边坡稳定性分析
瑞典圆弧法 边坡稳定性分析例题

(10)将每一段的重力Gi化为二个分力: a.在滑动曲线法线方向分力:Ni=Gicosαi b.在滑动曲线切线方向分力:Ti=Gisinαi 并分别求出此两者之和,ΣNi和ΣTi (11)算出滑动曲线圆弧长L (12)计算稳定系数
K2
n
f N i CL
i 1 n
T
i
i
= 1.54
(6)将圆弧范围土体分成8~10段,本例采用8段,先由坡脚起每 5m一段,最后一段可能略少。 (7)算出滑动曲线每一分段中点与圆心竖线之间的偏角αi Xi sinαi= R 式中:Xi——分段中心距圆心竖线的水平距离,圆心竖线左侧 为负,右侧为正; R——滑动曲线半径。 (8)每一分段的滑动弧曲线可近似取直线,将各分段图形简化为 梯形或三角形,计算其面积Ωi,其中包括荷载换算成土柱部分 的面积在内。 (9)以路堤纵向长度1m计算出各分段的重力Gi
解 (1)用方格纸以1∶50比例绘出路堤横断面。 (2)将挂车-80换算成土柱高(当量高度)。 (3)按4.5H法确定滑动圆心辅助线。在此取坡脚θ=25°
13 (θ=arctg 2518' ),由表得β1=25°,β2=35°。 27.5
据此两角分别自坡脚和左顶点作直线相交于O点,BO的延长 线即为滑动圆心辅助线。 (4)绘出三条不同位置的滑动曲线:①一条通过路基中线;② 一条通过路基的右边缘(如图中的圆弧所示);③一条通过距 右边缘1/4路基宽度处。 (5)滑动圆弧中心可用直线连接可能滑弧的两端点,并作此直 线的中垂线相交于滑动圆心辅助线BO于A点。A点即是该滑 动曲线的中心。
Ω m2 29.9 57.5 56 51 49.7 38.5 24 4.8
G=Ω kN 508 971 951 866 845 654 408 82
边坡的稳定性分析

振动作用
累积效应。边坡中由地震引起的附加力,通常以 边坡变形体的重量W与水平地 震加速度Kc之积表示, 即为KcW。在边坡稳定性计算中,一般将地震附加力 考虑为水平 指向坡外的力。边坡岩土体位移量的大 小不仅与震动强度有关,也与经历的震动次数有 关 ,频繁的小震对斜坡的累进性破坏起着十分重要的作 用,其累积效果使影响范围内的岩 体结构松动,结 构面强度降低。
图2-9某露天矿山爆破效应分区 (a)直接破碎区;(b)岩体崩坍区;(c)松动区;(d)地表变形裂缝区
效应分区
贵州大学
边坡形状与断面形态
边坡形状及表面形态指边坡的外形、坡高、坡度 、断面形态以及边坡临空程度等。目前的稳定性分 析方法通常把边坡看成二维,且假定边坡从坡顶到 坡底是一个平面;而实际 上边坡在平面图上总是弯 曲的,在断面图上往往也是弯曲的。边坡形态对边 坡稳定有一定程度的影响,主要表现在以下方面。 A.边坡外形 B.边坡坡度和坡高 C.边坡断面形态
贵州大学
二、水化学作用对岩土体的影响
在岩土体遇水的情况下,受水化学作用后产生 的易溶矿物随水流失,而难溶或结晶矿物则残留原 地,结果致使岩土体的孔隙增大,岩土体因此变得 松散脆弱。当岩土失水又浸水时,某些矿物与进入 岩土颗粒孔隙中的水作用后出现体积膨胀的现象, 这种体积膨胀是不均匀的,从而使得岩土体内部产 生了不均匀的应力,最终导致了矿物颗粒的碎裂解 体,表现出土体软化和崩解。于是岩土的内摩擦角 和粘聚力随之而减小。而边坡地下水位的升降正是 诱发岩土浸水—失水—再浸水这一反复循环的直接 因素,因此,对边坡变形的发展有着较大的影响。
四、水的物理作用
水对边坡岩土体的作用是多方面的,包 括材料性质、软化、冲刷等,这些作用都 将影响边坡的稳定性。一般而言,水的物 理作用往往具有突发性,从而对边坡的稳 定性构成较大的威胁。
