掌握离子键和共价键的基本特征和它们的区别

掌握离子键和共价键的基本特征和它们的区别
掌握离子键和共价键的基本特征和它们的区别

第 4 章分子结构

[ 教学要求 ]

1 .掌握离子键和共价键的基本特征和它们的区别。

2 .掌握价键理论,杂化轨道理论。

3 .掌握分子轨道理论的基本内容。

4 .了解分子间作用力及氢键的性质和特点。

[ 教学重点 ]

1 . VSEPR

2 . VB 法

3 . MO 法

[ 教学难点 ]

MO 法

[ 教学时数 ] 8 学时

[ 主要内容 ]

1 .离子键:离子键的形成、离子的特征(电荷,半径,构型)

2 .共价键:价键理论-电子配对法(本质,要点,饱和性,方向性,类型σ键、π键)。

3 .杂化轨道理论:杂化轨道理论的提出,杂化轨道理论的基本要点,杂化轨道的类型 - sp 、spd 等各种类型及举例。

4 .分子轨道理论:分子轨道理论的基本要点,分子轨道的能级图,实例 - 同核:H2、 He 、O2、F2、N2;异核: NO 、 HF 。

5 .共价键的属性:键长,键角,键能,键级。

6 .分子间的作用力和氢键。

[ 教学内容 ]

4-1 化学键参数和分子的性质

分子结构的内容是:分子组成、分子空间结构和分子形成时的化学键键参数:用各种不同的化学量对化学键的各种属性的描述。

键能:在 101.3KPa , 298K 下,断开 1molAB 理想气体成 A 、 B 时过程的热效应,称AB 的键能,即离解能。记为△ H ° 298 ( AB )

A ─

B (g) =A (g) +B (g) △H° 298 ( AB )

键能的一些说明:

对双原子分子,键能即为离解能,对多原子分子,键能有别于离解能。同种化学键可能因环境不同键能有很大差异。对同种化学键来说,离解产物的稳定性越高,键能越小。产物的稳定性可以从电荷的分散程度、结构的稳定性来判断。

键能越大键越稳定,对双原子分子来说分子就越稳定或化学惰性。

成键原子的半径越小,其键能越大,短周期中的元素的成键能力与其同族元素长周期的相比键能肯定要大得多。在同一周期中,从左到右原子半径减小,可以想见其成键能力应增大。但 F-F 、 O-O 、 N-N 单键的键能反常地低,是因为其孤电子对的斥力引起。

一般单键键能不如双键键能,双键键能不如叁键键能。但双键和叁键的键能与单键键能并无简单的倍数关系。一般来说,原子间形成的第一个键最稳定,第二个键次之,第三个键最小,若有第四个键则更小。

对双原子分子间形成的键:同核双原子分子同族元素从上到下键能下降,因为原子半径增大而成键能力下降;异核双原子分子在核间距一样(或几乎一样)时,电负性相差越大,

键越稳定。

双原子分子可用生成热求得键能;多原子分子可用键能近似求得反应热。

H2O (g) =H (g) +OH (g) D (H-OH) =500.8KJ/mol

OH (g) =H (g) +O (g) D (H-O) =424.7KJ/mol

HCOOH (g) =HCOO (g) +H (g) D (HCOO-H) =431.0KJ/mol

D (NH2-H) =431 D (NH-H) =381 D (N-H) =360

若一个原子与多个相同原子形成多个化学键则一般有 : D1 >D2 >D3 >…>D n , 但说到键

能则是其平均值。

2 键长

键长:成键两原子的核间的平衡距离。

之所以用平衡距离是因为分子处于振动之中,核间距离在不断变化之中。原子核间距离越短,化学键越稳定。

键长也受环境影响 , 一般来说 , 成键原子环境电负性越强键越短。

F3Si-Cl d=200pm H3Si-Cl d=205pm

H2ClSi-Cl d=202pm Cl3Si-Cl d=201pm

3 键角

键角:同一分子中键与键的夹角。

键角与成键原子的成键轨道有关,在成键轨道确定时还决定于成键原子的价层电子键角用于说明分子的空间结构,对分子的性质尤其是物理性质有推导作用。过小的键角( ~90 ) 意味着分子张力大,稳定性下降。

4 键的极性

由于成键两原子的正负电荷中心不重合而导致化学键的极性。正负电荷重心不重合的化学键称极性键。

正负电荷重心重合的化学键叫非极性键。

一般来说,对同原子形成的化学键,若其所处环境相同,则形成非极性键,异原子形成化学键则肯定是极性键。离子键是最强的极性键。对共价键来说,极性越大,键能越大。

5 分子的性质

分子的极性是由化学键的极性引起,组成分子的化学键若都无极性,则分子肯定无极性;而若组成分子的化学键有极性,则要看分子的结构情况以判断有无极性,若整个分子的正负电荷重心得合则无极性,否则有极性。

分子极性的大小用偶极矩来衡量:μ=q.d 其中 q 为点电荷,单位为库仑; d 为点电荷间距离,单位是 m,μ为偶极矩,单位是 C.m 。

对双原子分子来说,点电荷间的距离就是核间距。偶极矩和核间距均可由实验测得,故可推出其离子性大小。

电负性差值越大,极性越大,双原子分子的偶极矩越大;虽然偶极矩还与核间距有关,但核间距起次要作用。 CO 的偶极矩特殊。

6 分子的磁性

任何物质都会产生一个反抗外磁场的磁场,也即抗磁性。

某些有成单电子的物质来说,除了产生抗磁性外,成单电子还会沿着外磁场产生一个顺磁场,且产生的这个磁场比抗磁场要大得多,所以表现为顺磁性,这类物质称顺磁性物质。无成单电子,则只有抗磁性而无顺磁性,这类物质称抗磁性物质。

不论抗磁性物质还是顺磁性物质,当外磁场消失时,其诱导磁场消失。

而另有一类物质,在外磁场作用下产生比一般的顺磁性要大得多的磁场,且在外磁场消失时,而诱导磁场不完全消失,即有记忆,这类物质称为铁磁性物质。

分子的磁性

对顺磁性物质而言,其产生的磁矩如果只考虑纯自旋贡献,不考虑轨道贡献和旋轨道偶合时有如下关系:

4-2 离子键

化学反应的发生在能量上肯定有利。离子化学物形成必然伴随电子得失,只有活泼的金属和活泼的非金属之间可形成离子键。

离子型化合物形成过程中最重要的能量变化──晶格能

玻恩 - 哈伯循环──分析离子化合物形成过程能量变化

玻恩 - 哈伯循环举例

△f H NaCl =-411KJ/mol

S=106.5 D=247 I=495

E A =-376 △ H 1 =-526 △ H 2 =-243

△f H NaCl =S+D/2+I+E A+△H1+△H2

U =△H1+△H2

晶格能

从玻恩 - 哈伯循环中不难分析出,对离子化合物稳定性的贡献最主要来自△H 和△

H2,这两项合称晶格能。对离子化合物来说,晶格能对化合物的稳定性不言而喻,故常温下,离子化合物一般不可能是气体和液体,只能是固体。

晶格能:气态离子从无限远处接近最后形成固体离子化合物的过程中释放的能量。是离子化合物稳定性的量度。

晶格能无法直接测得,只有通过热力学循环求得。

对纯离子化合物来说,离子电荷越高,晶格能越大;离子半径越小,晶格能越高。有: U ∝Z + Z - /(r + +r - )

电荷高的晶格能大,电荷一样时看离子半径和,离子半径之和小的晶格能大。

离子化合物的键能(离解能): -(I+E A +△H1 )

离子键

离子键的本质:原子或原子团发生电子得失而形成正负离子,通过正负离子间的静电作用:F=Z + Z - /d2离子从无限远处靠近形成离子晶体而作的功。离子键包括同号离子间的斥力和异号离子间的引力。

阴阳离子不可能无限靠近,离子的核外电子以及原子核间都有强烈相互作用,最后在一适当距离达到平衡,即斥力和引力相等。

离子键的特征

因离子的电荷是球形对称的,故只要空间条件允许,可尽可能多地吸引异号电荷的离子,离子键没有饱和性。在离子晶体中,每个正离子吸引晶体内所有负离子,每个负离子也吸引所有正离子。

异号离子可沿任何方向靠近,在任何位置相吸引,故离子键没有方向性。

不可能有 100% 的离子键;成键原子电负性差值越大,离子键成分越高。离子键成分超过50% 的化学键为离子键,此时电负性相差约为 1.7 。含离子键的化合物为离子化合物。

