2020高考文科数学概率与统计专项练习

合集下载

2020高考数学复习—概率与统计练习试题卷

2020高考数学复习—概率与统计练习试题卷

4 C 2 1 高考数学复习—概率与统计练习试题卷一、选择题(10×5′=50′)1.设导弹发射的事故率为 0.01,若发射导弹 10 次,其中出事故的次数为ξ,则下列结论正确的是()A.E ξ=0.1B.P (ξ=k )=0.01k ·0.9910-kC.D ξ=0.1D.P (ξ=k )=C k 0.99k ·0.0110-k102.一个盒子里装有相同大小的黑球 10 个,红球 12 个,白球 4 个,从中任取 2 个,其中白球的个数记为ξ , 则下列算式中等于C 1 C 122 22C 2 26的是()A.P (0<ξ≤2)B.P (ξ≤1)C.E ξD.D ξ3.已知随机变量ξ和η,其中η=12ξ+7,且 E η=34,若ξ的分布列如下表,则 m 的值为ξ 12 3 4P m n41 12A. 1B. 1C. 1D. 134684.一整数等可能地在 1、2、…、10 中取值,以ξ记除得尽这一整数的正整数的个数,那么Eξ等于()A.2.6B.2.5C.2.7D.2.85.若ξ的分布列为:ξ01P p q其中p∈(0,1),则()A.Eξ=p,Dξ=p3B.Eξ=p,Dξ=p2C.Eξ=q,Dξ=q2D.Eξ=1-p,Dξ=p-p26.如果ξ是离散型随机变量,η=3ξ+2,那么()A.Eη=3Eξ+2,Dη=9DξB.Eη=3Eξ,Dη=3Dξ+2C.Eη=3Eξ+2,Dη=9Eξ+4D.Eη=3Eξ+4,Dη=3Dξ+27.设随机变量ξ~B(n,P),且Eξ=1.6,Dξ=1.28,则()A.n=8,P=0.2B.n=4,P=0.4C.n=5,P=0.32D.n=7,P=0.458.设掷1颗骰子的点数为ξ,则()A.Eξ=3.5,Dξ=3.52B.Eξ=3.5,Dξ=3512C.Eξ=3.5,Dξ=3.5D.Eξ=3.5,Dξ=35169.设离散型随机变量ξ满足Eξ=-1,Dξ=3,则E[3(ξ2-2)]等于()⎪2(1 ≤ x < 2) ⎪2(1 ≤ x < 2) ⎪ 1⎪ 1 (1 ≤ x < 2) ⎪1( x ≥ 2) ⎪ 1⎪ 3 (1 ≤ x < 2) P a BA.9B.6C.30D.3610.设随机变量ξ的分布列如下所示:ξ12P1 31 61 2则函数 F (x )=P (ξ≤x )(x ∈R )的解析式为( )⎧0( x < 0) A.F (x )=P (ξ≤x )= ⎪1(0 ≤ x < 1)⎨ ⎪⎩3( x ≥ 2)⎧0( x < 0) B.F (x )=P (ξ≤x )= ⎪3(0 ≤ x < 1)⎨ ⎪⎩1( x ≥ 2)C.F (x )=P (ξ≤x )=⎧0( x < 0) ⎪ (0 ≤ x < 1) ⎪ 3 ⎨ ⎪ 2⎩D.F (x )=P (ξ≤x )= ⎧0( x < 0) ⎪ (0 ≤ x < 1)⎪⎪ 6⎨ 1 ⎪⎪ 1 ( x ≥ 2) ⎪⎩ 2二、填空题(4×4′=16′)11.已知某离散型随机变量ξ的数学期望 E ξ= 7 ,ξ的分布列如下:6ξ 0 1231 1 36则 a =.12.两名战士在一次射击比赛中,战士甲得 1 分、2 分、3 分的概率分别为 0.4、0.1、0.5;战士乙得 1 分、2 分、3 分的概率分别为 0.1、0.6、0.3,那么两名战士得胜希望大的是 .13.某人有6把钥匙,其中只有一把能打开门,今任取一把试开,不能打开的除去,则打开此门所需试开次数ξ的数学期望Eξ=.14.罐中有6个红球,4个白球,从中任取1球,记住颜色后再放回,连续摸取4次,设ξ为取得红球的次数,则ξ的期望Eξ=.三、解答题(4×10′+14′=54′)15.某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛胜场的事件是独立的,并且胜场的概率是.13(1)求这支篮球队首次胜场前已经负了两场的概率;(2)求这支篮球队在6场比赛中恰好胜了3场的概率;(3)求这支篮球队在6场比赛中胜场数的期望和方差.16.某市出租车的起步价为6元,行驶路程不超过3km时,租车费为6元,若行驶路程超过3km,则按每超出1km(不足1km也按1km计程)收费3元计费.设出租车一天行驶的路程数ξ(按整km数计算,不足1km的自动计为1km)是一个随机变量,则其收费也是一个随机变量.已知一个司机在某个月每次出车都超过了3km,且一天的总路程数可能的取值是200、220、240、260、280、300(km),它们出现的概率依次是0.12、0.18、0.20、0.20、100a2+3a、4a.(1)求这一个月中一天行驶路程ξ的分布列,并求ξ的数学期望和方差.(2)求这一个月中一天所收租车费η的数学期望和方差.17.某先生居住在城镇的A处,准备开车到单位B处上班.若该地各路段发生堵车事件都是相互独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如图所示(例如A→C→D算作两个路段:路段AC发生堵车事件的概率为110,路段CD发生堵车事件的概率为115).(1)请你为其选择一条由A到B的路线,使得途中发生堵车事件的概率最小;(2)若记路线A→C→F→B中遇到堵车次数为随机变量ξ,求ξ的数学期望Eξ.第17题图18.一出租车司机从饭店到火车站途中有6个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率都是1.3(1)求这位司机遇到红灯前,已经通过了2个交通岗的概率;(2)求这位司机在途中遇到红灯数ξ的期望和方差.19.A有一个放有x个红球、y个白球、z个黄球的箱子(x、y、z≥1,x+y+z=6),B有一个放有3个红球、2个白球、1个黄球的箱子,两人各自从自己的箱子中任取一球,规定当两球同色时为A胜,异色时为B胜.(1)用x、y、z表示A胜的概率;(2)若又规定当A取红、白、黄而得胜的得分分别为1、2、3;负则得0分,求使A得分的期望最大的x、y、z.概率与统计练习100分参考答案一、选择题1.A∵P(ξ=k)=C k·0.01k(1-0.01)10-k,Eξ=nP=0.1.102.B作出概率分布可得.3.A本题考查随机变量的期望及有关的运算,由2 P 1 P 2 P n-1 P nη=12ξ+7 ⇒ E η=12E ξ+7 ⇒ 34=12E ξ+7 ⇒ E ξ= 94⇒ 94=1× 1 +2×m +3×n +4× 1 ,4 2 又 1 +m+n + 1 =1, 联立求解可得 m = 1 ,故选 A.4234.C P (ξ=1)= 1 ,P (ξ=2)= 4 ,P (ξ=3)= 2 ,P (ξ=4)= 3 . 10 10 10 10∴E ξ= 1 +2× 4 +3× +4× 3 =2.7.101010105.D 由于 p +q =1,所以 q =1-p ,从而 E ξ=0×p +1×q =q =1-p ,D ξ=[0-(1-p )]2p +[1-(1-p )]2q =(1-p )2p +p 2(1-p )=p -p 26.A 设随机变量ξ的分布列是:ξx 1 x 2 …x n-1 x nPP 1P 2…P n-1P n则η=3ξ+2 的分布列为:η3x 1+2 3x 2+2 …3x n-1+2 3x n +2P从而…E η =E (3 ξ +2)=(3x 1+2)P 1+(3x 2+2)P 2+ …+(3x n-1+2)P n-1+(3x n +2)P n=3(x 1P 1+x 2P 2+… +x n-1P n-1+x n P n )+2(P 1+P 2+ …+P n -1+P n )=3E ξ+2;D η = [ (3x 1+2)-(3E ξ +2) ] 2P 1+ [ (3x 2+2)-(3E ξ +2) ] 2P 2+ … +⎩nP(1 - P) = 1.28.[(3x n-1+2)-(3E ξ+2)] P n-1+[(3x n +2)-(3E ξ+2)] P n =9(x 1-E ξ)2P 1+9(x 2-Eξ)2P 2+…+9(x n-1-E ξ)2P n-1+9(x n -E ξ)2P n=9[(x 1-E ξ)2P 1+(x 2-E ξ)2P 2+…+(x n-1-E ξ)2P n-1+(x n -E ξ)2P n ]=9D ξ.点评 对于随机变量ξ和η,如果η=a ξ+b (a 、b 为常数),则有 E η=aEξ+b ,D η=a 2D ξ.7.A ∵ξ~B (n ,P ),∴E ξ=nP ,D ξ=nP (1-P),从而有 ⎧nP = 1.6,⎨ 解之,得 n =8,P =0.2.8.B 随机变量ξ的分布列是:ξ123456P161 61 61 61 61 61 6 从而 E ξ=1× 1 +2× 1 +3× 1 +4× 1 +5× 1 +6× 1 =3.5,6 6 6 6 6 6D ξ=(1-3.5)2× 1 +(2-3.5)2× 1 +(3-3.5)2× 1 +(4-3.5)2× 1 +(5-3.5)2×6 6 6 6+(6-3.5)2× 1 = 35 . 6 129.B E [3(ξ2-2)]=E (3ξ2-6)=3E ξ2-6=3[D ξ+(E ξ)2]-6=6.10.C 从表中可见,当 x <0 时,P (ξ≤x )=0;当 0≤x <1 时,P (ξ≤x )=P (ξ=0)= 1 ;3当 1≤x <2 时,P (ξ≤x )=P (ξ=0)+P (ξ=1)= 1 ;2当 x ≥2 时,P (ξ≤x )=P (ξ=0)+P (ξ=1)+P (ξ=2)=1.点评 对于密度函数,要理解其意义,搞清它与概率分布的联系与区别.⎪ ∴p =C 3 ⎛ 1 ⎫ 3 ⎛1 ⎫ 3 =20× 16 ⎪ 1 - ⎪ 二、填空题11. 1本题需运用离散型随机变量的期望等知识.3 E ξ= 7 =0×a +1× 1 +2× 1 +3b ⇒ b = 1 .6366又 P (ξ=0)+P (ξ=1)+P (ξ=2)+P (ξ=3)=1a + 1 + 1 + 1 =1 ⇒ a = 1 .366312.乙 甲获胜的期望与方差分别是:(E ξ) 甲 =0.4×1+0.1×2+0.5×3=2.1,(D ξ) 甲 =(2.1-1)2 ×0.4+(2.1-2)2 ×0.1+(2.1-3)2×0.5=0.89.乙获胜的期望与方差分别是:(E ξ) 乙 =0.1×1+0.6×2+0.3×3=2.2,(D ξ) 乙 =(2.2-1)2 ×0.1+(2.2-2)2 ×0.6+(2.2-3)2×0.3=0.456.∵乙的期望高于甲,且乙的水平比甲稳定,故得胜希望大的是乙.13. 7E ξ=1× 1 +2× 1 +3× 1 +4× 1 +5× 1 +6× 1 = 7 .2666666214. 12因为是有放回地摸球,所以每次摸球(试验)摸得红球(成功)5的概率均为 3 ,连续摸 4 次(做 4 次试验),ξ为取得红球(成功)的次数, 5则ξ~B ⎛ 4, 3 ⎫ ,从而有 E ξ=nP =4× 3 = 12 .⎝5 ⎭55三、解答题15.解 (1)p =(1- 1 )2· 1 =334 27.(2)6 场胜 3 场的情况有 C 3 种. 6⎝ 3 ⎭ ⎝ 3 ⎭27 × 8 27 = 160 .729 (3)由于ξ服从二项分布,即ξ~B (6, 1 ),3∴Eξ=6×1=2,Dξ=6×1×(1-1)=4.3333答:(1)这支篮球队首次胜场前已负两场的概率为4;27(2)这支篮球队在6场比赛中恰胜3场的概率为160;729(3)在6场比赛中这支篮球队胜场的期望为2,方差为4.3点评在二项分布ξ~B(n,p)中,期望Eξ=np,方差=npq.这两个公式只要求考生了解、会用,不要求给予证明.16.解(1)由概率分布的性质有0.12+0.18+0.20+0.20+100a2+3a+4a=1.∴100a2+7a=0.3,∴1000a2+70a-3=0,a=3100,或a=-110(舍去),即a=0.03,∴100a2+3a=0.18,4a=0.12,∴ξ的分布列为ξ200220240260280300P0.120.180.200.200.180.12∴Eξ=200×0.12+220×0.18+240×0.20+260×0.20+280×0.18+300×0.12=250(km)Dξ=502×0.12+302×0.18+102×0.20+102×0.20+302×0.18+502×0.12=964;(2)由已知η=3ξ-3(ξ>3,ξ∈Z),∴Eη=E(3ξ-3)=3Eξ-3=3×250-3=747(元)Dη=D(3ξ-3)=32Dξ=8676.17.解(1)记路段MN发生堵车事件为MN,因为各路段发生堵车事件都是独立的,且在同一路段发生堵车事件最多只有一次,所以路线A→C→D→B中遇到堵车的概率P1为1-P(AC·CD·DB)=1-P(AC)·P(CD)·(DB)=1-[1-P(AC)][1-P(CD)][1-P(DB)]=1-910·14·5= 156310;同理:路线A→C→F→B中遇到堵车的概率P2为1-P(AC·CF·FB)=239(大于800310);路线A→E→F→B中遇到堵车的概率P3为1-P(AE·EF·FB)=91300(小于310);显然要使得由A到B路线途中发生堵车事件的概率最小,只可能在以上三条路线中选择.因此选择路线A→C→F→B,可使得途中发生堵车事件的概率最小.(2)路线A→C→F→B中遇到堵车次数ξ可取值为0,1,2,3.P(ξ=0)=P(AC ·CF·FB)=561.800P(ξ=1)=P(AC·CF·FB)+P(AC·CF·FB)+P(AC·CF·FB)=110×17×11+2012910×320×11+12910×17×20112=6372400.P(ξ=2)=P(AC·CF·FB)+P(AC·CF·FB)+P(AC·CF·FB)=110×320×11+12110×17×20112+910×320×112=772400,P(ξ=3)=P(AC·CF·FB)=1×3×1=3,1020122000Eξ=0×561+1×8006372400+2×772400+3×32000=1.3答:路线A→C→F→B中遇到堵车次数的数学期望为1.3111 x1y1z36=18+y18.解(1)因为这位司机第一二个交通岗未遇到红灯,在第三个交通岗遇到红灯,所以P=(1-1)(1-1)×1=3334 27 .(2)易知ξ~B(6,1).∴Eξ=6×1=2,Dξ=6×1×(1-1)=4.3333319.解(1)从两个箱子里各取1球,共C1C1=36种取法,66其中同色的取法有C1C1+C1C1+C1C1=3x+2y+z故A胜的概率为x3y2z13x+2y+z.36(2)设A得分为ξ,则ξ可能取值为0、1、2、3,其概率分别为P(ξ=0)=1-C1C3+C1C4+C1C5=1-3x+4y+5zC1C16636P(ξ=1)=C1C3C1C166=3x 36P(ξ=2)=C1C2C1C166=2y 36P(ξ=3)=C1C1=z 36C1C166∴Eξ=0×1-3x+4y+5z+1×3x+2×2y+3×363636z36=3x+4y+3z36∵x+y+z=6,∴Eξ=3(6-y)+4y36∵x,y,z≥1,∴当x=1,y=4,z=1时,Eξ最大为11.18。

2020年 高考数学(文科) 历年真题模拟题 高分必刷题之 概率与统计的综合问题

2020年 高考数学(文科) 历年真题模拟题 高分必刷题之 概率与统计的综合问题

[基础题组练]1.为研究女大学生体重和身高的关系,从某大学随机选取8名女大学生,其身高和体重数据如下表:身高 x /cm 165165157170175165155170体重 y /kg48 57 50 54 64 61 43 59利用最小二乘法求得身高预报体重的回归方程为y =0.849x -85.712,据此可求得R 2≈0.64,下列说法正确的是( )A .两组变量的相关系数为0.64B .R 2越趋近于1,表示两组变量的相关关系越强C .女大学生的身高解释了64%的体重变化D .女大学生的身高差异有64%是由体重引起的解析:选 C.用最小二乘法求得身高预报体重的回归方程为y ^=0.849x -85.712,据此可求得R 2≈0.64,即女大学生的身高解释了64%的体重变化,而随机误差贡献了剩余的36%,故选C.2.为了考察两个变量x 和y 之间的线性相关情况,甲、乙两个同学各自独立地做了10次和15次试验,并且利用最小二乘法,求得回归直线所对应的方程分别为l 1:y =0.7x -0.5和l 2:y =0.8x -1,则这两个人在试验中发现对变量x 的观测数据的平均值s 与对变量y 的观测数据的平均值t 的和是( )A .8B .9C .10D .11解析:选A.因为两组数据对变量x 的观测数据的平均值都是s ,对变量y 的观测数据的平均值都是t ,所以两组数据的样本中心点都是(s ,t ).因为数据的样本中心点一定在线性回归直线上,所以回归直线l 1和l 2都过点(s ,t ).由⎩⎪⎨⎪⎧t =0.7s -0.5,t =0.8s -1,解得⎩⎪⎨⎪⎧s =5,t =3,所以s +t =8.故选A.3.(2019·贵阳第一学期检测)A 市某校学生社团针对“A 市的发展环境”对男、女各10名学生进行问卷调查,每名学生给出评分(满分100分),得到如图所示的茎叶图.(1)计算女生打分的平均分,并根据茎叶图判断男生、女生打分谁更分散(不必说明理由); (2)如图(2)是按该20名学生的评分绘制的频率分布直方图(每个分组包含左端点,不包含右端点),求a 的值;(3)从打分在70分以下(不含70分)的学生中抽取2人,求有女生被抽中的概率. 解:(1)女生打分的平均数为110×(68+69+76+75+70+78+79+82+87+96)=78; 男生打分比较分散.(2)由茎叶图可知,20名学生中评分在[70,80)内的有9人,则a =920÷10=0.045.(3)设“有女生被抽中”为事件A ,由茎叶图可知,有4名男生,2名女生的打分在70分以下(不含70分),其中4名男生分别记为a ,b ,c ,d ,2名女生分别记为m ,n ,从中抽取2人的基本事件有ab ,ac ,ad ,am ,an ,bc ,bd ,bm ,bn ,cd ,cm ,cn ,dm ,dn ,mn ,共15种,其中有女生被抽中的事件有am ,an ,bm ,bn ,cm ,cn ,dm ,dn ,mn ,共9种,所以P (A )=915=35.4.(2019·河南郑州一中入学测试)已知某中学高三文科班学生共有800人参加了数学与地理的测试,学校决定利用随机数表法从中抽取100人进行成绩抽样调查,先将800人按001,002,…,800进行编号.(1)如果从第8行第7列的数开始向右读,请你依次写出最先抽取的3个人的编号;(下面摘取了第7行到第9行的数据)⎭⎬⎫84 42 17 53 31 57 24 55 06 88 77 04 7447 67 21 76 33 50 25 83 92 12 06 76第7行⎭⎬⎫63 01 63 78 59 16 95 55 67 19 98 10 5071 75 12 86 73 58 07 44 39 52 38 79第8行⎭⎬⎫33 21 12 34 29 78 64 56 07 82 52 42 0744 38 15 51 00 13 42 99 66 02 79 54第9行(2)抽取的100人的数学与地理的测试成绩如下表:成绩分为优秀、良好、及格三个等级;横向、纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的人数共有20+18+4=42.人数数学②在地理成绩及格的学生中,已知a ≥11,b ≥7.求数学成绩优秀的人数比及格的人数少的概率.解:(1)785,567,199. (2)①7+9+a100×100%=30%,所以a =14,b =100-30-(20+18+4)-(5+6)=17. ②a +b =100-(7+20+5)-(9+18+6)-4=31. 因为a ≥11,b ≥7,所以a ,b 所有可能的取值为:(11,20),(12,19),(13,18),(14,17),(15,16),(16,15),(17,14),(18,13),(19,12),(20,11),(21,10),(22,9),(23,8),(24,7),共14种.当a ≥11,b ≥7时,设“数学成绩优秀的人数比及格的人数少”为事件A ,则a +5<b .事件A 包括:(11,20),(12,19),共2个基本事件. 所以P (A )=214=17,故数学成绩优秀的人数比及格的人数少的概率为17.[综合题组练]1.某班甲、乙两名同学参加100米达标训练,在相同条件下两人10次训练的成绩(单位:秒)如下.么从成绩的稳定性方面考虑,选派谁参加比赛更好,并说明理由(不用计算,可通过统计图直接回答);(2)经过对甲、乙两名同学的若干次成绩的统计,甲、乙的成绩都均匀分布在[11.5,14.5]之间,现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.8的概率.解:(1)茎叶图(其中茎表示整数部分,叶表示小数部分),或频率分布直方图如图.从统计图中可以看出,乙的成绩较为集中,差异程度较小,故选派乙同学参加比赛更好. (2)设甲同学的成绩为x ,乙同学的成绩为y ,则由|x -y |<0.8,得-0.8<x -y <0.8,如图,阴影部分的面积为3×3-2.2×2.2=4.16.故所求概率为P (|x -y |<0.8)=P (-0.8<x -y <0.8)=4.163×3=104225.2.(2019·沈阳质量检测(一))为调查中国及美国的高中生在“家”、“朋友聚集的地方”、“个人空间”这三个场所中感到最幸福的场所是哪个,从中国某城市的高中生中随机抽取了55人,从美国某城市的高中生中随机抽取了45人进行答题.中国高中生的答题情况:选择“家”的高中生的人数占25,选择“朋友聚集的地方”的高中生的人数占310,选择“个人空间”的高中生的人数占310,美国高中生的答题情况:选择“家”的高中生的人数占15,选择“朋友聚集的地方”的高中生的人数占35,选择“个人空间”的高中生的人数占15.(1)请根据以上调查结果将下面的2×2列联表补充完整,并判断能否有95%的把握认为“恋家(在家里感到最幸福)”与国别有关;(2)步调查,再从4人中随机选出2人到中国交流学习,求2人中含有在“个人空间”感到最幸福的高中生的概率.附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .解:(1)补充因为K 2=100×(22×36-9×33)31×69×55×45≈4.628>3.841,所以有95%的把握认为是否“恋家”与国别有关.(2)用分层抽样的方法选出4人,其中在“朋友聚集的地方”感到最幸福的有3人,在“个人空间”感到最幸福的有1人,分别记为a 1,a 2,a 3,b ,则所有的基本事件为(a 1,a 2),(a 1,a 3),(a 1,b ),(a 2,a 3),(a 2,b ),(a 3,b ),共6个.设“含有在‘个人空间’感到最幸福的高中生”为事件A . 则A 包含的基本事件为(a 1,b ),(a 2,b ),(a 3,b ),共3个, 所以P (A )=36=12,故2人中含有在“个人空间”感到最幸福的高中生的概率为12.3.(应用型)(2019·太原模拟试题(一))某校倡导为特困学生募捐,要求在自动购水机处每购买一瓶矿泉水,便自觉向捐款箱中至少抽入一元钱,现统计了连续5天的售出矿泉水箱数和所得捐款额情况,列表如下:20名,获一等奖学金500元;综合考核前21~50名,获二等奖学金300元;综合考核50名以后的不获得奖学金.(1)若x 与y 成线性相关,则某天售出9箱水时,预计所得捐款额为多少元?(2)假设甲、乙、丙三名学生均获奖,且各自获一等奖和二等奖的可能性相同,求三人获得奖学金之和不超过1 000元的概率.附:回归方程y ^=b ^x +a ^,其中b ^=∑ni =1(x i -x -)(y i -y -)∑ni =1(x i -x -)2,a ^=y --b ^x -.解:(1)x -=7+6+6+5+65=6,y -=165+142+148+125+1505=146,b ^=∑5i =1 (x i -x -)(y i -y -)∑5i =1 (x i -x -)2=19+0+0+21+01+0+0+1+0=20, a ^=y --b ^x -=146-20×6=26, 所以y ^=20x +26.当x =9时,y ^=20×9+26=206.即某天售出9箱水的预计所得捐款额是206元.(2)设事件A 1:甲获一等奖;事件A 2;甲获二等奖;事件B 1:乙获一等奖;事件B 2:乙获二等奖;事件C 1:丙获一等奖;事件C 2:丙获二等奖.则总事件为(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2,B 2,C 1),(A 2,B 2,C 2),共8种情况.甲、乙、丙三人获得奖金之和不超过1 000元的事件有(A 2,B 2,C 2)1种情况,则三人获得奖学金之和不超过1 000元的概率为18. 4.某市一中学课外活动小组为了研究经济走势,对该市1994~2016年的GDP(国内生产总值)相关数据进行了初步处理,得到下面的散点图及一些统计量的值.其中z i =ln y i ,w i =ln x i .e 6.42≈614.003,e 6.63≈757.482,e 6.84≈934.489,ln 24≈3.18,ln 25≈3.22,ln 26=3.26.(1)根据散点图判断,y =a +bx ,y =e c+dx与y =m +n ln x 哪一个适合作为该市GDP 值y关于年份代码x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程; (3)试预测该市2018年的GDP 值.(参考公式:b ^=∑ni =1(x i -x -)(y i -y -)∑ni =1(x i -x -)2,a ^=y --b ^x -)解:本题考查非线性拟合,线性回归方程求法及预测. (1)由散点图可以判断,y =e c+dx适宜作为该市GDP 值y 关于年份代码x 的回归方程类型.(2)令z =ln y ,则z =c +dx ,由参考数据得,d ^=∑23i =1 (x i -x -)(z i -z -)∑23i =1(x i -x -)2=212.521 012=0.21,c ^=z --d ^·x -=3.9-0.21×12=1.38. 所以z 关于x 的线性回归方程为z ^=1.38+0.21x , 所以y 关于x 的回归方程为y ^=e 1.38+0.21x .(3)由(2)可知,当x =25时,y ^=e 1.38+0.21×25=e 6.63≈757.482.所以预测2018年该市GDP值约为757.482亿元.。