边坡稳定性分析—

第一章绪论1.1引言边坡是自然或人工形成的斜坡,是人类工程活动中最基本的地质环境之一,也是工程建设中最常见的工程形式。
随着我国基础设施建设的蓬勃发展,在建筑、交通水利、矿山等方面都涉及到很多边坡稳定问题。
边坡的失稳轻则影响工程质量与施工进度,重则造成人员伤亡与国民经济的重大损失。
因此,边坡的勘察监测、边坡的稳定性分析、边坡的治理,是降低降低灾害的有效途径,是地质和岩土工程界重点研究的问题。
随着城市化进程的加速和城市人口的膨胀,越来越多的建筑物需要被建造,城市的用地也越来越珍贵。
特别是对于长沙这样多丘陵的城市来说,建筑边坡成为了不可避免的工程。
1.2边坡破坏类型边坡的破坏类型从运动形式上主要分为崩塌型和滑坡型。
崩塌破坏是指块状岩体与岩坡分离,向前翻滚而下。
一般情况岩质边坡易形成崩塌破坏,且在崩塌过程中岩体无明显滑移面。
崩塌破坏一般发生在既高又陡的岩石边坡前缘地段,破坏时大块岩体由于重力或其他力学作用下与岩坡分离而倾倒向前。
崩塌经常发生在坡顶裂隙发育的地方。
主要原因有:风化等作用减弱了节理面的黏聚力,或者是雨水进入裂隙产生水压力,或者是气温变化、冻融松动岩石,或者是植物根系生长造成膨胀压力,以及地震、雷击等外力作用(图1-1)。
滑坡是指岩土体在重力作用下,沿坡内软弱面产生的整体滑动。
与崩塌相比滑坡通常以深层破坏形式出现,其滑动面往往深入坡体内部,甚至可以延伸到坡脚以下。
其滑动速度虽比崩塌缓慢,但是不同的滑坡滑动速度相差很大,这主要取决于滑动面本身的物理力学性质。
当滑动面通过塑性较强的岩土体时,其滑动速度一般比较缓慢;相反,当滑动面通过脆性岩石,且滑动面本身具有一定的抗剪强度,在构成滑面之前可承受较高的下滑力,那么一旦形成滑面即将下滑时,抗剪强度急剧下降,滑动往往是突发而迅速的。
滑坡根据滑动模式和滑动面的纵断面形态可以分为平面滑动、圆弧滑动、楔形滑动以及复合形。
当滑动面倾向与边坡面倾向基本一致,并且存在走向与边坡垂直或接近垂直的切割面,滑动面的倾角小于坡角且大于其摩擦角时有可能发生平面滑动。
边坡稳定性分析2篇

边坡稳定性分析2篇边坡稳定性分析(一)引言边坡是指在道路、河道、铁路、水库、矿山等山区地带或特殊地质条件下,因建设需要而开挖或局部破坏岩土体,形成的斜坡或峭壁。
由于其受自然环境、地质条件、工程施工等诸多因素的影响,边坡容易发生滑坡、崩塌和塌方等不稳定现象,给工程运行和周围环境造成极大的危害与损失。
因此,边坡稳定性分析对于确保工程安全运行和人民生命财产安全具有十分重要的意义。
稳定性分析方法边坡稳定性分析常见的方法有多种,主要包括力学分析法、有限元数值模拟法、模型试验法等。
以力学分析法为例,首先需要对边坡的主要信息进行调查,包括边坡地质、工程地质、水文地质、地下水位、工程建设历史等。
其次,根据荷载和载荷的方向、大小、分布等条件,选取合适的地质模型、荷载模型,并采用合理的力学方法进行稳定性分析。
最后,根据分析结果,提出相应的加固和治理方案。
分析评估指标边坡稳定性分析的主要指标包括破坏形式、安全系数以及承载能力等。
其中,破坏形式是指发生破坏时边坡的形态和特征,它直接影响到治理方案的制定和实施。
安全系数是衡量边坡稳定性的重要指标,其定义为承载力与荷载的比值,即:$${\rm {安全系数}}={\rm {承载力}}\div{\rm {荷载}}$$三种承载状态及相应的安全系数如下:1.安全状态:安全系数大于1.5;2.可疑状态:安全系数介于1.0-1.5,需要加强监测和治理;3.失稳状态:安全系数小于1.0,已进入失稳状态,需立即采取加固措施。