离子键百分数和离子键强弱是两码事,与化学键的强弱也无直接关系。

离子晶体

离子键无方向性,也无饱和性,故在离子周围可以尽量多地排列异号离子,而这些异号离子之间也存在斥力,故要尽量远离。离子半径越大,周围可容纳的异号离子就越多,另一方面,异号离子的半径越小,可容纳的数目也越多。故离子的配位数与阴阳离子的半径比有关。而正离子半径一般比负离子半径要小,仅有极个别除外 ( 如 Cs+的半径比F-的大 ) 。

故离子晶体的配位数既与阳离子半径大小有关,又与阴离子半径大小有关,即决定于阳阴离子半径之比。因阴离子半径几乎总是大于阳离子半径,故配位数与阳离子半径大小关系密切,阳阴离子半径之比越大,配位数越高。

最常见的五种类型的离子晶体是 NaCl 型、 CsCl 型、 ZnS 型、 CaF 2型、 TiO2型。

NaCl CsCl ZnS CaF2TiO2

阴离子配位数 6 8 4 4 3

阳离子配位数 6 8 4 8 6

晶体类型的描述

NaCl 型:晶胞为面心立方;阴阳离子均构成面心立方且相互穿插而形成;每个阳离子周围紧密相邻有 6 个阴离子,每个阴离子周围也有 6 个阳离子,均形成正八面体;每个晶胞中有 4 个阳离子和 4 个阴离子,组成为 1 : 1 。

CsCl 型:晶胞为体心立方;阴阳离子均构成空心立方体,且相互成为对方立方体的体心;每个阳离子周围有 8 个阴离子,每个阴离子周围也有 8 个阳离子,均形成立方体;每个晶胞中有 1 个阴离子和 1 个阳离子,组成为 1 : 1 。

ZnS 型:晶胞为立方晶胞;阴阳离子均构成面心立方且互相穿插而形成;每个阳离子周围有 4 个阴离子,每个阴离子周围也有 4 个阳离子,均形成正四面体;晶胞中有 4 个阳离子和 4 个阴离子,组成为 1 : 1 。

CaF2型:立方晶胞;阳离子构成面心立方点阵,阴离子构成空心立方点阵,阴离子处于阳离子形成的 8 个正四面体空穴中( 1/8 晶胞);每个阳离子周围有 8 个阴离子,每个阴离子周围有 4 个阳离子;晶胞中有 4 个阳离子和 8 个阴离子,组成为 1 : 2 。

T iO2型:四方晶胞;阳离子形成体心四方点阵,阴离子形成八面体,八面体嵌入体心四方点阵中;每个阳离子周围有 6 个阴离子,每个阴离子周围有 3 个阳离子;单位晶胞中有 2 个阳离子和 4 个阴离子,组成为 1 : 2 。

晶体结构与阴阳离子半径比

对于简单的纯离子化合物,其晶体结构由阴阳离子半径比决定:

r+ /r -0.225-0.414; 0.414-0.732 ; 0.732-1

配位数 4 6 8

晶体类型ZnS NaCl CsCl

晶体结构类型还受许多其它因素的影响,如化合物的组成,阴阳离子变形成性,阴阳离子的空间构型等影响(不作要求)。

离子半径比规则的说明:

正负离子半径比处于交界处时,可能有两种结构。

正负离子并不是刚性的球体,在异号离子的作用下,其电子云要发生形变,使正离子进入负离子的电子云中,而使正负离子的半径比值下降,使配位数下降。

在受热状态下,正负离子的振动加剧,离子变形能力增强,故低温下有高配位数,在高温下配位数有可能下降。

离子半径的数据本身也是不够准确的,都是从测定晶体的结构得到的数据,而在晶体中,正负离子未必是接触的,故以此作为依据也不准确。

4-3 共价键

Lewis,G.N. 原子价的电子理论,分子趋向于形成共用电子对来满足 8e 结构

Heitler,W. 和 London,F 应用量子力学处理H2, Pauling,L 发展这一成果,创立了现代价键理论:Valence Bond Theory (VBT) 。

Milliken 和 Hund,F 也应用量子力学,从另一角度出发,处理了H2+而创立了分子轨道理论:Molecular Orbital Theory (MOT) 。

1 现代价键理论

成键两原子必须有能量较低的成单电子;

成键时成单电子必须自旋方向相反,在核间电子云密度最大形成稳定化学键;

共价键有饱和性,成单电子的数目就是成键数目;

共价键有方向性,沿轨道方向重叠可产生最大重叠,形成的键最稳定;在所有轨道中只有 s 轨道无方向性,只有 s 轨道之间形成的键无方向性。

化学键

σ键:沿电子云最大方向头碰头重叠而形成的化学键。头碰头方式重叠是最有效的重叠,故形成的化学键最稳定。 S 轨道无方向性,故有 s 轨道参与形成的化学键一定是σ键。

π键:成键两原子在已形成σ键的情况下其它轨道不可能再以头碰头方式重叠,可以肩并肩方式重叠形成π键。肩并肩重叠不如头碰头重叠有效,故π键稳定性一般不如σ键。π键是两原子间形成的第二、第三键。

S 轨道只参与形成σ键一种, p 轨道可以形成σ键和π键两种键, d 轨道可以形成σ键、π键和δ键三种键, f 轨道能否成键尚未有定论。

σ键和π键

轨道的杂化

Pauling 指出,原子轨道在成键时并不是其原型,而是将参与成键的几个轨道重新组合成数目相同的等价(简并)轨道,这个过程称杂化。只有能量相近的轨道才能进行杂化;杂化后的轨道形状和能量完全一样,但方向不同;杂化前后轨道总数目不变;杂化以后的轨道电子云更加集中在某一方向上,故其成键能力强于未杂化的轨道。杂化轨道只能填充孤电子对或σ键上电子;杂化是原子成键前的轨道行为,与该原子的价层电子数目无关。

杂化类型

杂化的几点说明

杂化类型决定于成键中心原子的价轨道和成键时的方式。如价轨道为 1s ,则因只有一个轨道故谈不上杂化,价轨道为 ns np ,则有四个轨道,最多可有四个轨道参与杂化最多形成四个σ键,若价轨道为ns np nd 或 (n-1)d ns np ,则可多于四个轨道参与杂化;价轨道指明了最多可杂化的轨道数目。若中心原子与其它同一原子形成多个化学键,只有一个键是由杂化轨道形成的,其它成键轨道须从价轨道中扣除。杂化轨道只用于形成σ键或孤电子对。

若中心原子的价电子数目多于价轨道时形成不等性杂化,即部分价电子以孤电子对进入杂化轨道。此类杂化一般只发生在中心原子价轨道为四个时

若以不等性杂化方式成键,则成键键角会发生变化,其规律如下:

孤电子对 (lone pair) 只受中心原子约束故电子云伸展范围大;成键电子对 (bonding pair) 受两个原子约束电子云伸展区域小。故电子对斥力相对大小为: lp-lp>lp-bp>bp-bp

lp,bp 之间的作用结果使 lp-lp 之间的夹角大于 lp-bp 之间夹角,而后者又大于 bp-bp 之间的夹角。

若与中心原子成键的原子电负性大,其电子云密度也高,对其它成键原子的排斥也大,故键角也相应增大;若有部分原子形成π键也相当于增大电子云密度,故键角也会增大。4-4 分子轨道理论简介

组成分子的所有原子轨道包括价轨道和非价轨道都并入分子轨道,且在形成分子轨道之前进行重新组合。

组合后的分子轨道与原子轨道相比,总数量完全相同,大致一半能量升高形成反键分子轨道,另一半能量降低形成成键分子轨道,有时还有少量原子轨道找不到对称性匹配的其它

原子轨道与之组合则形成非键分子轨道,非键分子轨道基本上仍保留原原子轨道特点(能量、波函数)。

分子轨道就象一个原子的原子轨道一样在能量上不同按能级由低到高的顺序依次排列,但表示符号已变为σ、π、δ…替代原子轨道的 s 、 p 、 d 、f…。分子轨道也用波函数来表示。

原子轨道要组合成低能量的分子轨道须满足三原则:

对称性匹配原则:参与组合的原子轨道必须在取向上满足一定要求才能组合成有效的分子轨道,否则只能形成非键分子轨道即不参与组合直接成为分子轨道。参与组合的原子轨道通常只有三种对称性即σ对称性、π对称性和δ对称性,其中最后者不常见。

能量相近原则:能量越近,组合后的成键轨道比原轨道能量降低得越多,反键轨道比原轨道能量升高得越多。因价轨道组合后得到的高能反键轨道常常无电子填充,故这种组合最为有效。

