导数压轴题的命题思路

导数压轴题的命题思路
导数压轴题的命题思路

导数压轴题的命题思路

圆锥曲线和导数能否突破这涉及学生、家长和学校的核心利益,在即将出版的解析几何系统系突破一书是很容易帮学生突破高考的解析几何,但导数这一章处理的技巧太多,与后续大学知识联系紧密,背景广阔,在即将出版的高观点下导数、函数压轴题的系统性突破一书中作了详尽的解读,何为高观点,意义何在

观点越高、问题越简单;观点越高、问题越透彻;高观点并不是想不到,而是用最朴素的思想推动整个思维过程;追求通法,并不排斥技巧,而是明确哪些技巧是必须掌握的,并让这些技巧在我们思维的世界里显得朴素且自然。

这里面选一些题来说明一下命题思路,如有类似,那不是巧合。

(一)双参数问题

1.(第一套理科第21题)设函数x b ax x f -+=)ln()(,(),R b a ∈

(1) 当0,1==b a 时,若x x m x f 2)(-

-≥恒成立,求m 的取值范围; (2) 若0)(≤x f 恒成立,求证:2ln 7

第(2)是双参数问题,只在2012全国新课标卷21题考察过1次,如果把第(2)问改为求ab 的最大值,则和2012全国新课标卷21题思路完全一致,不同的是呈现的形式,一个是指数函数,一个是对数函数。此题的第二问把对函数的处理以及借助第(1)问进行放缩这些全国卷的经常考的方式全部融为一体。

双变量问题也可以以等量关系给出,如

2. (第三套第16题)已知函数()ax x x f 22

12+=,()b x a x g +=ln 32(0>a )有公共点,且在该点处的切线相同,则b 的最大值为

(二)两边夹求参数范围

3. (理科第二套第21题)已知()()()ax x x x x g x x f ++

=+=221sin ,1ln (1) 证明:()x x f x

x ≤≤+1 (2) 若()()()()1,0,01∈?≤-+x x g x f x 恒成立,求a 的取值范围

2013辽宁文理科卷第21题都是这样考察,2014年全国2卷第21求2ln 的近似值,也是两边夹的思路。命此题,花了两天时间,难度适中。

(三)与三角函数有关的导数及相关问题

4.(文、理科第三套第21题)已知函数()e cos x x f x =,其中e 为自然对数的底数. (I )求曲线()y f x =在点(0,()0)f 处的切线方程; (Ⅱ)若对任意[,0]2

x π∈-,不等式sin ()x x f x m ≤-恒成立,求实数m 的取值范围; (III )试探究当[,]22x ππ∈-

时,方程()sin f x x x =的解的个数,并说明理由. 全国卷导数题目,函数形式多种多样,此题以三角函数和指数函数为载体,在第(2)问给了一个恒成立,注意对导函数的观察和变形,第(3)问是零点问题,逐段分析法是处理这一问题的基本方法,也要注意对函数进行观察。面对新题,观察能力处于核心的地位。

(四)对函数进行处理,导数设零点问题 5.(理科第四套第21题)已知函数2()x f x e x ax =--.

(1)若曲线()y f x =在点0x =处的切线斜率为1,求函数()f x 在[0,1]上的最值;

(2)令221()()()2

g x f x x a =+

-,若0x ≥时,()0g x ≥恒成立,求实数a 的取值范围;

(3)当0a =且0x >时,证明2()ln 1f x ex x x x x -≥--+.

第(2)问,注意到有一个完全平方结构,分参是最优化的方法,考察的是观察能力;如果直接求导,这涉及引入导函数的零点,并把参数看成关于零点的函数,从而得到范围,考察的是函数观点,导数处理技巧。

第(3)问,考察的是对函数的处理,直接求导,会涉及多次求导和引入导数的零点,最后又导数图像,容易得到答案,新颖之处在于导函数有两个零点,一个是引入的,使得处理难度升级。由此,可以考虑先处理函数,两边同时除以x ,尝试求导、观察、提公因式,则瞬间可以解决。此题选自云南师大附中的考试题。

导数备选题中4,6考察了函数的处理。

(五)放缩法或变换主元法处理函数不等式

2016全国3卷文科21题第3问用变换主元法可以直接秒杀

6.(文科第一套第21题)已知函数()22.x f x e mx x =-- (1)若0m =,讨论()f x 的单调性;

(2)若12e m <-时,证明:当[)0,x ∈+∞时,()12

e f x >-. 备选题第9题,改编于2016四川高考第21题,借助邻域和放缩处理不等式。

(六)恒成立分类讨论问题中的观察法求参数范围

7. (文科第二套第21题)已知函数f (x )=x ﹣alnx ,(a ∈R ).

(1)讨论函数f (x )在定义域内的极值点的个数;

(2)设g (x )=﹣

,若不等式f (x )>g (x )对任意x ∈[1,e]恒成立,求a 的取值范围.