高中数学:概率统计专题

高中数学:概率统计专题

高三文科数学:概率与统计专题一、选择题:1.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量单位:kg分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数2.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A.13B.12C.23D.343、在一组样本数据x1,y1,x2,y2,…,x n,y n n≥2,x1,x2,…,x n不全相等的散点图中,若所有样本点x i,y i i=1,2,…,n都在直线y=错误!x+1上,则这组样本数据的样本相关系数为A-1 B0 C错误! D14.如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为A103 B15C110D1205.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学科&网则此点取自黑色部分的概率是A.14B.π8C.12D.π46.如图所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是二、填空题:7、从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是_______;8、将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____.9.某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温,制作了对照表: 由表中数据得回归直线方程错误!=错误!x +错误!中的错误!=-2,预测当气温为-4 ℃时,用电量约为________度. 三、解答题10.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售;如果当天卖不完,剩下的玫瑰花做垃圾处理;Ⅰ若花店一天购进17枝玫瑰花,求当天的利润y 单位:元关于当天需求量n 单位:枝,n ∈N 的函数解析式;Ⅱ花店记录了100天玫瑰花的日需求量单位:枝,整理得下表: 日需求量n 14 15 16 17 18 19 20 频数102016161513101假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润单位:元的平均数;气温℃ 18 13 10 -1 用电量度243438642若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率;11. 从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值75,85 85,95 95,105 105,115 115,125 分组频数 6 26 38 22 8 I在答题卡上作出这些数据的频率分布直方图:II估计这种产品质量指标值的平均数及方差同一组中的数据用该组区间的中点值作代表;III根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定12. 某地区2009年至2015年农村居民家庭人均纯收入y单位:千元的数据如下表:年份2009201020112012201320142015年份代号t1234567人均纯收入y1求y关于t的线性回归方程;2利用1中的回归方程,分析2009年至2015年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2017年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:错误!=错误!,错误!=错误!-错误!错误!.13.某省会城市地铁将于2017年6月开始运营,为此召开了一个价格听证会,拟定价格后又进行了一次调查,随机抽查了50人,他们的收入与态度如下:1若以区间的中点值为该区间内的人均月收入,求参与调查的人员中“赞成定价者”与“认为价格偏高者”的月平均收入的差距是多少结果保留2位小数;2由以上统计数据填下面2×2列联表分析是否有99%的把握认为“月收入以55百元为分界点对地铁定价的态度有差异”.附:K2=错误!14.为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸单位:cm .下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s==≈,18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.1求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小.2一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.ⅰ从这一天抽检的结果看,是否需对当天的生产过程进行检查ⅱ在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.精确到附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑,0.09≈.。

高三数学《概率统计(文科)》练习

高三数学《概率统计(文科)》练习

文科数学《统计与概率》核心知识点与参考练习题一、统计(核心思想:用样本估计总体)1.抽样(每个个体被抽到的概率相等)(1)简单随机抽样:抽签法与随机数表法(2)系统抽样(等距抽样)(3)分层抽样2.用样本估计总体:(1)样本数字特征估计总体:众数、中位数、平均数、方差与标准差(2)样本频率分布估计总体:频率分布直方图与茎叶图3.变量间的相关关系:散点图、正相关、负相关、回归直线方程(最小二乘法)4.独立性检验二、概率(随机事件发生的可能性大小)1.基本概念(1)随机事件A的概率()()1,0∈AP(2)用随机模拟法求概率(用频率来估计概率)(3)互斥事件(对立事件)2.概率模型(1)古典概型(有限等可能)(2)几何概型(无限等可能)三、参考练习题1.某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______ .2.某学校高一、高二、高三年级的学生人数之比是3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则该从高二年级抽取_____名学生.3.某校老年、中年和青年教师的人数见右表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为_______ .4.已知一组数据5.5,4.5,1.5,8.4,7.4,则该组数据的方差是_____.5.若1,2,3,4,m这五个数的平均数为3,则这五个数的标准差为____.6.重庆市2013年各月的平均气温(℃)数据的茎叶图如右图:则这组数据的中位数是________.7.某高校调查了200名学生每周的晚自习时间(单位:小时),制成了如图所示的频率分布直方图,其中晚自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.1408.(2016四川文)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查. 通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照 [0,0.5),[0.5,1),…,[4,4.5] 分成9组,制成了如图的频率分布直方图. (Ⅰ)求直方图中a的值;(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(Ⅲ)估计居民月均用水量的中位数.类别人数老年教师900中年教师1800青年教师1600合计43009.(2015全国Ⅱ文)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表. A 地区用户满意度评分的频率分布直方图B 地区用户满意度评分的频数分布表 满意度评分分组[50,60) [60,70) [70,80) [80,90) [90,100]频 数2814106(Ⅰ)作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);B 地区用户满意度评分的频率分布直方图(Ⅱ)根据用户满意度评分,将用户的满意度分为三个等级:试估计哪个地区用户的满意度等级为不满意的概率大?说明理由.10.(2014安徽文)某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时). (Ⅰ)应收集多少位女生的样本数据?(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率;(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:()()()()()d b c a d c b a bc d a n K ++++-=22满意度评分 低于70分 70分到89分不低于90分 满意度等级不满意满意非常满意()02k K P ≥ 0.10 0.05 0.01 0.005 0k 2.706 3.841 6.635 7.87911.(2014全国Ⅰ文)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125] 频数 6 26 38 22 8(Ⅰ)在下表中作出这些数据的频率分布直方图:(Ⅱ)估计这种产品质量指标值的平均数和方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?12.(2014广东文)某车间20名工人年龄数据如下表:(Ⅰ)求这20名工人年龄的众数与极差;(Ⅱ)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(Ⅲ)求这20名工人年龄的方差.13.(2016江苏)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是_______ .14.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为_______ .15.(2016全国乙卷文)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是______ .16.(2016全国丙卷文)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M、I、N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是________ .17.(2016天津文)甲、乙两人下棋,两人下成和棋的概率为21,甲获胜的概率是31,则甲不输的概率为_________ .18.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任选2件,恰有一件次品的概率为_________ .19.某单位N 名员工参加“社区低碳你我他”活动.他们的年龄在25岁至50岁之间.按年龄分区间 [25,30) [30,35) [35,40) [40,45) [45,50]人数 25 a b(Ⅰ)求正整数a ,b ,N 的值;(Ⅱ)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?(Ⅲ)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率.20.(2016全国Ⅰ文)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.31B.21C.32D.4321.(2016全国Ⅱ文)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A.107 B.85 C.83 D.103 22.在区间[-2,3]上随机选取一个数x ,则1≤x 的概率为_____ .23.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是_______ .24.如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为_________ .25.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x 的线性回归方程为( )A .1ˆ-=x yB .1ˆ+=x yC .x y 2188ˆ+= D .176ˆ=y26.某产品的广告费用x 与销售额y 的统计数据如下:根据上表可得回归方程a x b yˆˆˆ+=中的b ˆ为9.4,据此模型预报广告费用为6万元时销售额为 A .63.6万元 B .65.5万元 C .67.7万元 D .72.0万元27.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年 份 2011 2012 2013 2014 2015 时间代号t 1 2 3 4 5 储蓄存款y (千亿元)567810(Ⅰ)求y 关于t 的回归方程a t b yˆˆˆ+=; (Ⅱ)利用(Ⅰ)中的回归方程,分析2011年至2015年该地区城乡居民储蓄存款的变化情父亲身高x (cm ) 174 176 176 176 178 儿子身高y (cm )175175176177177广告费用x (万元) 4 2 3 5 销售额y (万元)49263954况,并预测该地区2016年(t =6)的人民币储蓄存款.附:回归方程a t b yˆˆˆ+=中,t b y atn tyt n y t b ni ini ii ˆˆ,ˆ1221-=--=∑∑==.28.甲、乙两所学校高三年级分别有1200人、1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样的方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下: 甲校:乙校:(1)计算y x ,的值;(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率; (3)由以上统计数据填写下面2×2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异.参考数据与公式:由列联表中数据计算()()()()()d b c a d c b a bc ad n K ++++-=22;临界值表:29.一次考试中,5名学生的数学、物理成绩如下表所示:(1)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率;(2)根据上表数据作散点图,求y 与x 的线性回归方程(系数精确到0.01).附:回归直线的方程是:a x b y ˆˆˆ+=,其中()()()x b y ax x y y x x b ni ini iiˆˆ,ˆ121-=---=∑∑==; 90,93==y x ,()()()30,4051251=--=-∑∑==y y x x x x ii ii i .30.为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽取100名市民,按年龄情况进行统计得到下面的频率分布表和频率分布直方图.(1)求频率分布表中a 、b 的值,并补全频率分布直方图,再根据频率分布直方图估计有意购车的这500名市民的平均年龄;31.(2016新课标Ⅱ)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数0 1 2 3 4 ≥5保费0.85aa1.25a1.5a1.75a2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数0 1 2 3 4 ≥5概率0.300.150.200.200.100.05(Ⅰ)求一续保人本年度的保费高于基本保费的概率;32.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机分组(岁) 频数 频数[20,25) 5 0.050 [25,30) 200.200 [30,35) a0.350[35,40) 30 b[40,45] 10 0.100 合计1001.000摸出2只球,则这2只球颜色不同的概率为____________ .33.现有6道题,其中4道甲类题,2道乙类题,某同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.A,两地区分别随机调查了20个用户,得到用34.某公司为了解用户对其产品的满意度,从B户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);。

高三复习文科统计概率(概率专项完整版)练习

高三复习文科统计概率(概率专项完整版)练习

高三复习文科统计概率(概率专项)练习必须掌握知识点:○1随机事件的定义;正确理解概率的定义,能理解频率与概率的联系与区别.解析:判断事件是否随机抓住不能确保发生或不发生的事件,通常未发生的不是自然科学规律的事件为随机事件,而已发生、自然科学规律、公式以及定理等确定的事件为必然事件,违背自然科学的未发生的为不可能事件;事件发生的概率通俗讲就是事件发生的可能性大小,故可能发生也可能不发生,如天气预报有雨却没下雨,某人说某事99%的概率发生缺没发生等并不表示天气预报有误也不表示某人说法错误;频率是统计得来,随着试验次数不同而浮动,概率可看着是对频率的固定值估计,是一个定值,但试验次数无限增加时,频率无限趋近该事件的概率.○2掌握对立事件与互斥事件的区别与联系.解析:对立事件与互斥事件都不能同时发生,而互斥事件可以同时不发生,对立事件却必然有事件发生,故对立事件是互斥事件充分不必要条件;互斥事件与对立事件经常作为间接求解使用.○3掌握古典概型和几何概型.解析:古典概型成立的特征需两个条件,条件一是试验的结果是有限的(如抛一枚硬币出现正面、方面两种情况),条件二是试验的所有结果发生可能性相同(如抛一枚硬币出现正面、反面的概率一样),解答古典概型题计算方式为()AP A事件发生的事件总数试验所有可能发生的事件总数;几何概型其实就是一个“量比”的问题,事件发生的概率与试验“器具”的量有关,且为其“量比”(如长度比、面积比、事件比、空间比、数轴比等,典型的如等公交车、过交通岗、设靶、数轴取数、抛黄豆以等).○4独立性检验解析:独立性检验是经常出现在大题当中,固定的考试模式以及固定的求解步骤对考生来说没有难度,需要注意的是几种求问法:(1)是否有不低于99.5%的把握认为吸烟与患肺炎相关;(2)是否能在犯错误的概率不超过0.5%前提下,认为吸烟与患肺炎有关;(3)若低于95%的把握,则认为吸烟与患肺炎无关,反之亦然,从上表统计数据是否能判断吸烟与患肺炎有关,请注明你的结论。

2020年高考数学(文)热点专练10 概率与统计(解析版)

2020年高考数学(文)热点专练10 概率与统计(解析版)