最大重叠原则:新的分子轨道中,成键轨道占用率总是高于反键轨道的,最大重叠是指形成的成键轨道尤其是由价轨道形成的成键轨道在原子间电子云密度最大。

电子在分子轨道上的填充顺序与电子在原子轨道上的填充顺序一致,即满足能量最低原理,保里不相容原理和洪特规则。

填充电子后的分子若其成键轨道上的电子总数大于反键轨道上的电子总数则分子可以形成,否则不稳定。成键轨道上和反键轨道上的电子数差除 2 即为键级。

共价键的稳定性首先与参与键的原子有关,原子间的电负性差越大形成的共价键一般越稳定;原子的原子半径越小形成的共价键也越稳定。还与原子参与组合的价轨道有关(对称性),σ对称性稳定性一般高于π,而π又高于δ。

若分子组成相似而且价轨道上填充的电子总数相同,这些分子称为等电子体。等电子体一般有相似的结构。

分子轨道理论举例

同核双原子分子:H2+ ,Li2 , Be2 , B2 , C2 , N2 , O2 , F2。同核双原子分子总可以找到对称性匹配且能量相近甚至一样的原子轨道,故只有成键轨道和反键轨道而无非键轨道。第二周期元素同核双原子分子轨道能级为:σ1s , σ1s * , σ2s , σ2s * , σ2p , 2π 2p , 2π 2p * , σ2p * …( Li,Be,O,F )或σ1s , σ1s * , σ2s , σ 2s * , 2π 2p , σ2p , 2π2p * , σ2p * …(B,C,N)

异核双原子分子: BN , CO , HF 。

等电子体 CH4 , NH4+ , CCl4 ; NH2- , H2O, H2F+。

异核或多核分子中可能没有非键轨道,也可能有一定数量的非键轨道。如 HF 中只有一个成键轨道和一个反键轨道其余都是非键轨道,而 CO 中无非键轨道。

4-5 金属键和键型过渡

金属能导电,说明金属中有自由移动的电子,而金属的价层电子数一般少于 4 ,一般为1~2 个,在金属晶体中,原子的配位数却达 8 或 12 ,显然,不可能形成 8 或 12 个普通化学键。

自由电子理论 : 金属的电负性小,容易失去价层电子,而形成正离子。在金属晶格结点上排列的金属原子和正离子是难以移动的,只能在其平衡位置振动,从金属原子上脱下的电子在整个晶体中运动,将整个晶体结合在一起。金属键可看成是许多原子共用许多电子而形成的特殊共价键,只不过该共价键没有方向性,也没有饱和性。

金属能带理论

用分子轨道理论处理金属键,把整个金属晶体看成的一个大分子,则所有能量相近的原子轨道要参与组合,由于参与组合的原子轨道极多且能量一样(合金中能量相近),故组合

后的分子轨道在能量间隔上相差极小,甚至产生能量重叠。当然最有意义的是价轨道的这种组合。

满带:电子填满的能带

导带:部分填充电子的能带。

禁带:满带与导带间的能量间隔。

满带与导带重叠则为导体;满带与导带不重叠但禁带宽度(能级差)小于 3eV 为半导体;禁带宽度一般大于 5eV 为绝缘体。

键型过渡

原子之间尽可能多地成键,成键种类无非是离子键、共价键和金属键。但一般的化学键很少是单纯是三种键的一种,而是混合型。因为只有 100% 的共价键而无 100% 离子键,故共价键成份总是存在的。由于元素的电负性差值在变,故其离子成分也变,键型由 100% 的共价型转向离子型(离子成份 >50% ),若是金属间形成化学键,典型的共价键即成为金属键,也向离子键过渡。在一个化合物中,不同原子间的化学键可能有很多种,如:

Cu(NH3)4SO4中就有离子键和共价键(配位键)。

4-6 分子间作用力

分子间作用力由范德华( Van der Waals)提出,又称范德华力,按作用力的产生原因分三种力:取向力、诱导力、色散力。

取向力 (orientation forces) :极性分子之间偶极的定向排列而产生的作用力 , 又称Keesom 力。

取向力特点:

只有极性分子之间才会产生。分子偶极越大,取向力越大。在极少数极强极性的分子间中它才是最主要分子间力,如H2O 、 HF 中;一般是次要的作用力。

诱导力( induction forces):极性分子诱导其它分子产生偶极(非极性分子)或附加偶极(极性分子)。诱导出的偶极再定向排列而产生的作用力。又称 Debye 力。

诱导力特点:

只有极性分子存在才会产生。极性分子极性越大,诱导力越大,被诱导分子的变形性越大,诱导力越大。诱导能力强的分子其变形成性往往越差,而变形性强的分子其诱导能力又差。故诱导力绝不是分子间的主导作用力,永远产很次要的作用力。

色散力( dispersion forces):分子中电子和原子核的瞬间位移而产生瞬间偶极,瞬间偶极的作用只能产生于相邻分子间,这种相互吸引便是色散力。又称 London 力。

色散力特点:

任何分子间均有色散力。分子变形性越大,色散力越大。分子量越大,色散力越大,重原子形成的分子色散力大于轻原子形成的分子的色散力。除极少数极性极强的分子外,色散力是分子间的主流作用力。

分子间力特点:

作用力远不如化学键,一般 <40KJ/mol ,比化学键小 10~100 倍。

分子间力的作用距离在数百 pm ,比化学键作用距离长。且因为是电荷作用,故无饱和性,而且色散力还无方向性。

对大多数分子色散力是主要的,故一般用色散力的大小便可判断其分子间力的大小。

分子间作用力对物质的熔点沸点、溶解度,表面吸附等起作用。

4-7 氢键

氢键的形成条件:

必须是含氢化合物,否则就谈不上氢键。

氢必须与电负性极大的元素成键,以保证键的强极性和偶极电荷。

与氢成键的元素的原子半径必须很小。只有第二周期元素才可。

与氢形成氢键的另一原子必须电子云密度高,即需有孤电子对,且半径小,以保证作用距离较近。

氢键的特点

一般是静电作用,但它有方向性,即孤电子对的伸展方向。一般情况下也有饱和性,即氢与孤电子对一一对应。

作用力一般在 40KJ/mol 左右,比化学键低一个数量级,但某些情况下氢键可能转化为化学键。氢键强于分子间作用力。

要想形成强氢键,一般要求氢与 N 、 O 、 F 三元素之一形成化学键。

氢键的强弱与跟它成键的元素电负性和半径大小有关,电负性越大,氢键越强,原子半径越小,氢键越强。键极性越大,氢键越强,负电荷密度越高,氢键越强。

氢键有分子间氢键和分子内氢键。分子间氢键相当于使分子量增大,色散力增大,故熔沸点升高,极性下降,水溶性下降;分子内氢键未增大分子量,却使分子极性下降,故熔沸点下降,水溶性也下降。

4-8离子的极化

离子本身带有电荷,故离子靠近时,必然会使其它离子或原子的电子云发生形变,产生诱导电场。同时,离子本身的电子云在与其它离子接近时也会产生形变。故任何离子都会极化其它离子,同时又会被其它离子所极化而变形。

阳离子失去电子而使外层电子的电子云发生收缩,故离子半径比原子半径要小很多,离子半径小,电荷密度高,极化能力强,而变形性就相对小很多,故正离子主要表现强的极化作用。但对某些金属离子,其最外层电子含 d 电子较多时,因 d 轨道的电子云较分散,变形性也就较大,故那些 d 轨道电子较多的阳离子也表现一定的变形能力。

阳离子的极化和变形规律

极化规律:

1 )正电荷越高,极化能力越强

2 )外层 d 电子数越多,有效核电荷越大,极化能力尤其强。有: 8e<9-17e<18e,18+2e

3 )离子半径越小,极化能力越强

变形能力:

1 )正电荷越低,变形能力越强

2 )外层 d 电子数越多,变形能力越强

3 )离子半径越大,变形性越强

阴离子的变形

阴离子,因得到电子而使外层电子云发生膨胀,故离子半径比原子半径要大很多,离子半径大,电荷密度低,极化能力弱,而变形能力就非常强,故阴离子主要表现为强的变形性。但对某些离子半径小非金属性强的离子,其极化能力也不容忽视。

阴离子的变形能力:

1)负电荷越高,变形性越强

2)半径越大,变形性越强

3)复杂的阴离子团的变形能力通常很小,尤其是对称性高的阴离子集团。

离子的极化率─离子被极化的能力(变形能力)

离子极化对物质性质的影响

离子极化对化学键的影响:离子极化使化学键由离子键向共价键过渡,极化程度越大,共价成份越高。

离子极化对溶解度的影响:极化使极性降低,水溶性下降。

离子极化对物质颜色的影响:极化使价层电子能级差降低,使光谱红移,颜色加深。

离子极化对晶体类型的影响:极化使阳离子部分进入阴离子电子云(共价),降低阳阴离子半径之比,从而降低配位数。

离子极化举例

离子键(共价键)成份: ZnO, ZnS

溶解度:AgF, AgCl, AgBr, AgI

颜色: ZnS( 白 ), CdS (黄) , HgS (红,黑)

AgI (r+/r-=0.573), ZnS type.