此题和2014全国1卷文科第21题处理方式一样。

(七)独立变量与相关变量的处理

8.(导数备选题)已知函数()()()022

1,ln 2≠+=

=a x ax x g x x f ,()()()x g x f x h -=存在两个极值点()2121,x x x x <。

(1)求a 的范围,并讨论单调性

(2)若()12kx x f >恒成立成立,求k 的取值范围。

此题和2009全国2卷的一致,但在处理变量的时候需要多一个过程,难度在关键地方有所增加。

(八)数列不等式、数学归纳法、借助题中函数不等式进行放缩

9.(大纲卷的高考题)(导数备选题)已知函数()()()1=ln 1.1x x f x x x λ++-

+ (I )若()0,0,x f x λ≥≤时求的最小值;

(II )设数列{}211111,ln 2.234n n n n a a a a n n

=+++???+-+>的通项证明: (九)等式、方程、函数之间的转化 10.(导数备选题)已知函数2()[(1)1],.x f x ax a x e a R =-++∈

(Ⅰ)若1=a ,求函数()f x 的极值;

(Ⅱ)若函数()f x 在区间[]1,0上单调递减,求a 的取值范围;

(Ⅲ)在(Ⅰ)的条件下,是否存在区间[]()1,>m n m 使函数()f x 在[]n m ,上的值域也是[]n m ,若存在,求出n m ,的值;若不存在,请说明理由。

(十)函数零点与导数零点的关系

11. (2014辽宁)已知函数8

()(cos )(2)(sin 1)3

f x x x x x π=-+-+,2()3()cos 4(1sin )ln(3)x

g x x x x x π=--+-

. 证明:(1)存在唯一0(0,

)2x π∈,使0()0f x =; (2)存在唯一1(

,)2x ππ∈,使1()0g x =,且对(1)中的01x x π+<.

2020年高考数学导数压轴题每日一题 (1)

第 1 页 共 1 页 2020年高考数学导数压轴题每日一题 例1已知函数f(x)=e x -ln(x +m).(新课标Ⅱ卷) (1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0. 例1 (1)解 f (x )=e x -ln(x +m )?f ′(x )=e x -1x +m ?f ′(0)=e 0-10+m =0?m =1, 定义域为{x |x >-1}, f ′(x )=e x -1x +m =e x (x +1)-1x +1, 显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增. (2)证明 g (x )=e x -ln(x +2), 则g ′(x )=e x -1x +2 (x >-2). h (x )=g ′(x )=e x -1x +2(x >-2)?h ′(x )=e x +1(x +2)2 >0, 所以h (x )是增函数,h (x )=0至多只有一个实数根, 又g ′(-12)=1e -132 <0,g ′(0)=1-12>0, 所以h (x )=g ′(x )=0的唯一实根在区间??? ?-12,0内, 设g ′(x )=0的根为t ,则有g ′(t )=e t -1t +2=0????-12g ′(t )=0,g (x )单调递增; 所以g (x )min =g (t )=e t -ln(t +2)=1t +2+t =(1+t )2t +2>0, 当m ≤2时,有ln(x +m )≤ln(x +2), 所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0.

导数压轴题处理专题讲解

导数压轴题处理专题讲解(上) 专题一双变量同构式(含拉格朗日中值定理)..................................................... - 2 -专题二分离参数与分类讨论处理恒成立(含洛必达法则).................................... - 4 -专题三导数与零点问题(如何取点) .................................................................. - 7 -专题四隐零点问题整体代换.............................................................................. - 13 -专题五极值点偏移 ........................................................................................... - 18 -专题六导数处理数列求和不等式....................................................................... - 25 -

专题一 双变量同构式(含拉格朗日中值定理) 例1. 已知(1)讨论的单调性 (2)设,求证:例2. 已知函数,。(1)讨论函数的单调性;w.w.w.k.s.5.u.c.o.m (2)证明:若,则对任意x ,x ,x x ,有 。 例3. 设函数. (1)当(为自然对数的底数)时,求的最小值; (2)讨论函数零点的个数; (3)若对任意恒成立,求的取值范围. ()()21ln 1f x a x ax =+++()f x 2a ≤-()()()121212 ,0,,4x x f x f x x x ?∈+∞-≥-()2 1(1)ln 2 f x x ax a x = -+-1a >()f x 5a <12∈(0,)+∞1≠21212 ()() 1f x f x x x ->--()ln ,m f x x m R x =+ ∈m e =e ()f x ()'()3 x g x f x = -()() 0, 1f b f a b a b a ->><-m