热点10 概率与统计【命题趋势】统计与概率是高考文科中的一个重要的一环高考对概率与统计内容的考查一般以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向.概率应用题侧重于古典概率,近几年的高考有以概率应用题替代传统应用题的趋势,该题出现在解答题第二或第三题的位置,可见概率统计在高考中属于中档题.虽为中档题,但是实际生活背景在加强,阅读量大,所以快速阅读考题并准确理解题意是很重要的.对于这部分,我们还应当重视与传统内容的有机结合. 为了准确地把握2020年高考概率统计命题思想与趋势,在最后的复习中做到有的放矢,提高复习效率,纵观近五年的全国文科I卷,我们看到近几年每年一考,多出现在19题,分值12分;从难度上看:以中档题为主,重基础,考查的重点为统计图表的绘制与分析、数字特征的计算与分析、概率计算、线性回归分析,独立性检验等知识点,一般都会以实际问题为载体,代替传统建模题目.本专题我们把这些热点问题逐一说明,并提出备考指南,希望同学们在复习时抓住重点、事半功倍.【热点预测以及解题技巧】热点一:“统计”背景下的“概率”问题这类问题一般将统计与概率相结合.以频率分布直方图或茎叶图为背景来考查概率知识,有时以表格为背景来考查概率知识,需要从统计图、表格获取信息、处理数据的能力,并根据得出的数据求概率.热点二:样本分析并通过样本分析作决策进行样本分析时从统计图表中获取数据,得出频率、平均数、方差,用样本频率估计概率、样本数字特征估计总体数字特征,有时需以此作出决策.热点三:线性回归分析根据最小二乘法得出回归直线方程,有时需适当换元转化为线性回归方程. 由于计算量很大,题目一般会给出的参考数据,但是注意数据设置的“障眼法”,这时就要认真领会题意,找出适用的参考数据加以计算.热点四:独立性检验寻找数据完成列联表,下面的解题步骤比较固定,按部就班完成即可.热点五:与函数相结合的概率统计题这类题也是近几年出现较多的一类题,其综合性强,理解题意后找准变量,构建函数关系式.【考查题型】选择,填空,解答题【限时检测】(建议用时:45分钟)1.(2018·黑龙江哈尔滨三中高考模拟(文))从甲、乙两种树苗中各抽测了10株树苗的高度,其茎叶图如图所示.根据茎叶图,下列描述正确的是( )A.甲种树苗的高度的中位数大于乙种树苗高度的中位数,且甲种树苗比乙种树苗长得整齐B.甲种树苗的高度的中位数大于乙种树苗高度的中位数,但乙种树苗比甲种树苗长得整齐C.乙种树苗的高度的中位数大于甲种树苗高度的中位数,且乙种树苗比甲种树苗长得整齐D.乙种树苗的高度的中位数大于甲种树苗高度的中位数,但甲种树苗比乙种树苗长得整齐【答案】D【解析】从茎叶图的数据可以看出甲种树苗的平均高度为27,乙种树苗的平均高度为30,因此乙种树苗的平均高度大于甲种树苗的平均高度.又从茎叶图分析知道,甲种树苗的高度集中在20到30之间,因此长势更集中.2.(2019·辽宁高考模拟(文))《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边长分别为5步和12步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是( )A .215π B .320π C .2115π-D .3120π-【答案】C 【解析】 【分析】本题首先可以根据直角三角形的三边长求出三角形的内切圆半径,然后分别计算出内切圆和三角形的面积,最后通过几何概型的概率计算公式即可得出答案. 【详解】13=, 设内切圆的半径为r ,则51213r r -+-=,解得2r =. 所以内切圆的面积为24r ππ=,所以豆子落在内切圆外部的概率42P 111155122ππ=-=-⨯⨯,故选C.【名师点睛】本题主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误. 3.(2019·安徽合肥一中高考模拟(文))甲、乙两名同学在 6 次数学考试中,所得成绩 用茎叶图表示如下,若甲、乙两人这 6 次考试的平均成绩分别用,x x 乙甲 表示,则下列结论正确的是( )A .x x >乙甲 ,且甲成绩比乙成绩稳定B .x x >乙甲 ,且乙成绩比甲成绩稳定C .x x <乙甲 ,且甲成绩比乙成绩稳定D .x x <乙甲,且乙成绩比甲成绩稳定【答案】C 【解析】 【分析】从茎叶图提取两个人的成绩,分别求出两个人的平均分,得到甲的平均数比乙的平均数要低,但甲数据比较集中,所以成绩比较稳定. 【详解】757782838590826x +++++==甲,727681869192836x +++++==乙,所以x x <乙甲,因为甲数据比较集中,所以成绩比较稳定. 【名师点睛】茎叶图保留了原始数据,所以可通过计算平均数来比较大小,再通过数据的集中与离散程度判断稳定性.4.(2018·天津南开中学高考模拟(文))在长为12cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积大于20cm 2的概率为 A .16B .13C .23D .45【答案】C 【解析】试题分析:设AC=x ,则BC=12-x (0<x <12) 矩形的面积S=x (12-x )>20 ∴x 2-12x+20<0 ∴2<x <10由几何概率的求解公式可得,矩形面积大于20cm 2的概率10221203p -==-考点:几何概型5.(2019·新疆高考模拟(文))《史记》中讲述了田忌与齐王赛马的故事.“田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.”双方从各自的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为A .31 B .41 C .51 D .61 【答案】A 【解析】分析:由题意结合古典概型计算公式即可求得最终结果.详解:记田忌的上等马、中等马、下等马分别为a ,b ,c ,齐王的上等马、中等马、下等马分别为A ,B ,C ,由题意可知,可能的比赛为:Aa ,Ab ,Ac ,Ba ,Bb ,Bc ,Ca ,Cb ,Cc ,共有9种,其中田忌可以获胜的事件为:Ba ,Ca ,Cb ,共有3种,则田忌马获胜的概率为p =39=13.本题选择A 选项.【名师点睛】:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.6.(2017·天津耀华中学高考模拟(文))某工厂甲,乙,丙三个车间生产了同一种产品,数量分别为600件,400件,300件,用分层抽样方法抽取容量为n 的样本,若从丙车间抽取6件,则n 的值为( ) A .18 B .20C .24D .26【答案】D 【解析】由分层抽样的定义可得:6300600400300n =++,解得:26n =. 本题选择D 选项.7.(2017·辽宁高考模拟(文))设样本数据1210,,,x x x L 的均值和方差分别为1和4,若(i i y x a a =+为非零常数,1,2,,10)i =L ,则1210,,,y y y L 的均值和方差分别为( )A .1,4a +B .1,4a a ++C .1,4D .1,4a +【答案】A 【解析】试题分析:因为样本数据1210,,,x x x L 的平均数是1,所以1210,,...y y y 的平均数是121012101210 (1101010)y y y x a x a x a x x x a a ++++++++++++==+=+;根据i i y x a =+(a 为非零常数,1,2,,10i =L ),以及数据1210,,,x x x L 的方差为4可知数据1210,,,y y y L 的方差为2144⨯=,综上故选A. 考点:样本数据的方差和平均数.8.(2017·陕西高考模拟(文))已知函数2()log ,[1,8]f x x x =∈,则不等式1()2f x ≤≤ 成立的概率是( ) A .17B .27C .37D .47【答案】B 【解析】由()12f x ≤≤,可知21log 2x ≤≤,解得24x ≤≤,由几何概型可知27P =,选B 二、填空题9.(2017·河南高考模拟(文))已知()0,0O ,()2,1A ,()1,2B -,31,55C ⎛⎫- ⎪⎝⎭,动点(),P x y 满足02OP OA ≤⋅≤u u u r u u u r 且02OP OB u u u r u u u r≤⋅≤,则点P 到点C 的距离大于14的概率为______.【答案】5164π- 【解析】由题意得,因为()()()310,0,2,1,1,2,,55O A B C ⎛⎫-- ⎪⎝⎭,所以动点(,)P x y 满足02OP OA ≤⋅≤u u u r u u u r 且02OP OB u u u r u u u r≤⋅≤,所以022{022x y x y ≤+≤≤-≤ ,则点P 到点C 的距离为22311()()5516z x y =-++≥ ,作出不等式组对应的平面区域,如图所示, 因为点P 到点C 的距离大于14,所以14PC >,则对应的部分为阴影部分,由2042,2055x y x y x y -==⎧⇒=+=⎨⎩ ,即点42(,)55E,则OE ==,所以正方形OEFG 的面积为45, 则阴影部分的面积为41516π- ,所以根据几何概型的概率公式可知所求的概率为41551614645ππ-=-.【名师点睛】:本题主要考查了几何概型及其概率的计算问题,其中解答中涉及到向量的数量积的运算,二元一次不等式组所表示的平面区域,简单的线性规划的应用,几何概型及其概率的计算公式等知识点的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中利用向量的数量积的运算,转化为简单的线性规划求解是解答的关键.9.(2018·河南高考模拟(文))某班共有56名学生,现将所有学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知12号、26号、54号同学在样本中,则样本中还 有一名同学的编号是__________. 【答案】40【解析】【分析】先求出组距,然后根据已知的第二个样本的编号,求得第三个样本的编号.【详解】从56名学生中抽取4名,组距为56414÷=,由于抽取到第二个编号为26号,故第三个样本的编号为261440+=号.【名师点睛】本小题主要考查系统抽样的知识,先求得系统抽样的组距,然后根据已知来求得未知的样本编号,属于基础题.11.(2019·浠水县实验高级中学高三月考(文))设AB=6,在线段AB上任取两点(端点A,B除外),将线段AB分成了三条线段,若分成的三条线段长度均为正整数,则这三条线段可以构成三角形的概率是____________;若分成的三条线段的长度均为正实数,则这三条线段可以构成三角形的概率是_________.【答案】11014【解析】【分析】若分成的三条线段的长度均为正整数,则三条线段的长度的所有可能为:1,1,4;1,2,3;2,2,2共3种情况,其中只有三条线段为2,2,2时能构成三角形,由古典概型的概念,得到概率.三条线段的长度均为正实数时,则是几何概型,设出变量,写出全部结果所构成的区域,和满足条件的事件对应的区域,注意整理三条线段能组成三角形的条件,求出面积,作比值得到概率.【详解】若分成的三条线段的长度均为正整数,则三条线段的长度的所有可能为:1,1,4;1,2,3;1,3,2;1,4,1;2,1,3;2,2,2;2,3,1;3,1,2;3,2,1;4,1,1共10种情况,其中只有三条线段为2,2,2时能构成三角形则构成三角形的概率p1 10 =.(2)由题意知本题是一个几何概型设其中两条线段长度分别为x,y,则第三条线段长度为6﹣x﹣y,则全部结果所构成的区域为:0<x<6,0<y<6,0<6﹣x﹣y<6,即为0<x<6,0<y<6,0<x+y<6所表示的平面区域为三角形OAB;若三条线段x,y,6﹣x﹣y,能构成三角形,则还要满足666x y x yx x y yy x y x+--⎧⎪+--⎨⎪+--⎩>>>,即为333x yyx+⎧⎪⎨⎪⎩><<,所表示的平面区域为三角形DEF,由几何概型知所求的概率为:P14DEFAOBSS==VV【名师点睛】本题考查古典概型,考查几何概型,对于几何概型的问题,一般要通过把试验发生包含的事件同集合结合起来,根据集合对应的图形做出面积,用面积的比值得到结果. 三、解答题12.(2019·天津高考模拟(文))为预防H 1N 1病毒爆发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如下表:已知在全体样本中随机抽取1个,抽到B 组疫苗有效的概率是0.33. (∴)求x 的值;(∴)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C 组抽取多少个? (∴)已知y ≥465,z ≥30,求不能通过测试的概率.【答案】(1)660;(2)90;(3)112.【解析】 【分析】(1)由古典概型概率公式列方程求解即可;(2)先求出C 组样本个数,再根据分层抽样方法可得结果;(3)利用列举法可得基本事件空间包含的基本事件有11个,测试不能通过事件包含基本事件2个,利用古典概型概率公式可得结果. 【详解】(1)∵在全体样本中随机抽取1个,抽到B 组疫苗有效的概率约为其频率 即x 2000=0.33, ∴ x =660;(2)C 组样本个数为y +z =2000-(673+77+660+90)=500,现用分层抽样的方法在全体样本中抽取360个测试结果,应在C 组抽取个数为3602000×500=90;(3)设测试不能通过事件为A,C 组疫苗有效与无效的可能的情况记为(y,z )由(2)知500=y+z ,且y,z ∈N ,基本事件空间包含的基本事件有:(465,35)、(466,34)、(467,33)、……(475,25)共11个 若测试不能通过,则77+90+z>200,即z>33事件A 包含的基本事件有:(465,35)、(466,34)共2个 ∴ P(A)=211故不能通过测试的概率为211.【名师点睛】本题主要考查分层抽样以及古典概型概率公式的应用,属于难题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先(A 1,B 1),(A 1,B 2)….(A1,B n),再(A2,B1),(A2,B2)…..(A2,B n)依次(A3,B1)(A3,B2)….(A3,B n)… 这样才能避免多写、漏写现象的发生.13.(2019·山东高考模拟(文))2019年2月13日《烟台市全民阅读促进条例》全文发布,旨在保障全民阅读权利,培养全民阅读习惯,提高全民阅读能力,推动文明城市和文化强市建设.某高校为了解条例发布以来全校学生的阅读情况,随机调查了200名学生每周阅读时间X(单位:小时)并绘制如图所示的频率分布直方图.(1)求这200名学生每周阅读时间的样本平均数x和中位数a(a的值精确到0.01);(2)为查找影响学生阅读时间的因素,学校团委决定从每周阅读时间为[6.5,7.5),[7.5,8.5)的学生中抽取9名参加座谈会.(i)你认为9个名额应该怎么分配?并说明理由;(ii)座谈中发现9名学生中理工类专业的较多.请根据200名学生的调研数据,填写下面的列联表,并判断是否有95%的把握认为学生阅读时间不足(每周阅读时间不足8.5小时)与“是否理工类专业”有关?附:22()()()()()n ad bc K a b c d a c b d -=++++(n a b c d =+++).临界值表:【答案】(1)平均数9,中位数8.99;(2)(i )按照1:2进行名额分配;理由见详解; (ii )有. 【解析】 【分析】(1)根据平均数,中位数的定义进行求解即可(2)完成列联表,计算2K 的观测值,结合独立性检验的性质进行判断即可. 【详解】(1)该组数据的平均数60.0370.180.290.35100.19x =⨯+⨯+⨯+⨯+⨯110.09120.049+⨯+⨯=,因为0.030.10.20.350.680.5+++=>,所以中位数[8.5,9.5)a ∈,由0.030.10.2(8.5)0.350.5a +++-⨯=,解得0.50.338.58.990.35a -=+≈;(2)(i )每周阅读时间为[6.5,7.5)的学生中抽取3名,每周阅读时间为[7.5,8.5)的学生中抽取6名.理由:每周阅读时间为[6.5,7.5)与每周阅读时间为[7.5,8.5)是差异明显的两层,为保持样本结构与总体结构的一致性,提高样本的代表性,宜采用分层抽样的方法抽取样本;因为两者频率分别为0.1,0.2,所以按照1:2进行名额分配.(ii)由频率分布直方图可知,阅读时间不足8.5小时的学生共有200(0.030.10.2)66⨯++=人,超过8.5小时的共有20066134-=人.于是列联表为:2K的观测值2200(40742660)4.432 3.84166134100100k⨯⨯-⨯=≈>⨯⨯⨯,所以有95%的把握认为学生阅读时间不足与“是否理工类专业”有关.【名师点睛】本题主要考查独立性检验的应用,根据数据计算出K2的观测值是解决本题的关键.考查学生的计算能力.14.(2019·江西高考模拟(文))某品牌餐饮公司准备在10个规模相当的地区开设加盟店,为合理安排各地区加盟店的个数,先在其中5个地区试点,得到试点地区加盟店个数分别为1,2,3,4,5时,单店日平均营业额y(万元)的数据如下:(1)求单店日平均营业额y(万元)与所在地区加盟店个数x(个)的线性回归方程;(2)根据试点调研结果,为保证规模和效益,在其他5个地区,该公司要求同一地区所有加盟店的日平均营业额预计值总和不低于35万元,求一个地区开设加盟店个数m 的所有可能取值;(3)小赵与小王都准备加入该公司的加盟店,根据公司规定,他们只能分别从其他五个地区(加盟店都不少于2个)中随机选一个地区加入,求他们选取的地区相同的概率.(参考数据及公式:51125i ii x y==∑,52155i i x ==∑,线性回归方程ˆybx a =+,其中1221ni ii nii x y nxyb xnx ==-=-∑∑,a y bx =-.)【答案】(1) ˆ12yx =-+ (2) 5,6,7 (3) 15P = 【解析】 【分析】(1)利用最小二乘法求线性回归方程;(2)解不等式()1235m m -≥得一个地区开设加盟店个数m 的所有可能取值;(3)利用古典概型的概率求选取的地区相同的概率. 【详解】(1)由题可得,3x =,9y =,设所求线性回归方程为ˆybx a =+, 则5152215125135155455i i i ii x y xy b x x ==--===---∑∑,将3x =,9y =代入,得()9312a =--=,故所求线性回归方程为ˆ12yx =-+. (2)根据题意,()1235m m -≥,解得:57m ≤≤,又m Z +∈,所以m 的所有可能取值为5,6,7.(3)设其他5个地区分别为,,,,A B C D E ,他们选择结果共有25种,具体如下:AA ,AB ,AC ,AD ,AE ,BA ,BB ,BC ,BD ,BE ,CA ,CB ,CC ,CD ,CE ,DA ,DB ,DC ,DD ,DE ,EA ,EB ,EC ,ED ,EE ,其中他们在同一个地区的有5种,所以他们选取的地区相同的概率51255P ==. 【名师点睛】本题主要考查线性回归方程的求法,考查古典概型的概率的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.15.(2018·天津南开中学高考模拟(文))某校从高一年级学生中随机抽取40名学生,将 他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:,,…,后得到如图的频率分布直方图.(1)求图中实数a 的值;(2)若该校高一年级共有学生640人,试估计该校高一年级 期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[)40,50与[]90,100两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差的绝对值不大于10的概率.【答案】(1)0.03a =. (2)544人. (3)()715P M =. 【解析】试题分析:(1)由于图中所有小矩形的面积之和等于1, 所以10(0.0050.010.02⨯++0.0250.01)1a +++=. ……2分解得0.03a =. ……3分(2)根据频率分布直方图,成绩不低于60分的频率 为110(0.0050.01)-⨯+0.85=. ……5分由于该校高一年级共有学生640人,利用样本估计总体的思想,可估计该校高一年级数学成绩不低于60分的人数约为6400.85544⨯=人. ……6分 (3)成绩在[)40,50分数段内的人数为400.052⨯=人,分别记为A ,B . ……7分成绩在[]90,100分数段内的人数为400.14⨯=人,分别记为C ,D ,E ,F . ……8分若从数学成绩在[)40,50与[]90,100两个分数段内的学生中随机选取两名学生, 则所有的基本事件有:(),A B ,(),A C ,(),A D ,(),A E ,(),A F ,(),B C ,(),B D ,(),B E ,(),B F ,(),C D ,(),C E ,(),C F ,(),D E ,(),D F , (),E F 共15种. ……10分如果两名学生的数学成绩都在[)40,50分数段内或都在[]90,100分数段内,那么这两名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[)40,50分数段内,另一个成绩在[]90,100分数段内,那么这两名学生的数学成绩之差的绝对值一定大于10. 记“这两名学生的数学成绩之差的绝对值不大于10”为事件M ,则事件M 包含的基本事件有:(),A B ,(),C D ,(),C E ,(),C F ,(),D E ,(),D F ,(),E F 共7种. ……11分所以所求概率为()715P M =. ……12分 考点:本小题主要考查频率分布直方图的应用和古典概型概率的求解,考查学生识图、用图的能力和运算求解能力.【名师点睛】:解决与频率分布直方图有关的题目时,要注意到频率分布直方图中纵轴表示的是频率/组距,不是频率,图中小矩形的面积才表示频率.16.(2019·江西高考模拟(文))某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:万元)对年销售量y (单位:吨)和年利润z (单位:万元)的影响.对近六年的年宣传费i x 和年销售量i y (1,2,3,4,5,6i =)的数据作了初步统计,得到如下数据:经电脑模拟,发现年宣传费x (万元)与年销售量y (吨)之间近似满足关系式b y a x =⋅(,0a b >).对上述数据作了初步处理,得到相关的值如表:(1)根据所给数据,求y 关于x 的回归方程; (2)已知这种产品的年利润z 与x ,y 的关系为e14zx =-若想在2019年达到年利润最大,请预测2019年的宣传费用是多少万元?附:对于一组数据()1,l u v ,()22,u v ,…,(),n n u v ,其回归直线v u a β=⋅+中的斜率和截距的最小二乘估计分别为()1221()()ni i i nii u v n uv un u β==-=-∑∑,v u αβ=-⋅【答案】(1)y e =(2)当2018年的宣传费用为98万元时,年利润有最大值. 【解析】 【分析】(1)转化方程by a x =⋅,结合线性回归方程参数计算公式,计算,即可.(2)将z 函数转化为二次函数,计算最值,即可. 【详解】(1)对by a x =⋅,(0a >,0b >),两边取对数得ln ln ln y a b x =+,令ln i i u x =,ln i i v y =,得ln v a b u =+⋅,由题目中的数据,计算24.6 4.16u ==,18.33.056v ==, 且()()6611ln ln i iiii i u v x y ====∑∑ 75.3,()6622111n 101.4ii i i u x ====∑∑; 则()6162216ˆ6i i i i i u v u v b u u ==-⋅=-⋅∑∑ 275.36 4.1 3.05101.46 4.1-⨯⨯=-⨯ 0.2710.542==, 1ln ln 3.05 4.112a v u =-=-⨯=, 得出ˆae =, 所以y 关于x的回归方程是ˆye = (2)由题意知这种产品的年利润z 的预测值为14ˆe z x e =-=1414e e x -=-(14e x -=-27e +,=98x =时,ˆz 取得最大值,即当2019年的年宣传费用是98万元时,年利润有最大值.【名师点睛】考查了线性回归方程求解,考查了二次函数计算最值问题,关键结合题意,得到回归方程,第二问关键转化为二次函数问题,难度中等.。

高考文科数学概率及统计题型归纳及训练.docx

高考文科数学概率及统计题型归纳及训练.docx

2020 年高考文科数学《概率与统计》题型归纳与训练【题型归纳】题型一古典概型例 1从甲、乙等5名学生中随机选出2人,则甲被选中的概率为().A. 1B.2C.8D. 5525925【答案】 B【解析】可设这 5 名学生分别是甲、乙、丙、丁、戊,从中随机选出 2 人的方法有:(甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊),(丙,丁),(丙,戊),(丁,戊),共有种选法,其中只有前 4 种是甲被选中,所以所求概率为 . 故选 B.例 2将2本不同的数学书和1 本语文书在书架上随机排成一行,则 2 本数学书相邻的概率为 ________.【答案】23【解析】根据题意显然这是一个古典概型,其基本事件有:数1,数2,语;数1,语,数 2; 数 2,数 1,语 ;数2,语,数1;语,数2,数1;语,数1,数2共有6 种,其中 2 本数学书相邻的有 4 种,则其概率为:p 4 2.6 3【易错点】列举不全面或重复, 就是不准确【思维点拨】直接列举, 找出符合要求的事件个数.题型二几何概型例 1 如图所示,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称. 在正方形内随机取一点,则此点取自黑色部分的概率是().A. 1B.πC.1D.π4824【答案】 B【解析】不妨设正方形边长为 a ,由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半. 由几何概型概率的计算公式得,所求概率为21a22a28.故选B.例 2在区间[0,5]上随机地选择一个数p ,则方程 x2 + 2 px + 3 p - 2 = 0 有两个负根的概率为 ________.【答案】234 p24(3 p2)0【解析】方程 x2 + 2 px + 3p -2 = 0 有两个负根的充要条件是x1 x22p0即x1x2 3 p202p 1, 或 p 2 ,又因为 p[0,5] ,所以使方程x2+ 2 px + 3 p - 2 = 0 有两个负根的p3(1 2) (5 2) 2,故填:2 .的取值范围为 ( 2,1] U [2,5] ,故所求的概率33533【易错点】“有两个负根”这个条件不会转化 .【思维点拨】“有两个负根”转化为函数图像与x 轴负半轴有两个交点.从而得到参数 p 的范围.在利用几何概型的计算公式计算即可.题型三抽样与样本数据特征例 1某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200, 400,300 ,100 件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.【答案】 18【解析】按照分层抽样的概念应从丙种型号的产品中抽取6018(件).3001000例 2已知样本数据 x1, x2,, x n的均值x 5 ,则样本数据2x11, 2x21,,2x n1的均值为.【答案】 11【解析】因为样本数据,,,的均值,又样本数据,,,的和为 2 x1x2 L x n n ,所以样本数据的均值为= 11.例 3 某电子商务公司对10000名网络购物者 2018 年度的消费情况进行统计,发现消费金额(单位:万元)都在区间 [0.3,0.9] 内,其频率分布直方图如图所示.(1)直方图中的a =.(2)在这些购物者中,消费金额在区间[0.5,0.9] 内的购物者的人数为.【答案】 a 3人数为 0.6 10000 6000【解析】由频率分布直方图及频率和等于1,可得0.2 0.1 0.8 0.1 1.5 0.1 2 0.1 2.5 0.1 a 0.1 1 ,解之得 a 3 .于是消费金额在区间0.5,0.9 内频率为 0.2 0.1 0.8 0.1 2 0.1 3 0.10.6 ,所以消费金额在区间0.5,0.9 内的购物者的人数为 0.6 10000 6000.例 4某城市100户居民的月平均用电量(单位:度),以160,180,180,200,200,220,220,240,240,260,260,280,280,300分组的频率分布直方图如图所示.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为220,240,240,260,260,280,280,300的四组用户中,用分层抽样的方法抽取 11户居民,则从月平均用电量在220,240的用户中应抽取多少户?【答案】见解析【解析】(1)由0.002 0.0095 0.011 0.0125x 0.005 0.0025 20 1,得 x0.0075 .220 240(2)由图可知,月平均用电量的众数是230 .2因为 0.002 0.0095 0.011 20 0.450.5 ,又 0.002 0.0095 0.011 0.0125 20 0.70.5 ,所以月平均用电量的中位数在220,240 内.设中位数为 a ,由0.002 0.0095 0.011 20 0.0125 a 2200.5,得 a 224 ,所以月平均用电量的中位数是224 .(3)月平均用电量为220,240的用户有0.0125 20 100 25(户);月平均用电量为 240,260 的用户有 0.0075 20 100 15(户);月平均用电量为 260,280 的用户有 0.005 20 100 10 (户);月平均用电量为280,300 的用户有 0.0025 20 100 5 (户).抽取比例为111051 ,25155所以从月平均用电量在220,240 的用户中应抽取2515 (户).5【易错点】没有读懂题意 , 计算错误 . 不会用函数思想处理问题【思维点拨】根据题意分情况写出函数解析式; 2 牵涉到策略问题 , 一般可以转化为比较两个指标的大小.题型四回归与分析例 1 下图是我国 2008 年至 2014 年生活垃圾无害化处理量(单位:亿吨)的折线图(1)由折线图看出,可用线性回归模型拟合与的关系,请用相关系数加以说明(2)建立关于的回归方程(系数精确到),预测年我国生活垃圾无害化处理量 .参考数据:,,,.参考公式:相关系数回归方程中斜率和截距的最小二乘估计公式分别为:【答案】见解析【解析】(1)由折线图中数据和附注中参考数据得,,,,.因为与的相关系数近似为,说明与的线性相关程度相当高,从而可以用线性回归模型拟合与的关系 .(1)变量与的相关系数,又,,,,,所以,故可用线性回归模型拟合变量与的关系 .(2),,所以,,所以线性回归方程为.当时, . 因此,我们可以预测2016 年我国生活垃圾无害化处理亿吨.【易错点】没有读懂题意 , 计算错误 .【思维点拨】将题目的已知条件分析透彻 , 利用好题目中给的公式与数据 .题型五独立性检验例 1 甲、乙、丙、丁四位同学各自对 A、 B 两变量的线性相关性作试验,并用回归分析方法分别求得相关系数 r 与残差平方和 m如下表:甲乙丙丁rm 115 106 124103则哪位同学的试验结果体现A、B 两变量更强的线性相关性?() A.甲B.乙C.丙D.丁【答案】 D【解析】 D因为r>0且丁最接近1,残差平方和最小,所以丁相关性最高【易错点】不理解相关系数和残差平方和与相关性的关系【思维点拨】相关系数 r 的绝对值越趋向于 1, 相关性越强 . 残差平方和 m越小相关性越强【巩固训练】题型一古典概型1.将一颗质地均匀的骰子(一种各个面上分别标有个点的正方体玩具)先后抛掷次,则出现向上的点数之和小于的概率是.【答案】【解析】将先后两次点数记为,则基本事件共有(个),其中点数之和大于等于有,共种,则点数之和小于共有种,所以概率为.2. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于 2 的偶数可以表示为两个素数的和”,如30 723 .在不超过 30 的素数中,随机选取两个不同的数,其和等于30 的概率是().A.1B.1C.1D.1 12141518【答案】 C【解析】不超过 30 的素数有 2、3、5、7、11、13、17、19、23、29,共 10 个,随机选取两数有 45 (种)情况,其中两数相加和为30 的有 7 和 23,11 和 19,31P451513 和 17,共 3 种情况,根据古典概型得.故选C.3.袋中有形状、大小都相同的 4 只球,其中 1只白球, 1只红球, 2 只黄球,从中一次随机摸出 2 只球,则这 2 只球颜色不同的概率为.【答案】P56【解析】 1只白球设为a,1只红球设为b, 2 只黄球设为c,d,则摸球的所有情况为a,b , a, c , a,d , b, c , b,d , c,d ,共6件,足意的事件a,b , a,c , a,d , b,c , b,d ,共5件,故概率P 5 .6型二几何概型1.某公司的班在 7:00 ,8:00 ,8:30 ,学 . 小明在 7:50 至 8:30 之到达站乘坐班,且到达站的刻是随机的,他等不超10 分的概率是().B.D.【答案】 B【解析】如所示,画出.小明到达的会随机的落在中段中,而当他的到达落在段或,才能保他等的不超分 .根据几何概型,所求概率. 故B.2.从区随机抽取 2n个数,,⋯,,,,⋯,,构成n个数,,⋯,,其中两数的平方和小于 1 的数共有m个,用随机模的方法得到的周率的近似().A.B.C.D.【答案】 C【解析】由意得:在如所示方格中,而平方和小于 1 的点均在如所示的阴影中,由几何概型概率计算公式知,所以.故选C.3.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形 ABC 的斜边 BC ,直角边AB, AC ,△ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为 p1, p2, p3,则A.p1p2B.p1p3C.p2p3D.p1p2p3【答案】 A【解析】概率为几何概型,总区域面积一定,只需比较Ⅰ,Ⅱ,Ⅲ区域面积即可 .设直角三角形ABC 的三个角A,B, C 所对的边长分别为 a ,b, c ,则区域Ⅰ的面积为 S11 ab,2区域Ⅱ的面积为区域Ⅲ的面积为222S21π1c1π1b1ab1π1a1ab ,2222222221 π 1 b21 πa21ab .S3 1 π 1 c1ab2222282显然 p1p2.故选A.题型三抽样与样本的数据特征1. 已知一组数据4,6,5,8,7,6,那么这组数据的平均数为.【答案】 10【解析】平均数 x 1 4658766.62.某电子商务公司对 10000 名网络购物者 2014 年度的消费情况进行统计,发现消费金额(单位:万元)都在区间 [0.3, 0.9] 内,其频率分布直方图如图所示.(Ⅰ)直方图中的a_________;(Ⅱ)在这些购物者中,消费金额在区间[0.5, 0.9] 内的购物者的人数为_________.【答案】 3;6000【解析】频率和等于 1 可得0.2 0.1 0.8 0.1 1.5 0.1 2 0.1 2.50.1a0.1 1 ,解之得 a 3 .于是消费金额在区间 [0.5, 0.9] 内频率为 0.20.10.80.120.1 3 0.1 0.6 ,所以消费金额在区间 [0.5, 0.9] 内的购物者的人数为: 0.6100006000 ,故应填3;6000.3.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费 . 为了了解居民用水情况,通过抽样,获得了某年位居民每人的月均用水量(单位:吨),将数据按照,,,分成组,制成了如图所示的频率分布直方图.(1)求直方图中的值;(2)设该市有万居民,估计全市居民中月均用水量不低于吨的人数,请说明理由;(3)若该市政府希望使的居民每月的用水量不超过标准(吨),估计的值,并说明理由 .【答案】见解析【解析】(1)由频率分布直方图知,月均用水量在中的频率为,同理,在,,,,,中的频率分别为,,,,,.由,解得 .(2)由( 1),位居民每人月均用水量不低于吨的频率为.由以上样本的频率分布,可以估计全市万居民中月均用水量不低于吨的人数为.(3)因为前组的频率之和为,而前组的频率之和为,所以由,解得 .题型四回归与分析1.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区 5 户家庭,得到如下统计数据表:收入 x(万元)支出 y (万元)根据上表可得回归直线方程???,其中???y bx a b0.76,a y bx ,据此估计,该社区一户收入为 15 万元家庭年支出为()A.万元B.万元C.万元D.万元【答案】 B8.28.610.011.311.9(万元),【解析】由已知得x5106.27.58.0 8.59.88(万元),故 ?8 0.76 10 0.4,5所以回归直线方程为y? 0.76 x 0.4 .当社区一户收入为15 万元,家庭年支出为y? 0.76 150.411.8 (万元).故选B.2.为了研究某班学生的脚长x (单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10 名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为.已知,,.该班某学生的脚长为 24,据此估计其身高为().A.B.C.D.【答案】 C【解析】,,所以,时,.故选C.3.某公司为确定下一年投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y(单位: t )和年利润z(单位:千元)的影响,对近8 年的年宣传费 x i和年销售量y i i 1,2, ,8数据作了初步处理,得到下面的散点图及一些统计量的值.x y w82888x i x2w i w y i yw i w x i x y i y i 1i 1i 1i 1561469 3表中 w i18x i, w w i ,8 i 1(1)根据散点图判断,y a bx 与y c d x 哪一个适宜作为年销售量y关于年宣传费x的回归方程类型(给出判断即可,不必说明理由)?(2)根据( 1)的判断结果及表中数据,建立y关于x的回归方程;(3)已知这种产品的年利润z与x,y的关系式为z 0.2 y x,根据( 2)的结果回答下列问题:(ⅰ)年宣传费x49时,年销售量及年利润的预报值是多少?(ⅱ)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据 u1, v1u2,v2,, u n ,v n,其回归直线v u 的斜率和n?u i u v i vi 1?截距的最小二乘估计分别为, ? v u .nu i2ui 1【答案】见解析【解析】(1)由散点图变化情况可知选择y c d x 较为适宜.8w i w y iy(2)由题意知di 182108.8 68 .又 y c d x 一定过点, y ,w i w1.6i 1所以 c y d563 68 6.8 100.6 ,所以 y 与 x 的回归方程为 y 100.6 68 x .(3)(ⅰ)由( 2)知,当 x 49 时, y 100.6 6849 576.6 t ,z 0.2 576.6 49 66.32(千元),所以当年宣传费为 x 49 时,年销售量为 576.6 t ,利润预估为 66.32千元.(ⅱ)由( 2)知, z0.2 y x0.2100.6 68 x x 13.6 x x 20.122x 6.8时,年利润的预估值最大,x 6.86.82 20.12 ,所以当即 x 6.8 2 46.24 (千元). 题型五 独立性检验1. 某医疗研究所为了检验某种血清预防感冒的作用, 把 500 名使用血清的人与另外 500 名未使用血清的人一年中的感冒记录作比较,提出假设 H :“这种血清不能起到预防感冒的作用”,利用 2×2列联表计算的 K 2≈,则下列表述中正确的是( )A .有 95℅的把握认为“这种血清能起到预防感冒的作用”B .若有人未使用该血清,那么他一年中有95℅的可能性得感冒C.这种血清预防感冒的有效率为95℅D.这种血清预防感冒的有效率为5℅【答案】 A【解析】由题可知,在假设 H 成立情况下,P( K23.841)的概率约为,即在犯错的概率不错过的前提下认为“血清起预防感冒的作用”,即有95℅的把握认为“这种血清能起到预防感冒的作用” . 这里的 95℅是我们判断H不成立的概率量度而非预测血清与感冒的几率的量度,故 B 错误. C,D也犯有 B 中的错误.故选 A2. 观察下面频率等高条形图,其中两个分类变量x,y 之间关系最强的是( )A.B.【答案】 D【解析】在频率等高条形图中,C.D.a与c相差很大时,我们认为两个分类变量a b c d有关系,四个选项中,即等高的条形图中x1, x2所占比例相差越大,则分类变量 x, y 关系越强,故选 D .3.淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了 100 个网箱,测量各箱水产品的产量(单位:kg )的频率分布直方图如图所示.(1)设两种养殖方法的箱产量相互独立,记 A 表示事件:旧养殖法的箱产量低于 50kg ,新养殖法的箱产量不低于50kg ,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;箱产量箱产量50kg⋯50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到 0.01).附:P K2⋯kkK 2n( ad bc)2.(a b)(c d )(a c)(b d )【答案】见解析【解析】(1)记:“旧养殖法的箱产量低于50kg ”为事件B,“新养殖法的箱产量不低于50kg”为事件 C,由题图并以频率作为概率得P B0.040 5 0.034 5 0.024 5 0.014 5 0.012 5 0.62,P C0.068 5 0.046 5 0.010 5 0.008 50.66,P A P B P C0.4092 .(2)箱产量50kg箱产量≥50kg 旧养殖法6238新养殖法3466k 220062 6638 342由计算可得 K2的观测值为15.705 ,因为15.705 6.635,所以10010096104P K2≥ 6.6350.001,从而有 99%以上的把握认为箱产量与养殖方法有关.(3)1 5 0.2,0.10.0040.0200.0440.032,0.0320.0688,85 2.35,171750 2.35 52.35,所以中位数为52.35.。