九年级化学共价键和离子键的区别判断

共价键 ?共价键: 1.本质原子之间形成共用电子对(或电子云重叠),使得电子出现在核间的概率增大。 2.特征 具有方向性与饱和性。 (1)共价键的饱和性一个原子中的一个未成对电子与另一个原子中的一个未成对电 子配对成键后,一般来说就不能再与其他原子的未成对电子配对成键了,即每个原子所能形成共价键的总数或以单键连接的原子数目是一定的,这称为共价键的饱和性。 例如,氯原子中只有一个未成对电子,所以两个氯原子之间可以形成一个共价键,结合成氯分子,表示为氮原子中有三个未成对电子,两个氮原子之间能够以共价三键结合成氮分子,表示为一个氮原子也可与_二个氢原子以三个 共价键结合成氨分子,表示为 (2)共价键的方向性 共价键将尽可能沿着电子出现概率最大的方向形成,这就是共价键的方向性。除s 轨道是球形对称外,其他原子轨道都具有一定的空间分布。在形成共价键时,原子轨道重叠得越多,电子在核间出现的概率越大,所形成的共价键就越牢固。 例如,硫原子的价电子排布是有两个未成对电子,如果它们分布在互相垂直的轨道中,那么当硫原子和氢原子结合生成硫化氢分子时,一个氢

原子的1s轨道上的电子能与硫原子的轨道上的电子配对成键,另一个氢原子的1s轨道上的电子只能与硫原子的轨道上的电子配对成键。 说明: ①共价键的饱和性决定着各种原子形成分子时相互结合的数量关系。如一个氢分子只能由两个氢原子构成,一个水分子只能由两个氢原子和一个氧原子构成。 ②共价键的方向性决定着分子的空间构型。 3.分类 (1)按成键原子是否相同或共用电子对是否偏移分 (2)按成键方式分

(3)按共用电子对数分 ?离子键和共价键:

化学必修二化学键判断电子式书写练习题(附答案)

2020年03月16日化学必修二化学键判断电子式书写练习题学校:___________ 注意事项:注意事项: 2、请将答案正确填写在答题卡上 第1卷 一、单选题 () A. MgCl2 B. NaOH C. MgO D. KI 2.下列物质中,只含有一种化学键类型的是( ) A. Na2O2 B.Ca(OH)2 C. HClO D. Ne 3.下列物质的分子中,共用电子对数目最多的是() A. N 2 B. NH 3 C. CO 2 D. H O 2 4.下列物质中,既含有非极性共价键又含有极性共价键的是() A. NaOH B. Na O 22 C. H O 22 D. H S 2 5.下列各组物质中,化学键类型完全相同的是( ) A.SiO2和H2O B.SO2和Na2O2C.NaCl和HCl D.AlCl3和KCl 6.下列关于化学键的说法正确的是( ) A.离子化合物中只存在离子键 B.共价化合物中只存在共价键 C.物质中都含化学键 D.只含非金属元素的物质一定不含离子键 7.下列关于化学键的叙述正确的是( )

A.离子化合物中只含有离子键 B.单质分子中均不存在化学键 C.含有非极性键的化合物一定是共价化合物 D.共价化合物分子中一定含有极性键 8.下列说法正确的是( ) A.NaOH溶于水共价键被破坏 B.稀有气体的原子间存在共价键 C.二氧化碳分子的结构式:O═C═O D.MgF2、H2O2含有的化学键类型相同 9.下列叙述正确的是( ) A.阳离子一定是金属离子.阴离子一定只含非金属元素 B.某金属元素的阳离子和某非金属元素的阴离子组成的物质一定是纯净物 C.阴、阳离子相互作用后不一定形成离子化合物 D.离子化合物一定都溶于水 10.下列说法正确的是() ①离子化合物一定含离子键,也可能含极性键或非极性键 ②共价化合物一定含共价键,也可能含离子键 ③含金属元素的化合物不一定是离子化合物 ④由非金属元素组成的化合物一定是共价化合物 ⑤由分子组成的物质中一定存在共价键 ⑥熔融状态能导电的化合物一定是离子化合物 ②④⑥ C.②③④ D.①③⑥ 二、填空题 ① Ne ② HCl ③ P4 ④ H2O2 ⑤ Na2S ⑥ NaOH ⑦ Na2O2 ⑧ NH4Cl ⑨AlCl3 请用上述物质的序号填空: (1)不存在化学键的是___________________。 (2)只存在极性共价键的是_______________。 (3)只存在非极性共价键的是_____________。 (4)既存在非极性共价键又存在极性共价键的是____________。 (5)只存在离子键的是_____________。 (6)既存在离子键又存在共价键的是_______________。 12.请将符合题意的下列变化的序号填在对应的横线上:①碘的升华②氧气溶于水③氯化钠溶于水④烧碱熔化⑤氯化氢溶于水⑥氯化铵受热分解 (1)化学键没有被破坏的是;仅发生离子键破坏的是。 (2)既发生离子键破坏,又发生共价键破坏的是。 (3)N2的电子式为;Na2O2的电子式为;CO2的电子式为

离子键和共价键的辨析

离子键和共价键的辨析 摘要:本文对高一化学第五章化学键一节中“离子键”与“共价键”进行了辨析,以帮助学生们更好地理解有关知识,在解题过程中驾轻就熟,运用自如。 关键字:离子键、共价键、形成条件、存在形式、电子式 离子键和共价键同属于化学键,它们都是相邻的原子之间强烈的相互作用,由于离子键和共价键是微观领域的结构,学生们在学习过程中容易混淆这两个概念,在解题过程中常常出错,为了帮助学生更好的掌握离子键和共价键的概念,以及离子化合物和共价化合物的电子式表示方法,我对离子键和共价键进行了深入的辨析。 [例1]、在①H2、②NaCl、③H2O、④Na2O2、、⑤H2O2、⑥NH4Cl、⑦CO2、⑧NH4NO3、 ⑨Na2O、⑩HCl这些物质中,只含有离子键的 是:, 只含有共价键的是:, 即含有离子键又含有共价键的是:, 属于离子化合物的是:,属于共价化合物的是:。 有共价键的化合物,对于既有离子键又有共价键的化合物感到疑惑,难以分辨。对此

准确理解上述概念,并充分了解实例,可以使我们快速、正确地得出答案: 这些物质中,只含有离子键的是:②⑨, 只含有共价键的是:①③④⑤⑥⑦⑧⑩, 即含有离子键又含有共价键的是:④⑥⑧, 属于离子化合物的是:②④⑥⑧⑨, 属于共价化合物的是:③⑤⑦⑩。 通过这题我们发现其中的联系,可以概括总结得出结论: a、离子化合物中一定含有离子键,也可能含有共价键 b、共价化合物中一定含有共价键,一定不含有离子键 c、离子键只存在于离子化合物中,不存在共价化合物中 d、共价键可能存在于单质、离子化合物和共价化合物中 以上基础知识和规律的熟练掌握,有助于我们解决形式多样的此类试题。 [例2]、下列化合物中,含有共价键的离子化合物是:() A、NH3 B、CaCl2 C、NaOH D、NH4Cl E、Na2S F、SO2 解析:NH3、SO2是只含共价键的共价化合物;CaCl2、Na2S是只含离子键的离子化合物;NaOH、NH4Cl是既含共价键又含离子键的离子化合物。 答案:C、D [例3]、下列各组物质中,化学键类型完全相同的是:() A、Na2O、Na2O2 B、HI、NaI C、H2O、H2O2 D、NaCl、NH4Cl 解析:A、Na2O只含有离子键,Na2O2既含离子键又含有共价键; B、HI中只含有共价键,NaI中只含有离子键; C、H2O和H2O2中都只含有共价键; D、NaCl只含有离子键,NH4Cl既含离子键又含有共价键。 答案:C [例4]、下列关于化学键的叙述正确的是:() A、阴、阳离子通过静电吸引形成的强烈的相互作用 B、非金属原子间不可能形成离子化合物 C、金属元素与非金属元素化合时,不一定形成离子键 D、只有活泼金属与活泼非金属之间才能形成离子键 解析:A、错。离子键是阴阳离子通过静电引力形成的,静电引力作用包括引力和斥力; B、错。非金属原子间可能形成离子化合物,例如:NH4Cl、NH4NO3等铵盐; C、正确。某些不活泼金属与非金属之间形成共价键,例如:AlCl3 D、错。形成离子键的也可以是带电荷的原子团,例如:(NH4)2SO4等。 答案:C 化学反应的过程,本质上是旧化学键的断裂和新化学键形成的过程。离子键和共价键都属于化学键,都是相邻原子之间的强烈地相互作用。用电子式表示物质及其形成过程,能够更加生动、形象地反映出化学反应中电子得失和偏移的情况,以便更好地理解和认识形成物质的键的类型(离子键还是共价键)和方式(通过阴、阳离子还是共用电子对形成)。电子式是本节的重、难点,特别是用电子式表示离子化合物和共价化合物的形成过程,是考试中常易出错的知识点。

