每年该城市人口的增长数量的变化趋势;(2)研究统计人员用函数0.6544450()2000 4.48781x P x e -=++拟合该城市的人口数量,其中x 的单位是年.假设2014年初对应0x =,()P x 的单位是万.设()P x 的反函数为()T x ,求(2440)T 的值(精确到0.1),并解释其实际意义.【分析】(1)根据表中的数据可得从2014年到2019年人口增加的数量,逐年增多,从2017年后,增加的人数逐年减少,但人口总数是逐年增加的;(2)根据函数的表达式,以及反函数的定义,代值计算即可.【详解】(1)201520142135208253f f -=-=,201620152203213568f f -=-=,201720162276220373f f -=-=,201820172339227663f f -=-=,201920182385233946f f -=-=,由上述计算可知,该地区2014年至2019年每年人口增长数量呈先增后减的变化趋势,每一年任可总数呈逐渐递增的趋势;(2)因为0.65444.48781x e -+为单调递减函数,则()P x 为单调递增函数,则0(2440)T x =0()2440P x ⇒=, 代入000.6544450()200024404.48781x P x e -=+=+,解得08.1x =,即(2440)8.1T =, 其实际意义为:可根据数学模型预测人口数量增长规律,及提供有效依据,到2022年人口接近2440万.【点睛】该题考查的是有关统计的问题,涉及到的知识点有利用表格判断其变化趋势,利用题中所给的函数解析式,计算相关的量,反函数的定义,属于中档题目.。
高考数学复习专题——排列组合-概率与统计(教师版)

一、排列组合问题的解题策略一、相临问题——捆绑法例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?解:两个元素排在一起的问题可用“捆绑〞法解决,先将甲乙二人看作一个元素与其他五人进展排列,并考虑甲乙二人的顺序,所以共有种。
评注:一般地: 个人站成一排,其中某个人相邻,可用“捆绑〞法解决,共有种排法。
二、不相临问题——选空插入法例2. 7名学生站成一排,甲乙互不相邻有多少不同排法?解:甲、乙二人不相邻的排法一般应用“插空〞法,所以甲、乙二人不相邻的排法总数应为:种 .评注:假设个人站成一排,其中个人不相邻,可用“插空〞法解决,共有种排法。
三、复杂问题——总体排除法在直接法考虑比拟难,或分类不清或多种时,可考虑用“排除法〞,解决几何问题必须注意几何图形本身对其构成元素的限制。
例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个.四、特殊元素——优先考虑法对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。
例4. (1995年高考题) 1名教师和4名获奖学生排成一排照像留念,假设教师不排在两端,那么共有不同的排法种.解:先考虑特殊元素〔教师〕的排法,因教师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有=72种不同的排法.例5.〔2000年全国高考题〕乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种.解:由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有种排法,所以不同的出场安排共有=252种.五、多元问题——分类讨论法对于元素多,选取情况多,可按要求进展分类讨论,最后总计。
2024届新教材高考数学二轮复习 概率 课件(69张)

A.15
B.13
C.25
D.23
【解析】 从 6 张卡片中无放回抽取 2 张,共有(1,2),(1,3),(1,4),
(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),
(5,6),15 种情况,其中数字之积为 4 的倍数的有(1,4),(2,4),(2,6),(3,4),
2.古典概型 一般地,设试验 E 是古典概型,样本空间 Ω 包含 n 个样本点,事件 A 包含其中的 k 个样本点,则定义事件 A 的概率 P(A)=nk=nnΩA. 其中,n(A)和 n(Ω)分别表示事件 A 和样本空间 Ω 包含的样本点个数.
多 维 题 组·明 技 法
角度1:随机事件的关系 1. (2023·柳州模拟)从数学必修一、二和政治必修一、二共四本书中 任取两本书,那么互斥而不对立的两个事件是( D ) A.至少有一本政治与都是数学 B.至少有一本政治与都是政治 C.至少有一本政治与至少有一本数学 D.恰有1本政治与恰有2本政治
A.采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率 为(1-α)(1-β)2
B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为β(1- β)2
C.采用三次传输方案,若发送1,则译码为1的概率为β(1-β)2+(1 -β)3
D.当0<α<0.5时,若发送0,则采用三次传输方案译码为0的概率 大于采用单次传输方案译码为0的概率
【解析】 由题意可得事件1表示{1,3,5},事件2表示{2,4,6},事件3 表示{4,5,6},事件4表示{1,2},所以事件1与事件2为对立事件,事件1与 事件3不互斥,事件2与事件3不互斥,事件3与事件4互斥不对立,故选 项A,C,D错误,选项B正确.故选B.