承载能力是指边坡抵抗荷载的能力和承受破坏的最大荷载。
在进行稳定性分析时,需要根据边坡的承载能力和荷载特点来确定合适的安全系数范围,以确保边坡的稳定性。
结论边坡稳定性分析是确保工程安全的重要手段,其目的是找出边坡存在的问题,并提出相应的加固和治理方案,以保障工程的长期运行和人民生命财产安全。
稳定性分析方法多种多样,需要根据具体情况选择合适的分析方法和指标,并在稳定性分析的基础上,制定科学合理的加固和治理措施。
常用的边坡稳定性分析方法

常用的边坡稳定性分析方法边坡稳定性分析是土木工程中的一个重要内容,用于评估边坡的稳定性,并确定边坡设计和防护措施。
下面列举了常用的边坡稳定性分析方法:1.切片平衡法:切片平衡法是一种基本的边坡稳定性分析方法,它假设边坡由一系列无限小的土体切片组成,并基于力平衡原理来确定各个切片的稳定条件。
该方法适用于简单边坡稳定性分析,但对复杂地质条件和荷载情况适用性有限。
2.极限平衡法:极限平衡法是一种常用的边坡稳定性分析方法,它假设边坡存在一个明确定义的滑动面,并基于达到平衡的最不利情况,即极限平衡状态来进行分析。
该方法包括切片法、极限平衡法、回缩平衡法等,可以考虑复杂地质条件和荷载情况,适用范围广。
3.数值模拟方法:数值模拟方法是一种基于计算机模拟的边坡稳定性分析方法,包括有限元法、边界元法、离散元法等。
这些方法能够模拟边坡的实际行为,并对多种复杂因素进行定量分析。
数值模拟方法可以更精确地预测边坡的稳定性,并对工程设计提供参考。
4.基于概率的方法:基于概率的方法将不确定因素考虑在内,通过概率分析来评估边坡的稳定性。
这些方法包括可靠度法、蒙特卡洛方法和贝叶斯法等。
基于概率的方法可以提供边坡发生滑移的概率,并在风险评估和安全设计中发挥重要作用。
5.特殊情况下的分析方法:在一些特殊情况下,常规的边坡稳定性分析方法可能不适用,需要采用一些特殊的分析方法。
例如,在边坡潜在失稳或发生滑坡时,可以使用临界状态平衡、能量平衡或地震动力学方法来分析边坡的稳定性。
总之,边坡稳定性分析是土木工程中的重要任务,通过使用上述方法中的一个或多个,可以评估边坡稳定性,从而制定出合理的边坡设计和防护措施,确保工程的安全可靠。
边坡稳定性分析方法

第二节边坡稳定性分析方法力学验算法和工程地质法是路基边坡稳定性分析和验算方法常用的两种方法。
1.力学验算法(1)数解法假定几个不同的滑动面,按力学平衡原理对每个滑动面进行验算,从中找出最危险滑动面,按此最危险滑动面的稳定程度来判断边坡的稳定性。
此方法计算较精确,但计算繁琐。
(2)图解或表解法在图解和计算的基础上,经过分析研究,制定图表,供边坡稳定性验算时采用。
以简化计算工作。
2.工程地质法根据稳定的自然山坡或已有的人工边坡进行土类及其状态的分析研究,通过工程地质条件相对比,拟定出与路基边坡条件相类似的稳定值的参考数据,作为确定路基边坡值的依据。
一般土质边坡的设计常用力学验算法进行验算,用工程地质法进行校核;岩石或碎石土类边坡则主要采用工程地质法进行设计。
3.力学验算法的基本假定滑动土楔体是均质各向同性、滑动面通过坡脚、不考虑滑动土体内部的应力分布及各土条(指条分法)之间相互作用力的影响。
一、直线滑动面法松散的砂类土路基边坡,渗水性强,粘性差,边坡稳定主要靠其内摩擦力。
失稳土体的滑动面近似直线状态,故直线滑动面法适用于砂类土:如图2-2-4所示,验算时,先通过坡脚或变坡点假设一直线滑动面,将路提斜上方分割出下滑土楔体ABD,沿假设的滑动面AD滑动,其稳定系数K按下式计算(按边坡纵向单位长度计):验算的边坡是否稳定,取决于最小稳定系数Kmin的值。
当Kmin=1.0时,边坡处于极限平衡状态。