化学必修二离子键共价键判断练习题(附答案)

2020年03月08日化学必修二离子键共价键判断练习题学校:___________ 注意事项:注意事项: 2、请将答案正确填写在答题卡上 第1卷 一、单选题 A.带相反电荷离子之间的相互吸引称为离子键 B.金属元素与非金属元素化合时,不一定形成离子键 C.某元素的原子最外层只有一个电子,它跟卤素结合时所形成的化学键不一定是离子键 D.非金属元素原子间也可能形成离子键 2.下列关于离子键的说法中正确的是( ) A.离子键是由阴、阳离子通过静电作用达到平衡时形成的 B.只有金属和非金属化合时才能形成离子键 C.凡是含有离子键的化合物一定含有金属元素 D.含有离子键的化合物不一定是离子化合物 3.下列各组物质中,化学键类型不同的是( ) A.NaCl和K2S B.H2O和NH3 C.CaF2和CsCl https://www.360docs.net/doc/d42960906.html,l4和Na2O 4.下表物质与其所含化学键类型、所属化合物类型完全正确的一组是() 5.下列叙述正确的是() A.带相反电荷的离子之间的相互吸引称为离子键 B.非金属原子间不可能形成离子键 C.金属元素与非金属元素化合时,一定形成离子键

D.某元素的原子最外层只有一个电子,它跟卤素结合时形成的化学键不一定是离子键 6.下列关于离子键的说法中不正确的是() A.离子键就是阴、阳离子间强烈的相互作用 B.非金属元素形成的化合物中不可能存在离子键 C.离子键不可能存在于单质分子中 D.活泼金属和活泼非金属化合时能形成离子键 7.下列说法正确的是() A. HCl的电子式为H:Cl B. H2O2中含有离子键 C. 质量数为12的C原子符号为12C D. 用电子式表示KBr的形成过程: 二、填空题 :①碘的升华②氧气溶于水③氯化钠溶于水④烧碱熔化⑤氯化氢溶于水⑥氯化铵受热分解 (1)化学键没有被破坏的是;仅发生离子键破坏的是。 (2)既发生离子键破坏,又发生共价键破坏的是。 (3)N2的电子式为;Na2O2的电子式为;CO2的电子式为 。 9.写出NH3的电子式______________ 10.写出(NH4)2S的电子式:_____________。 11.写出下列物质的电子式 (1)H2O2 ; (2)N2 ; (3)NaClO ; (4)CCl4; (5)用电子式表示MgF2的形成过程. 12.写出下列各粒子的化学式。 (1)由2个原子构成的具有10个电子的分子是;阴离子是。 (2)由4个原子构成的具有10个电子的分子是;阳离子是。 (3)由3个原子构成的具有18个电子的分子是。 (4)由5个原子构成的具有10个电子的阳离子是。 13.写出Cl-的结构示意图:_____________

离子键共价键金属键比较

※离子键 定义:是原子得失电子形成的阴、阳离子靠静电作用形成的化学键。无方向性,无饱和性。 形成原因:离子键是由电子转移(失去电子者为阳离子,获得电子者为阴离子)形成的。即正离子和负离子之间由于静电引力所形成的化学键。离子既可以是单离子,如 Na+、K+;也可以由原子团形成,如 Cl-,NO3- 等含有离子键的物质(高中要求记住的) ☆离子化合物: ○1活泼金属阳离子和活泼非金属阴离子形成的盐类 例如 KCl Cs2SO4 KNO3 Na2S 等 ○2所有铵盐 例如NH4Cl (NH4)2SO4 ○3低价金属氧化物(注意必须是低价+1或+2价) 例如 Na2O K2O CaO ○4强碱(弱碱有些并不是) 例如 NaOH KOH ○5过氧化物超氧化物碳化钙(CaC2 电石) 例如 Na2O2 CaO2 KO2 BaO4 注意:含有离子键的化合物一定是离子化合物! ※共价键 定义:原子间通过共用电子对(电子云重叠)形成的化学键,有方向性,有饱和性。 共价键的形成是相邻两个原子之间自旋方向相反的电子相互配对,此时原子轨道相互重叠,两核间的电子云密度相对地增大,从而增加对两核的引力。因为只有自旋方向相反的电子才能配对成键,所以共价键有饱和性;另外,原子轨道互相重叠时,必须满足对称条件和最大重叠条件,所以共价键有方向性。共价键又可分为三种: ○1非极性共价键: 形成共价键的电子云正好位于键合的两个原子正中间,不偏移。如金刚石的C—C键。 ○2极性共价键: 形成共价键的电子云偏于对电子引力较大的一个原子,如H—Cl键,电子云偏于Cl一侧,可表示为H→Cl。 ○3配位键: 共享的电子对只有一个原子单独提供。如NH4+,N提供孤对电子,H+提供空轨道。 ☆共价化合物: ○1非金属之间形成的化合物(除铵盐) ○2少数盐类( AlCl3和 FeCl3) ○3所有酸类 区别离子化合物和共价化合物——熔融状态下是否导电。 一般来说在高中阶段,只要你在题目中看到的化合物含有第一主族的金属(碱金属) 那么一定是离子键。只要你看到题目所给的化合物没有金属元素那么是共价键(除了铵盐)。 ※金属键 定义:金属晶体中金属原子(或离子)与自由电子形成的化学键。无方向性,无饱和性。 形成原因:金属元素的原子在形成金属时,原子间的有价电子可以自由地从一个原子跑到另一个原子,好象是价电子为许多原子所共有。金属的许多物理性质,如光泽,延性,展性,导热性,导电性和金属键都有关系。 键长,键能,键角。原子半径,离子半径比较。原子半径在同一元素周期内从左到右递减,在同一族内从上到下递增。结合电子层数和核电荷数比较。 1同一元素的微粒,电子数越多,半径越大。如Na>Na+,ClLi+ 3同类离子与原子半径比较相同。如Na+>Mg2+>Al3+,F-F->Na+>Mg2+>Al3+ S2->Cl->K+>Ca2+ 5同一元素高价阳离子半径小于低价阳离子半径,又小于金属的原子半径。如Cu2+

离子键和共价键

离子键和共价键 班级:姓名: 1.下列关于离子键的说法中,正确的是 A.阴阳离子间的相互吸引即离子健 B.非金属元素所组成的化合物中不可能有离子键 C.一个阳离子只可与一个阴离子之间存在离子键 D.活泼金属与活泼非金属化合时一般形成离子键 2.下列物质中,可证明某化合物内一定存在离子键的是 A可溶于水 B 水溶液能导电 C 融熔状态能导电D水溶液不导电3.下列说法中不正确的是 A在共价化合物中也可能含有离子键 B非金属之间形成的化学键一定是共价键C含有共价键的化合物不一定是共价化合物D含有离子键的化合物一定是离子化合物4.下列固体或分子中,含有化学键类型有差异的一组是 A.Ne、He B.MgF2、H2O2 C.NaOH、NH4Cl D.NaCl、KCl 5.下列物质的电子式书写正确的是 6.下列分子中所有原子都满足最外层为8电子结构的是 A SiCl4 B H2O C BF3 D PCl5 7.下列过程中,共价键被破坏的是 A.碘升华B.冰融化C.NaCl溶于水D.水通电生成氢气和氧气8.下列物质的变化中,需克服分子间的作用力的是 A.二氧化硅的熔化 B.碳酸钙受热分解 C.冰熔化 D.氧化铝熔化 9.下列物质的性质,不是由于氢键引起的是 A.沸点:H2O>H2S B.溶解性:NH3(易溶于水)>PH3(难溶于水) C.稳定性:H2O>H2S D. 等质量的体积:冰>水 10.下列判断不正确的是 A.沸点:HI> HC1 B.半径:S2- > Na+ C.熔点:CS2> CO2 D.酸性:HClO> H2CO3 11.有人认为在元素周期表中,位于IA族的氢元素,也可以放在ⅦA族,下列物质能支持这种观点的是 A.HF B. H3O+ C. NaH D. H2O2 12.1999年曾报道合成和分离了含高能量的正离子N5+的化合物N5AsF6,下列错误的是A.N5+共有34个核外电子B、N5+中氮—氮原子间以共用电子对结合 C.化合物N5AsF6中As化合价为+1 D、化合物N5AsF6中F化合价为-1 13.A+、B2+、C-、D2-四种离子具有相同.电子层结构。现有以下排列顺序: ①B2+>A+>C->D2-; ②C->D2->A+>B2+; ③B2+>A+>D2->C-; ④D2->C->A+>B2+。 四种离子的半径由大到小以及四种元素原子序数由大到小的顺序分别是 A.①④B.④①C.②③D.③② 14.下列顺序不正确的是 A.微粒半径H+HBr>HCl>HF C.酸性H4SiO4Ca(OH)2>Mg(OH)2>Al(OH)3