高考数学二轮复习第2部分专题篇素养提升 专题4概率与统计文科第1讲概率

典例2 (1)(2020·益阳模拟)轴截面是正方形的圆柱叫做等边
圆柱,已知某等边圆柱O′O中,以底面圆O为底面圆,OO′的中点
O″为顶点作圆锥O″O,现在等边圆柱O′O中随机取一点,则该点取
自圆锥O″O内的概率是
( C)
A.12
B.13
C.16
D.112
(2)(2019·中卫一模)在区间[-1,1]上随机取一个数x,则cos π2x的值介 于0到12之间的概率为__13___.
பைடு நூலகம்
ax+by-8=0 数a,b,则关于x,y方程组x2+y2-4=0 ,有实数解的概率为 ( B )
A.29
B.79
C.376
D.396
【解析】
因为方程组
ax+by-8=0 x2+y2-4=0
有解,故直线ax+by-8=0
与圆x2+y2=4有公共点,所以 a|28+| b2≤2即a2+b2≥16,
当a=1时,b=4,5,6,有3种情形;
第二部分
专题篇•素养提升(文理)
专题四 概率与统计(文科)
第1讲 概率
1 解题策略 • 明方向 2 考点分类 • 析重点 3 易错清零 • 免失误 4 真题回放 • 悟高考 5 预测演练 • 巧押题
01 解题策略 • 明方向
1.以选择题、填空题的形式考查古典概型、几何概型的基本应 用,同时渗透互斥事件、对立事件.
则53xy+=23y6=0 640 ,解得x=80,y=120, 基本事件总数n=80+120=200, 这个“冰糖葫芦”是5个山楂包含的基本事件个数m=80, 则这个“冰糖葫芦”是5个山楂的概率为P=mn =28000=0.4. 故选B.
(2)用(x,y)表示两次朝下面的数字的结果: 由题意可得(x,y)可能出现的结果有:(1,1),(1,2),(1,3),(1,4), (2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2), (4,3),(4,4),共16个基本事件; 满足“两次朝下面的数字之和不小于5”的基本事件有:(1,4), (2,3),(2,4),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共10个基本 事件,所以两次朝下面的数字之和不小于5的概率为1106=85. 故选C.
2020年高考文科数学二轮专题复习十:概率统计与统计案例(附解析)

2020年高考文科数学二轮专题复习十:概率统计与统计案例(附解析)1.以实际问题为背景,考查抽样方法的选择或根据抽样方法求值; 2.根据折线图或其它统计图,分析实际问题的走势及变化;3.考察均值、标准差、中位数等特征数的意义及对样本数据的特征分析; 4.列举法求解古典概型概率,或分析一些规则对称图形考察几何概型; 5.以实际问题为背景,考察独立性检验相关运算和相关性百分比分析;6.以实际问题为背景,分析两变量间的线性相关性,并通过线性回归方程进行预估;7.以频率分布表或频率分布图为依据,求解参数值,并通过均值与标准差的计算对实际问题进行对比或优化.1.简单随机抽样定义:一般地,设一个总体含有N 个个体,从中逐个不放回的抽取n 个个体作为样本(n N ), 如果每次抽取时总体内的各个个体被抽到的机会相等,就把这种抽样方法叫做简单随机抽样. 最常用的简单随机抽样方法有两种---抽签法和随机数法. 适用范围:总体含个体数较少.2.系统抽样一般地,假设要从容量为N 的总体中抽取容量为n 的样本,我们可以按下列步骤进行系统抽样: (1)先将总体的N 个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;(2)确定分段间隔k ,对编号进行分段.当N n (n 是样本容量)是整数时,取N k n=; (3)在第1段用简单随机抽样确定第一个个体编号()l l k ≤;(4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号()l k +,再加k 得到第3个个体编号(2)l k +,依次进行下去,直到获取整个样本.注意:如果遇到Nn不是整数的情况,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除. 适用范围:总体含个体数较多.3.分层抽样定义:一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫分层抽样. 适用范围:总体由差异明显的几部分构成.4.频率分布直方图极差:一组数据中最大值与最小值的差; 频数:即个数;频率:频数与样本容量的比值,频率分布直方图中各小长方形的面积表示相应各组的频率; 众数:出现次数最多的数,可以有多个.若无具体样本数据,则频率分布直方图中最高矩形的中点值可视为众数估计值;中位数:按大小顺序排列的一组数据中居于中间位置的数,若中间位置有两个数,则取它们的平均数,中位数只有一个.若无具体样本数据,则频率分布直方图中将所有矩形面积平分的直线对应的横坐标可视为中位数的估计值;平均数:所有样本数值之和除以样本个数的值.若无具体样本数据,则频率分布直方图中将每个矩形对应的区间中点值与该矩形面积相乘,然后全部相加得到的数值可视为该样本的平均值的估计值; 标准差:考察样本数据的分散程度的大小,一般用s 表示.标准差越大,则数据离散程度越大;标准差越小,则数据离散程度越小.s =方差:标准差的平方,用2s 表示,也是刻画样本数据的分散程度,与标准差一致.2222121[()()...()]n s x x x x x x n=-+-++-.5.最小二乘法回归直线$$y bx a =+$,其中1122211()()ˆ()ˆˆn ni i i i i i n ni ii i x x y y x y nx y b x x x nx ay bx ====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑.6.相关系数()()niix x y y r --=∑,当r 为正时,表明变量x 与y 正相关;当r 为负时,表明变量x 与y 负相关.[1,1]r ∈-,r 的绝对值越大,说明相关性越强;r 的绝对值越小,说明相关性越弱.7.