2020年高考文科数学一轮复习大题篇----概率统计

2020年高考文科数学一轮复习大题篇----概率统计

2020年高考文科数学一轮复习大题篇----概率统计题型一 概率与统计的综合应用【例】某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图.记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数. (1)若n =19,求y 与x 的函数解析式;(2)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值;(3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件? 【解】 (1)当x ≤19时,y =3 800;当x >19时,y =3 800+500(x -19)=500x -5 700. 所以y 与x 的函数解析式为y =⎩⎪⎨⎪⎧3 800,x ≤19,500x -5 700,x >19(x ∈N ). (2)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故n 的最小值为19.(3)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3 800,20台的费用为4 300,10台的费用为4 800,因此这100台机器在购买易损零件上所需费用的平均数为1100(3 800×70+4 300×20+4 800×10)=4 000;若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4 000,10台的费用为4 500,因此这100台机器在购买易损零件上所需费用的平均数为1100(4 000×90+4 500×10)=4 050.比较两个平均数可知,购买1台机器的同时应购买19个易损零件.【思维升华】概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点.它与其他知识融合、渗透,情境新颖,充分体现了概率与统计的工具性和交汇性.【训练】某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.(1)求图中实数a的值;(2)若该校高一年级共有640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.【解】(1)由已知,得10×(0.005+0.010+0.020+a+0.025+0.010)=1,解得a=0.030. (2)根据频率分布直方图,可知成绩不低于60分的频率为1-10×(0.005+0.010)=0.85.由于该校高一年级共有学生640人,利用样本估计总体的思想,可估计该校高一年级期中考试数学成绩不低于60分的人数为640×0.85=544.(3)易知成绩在[40,50)分数段内的人数为40×0.05=2,这2人分别记为A,B;成绩在[90,100]分数段内的人数为40×0.1=4,这4人分别记为C,D,E,F.若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,则所有的基本事件有(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个.如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.记“这2名学生的数学成绩之差的绝对值不大于10”为事件M ,则事件M 包含的基本事件有(A ,B ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共7个,故所求概率P (M )=715.题型二 概率与统计案例的综合应用【例】某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率. 附:χ2=n n 11n 22-n 12n 212n 1+n 2+n +1n +2.【解】 (1)将2×2列联表中数据代入公式计算,得 χ2=100×60×10-20×10270×30×80×20=10021≈4.762. 由于4.762>3.841,所以有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.(2)设这5名数学系的学生喜欢甜品的为a 1,a 2,不喜欢甜品的为b 1,b 2,b 3,从5名数学系的学生中任取3人的一切可能结果所组成的基本事件空间Ω={(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 2,b 3),(a 1,b 1,b 2),(a 1,b 2,b 3),(a 1,b 1,b 3),(a 2,b 1,b 2),(a 2,b 2,b 3),(a 2,b 1,b 3),(b 1,b 2,b 3)}. Ω由10个基本事件组成,且这些基本事件出现是等可能的.用A 表示“3人中至多有1人喜欢甜品”这一事件,则A ={(a 1,b 1,b 2),(a 1,b 2,b 3),(a 1,b 1,b 3),(a 2,b 1,b 2),(a 2,b 2,b 3),(a 2,b 1,b 3),(b 1,b 2,b 3)},A 由7个基本事件组成,因而P (A )=710.【思维升华】 统计以考查抽样方法、样本的频率分布、样本特征数的计算为主,概率以考查概率计算为主,往往和实际问题相结合,要注意理解实际问题的意义,使之和相应的概率计算对应起来,只有这样才能有效地解决问题.【训练】某校计划面向高一年级1 200名学生开设校本选修课程,为确保工作的顺利实施,先按性别进行分层抽样,抽取了180名学生对社会科学类、自然科学类这两大类校本选修课程进行选课意向调查,其中男生有105人.在这180名学生中选择社会科学类的男生、女生均为45人.(1)分别计算抽取的样本中男生、女生选择社会科学类的频率,并以统计的频率作为概率,估计实际选课中选择社会科学类的学生人数;(2)根据抽取的180名学生的调查结果,完成以下2×2列联表.并判断能否在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关?附:χ2=n n 11n 22-n 12n 212n 1+n 2+n +1n +2,其中n =a +b +c +d .【解】 (1)由条件知,抽取的男生有105人,女生有180-105=75(人).男生选择社会科学类的频率为45105=37,女生选择社会科学类的频率为4575=35.由题意,知男生总数为1 200×105180=700,女生总数为1 200×75180=500,所以估计选择社会科学类的人数为 700×37+500×35=600.(2)根据统计数据,可得列联表如下:则χ2=180×60×45-30×452105×75×90×90=367≈5.142 9>5.024, 所以在犯错误的概率不超过0.025的前提下能认为科类的选择与性别有关.专题突破训练1.某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100]分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;(2)规定日平均生产件数不少于80的为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附:χ2=nn 11n 22-n 12n 212n 1+n 2+n +1n +2.【解】 (1)由已知得,样本中有25周岁以上(含25周岁)组工人60名,25周岁以下组工人40名.所以样本中日平均生产件数不足60的工人中,25周岁以上(含25周岁)组工人有60×0.005×10=3(人),记为A 1,A 2,A 3;25周岁以下组工人有40×0.005×10=2(人),记为B 1,B 2. 从中随机抽取2名工人,所有的可能结果共有10种,它们是(A 1,A 2),(A 1,A 3),(A 2,A 3),(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2).其中,至少有1名“25周岁以下组”工人的可能结果共有7种,它们是(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2).故所求的概率P =710.(2)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上(含25周岁)组”中的生产能手有60×(0.02+0.005)×10=15(人),“25周岁以下组”中的生产能手有40×(0.032 5+0.005)×10=15(人),据此可得2×2列联表如下:所以得χ2=n n 11n 22-n 12n 212n 1+n 2+n +1n +2=100×15×25-15×45260×40×30×70=2514≈1.79. 因为1.79<2.706.所以没有90%的把握认为“生产能手与工人所在的年龄组有关”.2.某省电视台为了解该省卫视一档成语类节目的收视情况,抽查东、西部各5个城市,得到观看该节目的人数的统计数据(单位:千人),并画出如下茎叶图,其中一个数字被污损.(1)求东部各城市观看该节目的观众的平均人数超过西部各城市观看该节目的观众的平均人数的概率;(2)该节目的播出极大地激发了观众对成语知识学习积累的热情,现从观看节目的观众中随机统计了4位观众学习成语知识的周均时间(单位:小时)与年龄(单位:岁),并绘制了如下对照表:根据表中数据,试求回归直线方程y ^=b ^x +a ^,并预测年龄为55岁的观众周均学习成语知识的时间.参考公式:b ^=∑ni =1x i y i -n x y ∑ni =1x 2i -n x2,a ^ =y -b ^x .【解】 (1)设被污损的数字为a ,则a 有10种情况. 由88+89+90+91+92>83+83+87+90+a +99, 得a <8,∴有8种情况使得东部各城市观看该节目的观众的平均人数超过西部各城市观看该节目的观众的平均人数, 所求概率为810=45.(2)由表中数据,计算得x =35,y =3.5,b ^=∑4i =1x i y i -4x y∑4i =1x 2i -4x 2=525-4×35×3.55 400-4×352=0.07,a ^=y -b ^x =3.5-0.07×35=1.05.∴y ^=0.07x +1.05.当x =55时,y ^=4.9.即预测年龄为55岁的观众周均学习成语知识的时间为4.9小时.3.长沙某购物中心在开业之后,为了解消费者购物金额的分布情况,在当月的电脑消费小票中随机抽取n 张进行统计,将结果分成6组,分别是[0,100),[100,200),[200,300),[300,400),[400,500),[500,600],制成如图所示的频率分布直方图(假设消费金额均在[0,600]元的区间内). (1)若按分层抽样的方法在消费金额为[400,600]元区间内抽取6张电脑小票,再从中任选2张,求这2张小票均来自[400,500)元区间的概率;(2)为做好五一劳动节期间的商场促销活动,策划人员设计了两种不同的促销方案. 方案一:全场商品打八折.方案二:全场购物满100元减20元,满300元减80元,满500元减120元,以上减免只取最高优惠,不重复减免,利用直方图的信息分析:哪种方案优惠力度更大,并说明理由(直方图中每个小组取中间值作为该组数据的替代值).【解】 (1)由题意知,在[400,500)元区间内抽4张,分别记为a ,b ,c ,d ,在[500,600]元区间内抽2张,分别记为E ,F ,设“2张小票均来自[400,500)元区间”为事件A ,从中任选2张,有以下选法:ab ,ac ,ad ,aE ,aF ,bc ,bd ,bE ,bF ,cd ,cE ,cF ,dE ,dF ,EF ,共15种.其中,2张小票均来自[400,500)元区间的有ab ,ac ,ad ,bc ,bd ,cd ,共6种, ∴P (A )=25.(2)方法一 由频率分布直方图可知,各组频率依次为0.1,0.2,0.25,0.3,0.1,0.05.方案一:购物的平均费用为0.8×(50×0.1+150×0.2+250×0.25+350×0.3+450×0.1+550×0.05)=0.8×275=220(元).方案二:购物的平均费用为50×0.1+130×0.2+230×0.25+270×0.3+370×0.1+430×0.05=228(元).∵220<228,∴方案一的优惠力度更大.方法二由频率分布直方图可知,各组频率依次为0.1,0.2,0.25,0.3,0.1,0.05,方案一:平均优惠金额为0.2×(50×0.1+150×0.2+250×0.25+350×0.3+450×0.1+550×0.05)=0.2×275=55(元).方案二:平均优惠金额为20×(0.2+0.25)+80×(0.3+0.1)+120×0.05=47(元).∵55>47,∴方案一的优惠力度更大.4.某校高三期中考试后,数学教师对本次全部数学成绩按1∶30进行分层抽样,随机抽取了20名学生的成绩为样本,成绩用茎叶图记录如图所示,但部分数据不小心丢失,同时得到如下表所示的频率分布表:(1)求表中a,b的值及成绩在[90,110)范围内的样本数,并估计这次考试全校高三学生数学成绩的及格率(成绩在[90,150]内为及格);(2)若从茎叶图中成绩在[100,130)范围内的样本中一次性抽取两个,求取出两个样本数字之差的绝对值大于10的概率.【解】(1)由茎叶图知成绩在[50,70)范围内的有2人,在[110,130)范围内的有3人,∴a=0.1,b=3.成绩在[70,90)内的样本数为0.25×20=5.∴成绩在[90,110)内的样本数为20-2-5-5=8.估计这次考试全校高三学生数学成绩的及格率为P=1-0.1-0.25=0.65.(2)所有可能的结果为(100,102),(100,106),(100,106),(100,116),(100,118),(100,128),(102,106),(102,106),(102,116),(102,118),(102,128),(106,106),(106,116),(106,118),(106,128),(106,116),(106,118),(106,128),(116,118),(116,128),(118,128),共21个,取出的两个样本中数字之差的绝对值大于10的结果为(100,116),(100,118),(100,128),(102,116),(102,118),(102,128),(106,118),(106,128),(106,118),(106,128),(116,128),共11个,∴P(A)=1121.。

2020高考—概率(选择+填空+答案)

2020高考—概率(选择+填空+答案)

2020年高考——概率统计1.(20全国Ⅰ文4)设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为A .15B .25C .12D .452.(20全国Ⅰ文 5)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是 A .y a bx =+ B .2y a bx =+ C .e x y a b =+D .ln y a b x =+3.(20全国Ⅰ理8)25()()x x y xy ++的展开式中x 3y 3的系数为A .5B .10C .15D .204.(20全国Ⅱ文4)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者 A .10名B .18名C .24名D .32名5.(20全国Ⅲ文3)设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为 A .0.01B .0.1C .1D .106.(20全国Ⅲ理3)在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是 A .14230.1,0.4p p p p ==== B .14230.4,0.1p p p p ==== C .14230.2,0.3p p p p ====D .14230.3,0.2p p p p ====7.(20新高考Ⅰ3)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有 A .120种B .90种C .60种D .30种8.(20新高考Ⅰ5)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是 A .62%B .56%C .46%D .42%9.(20天津4)从一批零件中抽取80个,测量其直径(单位:mm ),将所得数据分为9组:[5.31,5.33),[5.33,5.35),,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为A .10B .18C .20D .3610.(20北京3)在5(2)x -的展开式中,2x 的系数为( ).A .5-B .5C .10-D .1011.(20全国Ⅱ理14)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.12.(20全国Ⅲ理14)262()x x+的展开式中常数项是__________(用数字作答).13.(20天津11)在522()x x+的展开式中,2x 的系数是_________.14.(20天津13)已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.15.(20浙江12)二项展开式23450123545(2)1x a a x a x a x a x a x ++++++=,则4a =_______,135a a a ++=________.16.(20浙江16)盒中有4个球,其中1个红球,1个绿球,2个黄球.从盒中随机取球,每次取1个,不放回,直到取出红球为止.设此过程中取到黄球的个数为ξ,则(0)P ξ==_______,()E ξ=_______.17.(20江苏3)已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是 ▲ . 18.(20江苏4)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是 ▲ . 参考答案:1.A 2.D 3.C 4.B 5.C 6.B 7.C 8.C 9.B 10.C 11.36 12.240 13.10 14.16;2315.80,122 16.1,1317.2 18.19。