高一必修二化学键的判断、离子键共价键的形成练习题(附答案)

高一必修二化学键的判断、离子键共价键的形成练习题 一、单选题 1.下列说法正确的是( ) ①离子化合物中一定含离子键,也可能含共价键 ②共价化合物中可能含离子键 ③含金属元素的化合物不一定是离子化合物 ④由非金属元素组成的化合物一定是共价化合物 ⑤由分子组成的物质中一定存在化学键 ⑥熔融状态下能导电的化合物一定是离子化合物 A.①③⑤ B.②④⑥ C.②③④ D.①③⑥ 2.下列反应过程中,同时有离子键、极性共价键和非极性共价键的断裂和形成的反应是( ) A.NH 4Cl NH 3↑+HCl ↑ B.NH 3+CO 2+H 2O =NH 4HCO 3 C.2NaOH +Cl 2=NaCl +NaClO +H 2O D.2Na 2O 2+2CO 2=2Na 2CO 3+O 2 3.下列用电子式表示的形成过程正确的是( ) A. + → B. + → C. +→ D. ++→ 4.下列叙述不正确的是( ) A.活泼金属与活泼非金属化合时,能形成离子键 B.阴、阳离子通过静电引力所形成的化学键叫做离子键 C.离子所带电荷的符号和数目与原子成键时得失电子有关 D.阳离子半径比相应的原子半径小,而阴离子半径比相应的原子半径大 5.2017年1月,南京理工大学胡炳成教授团队成功合成世界首个全氮阴离子盐,全氮阴离子化学式 为5N -。下列关于全氮阴离子盐的说法正确的是( ) A.每个5N - 含有26个电子 B. 5N -的摩尔质量为71g·mol -1 C.全氮阴离子盐既含离子键又含共价键 D.全氮阴离子盐可能属于电解质,也可能属于非电解质 6.下列说法中正确的是( ) A.干冰、液态氯化氢都是电解质 B. 22a N O 晶体中既含有离子键又含有共价键 C. 2a N O 、23Fe O 、23Al O 既属于碱性氧化物,又属于离子化合物 D.根据是否具有丁达尔效应,将分散系分为溶液、浊液和胶体 7.化学键使得一百多种元素组成了世界的万事万物。关于化学键的下列叙述中正确的是( ) A.离子化合物可能含共价键,共价化合物中可能含离子键 B.共价化合物可能含离子键,离子化合物中只含离子键 C.构成单质分子的微粒一定含有化学键 D.在氧化钠中,除氧离子和钠离子的静电吸引作用外,还存在电子与电子、原子核与原子核之间的排斥作用 8.下列用电子式表示的形成过程正确的是( ) A.

高中化学《离子键与共价键》教学设计

离子键与共价键
一、教材分析 物质的结构是高中化学基础知识中的一块重要内容,是在学习原子结构和卤素及其化合物知识的基础 上,通过一些具体的事例,进一步认识物质的结构。从原子能通过不同的途径或方式构成性能各异的物质 引入化学键。又从原子趋向稳定的途径或方式引入离子键、共价键的形成过程。整个教学内容安排符合学 生的认知规律。也为学生以后学习元素及其化合物、能量和有机化合物打下必要的基础。b5E2RGbCAP 二、学情分析 学生已经掌握了原子结构、卤素及其化合物的相关知识,为学习本章的内容打下了基础。上节课又刚 刚学习了化学键,也为本节课的内容做好了铺垫。从原子趋向稳定的途径或方式引入离子键、共价键的形 成过程。整个教学内容安排符合学生的认知规律。p1EanqFDPw 三、教学目标 1.通过探究活动、分组讨论理解离子键、共价键概念,以及元素之间形成化学键的规律性,并学会用化学用 语表达。DXDiTa9E3d 2.通过参与离子键形成和共价键形成的探究,感受科学探究的一般方法,以及认识结构决定性质、性质反映 结构的规律。RTCrpUDGiT 3. 通过课堂探究、讨论,感触科学方法在化学研究中的重要性,养成实事求是的科学态度和勇于创新的科 学精神。5PCzVD7HxA 四、教学重点、难点 重点:离子键和共价键 难点:离子键的形成、共价键的形成 五、教学方法 讨论法、归纳法 六、教学过程 <引入> 相信大家在生活中都有这样的经验:在一些红白喜事的场合,吃饭时经常会遇到这样的情况:一张 桌子做了 7 个人,另一张桌子坐了 1 个人。因为在这种场合,大家基本上都是认识的,所以那 7 个人肯定 会叫那个人,快点过来吧。然后那个人在他们的召唤下就坐过去了,然后就可以开吃了。这种情况在化学 反应中也会出现:jLBHrnAILg 我们一起回顾一下之前学习过的一条化学方程式: 点燃 2Na+Cl2 2NaCl HCl 我们先来看一下钠原子和氯原子的结构
Na:
Cl:
我们知道:最外层排 8 个电子时是稳定结构。 (当然,K 层为最外层时排 2 个电子。 ) 所以,当钠原子遇上氯原子时,氯原子的七个电子肯定会叫钠原子上的这 1 个电子。 “你快点过来呀,你一 过来我们就稳定了。于是,钠原子上的这个电子经不起诱惑,跑到了氯原子上。xHAQX74J0X 钠原子失去电子之后变成什么?(钠离子)氯原子失去电子之后会变成什么?(氯离子) (写钠离子与氯离子的离子结构示意图。 )

高一化学离子键共价键基础知识考查(附答案)

高一化学离子键共价键基础知识考查 一、单选题 1.某元素的原子最外层只有一个电子,它与卤素结合时,所形成的化学键( ) A.一定是离子键 B.一定是共价键 C.可能是离子键,也可能是共价键 D.以上说法都不正确 2.下列性质中,可以证明某化合物内一定存在离子键的是( ) A.可溶于水 B.有较高的熔点 C.水溶液能导电 D.熔融状态能导电 3.所含阴离子和阳离子的电子结构都与稀有气体元素原子的电子结构相同,且阳离子比阴离子少两个电子层的离子化合物是( ) A.2MgCl B.2BaF C.NaBr D.NaI 4.下列各式用电子式表示的物质的形成过程,其中正确的是( ) A. B. C. D. 5.下列每组物质中含有的化学键类型相同的是( ) A.NaCl 、HCl 、H 2O 、NaOH B.Cl 2、Na 2S 、HCl 、SO 2 C.HBr 、CO 2、H 2O 、CS 2 D.Na 2O 2、H 2O 2、H 2O 、O 3 6.在下列变化过程中,既有离子键被破坏又有共价键被破坏的是( ) A.将SO 2通入水中 B.烧碱溶于水 C.将HCl 通入水中 D.硫酸氢钠溶于水 7.关于氢键,下列说法不正确的是( ) A.HF 的沸点比HCl 的沸点高是由于HF 分子间存在 氢键 B.水在结冰时体积嘭胀.是由于水分子之间存在氢键 C.3NH 的稳定性很强,是因为其分子间能形成氢键 D.在氨水中水分子和氨分子之间也存在着氢键 8.下列物质中,只含有一种化学键类型的是( ) A. Na 2O 2 B.Ca(OH)2 C. HClO D. Ne 9.下列关于离子键、共价键的各种叙述中正确的是( ) A.在离子化合物里,只存在离子键,没有共价键 B.非极性键只存在于双原子的单质分子中

高一化学化学键离子键共价键判读练习题(附答案)