2018年高考理科数学全国卷二导数压轴题解析

2018年高考理科数学全国卷二导数压轴题解析 已知函数2()x f x e ax =-. (1) 若1a =,证明:当0x ≥时,()1f x ≥. (2) 若()f x 在(0,)+∞只有一个零点,求a . 题目分析: 本题主要通过函数的性质证明不等式以及判断函数零点的问题考察学生对于函数单调性以及零点存在定理性的应用,综合考察学生化归与分类讨论的数学思想,题目设置相对较易,利于选拔不同能力层次的学生。第1小问,通过对函数以及其导函数的单调性以及值域判断即可求解。官方标准答案中通过()()x g x e f x -=的变形化成2()x ax bx c e C -+++的形式,这种形式的函数求导之后仍为2()x ax bx c e -++这种形式的函数,指数函数的系数为代数函数,非常容易求解零点,并且这种变形并不影响函数零点的变化。这种变形思想值得引起注意,对以后导数命题有着很大的指引作用。但是,这种变形对大多数高考考生而言很难想到。因此,以下求解针对函数()f x 本身以及其导函数的单调性和零点问题进行讨论,始终贯穿最基本的导函数正负号与原函数单调性的关系以及零点存在性定理这些高中阶段的知识点,力求完整的解答该类题目。 题目解答: (1)若1a =,2()x f x e x =-,()2x f x e x '=-,()2x f x e ''=-. 当[0,ln 2)x ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x ∈+∞时,()0f x ''>,()f x '单调递增; 所以()(ln 2)22ln 20f x f ''≥=->,从而()f x 在[0,)+∞单调递增;所以()(0)1f x f ≥=,得证. (2)当0a ≤时,()0f x >恒成立,无零点,不合题意. 当0a >时,()2x f x e ax '=-,()2x f x e a ''=-. 当[0,ln 2)x a ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x a ∈+∞时,()0f x ''>,()f x '单调递增;所以()(ln 2)2(1ln 2)f x f a a a ''≥=-. 当02 e a <≤ 时,()0f x '≥,从而()f x 在[0,)+∞单调递增,()(0)1f x f ≥=,在(0,)+∞无零点,不合题意.

高考导数压轴题题型(精选.)

高考导数压轴题题型 李远敬整理 2018.4.11 一.求函数的单调区间,函数的单调性 1.【2012新课标】21. 已知函数()f x 满足满足12 1()(1)(0)2 x f x f e f x x -'=-+; (1)求()f x 的解析式及单调区间; 【解析】 (1)12 11()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f = 1211 ()(1)(0)(1)1(1)2 x f x f e x x f f e f e --'''=-+?==?= 得:21 ()()()12 x x f x e x x g x f x e x '=-+?==-+ ()10()x g x e y g x '=+>?=在x R ∈上单调递增 ()0(0)0,()0(0)0f x f x f x f x ''''>=?><=?< 得:()f x 的解析式为21()2 x f x e x x =-+ 且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞ 2.【2013新课标2】21.已知函数f (x )=e x -ln(x +m ). (1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; 【解析】 (1)f ′(x )=1 e x x m - +. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=1 e 1 x x -+. 函数f ′(x )=1 e 1 x x -+在(-1,+∞)单调递增,且f ′(0)=0. 因此当x ∈(-1,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0. 所以f (x )在(-1,0)单调递减,在(0,+∞)单调递增. 3.【2014新课标2】21. 已知函数()f x =2x x e e x --- (1)讨论()f x 的单调性; 【解析】 (1)+ -2≥0,等号仅当x=0时成立,所以f (x )在(—∞,+∞)单调递 增 【2015新课标2】21. 设函数 f (x )=e mx +x 2-mx 。 (1)证明: f (x )在 (-¥,0)单调递减,在 (0,+¥)单调递增; (2)若对于任意 x 1,x 2?[-1,1],都有 |f (x 1)-f (x 2)|£e -1,求m 的取值范围。

高三数学导数压轴题

导数压轴 一.解答题(共20小题) 1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数. (1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围; (2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1. 2.设. (1)求证:当x≥1时,f(x)≥0恒成立; (2)讨论关于x的方程根的个数. 3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).

(1)当a=1时,判断g(x)=e x f(x)的单调性; (2)若函数f(x)无零点,求a的取值范围. 4.已知函数. (1)求函数f(x)的单调区间; (2)若存在成立,求整数a的最小值.5.已知函数f(x)=e x﹣lnx+ax(a∈R).

(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间; (Ⅱ)当a≥﹣1时,求证:f(x)>0. 6.已知函数f(x)=e x﹣x2﹣ax﹣1. (Ⅰ)若f(x)在定义域内单调递增,求实数a的范围; (Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).

(2)若对?x∈(0,+∞),f(x)≥0,求实数a的取值范围. 8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=. (Ⅰ)若0是函数f(x)的好点,求a; (Ⅱ)若函数f(x)不存在好点,求a的取值范围. 9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

2007——2014高考数学新课标卷(理)函数与导数压轴题汇总

2007——2014高考数学新课标卷(理)函数与导数综合大题 【2007新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数2()ln()f x x a x =++ (I )若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性; (II )若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于e ln 2 . 【解析】(Ⅰ)1()2f x x x a '= ++,依题意有(1)0f '-=,故32a =. 从而2231(21)(1) ()3322 x x x x f x x x ++++'==++. ()f x 的定义域为32?? -+ ??? ,∞,当312x -<<-时,()0f x '>; 当1 12 x -<<-时,()0f x '<; 当1 2 x >- 时,()0f x '>. 从而,()f x 分别在区间3 1122????---+ ? ?????,,, ∞单调增加,在区间112?? -- ??? ,单调减少. (Ⅱ)()f x 的定义域为()a -+,∞,2221 ()x ax f x x a ++'=+. 方程2 2210x ax ++=的判别式2 48a ?=-. (ⅰ)若0?< ,即a << ()f x 的定义域内()0f x '>,故()f x 的极值. (ⅱ)若0?= ,则a a = 若a = ()x ∈+ ,2 ()f x '= . 当x =时,()0f x '=,