事件一般用大写字母A,B,C,...表示.必然事件:一般地,我们把在条件S下,一定会发生的事件,叫做相对于条件S的必然事件.不可能事件:在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件.确定事件:必然事件与不可能事件统称为相对于条件S的确定事件.随机事件:在条件S下可能发生也可能不发生的事件,叫做相对于条件S的随机事件.互斥事件:在一次试验中不可能同时发生的两个事件.对立事件:在一次试验中有且仅有一个会发生的两个事件.8.概率概率是一个确定的数,与每次的试验无关,用来度量事件发生的可能性大小.9.古典概型(1)实验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等;(3)()AP A=包含的基本事件的个数基本事件的总数.10.几何概型每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例.()AP A=构成事件的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).11.回归分析(1)样本点的中心(,)x y一定满足回归方程;(2)点(,)i i x y 的残差$i ii e y y =-$; (3)$22121()1()niii nii y y R y y ==-=--∑∑,2R 越大,则模型的拟合效果越好;2R 越小,则模型的拟合效果越差.12.独立性检验2K 的观测值2()()()()()n ad bc k a b c d a c b d -=++++.1.(2019·全国Ⅰ卷文)某学校为了解1000名新生的身体素质,将这些学生编号为1,2,3,L,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生2.(2019·全国Ⅰ卷文)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++经典常规题(45分钟)3.(2019·全国Ⅱ卷文)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A.23B.35C.25D.154.(2019·全国Ⅱ卷文)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602≈.5.(2019·全国Ⅲ卷文)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A.16B.14C.13D.126.(2019·全国Ⅲ卷文)为了解甲,乙两种离子在小鼠体内的残留程度,进行如下实验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同,摩尔浓度相同。
高考复习文科数学之统计与概率

各地解析分类汇编:统计与概率1.【山东省济南外国语学校2013届高三上学期期中考试 文科】某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名。
现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为( ) A. 6 B. 7 C. 8 D.9 【答案】C【解析】设从高二应抽取x 人,则有30:406:x =,解得8x =,选C.2.【山东省济南外国语学校2013届高三上学期期中考试 文科】(本小题满分12分)某河流上的一座水力发电站,每年六月份的发电量Y (单位:万千瓦时)与该河上游在六月份的降雨量X (单位:毫米)有关.据统计,当X=70时,Y=460;X 每增加10,Y 增加5;已知近20年X 的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160. (I )完成如下的频率分布表:近20年六月份降雨量频率分布表(II )假定今年六月份的降雨量与近20年六月份的降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.【答案】解:(I )在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个,故近20年六月份降雨量频率分布表为…………………………………………………………………………………….…..….5分.(II )("132320202010P ++=发电量低于490万千瓦时或超过530万千瓦时")=P(Y<490或Y>530)=P(X<130或X>210)=故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为310.…………………………………………………………………………………12分3.【云南师大附中2013届高三高考适应性月考卷(三)文】记集合{}22(,)|16A x y x y =+≤和集合{}(,)|40,0,0B x y x y x y =+-≤≥≥表示的平面区域分别为12,ΩΩ若在区域1Ω内任取一点(,)M x y ,则点M 落在区域2Ω的概率为A .12πB .1πC .14D .24ππ- 【答案】A【解析】区域1Ω为圆心在原点,半径为4的圆,区域2Ω为等腰直角三角形,两腰长为4,所以218116π2πS P S ΩΩ===,故选A . 4.【云南省昆明一中2013届高三新课程第一次摸底测试文】在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居众显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病倒数计算,下列各选项中,一定符合上述指标的是 ①平均数3x ≤;②标准差2S ≤;③平均数3x ≤且标准差2S ≤;④平均数3x ≤且极差小于或等于2;⑤众数等于1且极差小于或等于4。
最新-2021高考数学文科二轮复习课件:专题七 概率与统计 第1讲 精品

考向 预测
解题 关键
失分 防范
将古典概型与统计及数学的其他板块知识交汇起来 率、方差等问题的考题.