高一化学化学键离子键共价键判读练习题 一、单选题 1.下列有关化学用语表示正确的是( ) A.质量数为31的磷原子:3115 P B.氟原子的结构示意图: C.2CaCl 的电子式: D.明矾的化学式:243Al (SO ) 2.下列说法正确的是( ) ①含有金属元素的化合物一定是离子化合物 ②第IA 族和第VIIA 族元素原子化合时,一定形成离子键 ③由非金属元素形成的化合物一定不是离子化合物 ④活泼金属与活泼非金属化合时.能形成离子键 ⑤含有离子键的化合物一定是离子化合物 ⑥离子化合物中可能同时含有离子键和共价键 A.① ② ⑤ B.④ ⑤ ⑥ C.① ③ ④ D.② ③ ⑤ 3.下列有关电子式的叙述正确的是( ) A.氢、氦、锂原子的电子式分别为、 、 B.氯原子的电子式为 ,Cl -的电子式为 C.钠离子、镁离子、铝离子的电子式分别为Na +、Mg 2+、Al 3+ D.Na 2O 的电子式为,H 2O 的电子式为 4.下列叙述错误的是( ) A.带相反电荷离子之间的相互吸引称为离子键 B.金属元素与非金属元素化合时,不一定形成离子键 C.某元素的原子最外层只有一个电子,它跟卤素结合时所形成的化学键不一定是离子键 D.非金属元素原子间也可能形成离子键 5.下列关于化学键的说法正确的是( ) A.离子化合物中只存在离子键 B.共价化合物中只存在共价键 C.物质中都含化学键 D.只含非金属元素的物质一定不含离子键 6.下列关于化学键的叙述正确的是( ) A.离子化合物中只含有离子键 B.单质分子中均不存在化学键 C.含有非极性键的化合物一定是共价化合物 D.共价化合物分子中一定含有极性键 7.下列说法不正确的是( )

离子键共价键金属键比较

离子键共价键金属键比 较 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

※离子键 定义:是原子得失电子形成的阴、阳离子靠静电作用形成的化学键。无方向性,无饱和性。 形成原因:离子键是由电子转移(失去电子者为阳离子,获得电子者为阴离子)形成的。即正离子和负离子之间由于静电引力所形成的化学键。离子既可以是单离子,如 Na+、K+; 也可以由原子团形成,如 Cl-,NO 3 - 等含有离子键的物质(高中要求记住的) ☆离子化合物: ○1活泼金属阳离子和活泼非金属阴离子形成的盐类 例如 KCl Cs 2SO 4 KNO 3 Na 2 S 等 ○2所有铵盐 例如NH 4Cl (NH 4 ) 2 SO 4 ○3低价金属氧化物(注意必须是低价+1或+2价) 例如 Na 2O K 2 O CaO ○4强碱(弱碱有些并不是) 例如 NaOH KOH ○5过氧化物超氧化物碳化钙(CaC 2 电石) 例如 Na 2O 2 CaO 2 KO 2 BaO 4 注意:含有离子键的化合物一定是离子化合物! ※共价键 定义:原子间通过共用电子对(电子云重叠)形成的化学键,有方向性,有饱和性。 共价键的形成是相邻两个原子之间自旋方向相反的电子相互配对,此时原子轨道相互重叠,两核间的电子云密度相对地增大,从而增加对两核的引力。因为只有自旋方向相反的电子才

能配对成键,所以共价键有饱和性;另外,原子轨道互相重叠时,必须满足对称条件和最大重叠条件,所以共价键有方向性。共价键又可分为三种: ○1非极性共价键: 形成共价键的电子云正好位于键合的两个原子正中间,不偏移。如金刚石的C—C键。 ○2极性共价键: 形成共价键的电子云偏于对电子引力较大的一个原子,如H—Cl键,电子云偏于Cl一侧,可表示为H→Cl。 ○3配位键: 共享的电子对只有一个原子单独提供。如NH 4 +,N提供孤对电子,H+提供空轨道。☆共价化合物: ○1非金属之间形成的化合物(除铵盐) ○2少数盐类( AlCl 3和 FeCl 3 ) ○3所有酸类 区别离子化合物和共价化合物——熔融状态下是否导电。 一般来说在高中阶段,只要你在题目中看到的化合物含有第一主族的金属(碱金属) 那么一定是离子键。只要你看到题目所给的化合物没有金属元素那么是共价键(除了铵盐)。 ※金属键 定义:金属晶体中金属原子(或离子)与自由电子形成的化学键。无方向性,无饱和性。形成原因:金属元素的原子在形成金属时,原子间的有价电子可以自由地从一个原子跑到另一个原子,好象是价电子为许多原子所共有。金属的许多物理性质,如光泽,延性,展性,导热性,导电性和金属键都有关系。 键长,键能,键角。原子半径,离子半径比较。原子半径在同一元素周期内从左到右递减,在同一族内从上到下递增。结合电子层数和核电荷数比较。 1同一元素的微粒,电子数越多,半径越大。如Na>Na+,Cl

离子键和共价键的区别

离子键: 定义:使相邻的阴、阳离子结合成化合物的静电作用。形成原因: 离子键是由电子转移(失去电子者为阳离子,获得电子者为阴离子)形成的。即正离子和负离子之间由于静电引力所形成的化学键。离子既可以是单离子,如Na+、K+ ;也可以由原子团形成,如Cl- ,NO3- 等含有离子键的物质(高中要求记住的) 1 活泼金属阳离子和活泼非金属阴离子形成的盐类例如( KCl CsSO4 KNO3 Na2S 等) 2 所有铵盐例如( NH4Cl NH4SO4 ) 3 低价金属氧化物(注意必须是低价1或2价) 例如( Na2O K2O CaO ) 4 强碱(弱碱有些并不是) 例如( NaOH KOH ) 5 过氧化物超氧化物碳化钙(CaC2 电石) 例如( Na2O2 CaO2 KO2 BaO4 ) 注意: 含有离子键的化合物一定是离子化合物!! 共价键定义: 共价键的形成是相邻两个原子之间自旋方向相反的电子相互配对,此时原子轨道相互重叠,两核间的电子云密度相对地增大,从而增加对两核的引力。共价键的作用力很强,有饱和性与方向性。因为只有自旋方向相反的电子才能配对成键,所以共价键有饱和性;另外,原子轨道互相重叠时,必须满足对称条件和最大重叠条件,所以共价键有方向性。共价键又可分为三种: (1)非极性共价键形成共价键的电子云正好位于键合的两个原子正中间,如金刚石的C-C键。(2)极性共价键形成共价键的电子云偏于对电子引力较大的一个原子,如Pb-S 键,电子云偏于S一侧,可表示为Pb→S。(3)配价键共享的电子对只有一个原子单独提供。如Zn-S键,共享的电子对由锌提供,(这个高中不必学) 共价化合物: 1 非金属之间形成的化合物(除铵盐) 2 少数盐类( AlCl3 和FeCl3 ) 3 所有酸类区别离子化合物和共价化合物看溶于水(或其它溶剂)是否导电高中阶段记住这些已经足够现在我教你怎么区分(最快的方法) 一般来说在高中阶段只要你在题目中看到的化合物含有第一主族的金属(碱

离子键共价键金属键比较

离子键共价键金属键比较 The latest revision on November 22, 2020

※离子键 定义:是原子得失电子形成的阴、阳离子靠静电作用形成的化学键。无方向性,无饱和性。 形成原因:离子键是由电子转移(失去电子者为阳离子,获得电子者为阴离子)形成的。即正离子和负离子之间由于静电引力所形成的化学键。离子既可以是单离子,如Na +、K +;也可以由原子团形成,如Cl -,NO 3-等含有离子键的物质(高中要求记住的) ☆离子化合物: 活泼金属阳离子和活泼非金属阴离子形成的盐类 例如KClCs 2SO 4KNO 3Na 2S 等 所有铵盐 例如NH 4Cl(NH 4)2SO 4 低价金属氧化物(注意必须是低价+1或+2价) 例如Na 2OK 2OCaO 强碱(弱碱有些并不是) 例如NaOHKOH 过氧化物超氧化物碳化钙(CaC 2电石) 例如Na 2O 2CaO 2KO 2BaO 4 注意:含有离子键的化合物一定是离子化合物! ※共价键 定义:原子间通过共用电子对(电子云重叠)形成的化学键,有方向性,有饱和性。 共价键的形成是相邻两个原子之间自旋方向相反的电子相互配对,此时原子轨道相互重叠,两核间的电子云密度相对地增大,从而增加对两核的引力。因为只有自旋方向相反的电子才能配对成键,所以共价键有饱和性;另外,原子轨道互相重叠时,必须满足对称条件和最大重叠条件,所以共价键有方向性。共价键又可分为三种: 非极性共价键:形成共价键的电子云正好位于键合的两个原子正中间,不偏移。如金刚石的C —C 键。 极性共价键:形成共价键的电子云偏于对电子引力较大的一个原子,如H —Cl 键,电子云偏于Cl 一侧,可表示为H →Cl 。 配位键:共享的电子对只有一个原子单独提供。如NH 4+,N 提供孤对电子,H +提供空轨道。 ☆共价化合物: 非金属之间形成的化合物(除铵盐) 少数盐类(AlCl 3和FeCl 3) 所有酸类 区别离子化合物和共价化合物——熔融状态下是否导电。 一般来说在高中阶段,只要你在题目中看到的化合物含有第一主族的金属(碱金属) 那么一定是离子键。只要你看到题目所给的化合物没有金属元素那么是共价键(除了铵盐)。 ※金属键 定义:金属晶体中金属原子(或离子)与自由电子形成的化学键。无方向性,无饱和性。 形成原因:金属元素的原子在形成金属时,原子间的有价电子可以自由地从一个原子跑到另一个原子,好象是价电子为许多原子所共有。金属的许多物理性质,如光泽,延性,展性,导热性,导电性和金属键都有关系。 键长,键能,键角。原子半径,离子半径比较。原子半径在同一元素周期内从左到右递减,在同一族内从上到下递增。结合电子层数和核电荷数比较。 1同一元素的微粒,电子数越多,半径越大。如Na>Na +,ClLi + 3同类离子与原子半径比较相同。如Na +>Mg 2+>Al 3+,F -