由于计算的假定,计算参数(r,Ψ,c)的取值都与实际情况存在一定的差异,为了保证边坡有足够的稳定性,通常以最小稳定系数Kmin≥1.25来判别边坡的稳定性。
但Kmin过大,则设计偏于保守,在工程上不经济。
当路堤填料为纯净的粗砂、中砂、砾石、碎石时,其粘聚力很小,可忽略不计,则式(2-2-3)变为:式(2-2-3)也适用于均质砂类土路堑边坡的稳定性验算。
二、圆弧滑动面法用粘性土填筑的路堤,边坡滑坍时的破裂面形状为一曲面,为简化计算,通常近似地假设为一圆弧状滑动面。
边坡稳定性分析例题

曲线滑动面得路基边坡稳定分析题目:某路堤高H=15m,路基宽b=12m,填土为粘性土,内摩擦角,粘聚力,填土容重,荷载分布全路基(双车道),试验算路堤边坡稳定性。
―――――――――――――――――――――――――――――1、边坡稳定性分析原理1、1等代荷载土层厚度计算=4、09(N=2,Q=550KN,B=12M,L=12、8M,r=17、5KN/M3)1、2圆心辅助线得确定(4、5H法)1)4、5H得E点2)由得F点-----查表得β1=26度,β2=35度.α1、3假设滑动圆弧位置,求圆心位置一般假设圆弧一端经过坡脚点,另一端经过得位置为:路基顶面左边缘、左1/4、中1/2、右1/4、右边缘等处,圆心分别对应O1,O2,O3,O4,O5,分别计算这五种滑动面得稳定安全系数,从中找出最小值。
1、4对滑动土体进行条分------从滑动面顶端(路基上)向左每5m划分一个土条。
1、5在AUTOCAD图中量取各计算数据量取半径各土条得面积各土条横距图--------圆心在O1图-------圆心在O2图-------圆心在O3图------圆心在O4图------圆心在O51、6数据填入EXCEL表格并计算五种滑动面得计算数据汇总3、计算结果分析与结论3、1计算结果分析稳定系数K与滑动面位置变化示意图。
重点说明:稳定系数在滑动面在路基最左端时最大,然后逐渐减小,当滑动面在路基中间时达到最小,为1、51,然后当滑动面在路基上得点继续向右移动时,稳定系数又逐渐增大,到达最右端时为1、64。
3、2结论1)由于Kmin=1、51,大于规范规定得1、20~1、25,故边坡稳定。
2)不满足要求,如何处理:1、减小边坡坡度2、换添路基土,选择粘性系数较大得土3、加固边坡。
基坑工程中的边坡稳定性分析与评估

基坑工程中的边坡稳定性分析与评估基坑工程是指为了建设地下结构或地下设备,而在地面上开挖出一个或多个较大的坑口,然后在坑口内逐步挖掘地下部分的工程。
在进行基坑工程施工时,边坡稳定性是一个非常重要的问题,对于施工的安全和质量都具有重要影响。
边坡稳定性是指基坑边坡在一定荷载的作用下是否能够保持稳定,不发生坡体滑动、崩塌等不稳定现象。
在进行边坡稳定性分析与评估时,需要考虑很多因素,如土体的力学性质、坡面的倾斜度、坡土体的分层情况等。
首先,对于土体的力学性质是进行边坡稳定性分析与评估的基础。
土体的抗剪强度、内摩擦角等是决定边坡的稳定性的重要参数。
通过对土体进行野外勘探与采样,可以对土体进行室内试验,获得土体的力学参数,从而进行稳定性分析。
其次,坡面的倾斜度也是边坡稳定性分析与评估的重要因素。
坡面的倾斜度过大会导致坡体滑动,而倾斜度过小则会导致坡体崩塌。
因此,在设计基坑工程时,需要根据土体的力学参数和工程的具体情况,合理确定坡面的倾斜度,以保证边坡的稳定性。
此外,坡土体的分层情况也对边坡稳定性起着重要作用。
土体的分层情况与土体的力学性质密切相关。
例如,当坡面存在较厚的软弱土层时,将会增加坡体发生滑动的可能性。