①认真理顺题设条件提供的信息. ②总体把握交汇的各种知识点的具体内容特点. ③熟练运用各块知识.
①正确理解各知识要点.②依据各板块知识分别予以 防止负迁移.
• 【预测】某中学高三年级从甲、乙两个班 级各选出7名学生参加数学竞赛,他们取得的 成绩(满分100分)的茎叶图如图所示,其中甲 班学生成绩的平均分是85,乙班学生成绩的中 位数是83.
命题 高考中,常常设计以长度与面积有关的几何概型考题,载 规律 如方程、不等式、复数、几何图形等,均为选择、填空题
当试验的结果构成的区域为长度、面积、体积、弧长、夹 方法 虑使用几何概型求解;利用几何概型求概率时,关键是试 点拨
1.(1)在区间[0,2]上随机地取一个数 x,则事件“-1≤log12x+12≤1”发生的概率为( A)
备考策 略
• 1.概率的二轮复习需要做好如下三点:
• (1)掌握好有关的概念,如必然事件、不可 能事件、随机事件、互斥事件、对立事件等.
• (2)要注意解决问题的方法,如计算古典概 型时,如何计算基本事件的个数;计算几何概 型时,如何构造基本事件空间等.
• (3)理解事件之间的互斥和对立,并能够运 用事件的互斥和对立计算概率,在弄清楚这 个问题的基础上掌握好古典概型和几何概型 的计算公式,并学会对实际问题的意义进行
故
P(M)=
3 10
.
所以
P(M)=1-P(
M
)=1-130
=
7 10
.
故从成绩在
90
分以上的学生中随机抽取
2
名学生,甲班至少有
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析 1由已知m n,则m n 0, 可得a 1 b 2 0, 化简得a 2b,且a 1, 2,3, 4,5, 6,b 1, 2,3, 4,5, 6, 其中满足条件的基本事件有 2,1, 4, 2 , 6,3,共3个. 而总的基本事件个数为6 6 36. 3 1 因此,所求概率为 . 36 12
∶ 1000. 2 总体个数为1000,样本容量为40.所以抽样比为40
4
变式1(2011 浙江卷)某中学为了解学生数学课程的学习 情况,在3000名学生中随机抽取200名,并统计这200 名学生的某次数学考试成绩,得到了样本的频率分布 直方图(如图).根据频率分布直方图推测3000名学生在
切入点: 1 转化为古典概型; 2 转化为几何概型.
10
解析 是:
(1)a取自集合 0,1, 2,3中的任意一个元素,b取
自集合 0,1, 2,3中的任意一个元素,则a,b的取值情况
0, 0 0,1, 0, 2, 0,3, 1, 01,1, 1, 2, 1,3, 2, 0 2,1, 2, 2 , 2,3, 3, 0 3,1, 3, 2, 3,3.
9
考点6 古典概型与几何概型综合
例3 已知函数f x ax 2 2bx a( a,b R ).
1 若a是从集合0,1, 2,3中任取的一个元素,b是从集合 0,1, 2,3中任取的一个元素,求方程f x 0恰有两个
不等实根的概率;
2 若a是从区间0, 2中任取的一个数,b是从区间 0,3中 任取的一个数,求方程f x 0没有实根的概率.
150、 150、 400、 300名学生,为了解学生的就业倾向,用分 层抽样的方法从该校这四个专业共抽取40名学生进行调 查,应在丙专业抽取的学生人数为 ________ .