2020年高考数学(文数)解答题强化专练——概率与统计含答案

2020年高考数学(文数)解答题强化专练——概率与统计含答案

(文数)解答题强化专练——概率与统计一、解答题(本大题共10小题,共120.0分)1.党中央、国务院历来高度重视青少年的健康成长.“少年强则国强”,青少年身心健康、体魄强健、意志坚强、充满活力,是一个民族旺盛生命力的体现,是社会文明进步的标志,是国家综合实力的重要方面.全面实施《国家学生体质健康标准》,把健康素质作为评价学生全面健康发展的重要指标,是新时代的要求.《国家学生体质健康标准》有一项指标是学生体质指数(BMI),其计算公式为:,当BMI>23.5时认为“超重”,应加强锻炼以改善BMI.某高中高一、高二年级学生共2000人,人数分布如表(a).为了解这2000名学生的BMI指数情况,从中随机抽取容量为160的一个样本.性别男生女生合计年级高一年级5506501200高二年级425375800合计97510252000表()(1)为了使抽取的160个学生更具代表性,宜采取分层抽样,试给出一个合理的分层抽样方案,并确定每层应抽取出的学生人数;2160BMI值,统计出“超重”的学生人数分布如表(b).性别男生女生年级高一年级46高二年级24表(b)(i)试估计这2000名学生中“超重”的学生数;(ii)对于该校的2000名学生,应用独立性检验的知识,可分析出性别变量比年级变量与“是否超重”关联性更强.应用卡方检验,可依次得到K2的观察值k1,k2,是判断k1和k2的大小关系.(只需写出结论)2.“公平正义”是社会主义和谐社会的重要特征,是社会主义法治理念的价值追求.“考试”作为一种公平公正选拔人才的有效途径,正被广泛采用.每次考试过后,考生最关心的问题是:自己的考试名次是多少?自已能否被录取?能获得什么样的职位?某单位准备通过考试(按照高分优先录取的原则)录用300名,其中275个高薪职位和25个普薪职位.实际报名人数为2000名,考试满分为400分.考试后对部分考生考试成绩进行抽样分析,得到频率分布直方图如下:试结合此频率分布直方图估计:(1)此次考试的中位数是多少分(保留为整数)?(2)若考生甲的成绩为280分,能否被录取?若能被录取,能否获得高薪职位?(分数精确到个位,概率精确到千分位)3.纪念币是一个国家为纪念国际或本国的政治、历史,文化等方面的重大事件、杰出人物、名胜古迹、珍稀动植物、体育赛事等而发行的法定货币.我国在1984年首次发行纪念币,目前已发行了115套纪念币,这些纪念币深受邮币爱好者的喜爱与收藏.2019年发行的第115套纪念币“双遗产之泰山币”是目前为止发行的第一套异形币,因为这套纪念币的多种特质,更加受到爱好者追捧.某机构为调查我国公民对纪念币的喜爱态度,随机选了某城市某小区的50位居民调查,调查结果统计如下:喜爱不喜爱合计年龄不大于40岁24年龄大于40岁20合计2250(Ⅰ)根据已有数据,把表格数据填写完整,判断能否在犯错误的概率不超过1%的前提下认为不同年龄与纪念币的喜爱无关?(Ⅱ)已知在被调查的年龄不大于40岁的喜爱者中有5名男性,其中3位是学生,现从这5名男性中随机抽取2人,求至多有1位学生的概率.附:,n=a+b+c+d.P(K2≥k)0.1000.0500.0250.010k 2.706 3.841 5.024 6.6354.某市一水电站的年发电量y(单位:亿千瓦时)与该市的年降雨量x(单位:毫米)有如下统计数据:2013年2014年2015年2016年2017年降雨量x (毫米) 1 500 1 400 1 900 1 600 2 100发电量y (亿千瓦7.4 7.0 9.2 7.9 10.0时)(1)若从统计的5年中任取2年,求这2年的发电量都高于7.5 亿千瓦时的概率;(2)由表中数据求得线性回归方程为=0.004x+,该水电站计划2019年的发电量不低于8.6 亿千瓦时,现由气象部门获悉2019年的降雨量约为1 800 毫米,请你预测2019年能否完成发电任务?5.2019年2月13日《烟台市全民阅读促进条例》全文发布,旨在保障全民阅读权利,培养全民阅读习惯,提高全民阅读能力,推动文明城市和文化强市建设.某高校为了解条例发布以来全校学生的阅读情况,随机调查了200名学生每周阅读时间X(单位:小时)并绘制如图所示的频率分布直方图.(1)求这200名学生每周阅读时间的样本平均数和中位数a(a的值精确到0.01);(2)为查找影响学生阅读时间的因素,学校团委决定从每周阅读时间为[6.5,7,5),[7.5,8.5)的学生中抽取9名参加座谈会.(i)你认为9个名额应该怎么分配?并说明理由;(ii)座谈中发现9名学生中理工类专业的较多.请根据200名学生的调研数据,填写下面的列联表,并判断是否有95%的把握认为学生阅读时间不足(每周阅读时8.5阅读时间不足8.5小时阅读时间超过8.5小时理工类专业4060非理工类专业附:.临界值表:P(K2≥k0)0.150.100.050.0250.0100.0050.001k0 2.072 2.706 3.841 5.024 6.6357.87910.8286.2017年3月郑州市被国务院确定为全国46个生活垃圾分类处理试点城市之一,此后由郑州市城市管理局起草公开征求意见,经专家论证,多次组织修改完善,数易其稿,最终形成《郑州市城市生活垃圾分类管理办法》(以下简称《办法》).《办法》已于2019年9月26日被郑州市人民政府第35次常务会议审议通过,并于2019年12月1日开始施行.《办法》中将郑州市生活垃圾分为厨余垃圾、可回收垃圾、有害垃圾和其他垃圾4类为了获悉高中学生对垃圾分类的了解情况,某中学设计了一份调查问卷,500名学生参加测试,从中随机抽取了100名学生问卷,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如图频率分布直方图:(Ⅰ)从总体的500名学生中随机抽取一人,估计其分数不低于60的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的学生人数;(Ⅲ)学校环保志愿者协会决定组织同学们利用课余时间分批参加“垃圾分类,我在实践”活动,以增强学生的环保意识.首次活动从样本中问卷成绩低于40分的学生中随机抽取2人参加,已知样本中分数小于40的5名学生中,男生3人,女生2人,求抽取的2人中男女同学各1人的概率是多少?7.某汽车公司生产新能源汽车,2019年3-9月份销售量(单位:万辆)数据如表所示:月份x3456789销售量y(万辆) 3.008 2.401 2.189 2.656 1.665 1.672 1.368(1)某企业响应国家号召,购买了6辆该公司生产的新能源汽车,其中四月份生产的4辆,五月份生产的2辆,6辆汽车随机地分配给A,B两个部门使用,其中A 部门用车4辆,B部门用车2辆.现了解该汽车公司今年四月份生产的所有新能源汽车均存在安全隐患,需要召回.求该企业B部门2辆车中至多有1辆车被召回的概率;(2)经分析可知,上述数据近似分布在一条直线附近.设y关于x的线性回归方程为,根据表中数据可计算出,试求出的值,并估计该厂10月份的销售量.8.某商家在某一天统计前5名顾客扫微信红包所得金额分别为5.9元,5.7元,4.7元,3.3元,2.1元,商家从这5名顾客中随机抽取3人赠送礼品.(Ⅰ)求获得礼品的3人中恰好有2人的红包超过5元的概率;(Ⅱ)商家统计一周内每天使用微信支付的人数x与每天的净利润y(单位:元),得到如表:x12162225262930y60100210240150270330根据表中数据用最小二乘法求y与x的回归方程=(,的计算结果精确到小数点后第二位)并估计使用微信支付的人数增加到36人时,商家当天的净利润为多少(计算结果精确到小数点后第二位)?参考数据及公式:①=22.86,=194.29;=268.86;=3484.29,②回归方程:=(其中=,=-)9.某医学院欲研究昼夜温差大小与患感冒人数多少之间的关系,该院派出研究小组分别到气象局与某医院,抄录了1到6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到数据资料见表:月份123456昼夜温差(℃)1011131286就诊人数(个)232630271713该研究小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻的两个月的概率;(2)已知选取的是1月与6月的两组数据.(i)请根据2到5月份的数据,求就诊人数y关于昼夜温差x的线性回归方程:(ii)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该研究小组所得的线性回归方程是否理想?(参考公式==,=-)10.某学校有40名高中生参加足球特长生初选,第一轮测身高和体重,第二轮足球基础知识问答,测试员把成绩(单位:分)分组如下:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100),得到频率分布直方图如图所示.(1)根据频率分布直方图估计成绩的平均值(同一组中的数据用该组区间的中点值作代表);(2)用分层抽样的方法从成绩在第3,4,5组的高中生中6名组成一个小组,若6人中随2人担任小组负责人,求这2人来自3,4组各1人的概率.答案和解析1.【答案】解:(1)考虑到BMI应与年龄或性别均有关,最合理的分层应为以下四层:高一男生、高一女生、高二男生、高二女生;则高一男生抽取×160=44(人),高一女生抽取×160=52(人),高二男生抽取×160=34(人),高二女生抽取×160=30(人);(2)(i)160人中,“超重”人数为4+6+2+4=16(人),“超重”发生的频率为0.1,用样本的频率估计总体的频率,估计这2000名学生中“超重”的学生数为2000×0.1=200(人);(ii)应用独立性检验的知识,分析出性别变量与年级变量哪一个与“是否超重”的关联性更强,得出K2的观察值k1,k2,则k1和k2的大小关系为k1>k2.【解析】(1)考虑到BMI与年龄或性别均有关,最合理的分层为高一男生、女生,高二男生、女生;分别求出每层所抽取的人数即可;(2)(i)计算样本中“超重”的人数和频率,用样本的频率估计总体的频率,计算即可;(ii)应用独立性检验的知识分析出性别变量与年级变量哪一个与“是否超重”的关联性更强,得出K2的观察值k1应大于k2.本题考查了分层抽样原理与独立性检验的问题,也考查了用样本估计总体的问题,是基础题.2.【答案】解:(1)设(0.002+0.0029+x)×100=0.5,解得:x=0.0001.∴可得其中位数为:200+×(300-200)≈202.(2)300~400分的人数为:0.001×100×2000=200.280~300分的人数为:0.0041×100×2000×=164.而164+200>300.∴考生甲的成绩为280分,不能被录取.【解析】(1)设(0.002+0.0029+x)×100=0.5,解得:x.可得其中位数.(2)300~400分的人数为:0.001×100×2000=200.280~300分的人数为:0.0041×100×2000×=164.进而判断出结论.本题考查了频率分布直方图的性质及其应用,考查了推理能力与计算能力,属于中档题.喜爱不喜爱合计年龄不大于40岁a b24年龄大于40岁20c d 合计e225024+d=50,则d=26,a+20=e=28,则a=8,a+b=24,则b=16,b+c=22,则c=6;故列联表为:喜爱不喜爱合计年龄不大于40岁81624年龄大于40岁20626合计282250则有≈9.623>6.635.故能在犯错误的概率不超过1%的条件下认为不同年龄与纪念币的喜爱无关.(2)根据题意,记不大于40岁的5位喜爱者中的3位学生记为a,b,c,非学生记为A,B,则从5人中任取2人,共有(a,b),(a,c),(a,A),(a,B),(b,c),(b,A),(b,B),(c,A),(c,B),(A,B)10种结果.其中至多有1位学生的有7种,∴至多有1位学生的概率.【解析】(1)根据题意,由列联表的结构分析可得其他数据,即可完善列联表,进而计算K2的值,据此分析可得答案;(2)根据题意,记不大于40岁的5位喜爱者中的3位学生记为a,b,c,非学生记为A,B;由列举法分析“从这5名男性中随机抽取2人”和“至多有1位学生”的情况数目,由古典概型公式计算可得答案.本题考查独立性检验的应用,涉及古典概型的计算,属于基础题.4.【答案】解:(1)从统计的5年发电量中任取2年,基本事件为:(7.4,7.0},{7.4,9.2},{7.4,7.9},{7.4,10.0},{7.0,9.2},{7.0,7.9},{7.0,10.0},{9.2,7.9},{9.2,10.0},{7.9,10.0},共10个;其中这2年的发电量都高于7.5亿千瓦时的基本事件为:{9.2,7.9},{9.2,10.0},{7.9,10.0},共3个.所以这2年的发电量都高于7.5亿千瓦时的概率为.(2)因为.,又直线过点,所以,解得,所以.当x=1800时,.所以预测该水电站2019年能完成发电任务.【解析】本题考查回归直线方程,概率中的基本事件,属于中档题.(1)确定从统计的5年发电量中任取2年的基本事件、2年发电量都低于8.0(亿千瓦时)的基本事件,即可求出这2年的发电量都低于8.0(亿千瓦时)的概率;(2)先求出线性回归方程,再令x=1800,即可得出结论.5.【答案】解:(1)该组数据的平均数因为0.03+0.1+0.2+0.35=0.68>0.5,所以中位数a∈[8.5,9.5),由0.03+0.1+0.2+(a-8.5)×0.35=0.5,解得;(2)(i)每周阅读时间为[6,5,7.5)的学生中抽取3名,每周阅读时间为[7.5,8.5)的学生中抽取6名.理由:每周阅读时间为[6,5,7.5)与每周阅读时间为[7.5,8.5)是差异明显的两层,为保持样本结构与总体结构的一致性,提高样本的代表性,宜采用分层抽样的方法抽取样本;因为两者频率分别为0.1,0.2,所以按照1:2进行名额分配.(ii)由频率分布直方图可知,阅读时间不足8.5小时的学生共有200×(0.03+0.1+0.2)=66人,超过8.5小时的共有200-66=134人.于是列联表为:阅读时间不足8.5小时阅读时间超过8.5小时理工类专业4060非理工类专业2674K2的观测值,所以有95%的把握认为学生阅读时间不足与“是否理工类专业”有关.【解析】本题主要考查独立性检验的应用,根据数据计算出K2的观测值是解决本题的关键.考查学生的计算能力.(1)根据平均数,中位数的定义进行求解即可,(2)完成列联表,计算K2的观测值,结合独立性检验的性质进行判断即可.6.【答案】解:(Ⅰ)根据频率分布直方图可知,样本中分数高于60的频率为:(0.02+0.04+0.02)×10=0.8,所以样本中分数高于60的概率为0.8.故从总体的500名学生中随机抽取一人,其分数高于60的概率估计为0.8.(Ⅱ)根据题意,样本中分数不小于50的频率为:(0.01+0.02+0.04+0.02)×10=0.9,分数在区间[40,50)内的人数为100-100×0.9-5=5,所以总体中分数在区间[40,50)内的人数估计为500×=25,(Ⅲ)设3名男生分别为A,B,C,2名女生分别为1,2,则从这5名同学中选取2人的结果为:{A,B},{A,C},{A,1},{A,2},{B,C},{B,1},{B,2},{C,1},{C,2},{1,2}共10种情况.其中2人中男女同学各1人包含结果为:{A,1},{A,2},{B,1},{B,2},{C,1},{C,2},共6种,设事件A={抽取的2人中男女同学各1人},则P(A)=,所以,抽取的2人中男女同学各1人的概率是.【解析】(1)由直方图求出分数高于60的频率,计算出分数高于60的概率,(2)先计算出分数不小于50的频率,再算出分数在区间[40,50)内的人数,再估算出总体中分数在区间[40,50)内的人数.(3)先计算出从这5名同学中选取2人的事件,再算出抽取的2人中男女同学各1人的事件,再求抽取的2人中男女同学各1人的概率.本题考查频率直方图,通过频率估算整体,以及求频率,属于基础题.7.【答案】解:(1)设某企业购买的6辆新能源汽车,4月份生产的4辆车为C1,C2,C3,C4;5月份生产的2辆车为D1,D2,6辆汽车随机地分配给A,B两个部门.B部门2辆车可能为(C1,C2),(C1,C3),(C1,C4),(C1,D1),(C1,D2),(C2,C3),(C2,C4),(C2,D1),(C2,D2),(C3,C4),(C3,D1),(C3,D2),(C4,D1,(C4,D2),(D1,D2)共15种情况;其中,至多有1辆车是四月份生产的情况有:(C1,D1),(C1,D2),(C2,D1),(C2,D2),(C3,D1),(C3,D2),(C4,D1),(C4,D2),(D1,D2)共9种,所以该企业B部门2辆车中至多有1辆车被召回的概率为;(2)由题意得,.因为线性回归方程过样本中心点,所以,解得.当x=10时,,即该厂10月份销售量估计为1.151万辆.【解析】(1)用列举法,求出个数,根据概率公式求出即可;(2)求出线性回归方程过样本中心点,代入求出a,再代入x=10即可.考查古典概型求概率,线性回归方程的性质及其应用,中档题.8.【答案】解:(Ⅰ)记“5名顾客扫微信红包所得金额超过5元的2人”为A1,A2,“不超过5元的3人”为B1,B2,B3,“获得礼品的3人中恰好有2人的红包超过5元”为事件M,则所有的基本事件有:A1A2B1,A1A2B2,A1A2B3,A1B1B2,A1B1B3,A1B2B3,A2B1B2,A2B1B3,A2B2B3,B1B2B3共10种,其中事件M包含的基本事件有共3种,为A1A2B1,A1A2B2,A1A2B3,∴P(M)=;(Ⅱ)∵==,∴=-=194.29-12.9622.86=-101.98.∴y与x的回归方程为=12.96x-101.98,当x=36时,.故估计使用微信支付的人数增加到36人时,商家当天的净利润约为364.58元.【解析】(Ⅰ)利用古典概型的概率公式求获得礼品的3人中恰好有2人的红包超过5元的概率;(Ⅱ)利用最小二乘法求y与x的回归方程为=12.96x-101.98,把x=36代入方程,即可得解.本题考查古典概型的概率的计算,考查线性回归方程的求法,考查利用回归方程进行预测,意在考查学生对这些知识的理解掌握水平和分析推理计算能力,是中档题.9.【答案】解:(1)设选取的2组数据恰好是相邻两个月为事件A,因为从6组数据中选取2组数据共有15种情况,每种情况都是等可能出现的,其中选取的2组数据恰好是相邻两个月的情况有5种,所以P(A)=,(2)=(11+13+12+8)=11,=(26+30+27+17)=25,===,=-=25-=,得到y关于x的回归直线方程为y=(2)当x=10时,y=同样,当x=6时,y=,估计数据与所选出的检验数据的误差均不超过2人,∴该小组所得线性回归方程是理想的.【解析】(1)本题是一个古典概型,试验发生包含的事件是从6组数据中选取2组数据共有15种情况,满足条件的事件是抽到相邻两个月的数据的情况有5种,根据古典概型的概率公式得到结果.(2)根据所给的数据,求出x,y的平均数,根据求线性回归方程系数的方法,求出系数a,b,写出线性回归方程;(3)将x的值代入回归方程检验即可.考查古典概型求概率,求线性回归方程和应用,考查运算能力,中档题.10.【答案】解:(1)因为(0.01+0.07+0.06+x+0.02)×5=1,所以x=0.04,所以成绩的平均值为+0.10×=87.25;(2)第3组学生人数为0.06×5×40=12,第4 组学生人数为0.04×5×40=8,第5组学生人数为0.02×5×40=4,所以抽取的6人中第3,4,5组的人数分别为3,2,1.第3组的3人分别记为A1,A2,A3,第4 组的2人分别记为B1,B2,第5 组的1 人记为C,则从中选出2人的基本事件为共15个,记“从这6人中随机选出2人担任小组负责人,这2人来自第3,4组各1人”为事件M,则事件M包含的基本事件为(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),共6个,所以P(M)=.【解析】(1)根据频率分布直方图求出x的值,再利用同一组中的数据用该组区间的中点值作代表估计平均数即可;(2)先求出抽取的6人中第3,4,5组的人数,再利用古典概型的概率公式求解即可.本题考查由频数分布直方图,以及古典概型,属于基础题.。

高考文科数学概率与统计题型归纳与训练

高考文科数学概率与统计题型归纳与训练

高考文科数学概率与统计题型归纳与训练2020年高考文科数学《概率与统计》题型归纳与训练题型归纳古典概型例1:从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()。

A。

55.B。

25.C。

9.D。

128解析:可设这5名学生分别是甲、乙、丙、丁、戊,从中随机选出2人的方法有:甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊),(丙,丁),(丙,戊),(丁,戊),共有10种选法,其中只有前4种是甲被选中,所以所求概率为4/10=2/5.故选B。

例2:将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________。

解析:根据题意显然这是一个古典概型,其基本事件有:数1,数2,语;数1,语,数2;数2,数1,语;数2,语,数1;语,数2,数1;语,数1,数2共有6种,其中2本数学书相邻的有4种,则其概率为:p=4/6=2/3.易错点:列举不全面或重复,就是不准确。

思维点拨:直接列举,找出符合要求的事件个数。

几何概型例1:如图所示,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称。

在正方形内随机取一点,则此点取自黑色部分的概率是()。

解析:不妨设正方形边长为a,由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半。

由几何概型概率的计算公式得,所求概率为1/2πa^2=π/4a^2.故选B。

例2:在区间[0,5]上随机地选择一个数p,则方程x^2+2px-3p^2=0有两个负根的概率为________。

解析:方程x^2+2px-3p^2=0有两个负根的充要条件是Δ=4p^2-4(3p-2)x<0,即3p^2-x^2<2.因为x^2<p,所以3p^2-p^2<2,即p∈(0,1]∪[2,5],又因为p∈[0,5],所以使方程x^2+2px-3p^2=0有两个负根的p的取值范围为(√3,1]∪[2,5],故所求的概率为(5-√3)/5.220度,中位数是235度。

概率与统计测试题文科

概率与统计测试题文科

概率与统计测试题(文科)一、选择题(共10题,每小题均只有一个正确答案,每小题5分,共50分)1. 某工厂质检员每隔10分钟从传送带某一位置取一件产品进行检测,这种抽样方法是A.分层抽样B.简单随机抽样C.系统抽样D.以上都不对2.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为( ).A.7 B.15C.25 D.353.在一次教师联欢会上,到会的女教师比男教师多12人,从到会教师中随机挑选一人表演节目.如果每位教师被选中的概率相等,而且选中男教师的概率为920,那么参加这次联欢会的教师共有( ).A.360人B.240人C.144人D.120人4.某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是则样本中净重大于或等于98克并且小于104克的产品的个数是( )A.90B.75C. 60D.455.设矩形的长为a ,宽为b ,其比满足b ∶a =618.0215≈-,这种矩形给人以美感,称为黄金矩形。

黄金矩形常应用于工艺品设计中。

下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是( )A. 甲批次的总体平均数与标准值更接近B. 乙批次的总体平均数与标准值更接近C. 两个批次总体平均数与标准值接近程度相同D. 两个批次总体平均数与标准值接近程度不能确定6.甲、乙两人各抛掷一次正方体骰子(六个面分别标有数字1,2,3,4,5,6),设甲、乙所抛掷骰子朝上的面的点数分别为x 、y ,则满足复数i x y +的实部大于虚部的概率是( )A .16 B .512 C .712 D .137.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中{},1,2,3,4,5,6a b ∈,若1a b -≤,就称甲乙“心有灵犀”。