当2 x ? ??∈-+ ? ????? ,∞时, ()0f x '>,所以()f x 无极值. 若a =)x ∈+,()0f x '= >,()f x 也无极值. (ⅲ)若0?>,即a > a <22210x ax ++=有两个不同的实根 1x = 2x = 当a <12x a x a <-<-,,从而()f x '有()f x 的定义域内没有零点, 故()f x 无极值. 当a > 1x a >-,2x a >-,()f x '在()f x 的定义域内有两个不同的零点, 由根值判别方法知()f x 在12x x x x ==,取得极值. 综上,()f x 存在极值时,a 的取值范围为)+. ()f x 的极值之和为 2221211221()()ln()ln()ln 11ln 2ln 22 e f x f x x a x x a x a +=+++++=+->-=. 【2008新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数1 ()()f x ax a b x b =+ ∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3. (Ⅰ)求()f x 的解析式: (Ⅱ)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心; (Ⅲ)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值. 21.解:(Ⅰ)2 1 ()() f x a x b '=- +,

导数压轴题题型(学生版)

导数压轴题题型 引例 【2016高考山东理数】(本小题满分13分) 已知. (I )讨论的单调性; (II )当时,证明对于任意的成立. 1. 高考命题回顾 例1.已知函数)f x =(a e 2x +(a ﹣2) e x ﹣x . (1)讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围. ()2 21 ()ln ,R x f x a x x a x -=-+ ∈()f x 1a =()3 ()'2 f x f x +>[]1,2x ∈

例2.(21)(本小题满分12分)已知函数()()()2 21x f x x e a x =-+-有两个零点. (I)求a 的取值范围; (II)设x 1,x 2是()f x 的两个零点,证明:122x x +<.

例3.(本小题满分12分) 已知函数f (x )=31 ,()ln 4 x ax g x x ++ =- (Ⅰ)当a 为何值时,x 轴为曲线()y f x = 的切线; (Ⅱ)用min {},m n 表示m,n 中的最小值,设函数}{ ()min (),()(0)h x f x g x x => , 讨论h (x )零点的个数 例4.(本小题满分13分) 已知常数,函数 (Ⅰ)讨论在区间 上的单调性; (Ⅱ)若存在两个极值点且 求的取值范围.

例5已知函数f(x)=e x-ln(x+m). (1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.

例6已知函数)(x f 满足21 2 1)0()1(')(x x f e f x f x + -=- (1)求)(x f 的解析式及单调区间; (2)若b ax x x f ++≥2 2 1)(,求b a )1(+的最大值。 例7已知函数,曲线在点处的切线方程为。 (Ⅰ)求、的值; (Ⅱ)如果当,且时,,求的取值范围。 ln ()1a x b f x x x = ++()y f x =(1,(1))f 230x y +-=a b 0x >1x ≠ln ()1x k f x x x >+-k

高考导数压轴题题型

高考导数压轴题题型 远敬整理 2018.4.11 一.求函数的单调区间,函数的单调性 1.【2012新课标】21. 已知函数()f x 满足满足121()(1)(0)2x f x f e f x x -'=-+ ; (1)求()f x 的解析式及单调区间; 【解析】 (1)1211()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f = 1211()(1)(0)(1)1(1)2 x f x f e x x f f e f e --'''=-+?==?= 得:21()()()12 x x f x e x x g x f x e x '=-+?==-+ ()10()x g x e y g x '=+>?=在x R ∈上单调递增 ()0(0)0,()0(0)0f x f x f x f x ''''>=?><=?< 得:()f x 的解析式为21()2 x f x e x x =-+ 且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞ 2.【2013新课标2】21.已知函数f (x )=e x -ln(x +m ). (1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; 【解析】 (1)f ′(x )=1e x x m -+. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=1e 1x x - +. 函数f ′(x )=1e 1 x x -+在(-1,+∞)单调递增,且f ′(0)=0. 因此当x ∈(-1,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0.