因此,在进行边坡稳定性分析时,需要对土体的分层情况进行详细的调查,并将其考虑在内。
在进行边坡稳定性分析与评估时,可以采用不同的方法和模型。
常见的方法包括平衡法、变形法和强度解析法等。
平衡法是最常用的一种方法,它基于坡面施加在土体上的平衡力,通过平衡方程来确定边坡的稳定性。
变形法是一种基于土体变形特性的分析方法,强度解析法是一种基于土体强度特性的分析方法。
除了进行稳定性分析外,边坡稳定性的评估也是非常重要的。
评估的目的是判断边坡的稳定性并采取相应的措施来确保施工的安全和质量。
评估可以采用定性评估和定量评估的方法。
定性评估是基于经验和专业知识对边坡的稳定性进行判断,而定量评估则是通过数学模型和计算方法对边坡的稳定性进行量化分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
边坡稳定性分析作业及答案 (注:复习内容错误在所难免,答案可能不全,请大家结合教材复习) 1、边坡、要素、分类。 答:倾斜的地坡面称为坡或斜坡,因斜坡往往构成了工程边界,故又称边坡。 边坡要素:坡顶、坡底、坡面;坡肩、坡脚;坡高、坡面角。 分类:土质边坡和岩质边坡。 2、导致滑坡的因素。 答:①应力过大:破坏了坡体力学平衡; ②强度过低:导致滑面抗剪强度不足; ③地质缺陷:岩坡主要是地质界面,土坡主要是孔隙; ④地下水:弱化地质界面抗剪力强度和土粒粘结力,产生静/动水压力; ⑤爆破震动:动力效应的影响; ⑥人为破坏:切断了坡脚,降低了抗滑力; ⑦不利产状:裂隙等地质缺陷的不利产状导致了滑坡; ⑧地下开采:地下开采对疏水稳坡有利,但对岩移失稳不利。 3、边坡稳定性设计思路。 答:①工程地质勘察:包括工程地质和水文地质; ②滑塌模式识别:识别潜在滑塌体及其滑塌模式; ③稳定性分析:计算潜滑体安全系数; ④采取稳坡措施:包括疏干排水、减荷载、降坡角、机械加固等; ⑤接受局部滑坡:进行监测、预报并综合计算其危害、损失、影响; ⑥最终决策:④、⑤比较,使经济效益、社会效益最优。 4、边坡稳定性安全系数。
答:定义一:
定义二:使c、值降低的系数。 5、节理调查包括哪些内容? 答:①测点和测线的位置和坐标; ②间断面的产状(走向,倾角,倾向); ③间断面的延展长度和开口宽度; ④间断面的弯曲程度或平直度; ⑤间断面的干湿度(干燥,稍湿,潮湿,滴水,涌水); ⑥相邻间断面的间距(密度/频度); ⑦间断面两臂间的充填物和粗糙度; ⑧间断面两臂的岩性。 6、结构面统计方法有哪些? 答:主要有两种①如果有路堑式的露头可供选择,则通常采用沿一根固定线逐一观测所有与此线交切的地质间断面并按上面的内容逐一测记每个地质间断的方法。 ②场地只有零星小露头而无法布置扫描线的场合也不见少,这时只能采用见露头测露头的散点法,这种方法要求测绘者有较丰富经验,能迅速区分同组的节理,从而;量出它们的间距。 7、水文地质调查内容有哪些? 答:①场区水文地质:水源调查,地层渗透水性,承压含水层; ②地下水赋存状态和运动规律; ③地下水渗流规律:渗流现象,流网及绘制,流网在边坡分析中的应用; ④场区水文地质条件的识别:场区水源的调查,地层渗透性的识别,承压含水层的识别。 8、常见的边坡滑塌模式有哪些? 答:有①平面滑坡:平面滑坡通常由沉积面或软夹层等地质间断面构成; ②楔体滑坡:楔体滑坡的滑面由两个相交切的地质间断面构成,它们与坡面及坡顶组合将岩体切割成四面楔体; ③圆弧滑坡:土坡(包括土坡、破碎岩体、尾砂坝、废石场)中无控制性地质间断面,滑面的形成完全取决于土的力学性质,均质土坡和强烈破碎的岩坡的滑面在剖面上接近为圆弧形; ④倾倒破坏:倾倒破坏的岩体具有薄层状或块状结构,且其倾角陡、岩体倾向与边坡倾向相反; ⑤不太常见的滑塌模式:岩块折断、蠕动、薄板翘曲以及两种常见滑塌模式复合等。 9、边坡滑塌的识别方法有哪些? 答:有①弹塑性力学计算方法; ②刚体极限平衡分析法; ③极射赤平投影识别法; ④石根华关键块体识别法。 10、试对平面滑坡进行受力分析并计算其安全系数。