2020高考文科数学:单元测试八概率与统计

2020高考文科数学:单元测试八概率与统计

单元质量测试(八)第I 卷(选择题,共60分)、选择题(本大题共12小题,每小题5分,共60分)答案 C解析 两个事件是对立事件必须满足两个条件: ①不同时发生,②两个事件的概率之和 等于1.故选C.2•某小学共有学生 2000人,其中一至六年级的学生人数分别为 400, 400, 400, 300, 300, 200 •为做好小学放学后“快乐 30分”的活动,现采用分层抽样的方法从中抽取容量 为200的样本进行调查,那么应抽取一年级学生的人数为A. 120 B . 40 C . 30 D . 20 答案 B解析 :•一年级学生共400人,.••抽取一个容量为 200的样本,用分层抽样的方法抽取 的一年级学生人数为 2000 X 200= 40.选B.(2018 •合肥质检一)某广播电台只在每小时的整点和半点开始播放新闻,时长均为 则一个人在不知道时间的情况下打开收音机收听该电台,能听到新闻的概率是答案我们研究在一个小时内的概率即可, 不妨研究在一点至两点之间听到新闻的时间段.由题可知能听到新闻的时间段为1点到1点5分,以及1点30分到1点35分,总计 4. (2018 •湖南邵阳二模)假设有两个分类变量 X 和Y 的2X2列联表如下:时间:120分钟满分:150分1. 同时抛掷 3枚硬币, 那么互为对立事件的是(A.“至少有 1枚正面”与“最多有 1枚正面” B. “最多有1枚正面” 与“恰有2枚正面” C. “至多有 1枚正面”与“至少有 2枚正面” D . “至少有 2枚正面” 与“恰有1枚正面” 3.5分钟, A.丄14 解析10分钟的时间可以听到新闻,故能听到新闻的概率为10 160=6 .故选DX1a10a+ 10X2c30c+ 30总计6040100对同一样本,以下数据能说明X与Y有关系的可能性最大的一组为()A. a = 45, c = 15 B . a= 40, c = 20C. a= 35, c = 25 D . a= 30, c = 30答案A解析根据2X2列联表与独立性检验可知,a c a当匸币与匚^相差越大时,X与Y有关系的可能性越大,即a, c相差越大,匚币与a十10 c十30 a十10c相差越大.故选A.c+ 305. (2018 •河南安阳二模)已知变量x与y的取值如下表所示,且2. 5<n<m<6. 5,则由该数据算得的线性回归方程可能是()x2345y6. 5m n2. 5A. y = 0. 8x + 2. 3 B . y = 2x+ 0. 4A AC. y = —1 . 5x + 8 D . y = —1 . 6x + 10答案D——1解析由2. 5<n<m<6. 5,可得为负相关,排除A B;由题意,知x = 3. 5, y = 4X (6 . 5+ m+ n+ 2. 5) € (3 . 5, 5. 5),分别代入选项C, D,可得D满足.故选D.6. (2018 •湖南长沙四县联考)如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的底面圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上, 现在向鱼缸内随机地投入一粒鱼食,则"鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是()A —讣B - 12C •计D 答案 A2解析 鱼缸底面正方形的面积为 2 = 4,圆锥底面圆的面积为n •所以“鱼食能被鱼缸n内在圆锥外面的鱼吃到”的概率是1 —才.故选A .7. (2018 •佛山质检)已知袋中有5个球,其中红球3个,标号分别为1, 2, 3;蓝球2 个,标号分别为1, 2 .从袋中任取2个球,则这2个球颜色不同且标号之和不小于 4的概 率为()3 A. —— B 2 3 一 C .一 D . 7105 5 10答案 A解析 从这5个球中取出2个,有如下情况:(红1,红2),(红1, 红3),(红1,蓝1),(红 1, 蓝 2),(红2,红 3),(红 2,蓝 1), (红2,蓝2),(红3,蓝 1),(红 3,蓝 2), (蓝1,蓝2),共10种,其中2个球颜色不同且标号之和不小于 4的有(红2,蓝2),(红3,答案 B解析 如图,正三角形 ABC 的边长为I ,分别以它的三个顶点为圆心,以 2为半径,在3 2 1 I 2I — X n X— 42 23n蓝1),(红3,蓝2),共3种,所以所求概率为 310,故选A .& (2018 •衡阳三模)若在边长为a 的正三角形内任取一点 P,则点P 到三点的距离均大于I 的概率是()A.11—星 B12 63n6△ ABC 内部画圆弧,得三个扇形,依题意知点P 在这三个扇形外,因此所求概率为--------------- =1 —.故选B.3 26I9. 10枚均匀的骰子同时掷出,共掷5次,至少有一次全部出现一点的概率是()5l05 5610A- 1-6 B - 1- 6C彳彳1510 彳彳1105C. 1- 1 -- D • 1 —1—云6 6答案D1 解析一次同时掷出10枚均匀的骰子,10枚骰子全部出现一点的概率等于10,故1061枚骰子没有全部出现一点的概率等于 1 —10.事件“掷5次,至少有一次10枚骰子全部出6现一点”的对立事件为“掷5次,每次掷出的10枚骰子中,至少有一枚没有出现一点”,1故至少有一次10枚骰子全部出现一点的概率等于 1 — 1 —105.故选D.610. (2018 •广东广州海珠区综合测试)下列说法中正确的是()①相关系数r用来衡量两个变量之间线性关系的强弱,|r|越接近于1,相关性越弱;②回归直线y = bx+ a—定经过样本点的中心(x , y );③回归模型中残差是实际值y i与估计值y的差,残差点所在的带状区域宽度越窄,说明模型拟合精度越高;④相关指数R用来刻画回归的效果,R越小,说明模型的拟合效果越好.A.①② B .③④ C .①④ D .②③答案D解析①相关系数r用来衡量两个变量之间线性关系的强弱,|r|越接近于1,则相关性越强,错误;②回归直线y = bx + a—定经过样本点的中心(x , y ),正确;③由残差的定义和残差图的绘制可知正确;④相关指数R用来刻画回归的效果,R越小,说明模型的拟合效果越不好,错误•所以正确的有②③•故选 D.11. (2018 •南昌摸底)甲邀请乙、丙、丁三人加入了微信群聊“兄弟”,为庆祝兄弟相聚,甲发了一个9元的红包,被乙、丙、丁三人抢完,已知三人均抢到整数元,且每人至少抢到2元,则丙获得“手气最佳”(即丙领到的钱数不少于其他任何人)的概率是()13 2 3A -B . —C .D .310 5 4答案C解析用枚举法列出乙、丙、丁三人分别得到的钱数,有(2 , 2 , 5), (2 , 3 , 4), (2,4, 3) , (2 , 5, 2) , (3 , 2, 4) , (3 , 3, 3) , (3 , 4 , 2) , (4 , 2 , 3) , (4 , 3 , 2) , (5 , 2 ,2),共有10种可能性.而丙获得“手气最佳”(即丙领到的钱数不少于其他任何人)的情况4 2有(2 , 4 , 3) , (2 , 5 , 2) , (3 , 3 , 3) , (3 , 4 , 2),共计4种,故所求概率为故选10 5c.12. (2018 •郑州质检)我市某高中从高三年级甲、 乙两个班中各选出 7名学生参加2018 年全国高中数学联赛(河南初赛),他们取得的成绩(满分140分)的茎叶图如图所示,其中甲 班学生成绩的中位数是 81,乙班学生成绩的平均数是 86,若正实数a ,b 满足a ,G b 成等1 4差数列且x ,G y 成等比数列,则a + b 的最小值为()4 9A. 9 B . 2 c . ; D . 9 答案 C解析 甲班学生成绩的中位数为80+ x = 81,得x = 1.由茎叶图可知,乙班学生的总分为 76+ 80+ 82 + (80 + y ) + 91 + 93 + 96 = 598 + y = 7X 86,所以 y = 4 .若正实数 a, b 满足 a , o1 4G b 成等差数列且x , G y 成等比数列,则 a + b = 2G, xy = &,所以a + b = 4,所以-+ = a b小值.故选C.第n 卷(非选择题,共90分)、填空题(本大题共4小题,每小题5分,共20分)13. (2018 •广东华南师大附中测试 )已知如图所示的矩形, 长为12,宽为5,在矩形内 随机地投掷1000颗黄豆,数得落在阴影部分的黄豆为 600颗,则可以估计阴影部分的面积约为 ________ .答案 36600解析由题意得阴影部分的面积约为 X 60= 36. 100014.某天,甲要去银行办理储蓄1(a + b )l + b = 45 + b+ 4a>45+ 2、b4' a b 4 a b 4. a4a 1 9b 〒9= 9,当且仅当8 1 4 b = 2a = 3时,1+b 取得最叩3 x业务,已知银行的营业时间为9: 00至17: 00,设甲在当天13: 00至18: 00之间任何时间去银行的可能性相同,那么甲去银行恰好能办理业务的概率是_________ .4答案5 17- 13 4 解析 该题为长度型几何概型,所以概率P = =-.18 — 13 515. (2018 •青岛质检)已知某种商品的广告费支出 x (单位:万元)与销售额y (单位:万 元)之间有如下对应数据:x 2 4 5 6 8 y3040506070售额为 _________ 万元.答案 85本中心点,所以a = y — b x = 50— 7X 5= 15.所以回归方程为 y = 7x + 15,当x = 10时,y =85,所以当投入10万元广告费时,销售额为85万元.16. (2018 •乌鲁木齐一诊)A , B, C, D 四名学生按任意次序站成一排,则 A 或B 在边上的概率为 _________ .解析 A , B, C D 四名学生按任意次序站成一排,基本事件数共 24种,如下图所示.A B 都不在边上共4种,所以A 或B 在边上的概率为 P = 1 — 24= 6三、解答题(本大题共6小题,共70分•解答应写出文字说明、证明过程或演算步骤)17. (2018 •广东华南师大附中综合测试三 )(本小题满分10分)《汉字听写大会》不断 创收视率新高,为了避免“书写危机”弘扬传统文化,某市大约 10万名市民进行了汉字听写测试•现从某社区居民中随机抽取50名市民的听写测试情况,发现被测试市民正确书写根据上表可得回归方程 y = bx + a ,其中b = 7,据此估计,当投入10万元广告费时,销解析 30+ 40+ 50+ 60 + 705=50,又因为回归直线过样 ”甘/J片舟冲c uo C 1 J -----M C斗匕冲"/ V V汉字的个数全部在160到184之间,将测试结果按如下方式分成六组:第一组[160 , 164),(1) 若电视台记者要从抽取的市民中选 1人进行采访,求被采访人恰好在第 1组或第4组的概率;(2) 已知第5,6两组市民中有3名女性,组织方要从第 5,6两组中随机抽取2名市民 组成弘扬传统文化宣传队,求至少有1名女性市民的概率.解(1)被采访人恰好在第1组或第4组的频率为(0 . 05+ 0. 02) X 4= 0. 28, •••估计被采访人恰好在第 1组或第4组的概率为0. 28. (2)第 5, 6 两组[176 , 184)的人数为(0 . 02 + 0. 01) X 4X 50= 6, •••第5, 6两组中共有6名市民,其中女性市民有 3名,记第5, 6两组中的3名男性市民分别为 A , B, C, 3名女性市民分别为x , y , z , 从第5, 6两组中随机抽取2名市民组成弘扬传统文化宣传队, 共有15个基本事件,列举如下:AB ACAx, Ay , Az , BC Bx , By , Bz , Cx, Cy, Cz, xy , xz , yz ,至少有 1 名女性的事件有 Ax , Ay, Az , Bx , By , Bz, Cx, Cy, Cz, xy , xz , yz ,共 12 个,12 4•从第5,6两组中随机抽取 2名市民组成宣传队,至少有1名女性市民的概率为=;. 15 518. (2018 •济南模拟)(本小题满分12分)2018年2月22日上午,山东省省委、省政 府在济南召开山东省全面展开新旧动能转换重大工程动员大会,会议动员各方力量, 迅速全面展开新旧动能转换重大工程. 某企业响应号召,对现有设备进行改造,为了分析设备改造 前后的效果,现从设备改造前后生产的大量产品中各抽取了 200件产品作为样本,检测一项质量指标值,若该项质量指标值落在[20, 40)内的产品视为合格品,否则为不合格品.如图是设备改造前样本的频率分布直方图,下表是设备改造后的样本的频数分布表.第二组[164 , 168), 图.图设备改造前样本的额率分布血方图表设备改造后的样本的频数分布表质量指标值[15 , 20)[20 , 25)[25 , 30)[30 , 35)[35 , 40)[40 , 45)频数4369628324(1) 完成下面的2X2列联表,并判断是否有99%的把握认为该企业生产的这种产品的质量指标值与设备改造有关;设备改造设备改造.、八刖合计后合格品不合格品合计(2) 根据上图和上表提供的数据,试从产品合格率的角度对改造前后设备的优劣进行比较;(3) 根据市场调查,设备改造后,每生产一件合格品企业可获利180元,一件不合格品亏损100元,用频率估计概率,则生产1000件产品企业大约能获利多少元?附:F(心k o) 0. 1500. 1000. 0500. 0250. 010k o2. 0722. 7063. 8415. 0246. 635n= a+ b+ e + d._____ n(ad—be 2 _________a+ b e+d a+ e b+ d,解(1)根据题图和题表得到2X2列联表如下:将2X2列联表中的数据代入公式计算得心 _____ n (ad -be 2(a + b (C +d (a + c jb + d j400X 172X 8-28X 192 2= -------- ----------------------- 12 210200X 200X 364X 36 ''•••12. 210>6. 635,•••有99%勺把握认为该企业生产的这种产品的质量指标值与设备改造有关. (2)根据题图和题表可知,设备改造后产品为合格品的概率约为 192 96 200=100, 设备改造前产品为合格品的概率约为172 86 200=100,即设备改造后合格率更高,因此设备改造后性能更好. —960 = 40 件,180X 960— 100X 40= 168800元,故该企业大约能获利168800元.19. (2018 •江西摸底)(本小题满分12分)某商场为了了解顾客的购物信息,随机的在 商场收集了 100位顾客购物的相关数据,整理如下:统计结果显示100位顾客中购物款不低于 100元的顾客占60%据统计该商场每日大约 有5000名顾客,为了增加商场的销售额度, 对一次性购物不低于100元的顾客发放纪念品(每 人一件).(注:视频率为概率)(1)试确定m n 的值,并估计该商场每日应准备纪念品的数量;(3)用频率估计概率,1000件产品中大约有合格品 192200 X 1000= 960件,不合格品1000(2)为了迎接店庆,商场进行让利活动,一次购物款200元及以上的一次返利30元; 次性购物款小于200元的按购物款的百分比返利,具体见下表:请估计该商场日均让利多少元?解(1)由已知,100位顾客中购物款不低于100元的顾客有n+ 10+ 30= 100X 60%解得n= 20,二m= 100 —80= 20.60故该商场每日应准备纪念品的数量约为5000X 硕=3000(件).(2)设一次购物款为a元,当a€ [50 , 100)时,顾客有5000X 20%= 1000(人),当a€ [100 , 150)时,顾客有5000X 30%= 1500(人),当a€ [150 , 200)时,顾客有5000X 20%= 1000(人),当a€ [200 ,+s)时,顾客有5000X 10%= 500(人),•••估计该商场日均让利为75X 6%< 1000+ 125X 8%< 1500+ 175X 10%< 1000+ 30X 500 =52000(元).•••估计该商场日均让利为52000元.20. (2018 •广东三校联考)(本小题满分12分)在某城市气象部门的数据中,随机抽取了100天的空气质量指数的监测数据如表:(1)该城市各医院每天收治上呼吸道病症总人数y与当天的空气质量t (t取整数)存在如t , t w 100,下关系y = k— 100, 100v t w 300,且当t>300时,y>500,试用频率估计在某一医院收治此类病症人数超过200人的概率;(2)若在(1)中,当t >300时,y 与t 的关系拟合于曲线y = a + b ln t ,现已取出了 10对10 10 10样本数据(t i , y i )( i = 1, 2, 3,…,10),且若 1ln t i = 70,若y i = 6000, E ( y i ln t i ) = 42500,10召(In t i )2= 500,求拟合曲线方程.nAAAA E/y — n{ y A _ A _附:线性回归方程 y = a + bx 中,b = n, a = y — b x .2 2- nX解 (1)令 y >200得 2t — 100>200,解得 t >150, •••当t >150时,病人人数超过 200人.由频数分布表可知 100天内空气质量指数 t >150的天数为25+ 15+ 10= 50. 501•估计病人人数超过 200人的概率为P =而=-.⑵令x = In t ,则y 与x 线性相关,1010E In t iE y ii = 1i =1 丿=7, y =帀'42500 — 10X 7X 600500 — 10X 49•••拟合曲线方程为 y = 50x + 250 = 50ln t + 250.21. (2018 •江西重点盟校联考一)(本小题满分12分)微信是当前主要的社交应用之一, 有着几亿用户,覆盖范围广,及时快捷.作为移动支付的重要形式,微信支付成为人们支付的重要方式和手段.某公司为了解人们对“微信支付”的认可度, 对[15 , 45]年龄段的人群 随机抽取n 人进行了一次“你是否喜欢微信支付”的问卷调查, 根据调查结果得到如下统计表和各年龄段人数频率分布直方图:纽号 分组喜欢微信 支付的人数喜欢微信支付的人 数占木组的频率第_组 [15.20) 120 0. 6第二组[20.25) 195P[25.30)a6 5 第四组 [30,35) 60 6 4 第五纽[35.40)300・3600,=50 , a = 600 — 50X 7= 250,(1) 补全频率分布直方图,并求 n , a , p 的值;(2) 在第四、五、六组“喜欢微信支付”的人中,用分层抽样的方法抽取 7人参加“微信支付日鼓励金”活动,求第四、五、六组应分别抽取的人数;(3) 在(2)中抽取的7人中随机选派2人做采访嘉宾,求所选派的2人没有第四组人的概 率.解(1)补全频率分布直方图,如图所示.… 150 可知 n= 0^5 =1000,所以 a = 0. 04x 5X 1000X 0.5= 100.195因为第二组的频率为 0. 3,所以p = 300 = 0. 65. (2) 因为第四、五、六组“喜欢微信支付”的人数共有 105人,由分层抽样原理可知,第四、五、六组分别抽取的人数为4人、2人、1人.(3) 设抽取的第四组的 4人为A , A A 3, A,第五组的2人为B , B,第六组的1人为 C , 则从7人中随机抽取2人的所有可能的结果为AA , A A 3, A A 4, A B , AB, AQ , AA , AA, AB , AB, AC , AA , AB , AB, AC , AB, A 4B 2, AC 1, BR , BG , RG ,共 21 种,其中恰好没有第四组人的所有可能结果为 BB 2, BG , BG ,共3种,3 1所以所选派的2人没有第四组人的概率为P = 2-=22. (2018 •安徽合肥模拟)(本小题满分12分)某公司共有10条产品生产线,不超过 5 条生产线正S7 ft 5 4 *5 2 ]川 n 川.(>.O 川川r b h r y r h 19ML- (--crl> ri rl rV 52) 25 4 [} 35 4( )4年龄{跖5 2) a 2 5 引) 斗由统计表中第四组数据可知,第四组总人数为6004 = 150,再结合频率分布直方图,(),()6常工作时,每条生产线每天纯利润为1100元,超过5条生产线正常工作时,超过的生产线每条纯利润为800元,原生产线利润保持不变.未开工的生产线每条每天的保养等各种费用共100元•用x表示每天正常工作的生产线条数,用y表示公司每天的纯利润.(1) 写出y关于x的函数关系式,并求出纯利润为7700元时工作的生产线条数;(2) 为保证新开的生产线正常工作,需对新开的生产线进行检测,现从该生产线上随机抽取100件产品,测量产品数据,用统计方法得到样本的平均数匸=14,标准差s = 2,绘制如图所示的频率分布直方图,以频率值作为概率估计值.为检测该生产线生产状况,现从加工的产品中任意抽取一件,记其数据为X,依据以下不等式评判(P表示对应事件的概率):①只匚—s<X<7 + S)>0. 6826 ;②P( "x —2s<X<~ + 2s) >0. 9544;③Rx —3S<X< x + 3S) >0. 9974.评判规则为:若至少满足以上两个不等式,则生产状况为优,无需检修;否则需检修生产线.试判断该生产线是否需要检修.解⑴由题意知,当X W5时,y= 1100x—100X (10 —x) = 1200x—1000;当5<x w 10 时,y= 1100X 5+ 800X( x —5) —100X (10 —x) = 900x+ 500;‘1200X —1000(x w 5且x € N k )…y= 900x k 500(5<x w 10且x€ N+)当y = 7700时,900x + 500= 7700, x = 8,即8条生产线正常工作.(2) x = 14, S = 2,由频率分布直方图得,R12<X<16) = (0 . 29+ 0. 11) X 2= 0. 8>0. 6826,F(10<X<18) = 0. 8 + (0 . 04+ 0. 03) X 2= 0. 94<0. 9544,R8<X<20) = 0. 94 + (0 . 015 + 0. 005) X 2= 0. 98<0. 9974,•••不满足至少两个不等式,•••该生产线需要检修.。

2020年高考数学(文)热点专练10 概率与统计(解析版)

2020年高考数学(文)热点专练10 概率与统计(解析版)