(完整版)高中数学导数压轴题专题训练

高中数学导数尖子生辅导(填选压轴) 一.选择题(共30小题) 1.(2013?文昌模拟)如图是f(x)=x3+bx2+cx+d的图象,则x12+x22的值是() A.B.C.D. 考点:利用导数研究函数的极值;函数的图象与图象变化. 专题:计算题;压轴题;数形结合. 分析:先利用图象得:f(x)=x(x+1)(x﹣2)=x3﹣x2﹣2x,求出其导函数,利用x1,x2是原函数的极值点,求出x1+x2=,,即可求得结论. 解答:解:由图得:f(x)=x(x+1)(x﹣2)=x3﹣x2﹣2x, ∴f'(x)=3x2﹣2x﹣2 ∵x1,x2是原函数的极值点 所以有x1+x2=,, 故x12+x22=(x1+x2)2﹣2x1x2==. 故选D. 点评:本题主要考查利用函数图象找到对应结论以及利用导数研究函数的极值,是对基础知识的考查,属于基础题. 2.(2013?乐山二模)定义方程f(x)=f′(x)的实数根x0叫做函数f(x)的“新驻点”,若函数g(x)=x,h(x)=ln(x+1),φ(x)=x3﹣1的“新驻点”分别为α,β,γ,则α,β,γ的大小关系为() A.α>β>γB.β>α>γC.γ>α>βD.β>γ>α 考点:导数的运算. 专题:压轴题;新定义. 分析:分别对g(x),h(x),φ(x)求导,令g′(x)=g(x),h′(x)=h(x),φ′(x)=φ(x),则它们的根分别为α,β,γ,即α=1,ln(β+1)=,γ3﹣1=3γ2,然后分别讨论β、γ的取值范围即可. 解答: 解:∵g′(x)=1,h′(x)=,φ′(x)=3x2, 由题意得: α=1,ln(β+1)=,γ3﹣1=3γ2, ①∵ln(β+1)=, ∴(β+1)β+1=e, 当β≥1时,β+1≥2, ∴β+1≤<2, ∴β<1,这与β≥1矛盾, ∴0<β<1; ②∵γ3﹣1=3γ2,且γ=0时等式不成立,

高三导数压轴题题型归纳

高三导数压轴题题型归 纳 This model paper was revised by LINDA on December 15, 2012.

导数压轴题题型 1. 高考命题回顾 例1已知函数f(x)=e x -ln(x +m).(2013全国新课标Ⅱ卷) (1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0. (1)解 f (x )=e x -ln(x +m )f ′(x )=e x -1x +m f ′(0)=e 0 -10+m =0m =1, 定义域为{x |x >-1},f ′(x )=e x -1x +m =e x x +1-1 x +1 , 显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增. (2)证明 g (x )=e x -ln(x +2),则g ′(x )=e x - 1 x +2 (x >-2). h (x )=g ′(x )=e x - 1x +2(x >-2)h ′(x )=e x +1x +2?2 >0, 所以h (x )是增函数,h (x )=0至多只有一个实数根, 又g ′(-12)=1e -13 2 <0,g ′(0)=1-1 2>0, 所以h (x )=g ′(x )=0的唯一实根在区间? ?? ?? -12,0内, 设g ′(x )=0的根为t ,则有g ′(t )=e t - 1t +2=0? ?? ??-12

所以,e t =1 t +2 t +2=e -t , 当x ∈(-2,t )时,g ′(x )g ′(t )=0,g (x )单调递增; 所以g (x )min =g (t )=e t -ln(t +2)=1t +2+t =1+t 2 t +2 >0, 当m ≤2时,有ln(x +m )≤ln(x +2), 所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0. 例2已知函数)(x f 满足2 12 1)0()1(')(x x f e f x f x + -=-(2012全国新课标) (1)求)(x f 的解析式及单调区间; (2)若b ax x x f ++≥ 2 2 1)(,求b a )1(+的最大值。 (1)1211 ()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f = 得:21 ()()()12 x x f x e x x g x f x e x '=-+?==-+ ()10()x g x e y g x '=+>?=在x R ∈上单调递增 得:()f x 的解析式为21 ()2 x f x e x x =-+ 且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞

历年导数压轴经典题目

历年导数压轴经典题目 证题中常用的不等式: ① ln 1(0)x x x ≤-> ②≤ln +1(1)x x x ≤>-() ③ 1x e x ≥+ ④ 1x e x -≥- ⑤ ln 1(1)12x x x x -<>+ ⑥ 22ln 11(0)22x x x x <-> ⑦ 1≥e^x (1-x ) 1.已知函数 321 ()3 f x x ax bx =++,且'(1)0f -= (1) 试用含a 的代数式表示b,并求()f x 的单调区间; (2)令1a =-,设函数()f x 在1212,()x x x x <处取得极值,记点M (1x , 1()f x ),N(2x ,2()f x ), P(, ()m f m ), 12x m x <<,请仔细观察曲线()f x 在点P 处的切线与线段MP 的位置变化趋势, 并解释以下问题: (I )若对任意的m ∈(t, x 2),线段MP 与曲线f(x)均有异于M,P 的公共点,试确定t 的最小值,并证明你 的结论; (II )若存在点Q(n ,f(n)), x ≤n< m ,使得线段PQ 与曲线f(x)有异于P 、Q 的公共点,请直接写出m 的取值 范围(不必给出求解过程) 2. 本小题满分14分)已知函数 ,,且 是函数 的极值点。 (Ⅰ)求实数的值; (Ⅱ)若方程有两个不相等的实数根,求实数 的取值范围; (Ⅲ)若直线是函数 的图象在点处的切线,且直线与函数 的图象相切于点,,求实数的取值范围。 1 x x +