解:平面滑坡进行受力分析及计算其安全系数见教材P42-43(图4-5)。 11、简述平面滑坡的几何条件。 答:①滑动面走向与坡面平行或近似平行(±20°);
②滑动面倾角大于滑动面内摩擦角而小于坡面角,即; ③滑体两侧有结构面,它们对滑体阻力很小,可忽略不计。 12、简述平面滑坡的假设条件。 答:①滑动面和坡顶张裂隙的走向均与坡面走向平行; ②坡顶张裂隙是垂直的,深度,充水深度 ; ③水在张裂隙底部沿滑动面向下渗透,并在坡脚出露,故滑动面的水压分布为:从坡脚到张裂缝底按由0→最大的三角形分布;
④滑体自重、滑面上的静水压力(浮托力)、张裂隙中的静水压力均作用在滑体重(形)心,即滑体中没有使滑体产生转动的力矩,滑体不产生转动,仅沿滑面刚体滑动;
⑤滑体受爆破地震作用产生的附加力仅等效于水平推力,且作用在滑体重心; ⑥滑体的抗剪强度遵循库伦定律,即;⑦受力分析的研究对象为单位长度的滑体切片。 13、简述楔体滑动的几何条件。 答:①两组相交结构面的交线(组合交线)的倾向与边坡倾向一致;
②交线倾角 s大于滑动面内摩擦角而小于坡面角,即; ③组合交线穿过坡顶和坡面。 14、简述楔体滑动的研究步骤。 答:①识别潜滑体——滑楔(极射赤平投影法、石根华关键块体法); ②确定滑楔的空间形态及其几何尺寸; ③识别滑楔的充水情况及抗剪性能; ④滑楔稳定性分析——受力分析及安全系数计算。 15、楔体滑动和平面滑动都是由结构面引起的破坏,二者有何本质不同。 答:楔体滑动既可沿某个倾斜结构面发生——平面滑动,也可沿两结构面的交线发生——楔体滑动,而平面滑动只能沿一个软弱结构面或软夹层发生滑动。 16、简述圆弧滑坡的基本假设。 答:①平面应变问题,即课余单位厚度切片计算; ②滑面为圆弧面,滑体为圆柱体; ③滑体滑动时作整体刚性移动。 17、圆弧滑动的分析方法有哪些? 答:有瑞典圆弧法、毕肖普法、摩擦圆法和简布法。 18、简述简布法的分析步骤。 答:第一步:确定条块参数。把滑体分成若干条块,并考虑材料性质变化边坡几何形状水压力分布等因素选择条块宽度△X,量的各条块底边中心对水平面的
倾角α,△X和tan的数值列成表。 第二步:计算重量参数。计算条块重量△W及单位面积上条块的平均重量P,
wh和△W值列成表。如果条块的几何形状相当规则,则P=mh,mh是条块
中心高度,而△W=Xhm。如果条块高度不规则,则可用求积仪量出条块的面积再乘上该条块的材料容重就可以计算出条块的重量,在这种情况下,P=XW; 第三步:计算破坏面上的水压。计算各条块底面上的平均水压,并将此值列入计算表。如果在滑体背面有垂直张裂隙,则由于裂隙中的水引起的平均力V应计算出来。
第四步:详细计算。计算每个条块的tanW和XUPCXtan)(,并将这些值列入计算表中。 第五步:假定一个安全系数(第一次试算通常取1sF),从图6-9中找出各
个条块的an 值,计算每个条块的anX,并将该值列入表中。 第六步:从图6—10中确定0f值,并按下列式计算新的安全系数值。
tan)(0sW
nXfFa。