热点10 概率与统计【命题趋势】统计与概率是高考文科中的一个重要的一环高考对概率与统计内容的考查一般以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向.概率应用题侧重于古典概率,近几年的高考有以概率应用题替代传统应用题的趋势,该题出现在解答题第二或第三题的位置,可见概率统计在高考中属于中档题.虽为中档题,但是实际生活背景在加强,阅读量大,所以快速阅读考题并准确理解题意是很重要的.对于这部分,我们还应当重视与传统内容的有机结合. 为了准确地把握2020年高考概率统计命题思想与趋势,在最后的复习中做到有的放矢,提高复习效率,纵观近五年的全国文科I卷,我们看到近几年每年一考,多出现在19题,分值12分;从难度上看:以中档题为主,重基础,考查的重点为统计图表的绘制与分析、数字特征的计算与分析、概率计算、线性回归分析,独立性检验等知识点,一般都会以实际问题为载体,代替传统建模题目.本专题我们把这些热点问题逐一说明,并提出备考指南,希望同学们在复习时抓住重点、事半功倍.【热点预测以及解题技巧】热点一:“统计”背景下的“概率”问题这类问题一般将统计与概率相结合.以频率分布直方图或茎叶图为背景来考查概率知识,有时以表格为背景来考查概率知识,需要从统计图、表格获取信息、处理数据的能力,并根据得出的数据求概率.热点二:样本分析并通过样本分析作决策进行样本分析时从统计图表中获取数据,得出频率、平均数、方差,用样本频率估计概率、样本数字特征估计总体数字特征,有时需以此作出决策.热点三:线性回归分析根据最小二乘法得出回归直线方程,有时需适当换元转化为线性回归方程. 由于计算量很大,题目一般会给出的参考数据,但是注意数据设置的“障眼法”,这时就要认真领会题意,找出适用的参考数据加以计算.热点四:独立性检验寻找数据完成列联表,下面的解题步骤比较固定,按部就班完成即可.热点五:与函数相结合的概率统计题这类题也是近几年出现较多的一类题,其综合性强,理解题意后找准变量,构建函数关系式.【考查题型】选择,填空,解答题【限时检测】(建议用时:45分钟)1.(2018·黑龙江哈尔滨三中高考模拟(文))从甲、乙两种树苗中各抽测了10株树苗的高度,其茎叶图如图所示.根据茎叶图,下列描述正确的是( )A.甲种树苗的高度的中位数大于乙种树苗高度的中位数,且甲种树苗比乙种树苗长得整齐B.甲种树苗的高度的中位数大于乙种树苗高度的中位数,但乙种树苗比甲种树苗长得整齐C.乙种树苗的高度的中位数大于甲种树苗高度的中位数,且乙种树苗比甲种树苗长得整齐D.乙种树苗的高度的中位数大于甲种树苗高度的中位数,但甲种树苗比乙种树苗长得整齐【答案】D【解析】从茎叶图的数据可以看出甲种树苗的平均高度为27,乙种树苗的平均高度为30,因此乙种树苗的平均高度大于甲种树苗的平均高度.又从茎叶图分析知道,甲种树苗的高度集中在20到30之间,因此长势更集中.2.(2019·辽宁高考模拟(文))《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边长分别为5步和12步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的 概率是 ( )A .215π B .320π C .2115π-D .3120π-【答案】C 【解析】 【分析】本题首先可以根据直角三角形的三边长求出三角形的内切圆半径,然后分别计算出内切圆和三角形的面积,最后通过几何概型的概率计算公式即可得出答案. 【详解】13=, 设内切圆的半径为r ,则51213r r -+-=,解得2r =. 所以内切圆的面积为24r ππ=,所以豆子落在内切圆外部的概率42P 111155122ππ=-=-⨯⨯,故选C.【名师点睛】本题主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误. 3.(2019·安徽合肥一中高考模拟(文))甲、乙两名同学在 6 次数学考试中,所得成绩 用茎叶图表示如下,若甲、乙两人这 6 次考试的平均成绩分别用,x x 乙甲 表示,则下列结论正确的是( )A .x x >乙甲 ,且甲成绩比乙成绩稳定B .x x >乙甲 ,且乙成绩比甲成绩稳定C .x x <乙甲 ,且甲成绩比乙成绩稳定D .x x <乙甲,且乙成绩比甲成绩稳定【答案】C 【解析】 【分析】从茎叶图提取两个人的成绩,分别求出两个人的平均分,得到甲的平均数比乙的平均数要低,但甲数据比较集中,所以成绩比较稳定. 【详解】757782838590826x +++++==甲,727681869192836x +++++==乙,所以x x <乙甲,因为甲数据比较集中,所以成绩比较稳定.【名师点睛】茎叶图保留了原始数据,所以可通过计算平均数来比较大小,再通过数据的集中与离散程度判断稳定性.4.(2018·天津南开中学高考模拟(文))在长为12cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积大于20cm 2的概率为 A .16B .13C .23D .45【答案】C 【解析】试题分析:设AC=x ,则BC=12-x (0<x <12) 矩形的面积S=x (12-x )>20 ∴x 2-12x+20<0 ∴2<x <10由几何概率的求解公式可得,矩形面积大于20cm 2的概率10221203p -==-考点:几何概型5.(2019·新疆高考模拟(文))《史记》中讲述了田忌与齐王赛马的故事.“田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.”双方从各自的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为A .31 B .41 C .51 D .61 【答案】A 【解析】分析:由题意结合古典概型计算公式即可求得最终结果.详解:记田忌的上等马、中等马、下等马分别为a ,b ,c ,齐王的上等马、中等马、下等马分别为A ,B ,C ,由题意可知,可能的比赛为:Aa ,Ab ,Ac ,Ba ,Bb ,Bc ,Ca ,Cb ,Cc ,共有9种,其中田忌可以获胜的事件为:Ba ,Ca ,Cb ,共有3种,则田忌马获胜的概率为p =39=13.本题选择A 选项.【名师点睛】:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.6.(2017·天津耀华中学高考模拟(文))某工厂甲,乙,丙三个车间生产了同一种产品,数量分别为600件,400件,300件,用分层抽样方法抽取容量为n 的样本,若从丙车间抽取6件,则n 的值为( ) A .18 B .20C .24D .26【答案】D 【解析】由分层抽样的定义可得:6300600400300n =++,解得:26n =. 本题选择D 选项.7.(2017·辽宁高考模拟(文))设样本数据1210,,,x x x L 的均值和方差分别为1和4,若(i i y x a a =+为非零常数,1,2,,10)i =L ,则1210,,,y y y L 的均值和方差分别为( )A .1,4a +B .1,4a a ++C .1,4D .1,4a +【答案】A 【解析】试题分析:因为样本数据1210,,,x x x L 的平均数是1,所以1210,,...y y y 的平均数是121012101210 (1101010)y y y x a x a x a x x x a a ++++++++++++==+=+;根据i i y x a =+(a 为非零常数,1,2,,10i =L ),以及数据1210,,,x x x L 的方差为4可知数据1210,,,y y y L 的方差为2144⨯=,综上故选A. 考点:样本数据的方差和平均数.8.(2017·陕西高考模拟(文))已知函数2()log ,[1,8]f x x x =∈,则不等式1()2f x ≤≤ 成立的概率是( ) A .17B .27C .37D .47【答案】B 【解析】由()12f x ≤≤,可知21log 2x ≤≤,解得24x ≤≤,由几何概型可知27P =,选B 二、填空题9.(2017·河南高考模拟(文))已知()0,0O ,()2,1A ,()1,2B -,31,55C ⎛⎫- ⎪⎝⎭,动点(),P x y满足02OP OA ≤⋅≤u u u r u u u r 且02OP OB u u u r u u u r ≤⋅≤,则点P 到点C 的距离大于14的概率为______.【答案】5164π- 【解析】由题意得,因为()()()310,0,2,1,1,2,,55O A B C ⎛⎫-- ⎪⎝⎭,所以动点(,)P x y 满足02OP OA ≤⋅≤u u u r u u u r 且02OP OB u u u r u u u r≤⋅≤,所以022{022x y x y ≤+≤≤-≤ ,则点P 到点C 的距离为22311()()5516z x y =-++≥ , 作出不等式组对应的平面区域,如图所示, 因为点P 到点C 的距离大于14,所以14PC >,则对应的部分为阴影部分, 由2042,2055x y x y x y -==⎧⇒=+=⎨⎩ ,即点42(,)55E,则5OE ==,所以正方形OEFG 的面积为45, 则阴影部分的面积为41516π- ,所以根据几何概型的概率公式可知所求的概率为41551614645ππ-=-.【名师点睛】:本题主要考查了几何概型及其概率的计算问题,其中解答中涉及到向量的数量积的运算,二元一次不等式组所表示的平面区域,简单的线性规划的应用,几何概型及其概率的计算公式等知识点的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中利用向量的数量积的运算,转化为简单的线性规划求解是解答的关键.9.(2018·河南高考模拟(文))某班共有56名学生,现将所有学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知12号、26号、54号同学在样本中,则样本中还有一名同学的编号是__________.【答案】40【解析】【分析】先求出组距,然后根据已知的第二个样本的编号,求得第三个样本的编号.【详解】从56名学生中抽取4名,组距为56414÷=,由于抽取到第二个编号为26号,故第三个样本的编号为261440+=号.【名师点睛】本小题主要考查系统抽样的知识,先求得系统抽样的组距,然后根据已知来求得未知的样本编号,属于基础题.11.(2019·浠水县实验高级中学高三月考(文))设AB=6,在线段AB上任取两点(端点A,B除外),将线段AB分成了三条线段,若分成的三条线段长度均为正整数,则这三条线段可以构成三角形的概率是____________;若分成的三条线段的长度均为正实数,则这三条线段可以构成三角形的概率是_________.【答案】11014【解析】【分析】若分成的三条线段的长度均为正整数,则三条线段的长度的所有可能为:1,1,4;1,2,3;2,2,2共3种情况,其中只有三条线段为2,2,2时能构成三角形,由古典概型的概念,得到概率.三条线段的长度均为正实数时,则是几何概型,设出变量,写出全部结果所构成的区域,和满足条件的事件对应的区域,注意整理三条线段能组成三角形的条件,求出面积,作比值得到概率.【详解】若分成的三条线段的长度均为正整数,则三条线段的长度的所有可能为:1,1,4;1,2,3;1,3,2;1,4,1;2,1,3;2,2,2;2,3,1;3,1,2;3,2,1;4,1,1共10种情况,其中只有三条线段为2,2,2时能构成三角形则构成三角形的概率p1 10 =.(2)由题意知本题是一个几何概型设其中两条线段长度分别为x,y,则第三条线段长度为6﹣x﹣y,则全部结果所构成的区域为:0<x<6,0<y<6,0<6﹣x﹣y<6,即为0<x<6,0<y<6,0<x+y<6所表示的平面区域为三角形OAB;若三条线段x,y,6﹣x﹣y,能构成三角形,则还要满足666x y x yx x y yy x y x+--⎧⎪+--⎨⎪+--⎩>>>,即为333x yyx+⎧⎪⎨⎪⎩><<,所表示的平面区域为三角形DEF,由几何概型知所求的概率为:P14DEFAOBSS==VV【名师点睛】本题考查古典概型,考查几何概型,对于几何概型的问题,一般要通过把试验发生包含的事件同集合结合起来,根据集合对应的图形做出面积,用面积的比值得到结果. 三、解答题12.(2019·天津高考模拟(文))为预防H 1N 1病毒爆发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如下表:已知在全体样本中随机抽取1个,抽到B 组疫苗有效的概率是0.33. (∴)求x 的值;(∴)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C 组抽取多少个? (∴)已知y ≥465,z ≥30,求不能通过测试的概率.【答案】(1)660;(2)90;(3)112.【解析】 【分析】(1)由古典概型概率公式列方程求解即可;(2)先求出C 组样本个数,再根据分层抽样方法可得结果;(3)利用列举法可得基本事件空间包含的基本事件有11个,测试不能通过事件包含基本事件2个,利用古典概型概率公式可得结果. 【详解】(1)∵在全体样本中随机抽取1个,抽到B 组疫苗有效的概率约为其频率 即x2000=0.33, ∴ x =660;(2)C 组样本个数为y +z =2000-(673+77+660+90)=500,现用分层抽样的方法在全体样本中抽取360个测试结果,应在C 组抽取个数为3602000×500=90;(3)设测试不能通过事件为A,C 组疫苗有效与无效的可能的情况记为(y,z )由(2)知500=y+z ,且y,z ∈N ,基本事件空间包含的基本事件有:(465,35)、(466,34)、(467,33)、……(475,25)共11个 若测试不能通过,则77+90+z>200,即z>33事件A 包含的基本事件有:(465,35)、(466,34)共2个 ∴ P(A)=211故不能通过测试的概率为211.【名师点睛】本题主要考查分层抽样以及古典概型概率公式的应用,属于难题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先(A 1,B 1),(A 1,B 2)….(A1,B n),再(A2,B1),(A2,B2)…..(A2,B n)依次(A3,B1)(A3,B2)….(A3,B n)… 这样才能避免多写、漏写现象的发生.13.(2019·山东高考模拟(文))2019年2月13日《烟台市全民阅读促进条例》全文发布,旨在保障全民阅读权利,培养全民阅读习惯,提高全民阅读能力,推动文明城市和文化强市建设.某高校为了解条例发布以来全校学生的阅读情况,随机调查了200名学生每周阅读时间X(单位:小时)并绘制如图所示的频率分布直方图.(1)求这200名学生每周阅读时间的样本平均数x和中位数a(a的值精确到0.01);(2)为查找影响学生阅读时间的因素,学校团委决定从每周阅读时间为[6.5,7.5),[7.5,8.5)的学生中抽取9名参加座谈会.(i)你认为9个名额应该怎么分配?并说明理由;(ii)座谈中发现9名学生中理工类专业的较多.请根据200名学生的调研数据,填写下面的列联表,并判断是否有95%的把握认为学生阅读时间不足(每周阅读时间不足8.5小时)与“是否理工类专业”有关?附:22()()()()()n ad bc K a b c d a c b d -=++++(n a b c d =+++).临界值表:【答案】(1)平均数9,中位数8.99;(2)(i )按照1:2进行名额分配;理由见详解; (ii )有. 【解析】 【分析】(1)根据平均数,中位数的定义进行求解即可(2)完成列联表,计算2K 的观测值,结合独立性检验的性质进行判断即可. 【详解】(1)该组数据的平均数60.0370.180.290.35100.19x =⨯+⨯+⨯+⨯+⨯110.09120.049+⨯+⨯=,因为0.030.10.20.350.680.5+++=>,所以中位数[8.5,9.5)a ∈,由0.030.10.2(8.5)0.350.5a +++-⨯=,解得0.50.338.58.990.35a -=+≈;(2)(i )每周阅读时间为[6.5,7.5)的学生中抽取3名,每周阅读时间为[7.5,8.5)的学生中抽取6名.理由:每周阅读时间为[6.5,7.5)与每周阅读时间为[7.5,8.5)是差异明显的两层,为保持样本结构与总体结构的一致性,提高样本的代表性,宜采用分层抽样的方法抽取样本;因为两者频率分别为0.1,0.2,所以按照1:2进行名额分配.(ii)由频率分布直方图可知,阅读时间不足8.5小时的学生共有200(0.030.10.2)66⨯++=人,超过8.5小时的共有20066134-=人.于是列联表为:2K的观测值2200(40742660)4.432 3.84166134100100k⨯⨯-⨯=≈>⨯⨯⨯,所以有95%的把握认为学生阅读时间不足与“是否理工类专业”有关.【名师点睛】本题主要考查独立性检验的应用,根据数据计算出K2的观测值是解决本题的关键.考查学生的计算能力.14.(2019·江西高考模拟(文))某品牌餐饮公司准备在10个规模相当的地区开设加盟店,为合理安排各地区加盟店的个数,先在其中5个地区试点,得到试点地区加盟店个数分别为1,2,3,4,5时,单店日平均营业额y(万元)的数据如下:(1)求单店日平均营业额y(万元)与所在地区加盟店个数x(个)的线性回归方程;(2)根据试点调研结果,为保证规模和效益,在其他5个地区,该公司要求同一地区所有加盟店的日平均营业额预计值总和不低于35万元,求一个地区开设加盟店个数m 的所有可能取值;(3)小赵与小王都准备加入该公司的加盟店,根据公司规定,他们只能分别从其他五个地区(加盟店都不少于2个)中随机选一个地区加入,求他们选取的地区相同的概率.(参考数据及公式:51125i ii x y==∑,52155i i x ==∑,线性回归方程ˆybx a =+,其中1221ni ii nii x y nxyb xnx ==-=-∑∑,a y bx =-.)【答案】(1) ˆ12yx =-+ (2) 5,6,7 (3) 15P = 【解析】 【分析】(1)利用最小二乘法求线性回归方程;(2)解不等式()1235m m -≥得一个地区开设加盟店个数m 的所有可能取值;(3)利用古典概型的概率求选取的地区相同的概率. 【详解】(1)由题可得,3x =,9y =,设所求线性回归方程为ˆybx a =+, 则5152215125135155455i i i i i x y xy b x x ==--===---∑∑,将3x =,9y =代入,得()9312a =--=,故所求线性回归方程为ˆ12yx =-+. (2)根据题意,()1235m m -≥,解得:57m ≤≤,又m Z +∈,所以m 的所有可能取值为5,6,7.(3)设其他5个地区分别为,,,,A B C D E ,他们选择结果共有25种,具体如下:AA ,AB ,AC ,AD ,AE ,BA ,BB ,BC ,BD ,BE ,CA ,CB ,CC ,CD ,CE ,DA ,DB ,DC ,DD ,DE ,EA ,EB ,EC ,ED ,EE ,其中他们在同一个地区的有5种,所以他们选取的地区相同的概率51255P ==. 【名师点睛】本题主要考查线性回归方程的求法,考查古典概型的概率的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.15.(2018·天津南开中学高考模拟(文))某校从高一年级学生中随机抽取40名学生,将 他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:,,…,后得到如图的频率分布直方图.(1)求图中实数a 的值;(2)若该校高一年级共有学生640人,试估计该校高一年级 期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[)40,50与[]90,100两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差的绝对值不大于10的概率.【答案】(1)0.03a =. (2)544人. (3)()715P M =. 【解析】试题分析:(1)由于图中所有小矩形的面积之和等于1, 所以10(0.0050.010.02⨯++0.0250.01)1a +++=. ……2分解得0.03a =. ……3分(2)根据频率分布直方图,成绩不低于60分的频率 为110(0.0050.01)-⨯+0.85=. ……5分由于该校高一年级共有学生640人,利用样本估计总体的思想,可估计该校高一年级数学成绩不低于60分的人数约为6400.85544⨯=人. ……6分 (3)成绩在[)40,50分数段内的人数为400.052⨯=人,分别记为A ,B . ……7分成绩在[]90,100分数段内的人数为400.14⨯=人,分别记为C ,D ,E ,F . ……8分若从数学成绩在[)40,50与[]90,100两个分数段内的学生中随机选取两名学生, 则所有的基本事件有:(),A B ,(),A C ,(),A D ,(),A E ,(),A F ,(),B C ,(),B D ,(),B E ,(),B F ,(),C D ,(),C E ,(),C F ,(),D E ,(),D F , (),E F 共15种. ……10分如果两名学生的数学成绩都在[)40,50分数段内或都在[]90,100分数段内,那么这两名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[)40,50分数段内,另一个成绩在[]90,100分数段内,那么这两名学生的数学成绩之差的绝对值一定大于10. 记“这两名学生的数学成绩之差的绝对值不大于10”为事件M ,则事件M 包含的基本事件有:(),A B ,(),C D ,(),C E ,(),C F ,(),D E ,(),D F ,(),E F 共7种. ……11分所以所求概率为()715P M =. ……12分 考点:本小题主要考查频率分布直方图的应用和古典概型概率的求解,考查学生识图、用图的能力和运算求解能力.【名师点睛】:解决与频率分布直方图有关的题目时,要注意到频率分布直方图中纵轴表示的是频率/组距,不是频率,图中小矩形的面积才表示频率.16.(2019·江西高考模拟(文))某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:万元)对年销售量y (单位:吨)和年利润z (单位:万元)的影响.对近六年的年宣传费i x 和年销售量i y (1,2,3,4,5,6i =)的数据作了初步统计,得到如下数据:经电脑模拟,发现年宣传费x (万元)与年销售量y (吨)之间近似满足关系式b y a x =⋅(,0a b >).对上述数据作了初步处理,得到相关的值如表:(1)根据所给数据,求关于x 的回归方程; (2)已知这种产品的年利润z 与x ,y 的关系为e14zx =-若想在2019年达到年利润最大,请预测2019年的宣传费用是多少万元?附:对于一组数据()1,l u v ,()22,u v ,…,(),n n u v ,其回归直线v u a β=⋅+中的斜率和截距的最小二乘估计分别为()1221()()ni i i nii u v n uv un u β==-=-∑∑,v u αβ=-⋅【答案】(1)y e =2)当2018年的宣传费用为98万元时,年利润有最大值. 【解析】 【分析】(1)转化方程by a x =⋅,结合线性回归方程参数计算公式,计算,即可.(2)将z 函数转化为二次函数,计算最值,即可. 【详解】(1)对by a x =⋅,(0a >,0b >),两边取对数得ln ln ln y a b x =+,令ln i i u x =,ln i i v y =,得ln v a b u =+⋅,由题目中的数据,计算24.6 4.16u ==,18.33.056v ==, 且()()6611ln ln i iiii i u v x y ====∑∑ 75.3,()6622111n 101.4i ii i u x ====∑∑;则()6162216ˆ6i i i i i u v u v b u u ==-⋅=-⋅∑∑ 275.36 4.1 3.05101.46 4.1-⨯⨯=-⨯ 0.2710.542==, 1ln ln 3.05 4.112a v u =-=-⨯=, 得出ˆae =, 所以y 关于x的回归方程是ˆye = (2)由题意知这种产品的年利润z 的预测值为14ˆe z x e =-=1414e e x -=-(14e x -=-27e +,=98x =时,ˆz 取得最大值,即当2019年的年宣传费用是98万元时,年利润有最大值.【名师点睛】考查了线性回归方程求解,考查了二次函数计算最值问题,关键结合题意,得到回归方程,第二问关键转化为二次函数问题,难度中等.。

高考数学《概率与统计》专项练习(选择填空题含答案)(20200625015306)

高考数学《概率与统计》专项练习(选择填空题含答案)(20200625015306)

8 2 √ √ √ √ √ √ √ √
∴红色和紫色的花不在同一花坛的概率 P= 12 = 3
解法二:(不重复的树状图) 设红、黄、白、紫分别为 a、 b、 c、d 种在第 1 个花盆的树状图如下 所有可能的结果有 6 种 红色和紫色的花不在同一花坛, 则要把 ad 和 bc 都要排除 红色和紫色的花不在同一花坛的结果有 4 种
3 种颜色的运动服中选择 1
6.( 2020 全国Ⅰ卷, 文 3, 5 分)从 1, 2, 3, 4 中任取 2 个不同的数, 则取出的 2 个数之差的绝对值为 2 的概率是 ( )
A .12
B. 13
C. 14
D . 16
【解析】从 1, 2, 3, 4 中任取 2 个不同的数
共有 (1 , 2), (1, 3), (1 , 4) , (2, 3), (2, 4), (3 , 4), 共 6 种不同的结果
(1 , 2), (1, 3), (1 , 4) , (1 , 5), (2, 3), (2, 4) , (2 , 5), (3, 4), (3, 5) , (4, 5) , 共 10 种 其中和为 5 的有 2 种 ∴所求概率为 210 = 0.2
8.( 2011 全国Ⅰ卷, 文 6, 5 分)有 3 个兴趣小组, 甲、乙两位同学各自参加其中一个小组, 各个小组的可能性相同, 则这两位同学参加同一个兴趣小组的概率为 ( )
1
∴小敏输入一次密码能够成功开机的概率是 15 , 故选 C.
【考点二】几何概型
13( 2020 全国Ⅱ卷, 文 8, 5 分)某路口人行横道的信号灯为红灯和绿灯交替出现, 一名行人来到该路口遇到红灯, 则至少需要等待 15 秒才出现绿灯的概率为 (
7