3. 已知函数()() ()()201,10.x f x ax bx c e f f =++==且 (I )若()f x 在区间[]0,1上单调递减,求实数a 的取值范围; (II )当a=0时,是否存在实数m 使不等式()224141x f x xe mx x x +≥+≥-++对任意 x R ∈恒成立?若存在,求出m 的值,若不存在,请说明理由 4. 已知:二次函数()g x 是偶函数,且(1)0g =,对,()1x R g x x ?∈≥-有恒成立,令 1 ()()ln ,()2 f x g x m x m R =++∈ (I )求()g x 的表达式; (II )当0m 0,使f(x)0成立,求m 的最大值; (III )设12,()()(1),m H x f x m x <<=-+证明:对12,[1,]x x m ?∈,恒有 12|()()| 1.H x H x -< 5. 已知函数()(a x ax x f ln -=>)().2 8,0+=x x x g (I )求证();ln 1a x f +≥ (II )若对任意的??????∈32,211x ,总存在唯一的?? ????∈e e x ,1 22(e 为自然对数的底数),使得 ()()21x f x g =,求实数a 的取值范围. 6. 已知函数2 ()8,()6ln .f x x x g x x m =-+=+ (I )求()f x 在区间[],1t t +上的最大值();h t (II )是否存在实数,m 使得()y f x =的图象与()y g x =的图象有且只有三个不同的交 点?若存在,求出m 的取值范围;若不存在,说明理由。 7. 已知函数()x f x e kx =-,x ∈R

专题05 挖掘“隐零点”,破解导数压轴题-2019年高考数学压轴题之函数零点问题(解析版)

专题五挖掘“隐零点”,破解导数压轴题 函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题围绕利用函数的“隐零点”,破解导数压轴问题,例题说法,高效训练. 【典型例题】 类型一挖掘“隐零点”,求参数的最值或取值范围 例1.【浙江省杭州第十四中学2019届高三12月月考】设函数,曲线y=f(x)在x=1处的切线与直线y=3x平行. (1)判断函数f(x)在区间和上的单调性,并说明理由; (2)当时,恒成立,求的取值范围. 【答案】(1)区间单调递增;(2) 【解析】 (1).∵f'(1)=1+b=3,∴b=2,则f'(x)=ln x+4x-1. 因为在单调递增,所以当时 即函数f(x)在区间单调递减;当时 即函数f(x)在区间单调递增; (2)因为,而在(0,1)上递增 存在使得

,当 时单调递减; 当时 单调递增 所以 又因为时则 所以则 类型二 挖掘“隐零点”,证明不等式 例2. 设函数2()ln x f x e a x =-,设()2 0,2a e ∈求证:当(]0,1x ∈时,2()2ln f x a a a ≥+ 【答案】见解析 【解析】()f x 的定义域为(]0,1,222'()2x x a xe a f x e x x -=-= 设2()2x x xe a ?=-,()22()242x x x xe x e ?'==+, 当(]0,1x ∈,()0x ?'>,即()x ?在区间(]0,1为增函数, (2(),2x a e a ??∈--? 又因为( )2 0,2a e ∈,所以2 (0)0,(1)20a e a ??=-<=-> 由零点存在定理可知'()f x 在(]0,1的唯一零点为0x 当0(0,)x x ∈时,'()0f x <,当(]0,1x x ∈,'()0f x > 故()f x 在0(0,)x 单调递减,在(]0,1x 单调递增, 所以当0x x =时,()f x 取得最小值,最小值为0200()ln x f x e a x =-, 由0 2020x x e a -=,即0 202x a e x = ,两边去对数得00ln ln 22 a x x =- 由于,所以00000222()2ln 22ln 2ln 22a a f x ax a ax a a a x a x a a = ++≥?=+

函数导数压轴小题题

函数导数压轴小题 一、单选题 1.已知数列中,,若对于任意的,不等式 恒成立,则实数的取值范围为() A.B. C.D. 2.已知实数,满足,则的值为() A.B.C.D. 3.定义在上的函数,单调递增,,若对任意,存在,使得成立,则称是在上的“追逐函数”.若,则下列四个命题:①是在上的“追逐函数”;②若是在上的“追逐函数”, 则;③是在上的“追逐函数”;④当时,存在,使得 是在上的“追逐函数”.其中正确命题的个数为() A.①③B.②④C.①④D.②③ 4.若,恒成立,则的最大值为() A.B.C.D. 5.设,,若三个数,,能组成一个三角形的三条边长,则实数m 的取值范围是 A.B.C.D. 6.已知定义域为的函数的图象是连续不断的曲线,且,当时,,则下列判断正确的是() A.B.C.D. 7.不等式对任意恒成立,则实数的取值范围()

A.B.C.D. 8.若函数的图象与曲线C:存在公共切线,则实数的取值范围为() A.B.C.D. 9.设函数(,e为自然对数的底数).定义在R上的函数满足, 且当时,.若存在,且为函数的一个零点,则实数a的取值范围为( ) A.B.C.D. 10.已知函数在上可导,其导函数为,若满足:当时,>0,,则下列判断一定正确的是( ) A.B.C.D. 11.已知函数有两个零点,则的取值范围为() A.B.C.D. 12.已知函数,方程有四个不同的根,记最大的根的所有取值为集合,若函数有零点,则的取值范围是() A.B.C.D. 13.设函数的定义域为D,若满足条件:存在,使在上的值域为,则称为“倍缩函数”.若函数为“倍缩函数”,则实数t的取值范围是( ) A.B. C.D.