第七步:如果第六步计算的安全系数不符合第五步所假定的安全系数值,则假定一个新的sF值(接近第六步的计算值),并重复第五步和第六步的计算过程,直到计算得到新的安全系数和假定值相符为止。 19、路堑边坡分类、稳定性影响因素。 答:路堑边坡按材料不同分为岩石路堑,石质路堑,土质路堑三类。 稳定性影响因素:①边坡高度倾角; ②岩土体性质; ③工程地质; ④岩石的风化破碎程度; ⑤地面水地下水; ⑥施工方法和地震作用。 此外,路堑边坡的稳定性还与水文地质,地形地貌,排水条件,气候条件等有关。 20、深路堑边坡设计内容。 答:深路堑边坡设计,主要是确定边坡的形状和坡度。 ①选择边坡横断面的形状; ②确定边坡坡度; ③设计必要的坡面防护工程; ④合理处理废土。 21、废石堆破坏形式有哪些? 答:有①压缩沉降变形:新堆置的排土场为松散岩土物料,其变形主要是在自重和外载作用下逐渐压实和沉降; ②失衡滑坡:按滑塌影响条件和滑动面所处位置不同,失衡滑坡又分为废石堆内发生变形破坏、沿废石堆与基底接触面滑坡、基底破坏三种形式; ③泥石流:泥石流又称泥石洪流或山洪泥流,是山地沟谷(沟槽)或山区河谷中,由暴雨、冰雪融水等激发的、暂时性急水流与大量土石相互作用的特殊洪流现象。这种物理地质现象的特点是发生突然、过程短暂、结束迅速、复发频繁。 22、废石堆稳定的影响因素有哪些? 答:①废石堆物料的物理力学性质:废石堆物料的物理力学性质主要是指物料成分、结构和含水量以及这些因素对力学性质的影响; ②废石场基底:基底及废石堆的稳定性主要决定于基底的倾向和坡度、基底表面覆盖物的性质、基底内部浅层岩体的岩性及构造特征,以及基底中的含水情况等; ③废石堆和基底含水量:水诱发的排土场破坏主要表现在沿着排土场基底存在有很大的水压力和在废石堆内及基底处具有潮湿软化作用两方面。废石堆坡底有积水,被洪水浸淹或排土场设置于洼地时,废石堆物料及基底被水流浸润,降低了物料c、φ值,从而降低了废石物料强度; ④排土工艺对废石稳定性的影响是综合性的。在各种工艺因素中最重要的是废石堆边坡的高度和形状、排土工作线的长度和推进速度。 23、废石堆稳定化的措施有哪些? 答:①合理调整排土场岩性分布。对软岩或表土应实行分排或软岩与坚硬岩石混排,避免由于集中排放软岩形成软弱带引起滑塌。底层应堆排透性好、不易水解的大块岩石,形成透水层。上部则排放细粒和黏土质岩石,形成隔水层。为了防止坡面冲蚀作用,应在排土终了前将坡面加盖一层一定厚度的新鲜、坚实、大暴雨也不致冲走的大块物料;或者在终排后对坡面进行复垦绿化,防止水土流失。 ②疏干排水。疏水处理包括地表截水排洪、疏排堆内含水和基底地下水。 ③基底处理。首先必须查清基底的工程地质与水文条件,包括表土层物料的力学性质、浅部岩体的结构构造、基底内部地下水情况,分析可能引起滑塌的因素,因地制宜地选择稳定基底的工程处理方法。 ④合理选择排土工艺。在掌握废石堆及其基底的沉降移动规律基础上,选择适当的排土工艺,可以调节废石堆及基底的受力状态和受力变形过程,控制边坡变形,实现安全生产。 24、何谓泥石流?可分为哪几类? 答:泥石流:是山地沟谷(沟槽)或山区河谷中,由暴雨、冰雪融水等激发的、暂时性急水流与大量土石相互作用的特殊洪流现象。分类:按物质组成分为泥流、泥石流、水石流;按结构类型分为黏性泥石流、稀性泥石流;按成因类型分为自然泥石流、人为泥石流、矿山泥石流;按动力作用分为:重力泥石流、水动力泥石流、复合泥石流。 25、按尾矿堆积方式尾矿坝分哪几类? 答:按照尾矿堆积方式的不同,可分为上游式、中线式、下游式、高浓度尾矿堆积式和水库式尾矿堆积(尾矿库挡水坝)等多种。 26、尾矿坝的破坏模式主要有哪些? 答:①洪水漫坝。造成洪水漫坝的主要因素有:水文资料短缺造成抗洪设计标准偏低、泄洪能力不足、坝顶超高不足等导致洪水漫顶进而发展为溃坝,此外,施工质量、运行管理也直接影响着尾矿坝的抗洪能力; ②渗透破坏。渗透破坏是指渗透水引起坝体的局部破坏。尾矿坝渗透变形的