2020版高考文科数学练习-6.2 概率、统计解答题

2020版高考文科数学练习-6.2 概率、统计解答题

6.2概率、统计解答题高考命题规律1.每年必考考题,多以实际问题为背景,阅读量较大.2.解答题,12分,中档难度.3.全国高考有4种命题角度,分布如下表:命题角度1随机事件的频率与概率、样本数字特征高考真题体验·对方向1.(2019北京·17)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1 000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(1)估计该校学生中上个月A,B两种支付方式都使用的人数;(2)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(2)的结果,能否认为样本仅使用B的学生中本月支付金额大于2 000元的人数有变化?说明理由.由题知,样本中仅使用A的学生有27+3=30人,仅使用B的学生有24+1=25人,A,B两种支付方式都不使用的学生有5人.故样本中A,B两种支付方式都使用的学生有100-30-25-5=40人.×1 000=400.估计该校学生中上个月A,B两种支付方式都使用的人数为40100(2)记事件C为“从样本仅使用B的学生中随机抽取1人,该学生上个月的支付金额大于2 000=0.04.元”,则P(C)=125(3)记事件E为“从样本仅使用B的学生中随机抽查1人,该学生本月的支付金额大于2 000元”.假设样本仅使用B的学生中,本月支付金额大于2 000 元的人数没有变化,则由(2)知,P(E)=0.04.答案示例1:可以认为有变化.理由如下:P(E)比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于2 000元的人数发生了变化.所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生的.所以无法确定有没有变化.2.(2017全国Ⅲ·18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为2+16+36=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y=6×450-4×450=900;若最高气温位于区间[20,25),则Y=6×300+2(450-300)-4×450=300;若最高气温低于20,则Y=6×200+2(450-200)-4×450=-100.所以,Y的所有可能值为900,300,-100.Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为36+25+7+4=0.8,因此Y大于零的概率的估计值为0.8.90典题演练提能·刷高分1.某产品按行业质量标准分成五个等级A,B,C,D,E,现从一批产品中随机抽取20件,对其等级进行统计分析,得到频率分布表如下:(1)若所抽取的20件产品中,等级为A的恰有2件,等级为B的恰有4件,求c的值;(2)在(1)的条件下,将等级为A的2件产品记为A1,A2,等级为B的4件产品记为B1,B2,B3,B4,现从A1,A2,B1,B2,B3,B4这6件产品中任取两件(假定每件产品被取出的可能性相同),写出所有可能的结果,并求这两件产品的等级不相同的概率.由题意可得:a=2=0.1,b=4=0.2,c=1-(0.1+0.2+0.45+0.1)=0.15.(2)由题意可得,所有可能的结果为:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,B4),(A2,B1),(A2,B2),(A2,B3),(A2,B4),(B1,B2),(B1,B3),(B1,B4),(B2,B3),(B2, B4),(B3,B4),共15种情况,任取两件产品中等级不同的共有8种情况,所以任取两件产品等级不同的概率为P=8.2.(2019山东淄博一模)某商店销售某海鲜,统计了春节前后50天该海鲜的需求量x(x∈[10,20],单位:千克),其频率分布直方图如图所示,该海鲜每天进货1次,商店每销售1千克可获利50元;若供大于求,剩余的削价处理,每处理1千克亏损10元;若供不应求,可从其他商店调拨,销售1千克可获利30元.假设商店每天该海鲜的进货量为14千克,商店的日利润为y元.(1)求商店日利润y关于需求量x的函数表达式;(2)假设同组中的每个数据用该组区间的中点值代替.①求这50天商店销售该海鲜日利润的平均数;②估计日利润在区间[580,760]内的概率.商店的日利润y 关于需求量x 的函数表达式为y={50×14+30×(x -14),14≤x ≤20,50x -10×(14-x ),10≤x <14,化简得y={30x +280,14≤x ≤20,60x -140,10≤x <14.(2)①由频率分布直方图得:海鲜需求量在区间[10,12)的频率是2×0.08=0.16;海鲜需求量在区间[12,14)的频率是2×0.12=0.24;海鲜需求量在区间[14,16)的频率是2×0.15=0.30;海鲜需求量在区间[16,18)的频率是2×0.10=0.20;海鲜需求量在区间[18,20]的频率是20×0.05=0.10;这50天商店销售该海鲜日利润y 的平均数为:(11×60-14×10)×0.16+(13×60-14×10)×0.24+(15×30+20×14)×0.30+(17×30+20×14)×0.20+(19×30+20×14)×0.10=83.2+153.6+219+158+85=698.8(元).②由于x=14时,30×14+280=60×14-140=700.显然y={30x +280,14≤x ≤20,60x -140,10≤x <14在区间[10,20]上单调递增, y=580=60x-140,得x=12;y=760=30x+280,得x=16;日利润y 在区间[580,760]内的概率即求海鲜需求量x 在区间[12,16]的频率:0.24+0.30=0.54.3.某学校高一、高二、高三三个年级共有300名教师,为调查他们的备课时间情况,通过分层抽样获得了20名教师一周的备课时间,数据如下表(单位:小时).(1)试估计该校高三年级的教师人数;(2)从高一年级和高二年级抽出的教师中,各随机选取一人,高一年级选出的人记为甲,高二年级选出的人记为乙,求该周甲的备课时间不比乙的备课时间长的概率;(3)再从高一、高二、高三三个年级中各随机抽取一名教师,他们该周的备课时间分别是8,9,10(单位:小时),这三个数据与表格中的数据构成的新样本的平均数记为x 1,表格中的数据平均数记为x 0,试判断x 与x 1的大小,并说明理由.抽出的20位教师中,来自高三年级的有8名,根据分层抽样方法,高三年级的教师共有300×820=120(人).(2)2935.(3)x 高一=7+7.5+8+8.5+95=8, x 高二=7+8+9+10+11+12+137=10, x 高三=6+6.5+7+8.5+11+13.5+17+18.58=11,三组总平均值x 0=40+70+8820=9.9,新加入的三个数8,9,10的平均数为9,比x 0小,故拉低了平均值,∴x 1<x 0.4.某游乐园为吸引游客推出了一项有奖转盘活动.如图所示,假设转盘质地均匀,四个区域划分均匀,每个游客凭门票只可以参与一次活动,一次活动需转动转盘两次,每次转动后,待转盘停止转动时,工作人员便会记录指针所指区域中的数.设两次记录的数分别为x ,y ,奖励规则如下:①若xy ≤3,奖励玩具一个;②若xy ≥8,奖励水杯一个;③其余情况则奖励饮料一瓶.(1)求在一次活动中获得玩具的概率;(2)请比较一次活动中获得水杯与获得饮料的概率的大小,并说明理由.用数对(x ,y )表示儿童参加活动先后记录的数,则基本事件空间Ω与点集S={(x ,y )|x ∈N ,y ∈N ,1≤x ≤4,1≤y ≤4}一一对应.因为S 中元素个数是4×4=16,所以基本事件总数为n=16.记“xy ≤3”为事件A.则事件A 包含的基本事件共有5个,即(1,1),(1,2),(1,3),(2,1),(3,1),故P (A )=516,即小亮获得玩具的概率为516. (2)记“xy ≥8”为事件B ,“3<xy<8”为事件C.则事件B 包含的基本事件共有6个,即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4),P (B )=616=38. 则事件C 包含的基本事件共有5个,即(1,4),(2,2),(2,3),(3,2),(4,1),所以P (C )=516.因为38>516,所以获得水杯的概率大于获得饮料的概率.5.某公司为了准确把握市场,做好产品计划,特对某产品做了市场调查:先销售该产品50天,统计发现每天的销售量x 分布在[50,100]内,且销售量x 的分布频率为:f (x )={n 10-0.5,10n ≤x <10(n +1),n 为偶数,n 20-a ,10n ≤x <10(n +1),n 为奇数.(1)求a 的值.(2)若销售量大于等于80,则称该日畅销,其余为滞销,根据是否畅销从这50天中用分层抽样的方法随机抽取5天,再从这5天中随机抽取2天,求这2天中恰有1天是畅销日的概率(将频率视为概率).由题意知{10n ≥50,10(n +1)≤100,解得5≤n ≤9,n 可取5,6,7,8,9,代入f (x )= {n 10-0.5,10n ≤x <10(n +1),n 为偶数,n 20-a ,10n ≤x <10(n +1),n 为奇数,得(610-0.5)+(810-0.5)+(520-a)+(720-a)+(920-a)=1,解得a=0.15.(2)滞销日与畅销日的频率之比为(0.1+0.1+0.2)∶(0.3+0.3)=2∶3,则抽取的5天中,滞销日有2天,记为a ,b ,畅销日有3天,记为C ,D ,E ,再从这5天中抽出2天,基本事件有ab ,aC ,aD ,aE ,bC ,bD ,bE ,CD ,CE ,DE ,共10个,2天中恰有1天为畅销日的事件有aC ,aD ,aE ,bC ,bD ,bE ,共6个,则所求概率为610=35. 6.全国大学生机器人大赛是由共青团中央,全国学联,深圳市人民政府联合主办的赛事,是中国最具影响力的机器人项目,是全球独创的机器人竞技平台.全国大学生机器人大赛比拼的是参赛选手们的能力、坚持和态度,展现的是个人实力以及整个团队的力量.2015赛季共吸引全国240余支机器人战队踊跃报名,这些参赛战队来自全国六大赛区,150余所高等院校,其中不乏北京大学,清华大学,上海交大,中国科大,西安交大等众多国内顶尖高校,经过严格筛选,最终由111支机器人战队参与到2015年全国大学生机器人大赛的激烈角逐之中.某大学共有“机器人”兴趣团队1 000个,大一、大二、大三、大四分别有100,200,300,400个,为挑选优秀团队,现用分层抽样的方法,从以上团队中抽取20个团队.(1)应从大三抽取多少个团队?(2)将20个团队分为甲、乙两组,每组10个团队,进行理论和实践操作考试(共150分),甲、乙两组的分数如下: 甲:125,141,140,137,122,114,119,139,121,142乙:127,116,144,127,144,116,140,140,116,140从甲、乙两组中选一组强化训练,备战机器人大赛.①从统计学数据看,若选择甲组,理由是什么?若选择乙组,理由是什么?②从乙组中不低于140分的团队中任取两个团队,求至少有一个团队为144分的概率. 由题意知,大三团队个数占总团队数的3001 000=310,则用分层抽样的方法,应从大三中抽取20×310=6个团队.(2)①甲组数据的平均数x 甲=130,乙组数据的平均数x 乙=131,甲组数据的方差s 甲2=104.2,乙组数据的方差s 乙2=128.8,选甲组理由:甲、乙两组平均数相差不大,且s 甲2<s 乙2,甲组成绩波动小. 选乙组理由:x 甲<x 乙,且乙组中不低于140分的团队多,在竞技比赛中,高分团队获胜的概率大.②不低于140分的团队共5个,其中140分的团队有3个,分别为a,b,c,144分的团队有2个,分别为E,F,则任取两个的情况有(a,b),(a,c),(a,E),(a,F),(b,c),(b,E),(b,F),(c,E),(c,F),(E,F),共10个,其中两个团队都是140分的情况有(a,b),(a,c),(b,c),共3个.故所求概率为1-310=710.命题角度2统计图表与样本数字特征的综合应用高考真题体验·对方向1.(2019天津·15)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.①试用所给字母列举出所有可能的抽取结果;②设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.由已知,老、中、青员工人数之比为6∶9∶10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人.(2)①从已知的6人中随机抽取2人的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种.②由表格知,符合题意的所有可能结果为{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种.所以,事件M发生的概率P(M)=1115.2.(2018全国Ⅰ·19)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水量[0,0.1)[0.1,0.2)[0.2,0.3)[0.3,0.4)使用了节水龙头50天的日用水量频数分布表(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)解(1)(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35 m3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后日用水量小于0.35 m3的概率的估计值为0.48.(3)该家庭未使用节水龙头50天日用水量的平均数为x1=1(0.05×1+0.15×3+0.25×2+0.35×4+0.45×9+0.55×26+0.65×5)=0.48.50该家庭使用了节水龙头后50天日用水量的平均数为x 2=150(0.05×1+0.15×5+0.25×13+0.35×10+0.45×16+0.55×5)=0.35. 估计使用节水龙头后,一年可节省水(0.48-0.35)×365=47.45(m 3).3.(2018全国Ⅱ·18)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,…,17)建立模型①;y ^=-30.4+13.5t ;根据2010年至2016年的数据(时间变量t 的值依次为1,2,…,7)建立模型②:y ^=99+17.5t.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.利用模型①,该地区2018年的环境基础设施投资额的预测值为y ^=-30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为y ^=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=-30.4+13.5t 上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y ^=99+17.5t 可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.4.(2016全国Ⅰ·19)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数.(1)若n=19,求y 与x 的函数解析式;(2)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值;(3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?当x ≤19时,y=3 800;当x>19时,y=3 800+500(x-19)=500x-5 700.所以y 与x 的函数解析式为y={3 800,x ≤19,500x -5 700,x >19,(x ∈N ). (2)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故n 的最小值为19. (3)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3 800,20台的费用为4 300,10台的费用为4 800,因此这100台机器在购买易损零件上所需费用的平均数为1100(3 800×70+4 300×20+4 800×10)=4 000. 若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4 000,10台的费用为4 500,因此这100台机器在购买易损零件上所需费用的平均数为1100(4 000×90+4 500×10)=4 050.比较两个平均数可知,购买1台机器的同时应购买19个易损零件. 典题演练提能·刷高分 1.哈师大附中高三学年统计学生的最近20次数学周测成绩(满分150分),现有甲、乙两位同学的20次成绩如下列茎叶图所示:(1)根据茎叶图求甲、乙两位同学成绩的中位数,并将同学乙的成绩的频率分布直方图填充完整;(2)根据茎叶图比较甲、乙两位同学数学成绩的平均值及稳定程度(不要求计算出具体值,给出结论即可);(3)现从甲、乙两位同学的不低于140分的成绩中任意选出2个成绩,设事件A 为“其中2个成绩分别属于不同的同学”,求事件A 发生的概率.甲的成绩的中位数是119,乙的成绩的中位数是128,(2)从茎叶图可以看出,乙的成绩的平均分比甲的成绩的平均分高,乙同学的成绩比甲同学的成绩更稳定集中.(3)甲同学的不低于140分的成绩有2个,设为a ,b ,乙同学的不低于140分的成绩有3个,设为c ,d ,e ,现从甲乙两位同学的不低于140分的成绩中任意选出2个成绩有:(a ,b ),(a ,c ),(a ,d ),(a ,e ),(b ,c ),(b ,d ),(b ,e ),(c ,d ),(c ,e ),(d ,e )共10种,其中2个成绩分属不同同学的情况有:(a ,c ),(a ,d ),(a ,e ),(b ,c ),(b ,d ),(b ,e )共6种,因此事件A 发生的概率P (A )=610=35.2.某水产品经销商销售某种鲜鱼,售价为每公斤20元,成本为每公斤15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价处理完,平均每公斤损失3元.根据以往的销售情况,按[0,100),[100,200),[200,300),[300,400),[400,500]进行分组,得到如图所示的频率分布直方图.(1)根据频率分布直方图计算该种鲜鱼日需求量的平均数x (同一组中的数据用该组区间中点值代表); (2)该经销商某天购进了300公斤这种鲜鱼,假设当天的需求量为x 公斤(0≤x ≤500),利润为Y 元.求Y 关于x 的函数关系式,并结合频率分布直方图估计利润Y 不小于700元的概率.(1)x =50×0.001 0×100+150×0.002 0×100+250×0.003 0×100+350×0.002 5×100+450×0.001 5×100=265.(2)当日需求量不低于300公斤时,利润Y=(20-15)×300=1 500元;当日需求量不足300公斤时,利润Y=(20-15)x-(300-x )×3=8x-900元;故Y={8x -900,0≤x <300,1 500,300≤x ≤500.由Y ≥700得,200≤x ≤500,所以P(Y≥700)=P(200≤x≤500)=0.003 0×100+0.002 5×100+0.001 5×100=0.7.3.(2019湖南湘潭一模)近期中央电视台播出的《中国诗词大会》火遍全国,下面是组委会在选拔赛时随机抽取的100名选手的成绩,按成绩分组,得到的频率分布表如下所示.(1)请先求出频率分布表中①、②位置的相应数据,再完成如下的频率分布直方图;(2)组委会决定在5名(其中第3组2名,第4组2名,第5组1名)选手中随机抽取2名选手接受A考官面试,求第4组至少有1名选手被考官A面试的概率.第1组的频数为100×0.100=10人,所以①处应填的数为100-(10+20+20+10)=40,=0.400,从而第2组的频数为40100因此②处应填的数为1-(0.100+0.400+0.200+0.100)=0.200.频率分布直方图如图所示.(2)设第3组的2名选手为A1,A2,第4组的2名选手为B1,B2,第5组的1名选手为C1,则从这5名选手中抽取2名选手的所有情况为(A1,A2),(A1,B1),(A1,B2),(A1,C1),(A2,B1),(A2,B2),(A2,C1),(B1,B2),(B1,C1),(B2,C1),共10种,其中第4组的2名选手中至少有1名选手入选的有(A1,B1),(A1,B2),(A2,B1),(A2,B2),(B1,B2),(B1,C1),(B2,C1),共7种,所以第4组至少有1名选手被考官A面试的概率为710.4.(2019山东青岛二模)鲤鱼是中国五千年文化传承的载体之一,它既是拼搏进取、敢于突破自我、敢于冒险奋进精神的载体,又是富裕、吉庆、幸运的美好象征.某水产养殖研究所为发扬传统文化,准备进行“中国红鲤”和“中华彩鲤”杂交育种实验.研究所对200尾中国红鲤和160尾中华彩鲤幼苗进行2个月培育后,将根据体长分别选择生长快的10尾中国红鲤和8尾中华彩鲤作为种鱼进一步培育.为了解培育2个月后全体幼鱼的体长情况,按照品种进行分层抽样,其中共抽取40尾中国红鲤的体长数据(单位:cm)如下:(1)根据以上样本数据推断,若某尾中国红鲤的体长为8.3 cm,它能否被选为种鱼?说明理由;(2)通过计算得到中国红鲤样本数据平均值为5.1 cm,中华彩鲤样本数据平均值为4.875 cm,求所有样本数据的平均值;(3)如果将8尾中华彩鲤种鱼随机两两组合,求体长最长的2尾组合到一起的概率.能被选为种鱼;因为200尾中国红鲤中有10尾能被选为种鱼,所以40尾中国红鲤样本中有2尾能被选为种鱼;样本数据中身长为8.4 cm和8 cm的中国红鲤能被选为种鱼,身长为7.5 cm以下的中国红鲤不能被选为种鱼,由于8.3>8,所以该尾中国红鲤能被选为种鱼.(2)根据分层抽样的原则,抽取中华彩鲤样本数为32尾,所有样本数据平均值为40×5.1+32×4.875=5(cm).(3)记体长最长的2尾中华彩鲤为A1,A2,其他6尾中华彩鲤为B1,B2,B3,B4,B5,B6;随机两两组合,所有可能的结果为A1A2,A1B1,A1B2,A1B3,A1B4,A1B5,A1B6,A2B1,A2B2,A2B3,A2B4,A2B5,A2B6,B1B2,B1B3,B1B4,B1B5,B1B6,B2B3,B2B4, B2B5,B2B6,B3B4,B3B5,B3B6,B4B5,B4B6,B5B6,共28种.符合题意的仅A1A2一种.所以,体长最长的2尾组合到一起的概率为1 .5.小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元.(1)请分别求出甲、乙两种薪酬方案中日薪y(单位:元)与送货单数n的函数关系式;(2)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数与天数满足以下表格:日均派送单数5254565860频数(天) 20 30 20 20 10回答下列问题:①根据以上数据,设每名派送员的日薪为X (单位:元),试分别求出这100天中甲、乙两种方案的日薪X 的平均数及方差;②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由. (参考数据:0.62=0.36,1.42=1.96,2.62=6.76,3.42=11.56,3.62=12.96,4.62=21.16,15.62=243.36,20.42=416.16,44.42=1 971.36)甲方案中派送员日薪y (单位:元)与送货单数n 的函数关系式为:y=100+n ,n ∈N ,乙方案中派送员日薪y (单位:元)与送单数n 的函数关系式为:y={140(n ≤55,n ∈N ),12n -520(n >55,n ∈N ).(2)①由表格可知,甲方案中,日薪为152元的有20天,日薪为154元的有30天,日薪为156元的有20天,日薪为158元的有20天,日薪为160元的有10天,则x 甲=1(152×20+154×30+156×20+158×20+160×10)=155.4, s 甲2=1100[20×(152-155.4)2+30×(154-155.4)2+20×(156-155.4)2+20×(158-155.4)2+10×(160-155.4)2]=6.44.乙方案中,日薪为140元的有50天,日薪为152元的有20天,日薪为176元的有20天,日薪为200元的有10天,则x 乙=1100(140×50+152×20+176×20+200×10)=155.6, s 乙2=1100[50×(140-155.6)2+20×(152-155.6)2+20×(176-155.6)2+10×(200-155.6)2]=404.64. ②答案一:由以上的计算可知,虽然x 甲<x 乙,但两者相差不大,且s 甲2远小于s 乙2,即甲方案日薪收入波动相对较小,所以小明应选择甲方案.答案二:由以上的计算结果可以看出,x 甲<x 乙,即甲方案日薪平均数小于乙方案日薪平均数,所以小明应选择乙方案.命题角度3独立性检验高考真题体验·对方向1.(2019全国Ⅰ·17)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:客(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).由调查数据,男顾客中对该商场服务满意的比率为4050=0.8,因此男顾客对该商场服务满意的概率的估计值为0.8.女顾客中对该商场服务满意的比率为3050=0.6,因此女顾客对该商场服务满意的概率的估计值为0.6.(2)K2=100×(40×20-30×10)250×50×70×30≈4.762.由于4.762>3.841,故有95%的把握认为男、女顾客对该商场服务的评价有差异.2.(2017全国Ⅱ·19改编)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:旧养殖法新养殖法(1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断能否在犯错误的概率不超过0.01的前提下认为箱产量与养殖方法有关;(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.附:,K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).旧养殖法的箱产量低于50 kg的频率为(0.012+0.014+0.024+0.034+0.040)×5=0.62.因此,事件A的概率估计值为0.62.(2)根据箱产量的频率分布直方图得列联表K2=200×(62×66-34×38)2100×100×96×104≈15.705.由于15.705>6.635,故在犯错误的概率不超过0.01的前提下认为箱产量与养殖方法有关.(3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在50 kg到55 kg之间,旧养殖法的箱产量平均值(或中位数)在45 kg到50 kg之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.典题演练提能·刷高分1.(2019郑州二模)为推动更多人阅读,联合国教科文组织确定每年的4月23日为“世界读书日”.设立目的是希望居住在世界各地的人,无论你是年老还是年轻,无论你是贫穷还是富裕,都能享受阅读的乐趣,都能尊重和感谢为人类文明做出过巨大贡献的思想大师们,都能保护知识产权.为了解不同年龄段居民的主要阅读方式,某校兴趣小组在全市随机调查了200名居民,经统计,这200人中通过电子阅读与纸质阅读的人数之比为3∶1.将这200人按年龄分组,其中统计通过电子阅读的居民得到的频率分布直方图如图所示.。

高考文数真题训练14 概率与统计(选择题、填空题)(原卷版)

高考文数真题训练14 概率与统计(选择题、填空题)(原卷版)

专题14 概率与统计(选择题、填空题)1.【2020年高考全国Ⅰ卷文数】设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为 A .15B .25C .12D .452.【2020年高考全国Ⅰ卷文数】某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是 A .y a bx =+ B .2y a bx =+ C .e x y a b =+D .ln y a b x =+3.【2020年高考全国Ⅲ卷文数】设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n的方差为 A .0.01B .0.1C .1D .104.【2020年新高考全国Ⅰ卷】某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是 A .62% B .56% C .46%D .42%5.【2019年高考全国Ⅲ卷文数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5B.0.6C.0.7D.0.86.【2019年高考全国Ⅰ卷文数】某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是A.8号学生B.200号学生C.616号学生D.815号学生7.【2019年高考全国Ⅱ卷文数】生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A.23B.35C.25D.158.【2018年高考全国Ⅰ卷文数】某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例建设后经济收入构成比例则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半9.【2018年高考全国Ⅱ卷文数】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6 B .0.5 C .0.4D .0.310.【2020年高考江苏】已知一组数据4,2,3,5,6a a 的平均数为4,则a 的值是 ▲ .11.【2020年高考江苏】将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____.12.【2020年高考天津】从一批零件中抽取80个,测量其直径(单位:mm ),将所得数据分为9组:[5.31,5.33),[5.33,5.35),,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为A .10B .18C .20D .3613.【2020年高考天津】已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________. 14.【2019年高考全国Ⅱ卷文数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________.15.【2018年高考全国Ⅲ卷文数】公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是______________.16.【2019年高考江苏卷】已知一组数据6,7,8,8,9,10,则该组数据的方差是______________.17.【2018年高考江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为______________.18.【2018年高考江苏卷】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为______________.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率与统计专项练习一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.[2019·山东滨州模考]若复数(1-a i)2-2i 是纯虚数,则实数a =( ) A .0 B .±1 C .1 D .-1 答案:C解析:(1-a i)2-2i =1-a 2-2a i -2i =1-a 2-(2a +2)i.∵(1-a i)2-2i 是纯虚数,∴⎩⎪⎨⎪⎧1-a 2=0,2a +2≠0,解得a =1,故选C.2.[2019·广东广州执信中学测试]从某社区65户高收入家庭,280户中等收入家庭,105户低收入家庭中选出100户调查社会购买力的某一项指标,应采用的最佳抽样方法是( )A .系统抽样B .分层抽样C .简单随机抽样D .各种方法均可 答案:B解析:因为社会购买力的某一项指标受到家庭收入的影响,而社区中各个家庭收入差别明显,所以应采用分层抽样的方法,故选B.3.用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 3+ax +b =0没有实根 B .方程x 3+ax +b =0至多有一个实根 C .方程x 3+ax +b =0至多有两个实根 D .方程x 3+ax +b =0恰好有两个实根 答案:A解析:因为“方程x 3+ax +b =0至少有一个实根”等价于“方程x 3+ax +b =0的实根的个数大于或等于1”,因此,要做的假设是“方程x 3+ax +b =0没有实根”.4.[2019·山东烟台模拟]将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽到的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( )A .26,16,8B .25,17,8C .25,16,9D .24,17,9 答案:B解析:由题意知间隔为60050=12,故抽到的号码为12k +3(k =0,1,…,49),列出不等式可解得:第Ⅰ营区抽25人,第Ⅱ营区抽17人,第Ⅲ营区抽8人.5.[2019·重庆市学业质量调研]甲、乙、丙、丁四位同学参加奥赛,其中只有一位获奖,有人走访了四位同学,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”已知四位同学的话只有一句是对的,则获奖的同学是( )A .甲B .乙C .丙D .丁 答案:D解析:假设获奖的同学是甲,则甲、乙、丙、丁四位同学的话都不对,因此甲不是获奖的同学;假设获奖的同学是乙,则甲、乙、丁的话都对,因此乙也不是获奖的同学;假设获奖的同学是丙,则甲和丙的话都对,因此丙也不是获奖的同学.从前面推理可得丁为获奖的同学,此时只有乙的话是对的,故选D.6.[2019·重庆巴蜀中学一模]执行如图所示的程序框图,若输入的a 为24,c 为5,输出的数为3,则输入的b 有可能为( )A .11B .12C .13D .14 答案:B解析:结合程序框图,若输出的数为3,则经过循环之后的b =a +3=27,由27÷5=5……2,并结合循环结构的特点可得,输入的b 除以5的余数为2,结合选项可得,b 有可能为12,故选B.7.[2019·福建泉州泉港一中模考]若1路、2路公交车的站点均包括泉港一中,且1路公交车每10分钟一趟,2路公交车每20分钟一趟,则某学生去坐这2趟公交车回家,等车不超过5分钟的概率是( )A.18B.35C.58D.78答案:C 解析:设1路公交车到达的时间为x,2路公交车到达的时间为y .(x ,y )可以看成平面上的点,则可设Ω={(x ,y )|0≤x ≤10且0≤y ≤20},表示的是一个长方形区域,如图,其面积S =10×20=200.若某学生等车时间不超过5分钟,则其构成的平面区域为图中的阴影部分,面积S ′=125,故所求概率P =S ′S =125200=58,故选C. 8.[2019·东莞测试]为了解工厂的1 000名工人的生产情况,从中抽取100名工人进行统计,得到如下频率分布直方图,由此可估计该工厂产量在75件以上(含75件)的工人数为( )A .50B .100C .150D .250 答案:C解析:根据频率分布直方图可知工厂产量在75件以上的频率为0.010×10+0.005×10=0.15,∴工人数为1 000×0.15=150,故选C.9.从甲、乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示).设甲、乙两组数据的平均数分别为x -甲、x -乙,中位数分别为m 甲、m 乙,则( )A.x -甲<x -乙,m 甲>m 乙 B.x -甲<x -乙,m 甲<m 乙 C.x -甲>x -乙,m 甲>m 乙 D.x -甲>x -乙,m 甲<m 乙 答案:B解析:由茎叶图知m 甲=22+182=20,m 乙=27+312=29,所以m 甲<m 乙,x -甲=116(41+43+30+30+38+22+25+27+10+10+14+18+18+5+6+8)=34516,x -乙=116(42+43+48+31+32+34+34+38+20+22+23+23+27+10+12+18)=45716,所以x -甲<x -乙. 10.[2019·合肥市高三第二次教学质量检测]某公司某种型号的产品近期的销售情况如下表:月份x 2 3 4 5 6 销售额y /万元15.116.317.017.218.4根据上表可得到回归方程y =0.75x +a ,据此估计,该公司7月份这种型号的产品的销售额为( )A .19.5万元B .19.25万元C .19.15万元D .19.05万元 答案:D解析:由题意可得x -=2+3+4+5+65=4,y -=15.1+16.3+17.0+17.2+18.45=16.8,∴由回归直线恒过点(x -,y -),得16.8=0.75×4+a ^,解得a ^=13.8,∴当x =7时,y ^=0.75×7+13.8=19.05,故选D.11.[2019·四川内江一模]如图是某部门统计的某年春运期间12个城市售出的往返机票的平均价格以及相比上一年同期平均价格的变化幅度的数据统计图,根据统计图,下面叙述不正确的是( )A .深圳的变化幅度最小,北京的平均价格最高B .深圳和厦门的平均价格同上一年相比有所下降C .平均价格从高到低排列,居于前三位的城市为北京、深圳、广州D .平均价格的涨幅从高到低排列,居于前三位的城市为天津、西安、厦门 答案:D解析:由图可知,选项A ,B ,C 都正确,对于D ,因为要判断涨幅从高到低排列的前三位,而不是判断变化幅度从高到低排列的前三位,所以错误.故选D.12.[2019·福建永春调研]在平面几何里有射影定理:设三角形ABC 的两边AB ⊥AC ,D 是A 点在BC 上的射影,则AB 2=BD ·BC .拓展到空间,在四面体ABCD 中,AD ⊥平面ABC ,点O 是A 在平面BCD 内的射影,且O 在△BCD 内,类比平面三角形射影定理,得出正确的结论是( )A .S 2△ABC =S △BCO ·S △BCD B .S 2△ABD =S △BOD ·S △BOC C .S 2△ADC =S △DOC ·S △BOC D .S 2△BDC =S △ABD ·S △ABC 答案:A 解析:由已知,在平面几何中,若△ABC 中,AB ⊥AC ,AD ⊥BC ,D 是垂足,则AB 2=BD ·BC .可以类比这一性质,推理出:若三棱锥D -ABC 中,AD ⊥平面ABC ,AO ⊥平面BCD ,O 为垂足,如图所示,则S 2△ABC =S △BCO ·S △BCD .故选A.二、填空题(本题共4小题,每小题5分,共20分)13.[2017·江苏卷]某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.答案:18解析:∵ 样本容量总体个数=60200+400+300+100=350,∴ 应从丙种型号的产品中抽取350×300=18(件).14.[2019·江苏苏锡常镇调研]假设要考察某公司生产的狂犬疫苗的剂量是否达标,现从500支疫苗中抽取50支进行检验,利用随机数表抽取样本时,先将500支疫苗按000,001,…,499进行骗号,如果从随机数表第7行、第8列的数开始向右读(每三个连续数字组成一个编号),请写出第3支疫苗的编号________.(下面摘取了随机数表第7行至第9行)84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 答案:068解析:由题意,知从第7行、第8列开始向右读取,得到的疫苗的编号依次为331,455,068,……所以第3支疫苗的编号为068.15.[2019·江西上饶市民校联盟阶段测试]如果数据x 1,x 2,…,x n 的平均数为x -,方差为82,则5x 1+2,5x 2+2,…,5x n +2的方差为________.答案:1 600解析:∵数据x 1,x 2,…,x n 的平均数为x -,方差为82,∴5x 1+2,5x 2+2,…,5x n +2的平均数为5x -+2,方差为25×82=1 600.16.[2019·东北三省四市教研联合体高考模拟试卷(一)]为了解天气转冷时期居民电量使用情况,某调查人员由下表统计数据计算出的回归方程为y ^=-2.11x +61.13,现表中一个数据被污损,则被污损的数据为________.(结果保留整数)答案:38解析:x -=18+13+10-14=10,代入回归方程y ^=-2.11x +61.13得y -=40.03,设污损的数据为a ,则24+34+a +64=4×40.03,得a =38.12≈38.。

相关文档
最新文档