(完整)2019-2020年高考数学压轴题集锦——导数及其应用(一).doc

2019-2020 年高考数学压轴题集锦——导数及其应用(一) 1.已知函数f (x) x2 ax ln x(a R) . (1)函数f (x)在 [1,2] 上的性; (2)令函数g( x) e x 1 x2 a f (x) ,e=2.71828?是自然数的底数, 若函数 g (x) 有且只有一个零点m,判断 m 与 e 的大小,并明理由 . 2.已知函数 f (x) x3ax2bx c 在x 2 与x 1都取得极. 3 (1)求 a, b 的与函数f( x)的区; (2)若x [ c,1] ,不等式 f (x) c 恒成立,求 c 的取范 . 2 3.已知函数 f (x) ln(1 x) ln(1x) . (1)明 f '(x) 2 ; (2)如果 f (x) ax x [0,1) 恒成立,求 a 的范 .

x 1 4.已知函数f (x) ( e 自然数的底数) . e x (1)求函数f (x)的区; (2)函数(x) xf (x) tf '(x) 1 x1, x2 [0 ,1] ,使得 2 ( x1 )(x2 ) x ,存在数 e 成立,求数t 的取范 . 5.已知函数 f ( x) kx a x,其中k R,a 0且a 1 . (1)当 a e ( e=2.71 ?自然数的底),f(x)的性;(2)当k 1,若函数f(x)存在最大g(a),求g(a)的最小. 6.已知函数 f x x2ax ln x a R (1)当a 3 ,求函数f(x)在 1 , 2 上的最大和最小; 2 (2)函数 f(x)既有极大又有极小,求数 a 的取范 .

7.已知 f( x)是定义在 R 上的奇函数,当 x 0 时, f x 1 x 3 ax a R ,且曲线 f(x)在 3 x 1 处的切线与直线 y 3 x 1平行 2 4 (1)求 a 的值及函数 f(x)的解析式; (2)若函数 y f x m 在区间 3, 3 上有三个零点,求实数 m 的取值范围 . 8.已知函数 f x x 0 ax, a ln x (1)若函数 y f x 在 1, 上减函数,求实数 a 的最小值; (2)若存在 x 1 , x 2 e,e 2 ,使 f x 1 f x 2 a 成立,求实数 a 的取值范围 . 9.已知函数 f (x) x 3 ax 2 bx 1, a , b R . ( 1)若 a 2 b 0 , ①当 a 0 时,求函数 f(x)的极值(用 a 表示); ②若 f(x)有三个相异零点,问是否存在实数 a 使得这三个零点成等差数列?若存在,试 求出 a 的值;若不存在,请说明理由; ( 2)函数 f( x)图象上点 A 处的切线 l 1 与 f(x)的图象相交于另一点 B ,在点 B 处的切线为 l 2 ,直线 l 1, l 2 的斜率分别为 k 1, k 2 ,且 k 2 =4k 1 ,求 a ,b 满足的关系式.

导数压轴题精选

导数压轴题精选 三、解答题: 10.已知函数2 1()22 f x x x = -、()log a g x x =(0a >,且1a ≠) ,其中a 为常数. 如果函数()()()h x f x g x =+是(0,)+∞上的增函数,且函数()h x '存在零点 (函数()h x '为函数()h x 的导函数). ⑴求实数a 的值; ⑵设11(,)A x y 、2212(,)()B x y x x <是函数()y g x =的图象上两点, 又21 021 ()y y g x x x -'=-(()g x '为()g x 的导函数),证明:102x x x <<.

10.已知函数()2ln b f x ax x x =- -,且(1)0f =. ⑴若函数()f x 在其定义域内为单调函数,求a 的取值范围; ⑵若函数()f x 的图象在1x =处的切线的斜率为0, 且211 ( )11 n n a f n a n +'=-+-+,又已知14a =,求证:22n a n ≥+; ⑶在⑵的条件下,试比较12111111n a a a ++++++与25 的大小, 并说明你的理由.

10.定义:对于函数()()f x x M R ∈?,若()()f x f x '<对于定义域M 内的任意x 恒成立,则称函数()f x 为M 上的?函数. ⑴判断函数()ln x f x e x =是否为其定义域上的?函数,并证明你的结论; ⑵若函数()F x 为R 上的?函数,试比较()F a 与(0)()a e F a R ∈的大小; ⑶若函数()F x 为R 上的?函数,求证:对于定义域内的任意正数1x 、2x 、、n x , 均有1212[ln()](ln )(ln )(ln )n n F x x x F x F x F x +++>+++成立.