切入点: 1 抓住频数与频率的关系; n 2 理解分层抽样在各层抽取的比例都相同,均为 . N
3
解析 1 频数为200 1 2 0.05 0.02 0.15 0.19 36. 4 由400 ,得在丙专业应抽取的学生人数为16. 100 答案:(1)B (2)16
2 由已知 | m n | 5,即 a 1 b 2
2
2
25,
也就是点(a,b)与(1, 2)的距离不大于5,即点(a,b)在以 点(1, 2)为圆心,以5为半径的圆内或圆上. 如图可知,在圆上有3个点: 1,3, 4, 2 , 5,1;在圆内有7 个点: 1,1, 1, 2 , 2,1, 2, 2 , 3,1,
设事件E为“b a A B”, 则事件E中包含9个基本事件, 9 3 事件E发生的概率P E . 12 4
16
变式2 把一颗骰子投掷两次,观察出现的点数,并记第 一次出现的点数为a,第二次出现的点数为b,向量m (a,b),n (1, 2).求:
1向量m与向量n垂直的概率; 2 m n 5的概率.
其中第一个数表示a的取值,第二个数表示b的取值,即 基本事件总数为16.
11
设“方程f x 0恰有两个不相等的实根”为事件A, 当a 0,b 0时,方程f x 0恰有两个不相等的实 a 0 根的充要条件是 b a,且a 0.此时a,b的 0 取值情况有 1, 2 , 1,3, 2,3,即事件A包含的基本事 件数为3. 所以方程f x 0恰有两个不相等的实数根的概率为 3 P A . 16
专题 概率与统计
1
考点1 三种抽样方法与概率分布直方图
例1 1 (2011 湖北卷)有一个容量为200的样本,其频率分 布直方图如图所示,根据样本的频率分布直方图估计, 样本数据落在区间10,12内的频数为( ) A. 18 B. 36 C. 54 D. 72
2
2 (2011 山东卷)某高校甲、乙、丙、丁四个专业分别有
统计结论: ①甲种树苗的平均高度小于乙种树苗的平均高度; ②甲种树苗比乙种树苗长得更整齐; ③甲种树苗的中位数为27,乙种树苗的中位数为28.5; ④甲种树苗的高度基本上是对称的,而且大多数集中 在均值附近;乙种树苗的高度分布较为分散.
8
2 x 27,s 35.
s表示10株甲树苗高度的方差,是描述树苗高度 离散程度的量. s越小,表示长得越整齐, s越大,表示长得越参差不齐.
3, 2 , 4,1.其余点在圆外,即满
足条件的基本事件有3 7 10个. 10 5 故所求概率为 . 36 8
600 . 该次数学考试中成绩小于60分的学生数是______
5
变式2(2009 佛山二模)某市在每年的春节后,市政府 都会发动公务员参与植树活动.为保证树苗的质量, 林管部门在植树前都会对树苗进行检测.现从甲、乙 两种树苗中各抽测了10株树苗的高度,得到的数据如 下(单位:cm ): 甲: 37, 21,31, 20, 29,19,32, 23, 25,33 乙: 10,30, 47, 27, 46,14, 26,10, 44, 46
个整数,b是从集合B中任取的一个整数,求“b a A B ”的概率.
14
解析 1由已知A x | 3 x 1,B x | 2 x 3. 设事件“ x A B”的概率为P 1, 3 这是一个几何概型,则P . 1 8
15
2 因为a,b Z,且a A,b B, 所以,基本事件共12个: (2, 1), 2, 0, 2,1, 2, 2, (1, 1), (0 1), 1, 0, 1,1, 1, 2,, 0, 0, 0,1, 0, 2.
13
面积S 2 3 6.
变式3(2011 江西八校联考)已知集合A x | x 2 2x 3 0, x2 B {x | 0}. x 3 1 在区间 4, 4 上任取一个实数x,求“x A B”的概 率;
2 设(a,b)为有序实数对,其中a是从集合A中任取的一
1 根据抽测结果,完成下面的
茎叶图,并根据你填写的茎叶 图,对甲、乙两种树苗的高度 作比较,写出两个统计结论;
6
2 设抽测的10株甲种树苗高
度的平均值为将这 . 10株树苗 的高度依次输入,按程序框 图进行运算,问输出的s大小 为多少?并说明s的统计学 意义.
7
解中任取的一个数,b是从区间 0,3中任取的一个数,则试验的全部结果构成区域
{(a,b) | 0 a 2, 0 b 3},这是一个矩形区域,其 设“方程f x 0没有实根”为事件B,则事件B所构 成的区域为{(a,b) | 0 a 2, 0 b 3,a b},其面 1 积S M 2 2 2. 2 由几何概型的概率计算公式可得方程f x 0没有实 SM 1 数根的概率为P B . S 3