全国高考导数压轴题总汇编

2016全国各地导数压轴题汇编 1、(2016年全国卷I理数) 已知函数2 )1()2()(-+-=x a e x x f x 有两个零点 (I )求a 的取值围 (II )设21,x x 是)(x f 的两个零点,求证:221<+x x

2、(2016年全国卷I文数) 已知函数2 )1()2()(-+-=x a e x x f x (I )讨论)(x f 的单调性 (II )若)(x f 有两个零点,求a 的取值围

3、(2016年全国卷II 理数) (I)讨论函数x x 2f (x)x 2 -=+e 的单调性,并证明当x >0时,(2)20;x x e x -++> (II)证明:当[0,1)a ∈ 时,函数2 x =(0)x e ax a g x x -->() 有最小值.设g (x )的最小值为()h a ,求函数()h a 的值域.

4、(2016年全国卷II 文数) 已知函数()(1)ln (1)f x x x a x =+--. (I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程; (II)若当()1,x ∈+∞时,()0f x >,求a 的取值围. 5、(2016年全国卷III 理数) 设函数)1)(cos 1(2cos )(+-+=x a x a x f 其中a >0,记错误!未找到引用源。的最大值为A (Ⅰ)求)(x f '; (Ⅱ)求A ; (Ⅲ)证明错误!未找到引用源。A x f 2)(≤'

6、(2016年全国卷III 文数) 设函数()ln 1f x x x =-+. (Ⅰ)讨论()f x 的单调性; (Ⅱ)证明当(1,)x ∈+∞时,11ln x x x -<<; (Ⅲ)设1c >,证明当(0,1)x ∈时,1(1)x c x c +->.

导数压轴题题型归纳

导数压轴题题型归纳 1. 高考命题回顾 例1已知函数f(x)=e x -ln(x +m).(新课标Ⅱ卷) (1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0. 例2已知函数f(x)=x 2+ax +b ,g(x)=e x (cx +d),若曲线y =f(x)和曲线y =g(x)都过点P(0,2),且 在点P 处有相同的切线y =4x+2(新课标Ⅰ卷) (Ⅰ)求a ,b ,c ,d 的值 (Ⅱ)若x ≥-2时, ()()f x kg x ≤,求k 的取值范围。 例3已知函数)(x f 满足21 2 1 )0()1(')(x x f e f x f x +-=-(新课标) (1)求)(x f 的解析式及单调区间; (2)若b ax x x f ++≥2 2 1)(,求b a )1(+的最大值。 例4已知函数ln ()1a x b f x x x =++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。(新课标) (Ⅰ)求a 、b 的值; (Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x > +-,求k 的取值范围。 例5设函数2 ()1x f x e x ax =---(新课标) (1)若0a =,求()f x 的单调区间; (2)若当0x ≥时()0f x ≥,求a 的取值范围 例6已知函数f(x)=(x 3+3x 2+ax+b)e - x . (1)若a =b =-3,求f(x)的单调区间; (2)若f(x)在(-∞,α),(2,β)单调增加,在(α,2),(β,+∞)单调减少,证明β-α>6. 2. 在解题中常用的有关结论※

高考导数压轴题处理集锦

导数压轴题题型 1. 高考命题回顾 例1已知函数f(x)=-(x +m).(2013全国新课标Ⅱ卷) (1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0. (1)解 f (x )=-(x +m )?f ′(x )=-?f ′(0)=e 0-=0?m =1, 定义域为{>-1},f ′(x )=-=, 显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增. (2)证明 g (x )=-(x +2),则g ′(x )=-(x >-2). h (x )=g ′(x )=-(x >-2)?h ′(x )=+>0, 所以h (x )是增函数,h (x )=0至多只有一个实数根, 又g ′(-)=-<0,g ′(0)=1->0, 所以h (x )=g ′(x )=0的唯一实根在区间内, 设g ′(x )=0的根为t ,则有g ′(t )=-=0, 所以,=?t +2=e -t , 当x ∈(-2,t )时,g ′(x )g ′(t )=0,g (x )单调递增; 所以g (x )=g (t )=-(t +2)=+t =>0, 当m ≤2时,有(x +m )≤(x +2), 所以f (x )=-(x +m )≥-(x +2)=g (x )≥g (x )>0. 例2已知函数)(x f 满足212 1)0()1(')(x x f e f x f x +-=-(2012全国新课标) (1)求)(x f 的解析式及单调区间; (2)若b ax x x f ++≥22 1)(,求b a )1(+的最大值。 (1)1211()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f = 1211()(1)(0)(1)1(1)2 x f x f e x x f f e f e --'''=-+?==?= 得:21()()()12 x x f x e x x g x f x e x '=-+?==-+ ()10()x g x e y g x '=+>?=在x R ∈上单调递增 ()0(0)0,()0(0)0f x f x f x f x ''''>=?><=?< 得:()f x 的解析式为21()2 x f x e x x =-+ 且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞

相关文档
最新文档