离子键与共价键

1、掌握离子键、共价键、化学键的含义。 2、掌握离子化合物、共价化合物的含义, 3、理解配位碱、金属键的含义。 化学键:分子中相邻原子之间强烈的相互作用。 离子键:阴、阳离子之间通过静电作用形成的化学键。 共价键:原子间通过共用电子对形成的化学键 练习下列说法中正确的是( ) (A)两个原子或多个原子之间的相互作用叫做化学键 (B)阴阳离子间通过静电引力而形成的化学键叫做离子键 (C)只有金属元素和非金属元素化合时才能形成离子键 (D)大多数的盐、碱和低价金属氧化物中含有离子键 应指相邻的两个或多个原子,强烈的相互作用 (1)某ⅡA族元素X 和ⅦA族元素Y可形成离子化合物,请用电子式表示该离子化合(2)钠与氧气在常温下反应生成氧化钠。(3)请用电子式表示氧化钠的形成过程。 活泼的金属元素和活泼非金属元素化合时形成离子键。请思考,非金属元素之间化合时,能形成离子键吗?为什么 不能,因非金属元素的原子均有获得电子的倾向。 非金属元素的原子间可通过共用电子对的方法使双方最外电子层均达到稳定结构。 知识点: 1.共价键 定义:原子间通过共用电子对所形成的化学键,叫做共价键 成键微粒:原子 相互作用:共用电子对 成键元素:同种或不同种非金属元素 种类:非极性键及极性键 强弱判断:成键原子半径越小,共价键越强,断开键需要的能量越高。

1.1共价键的特征 (1)饱和性 按照共价键的共用电子对理论,一个原子有几个未成对电子,便可和几个自旋相反的电子配对成键,这就共价键的“饱和性”。H 原子、Cl原子都只有一个未成对电子,因而只能形成H2、HCl、Cl2分子,不能形成H3、H2Cl、Cl3分子 (2)方向性 共价键尽可能沿着电子出现概率最大的方向形成,这就共价键的“方向性”。 两个原子轨道重叠部分越大,两核间电子的概率密度越大,形成的共价键越牢固,分子越稳定。 1.3成键条件: 同种或不同种非金属元素原子结合; 部分金属元素原子与非金属元素原子,如AlCl3 存在:存在于非金属单质和共价化合物中,也存在于某些离子化合物和原子团中H2 HCl NaOH NH4Cl Na2O2 SO42- NO3- 共价化合物:以共用电子对形成分子的化合物。 1.3 共价键的形成 电子云在两个原子核间重叠,意味着电子出现在核间的概率增大,电子带负电,因而可以形象的说,核间电子好比在核间架起一座带负电的桥梁,把带正电的两个原子核“黏结”在一起了 由原子轨道相互重叠形成的σ键和π键总称价键轨道 规律:

离子键,共价键,金属键比较

※离子键 定义:是原子得失电子形成的阴、阳离子靠静电作用形成的化学键。无方向性,无饱和性。 形成原因:离子键是由电子转移(失去电子者为阳离子,获得电子者为阴离子)形成的。即正离子和负离子之间由于静电引力所形成的化学键。离子既可以是单离子,如Na +、K +;也可以由原子团形成,如Cl -,NO 3-等含有离子键的物质(高中要求记住的) ☆离子化合物: 活泼金属阳离子和活泼非金属阴离子形成的盐类 例如KClCs 2SO 4KNO 3Na 2S 等 所有铵盐 例如NH 4Cl(NH 4)2SO 4 低价金属氧化物(注意必须是低价+1或+2价) 例如Na 2OK 2OCaO 强碱(弱碱有些并不是) 例如NaOHKOH 过氧化物超氧化物碳化钙(CaC 2电石) 例如Na 2O 2CaO 2KO 2BaO 4 注意:含有离子键的化合物一定是离子化合物! ※共价键 定义:原子间通过共用电子对(电子云重叠)形成的化学键,有方向性,有饱和性。 共价键的形成是相邻两个原子之间自旋方向相反的电子相互配对,此时原子轨道相互重叠,两核间的电子云密度相对地增大,从而增加对两核的引力。因为只有自旋方向相反的电子才能配对成键,所以共价键有饱和性;另外,原子轨道互相重叠时,必须满足对称条件和最大重叠条件,所以共价键有方向性。共价键又可分为三种: 非极性共价键:形成共价键的电子云正好位于键合的两个原子正中间,不偏移。如金刚石的C —C 键。 极性共价键:形成共价键的电子云偏于对电子引力较大的一个原子,如H —Cl 键,电子云偏于Cl 一侧,可表示为H →Cl 。 配位键:共享的电子对只有一个原子单独提供。如NH 4+,N 提供孤对电子,H +提供空轨道。 ☆共价化合物: 非金属之间形成的化合物(除铵盐) 少数盐类(AlCl 3和FeCl 3) 所有酸类 区别离子化合物和共价化合物——熔融状态下是否导电。 一般来说在高中阶段,只要你在题目中看到的化合物含有第一主族的金属(碱金属) 那么一定是离子键。只要你看到题目所给的化合物没有金属元素那么是共价键(除了铵盐)。 ※金属键 定义:金属晶体中金属原子(或离子)与自由电子形成的化学键。无方向性,无饱和性。 形成原因:金属元素的原子在形成金属时,原子间的有价电子可以自由地从一个原子跑到另一个原子,好象是价电子为许多原子所共有。金属的许多物理性质,如光泽,延性,展性,导热性,导电性和金属键都有关系。 键长,键能,键角。原子半径,离子半径比较。原子半径在同一元素周期内从左到右递减,在同一族内从上到下递增。结合电子层数和核电荷数比较。 1同一元素的微粒,电子数越多,半径越大。如Na>Na +,ClLi +

B2-第1章-练习5-化学键1-电子式书写、离子键共价键判断

第一章练习5 –会画电子式,判断什么键 1.写出下列物质的电子式,并判断化学键类型 H2____,O2____,N2____,Br2____,F2____,H2O____,HCl____,NH3____,CH4____,H2O2____,HF____,H2S____,CCl4____, NaCl____,KCl____,CaCl2____,MgCl2____,NaO____,Na2O2____,NaBr____,KI____,NaOH____,CaO____,CaCl2____, 2.下列各物质中既含有离子键又含有共价键的是() A.CO2B.HCl C.CaCl2 D.NH4Cl 3.下列不是含离子键的化合物的是 A.H2 O B.CaI2 C. KOH D.NaNO3 4.下列物质中含有共价键和离子键的化合物是 A. Ba (OH)2 B. CaCl2 C. H2 O D. H2 5下列各组物质中,化学键类型完全相同的是( ) A.HI和NaI B.H2S和H2O C.Cl2和CCl4D.F2和NaBr 6下列物质中存在非极性键的是( ) A.HClO B.SO2C.Cl2 D.Na2O 7下列电子式的书写错误的是 8下列各组元素,两两结合,既可形成含离子键的化合物,又可形成共价键的化合物的是()A.H、S、K B.Na 、Mg、Cl C.C、H、O D.Ca、Mg、Na 9下列化合物中,既含有极性键又含有非极性键的是 A.Na2O2 B.NH4Cl C.CH4 D.H2O2 10下列物质中,①H2O2 ②O2 ③HBr ④NaBr ⑤CaCl2 ⑥Na2O2 ⑦H2SO4 ⑧CH4 ⑨NaOH ⑩NH4Cl 只含有离子键的是,只含有非极性键的是,只含有极性键的是, 既含有离子键又含有非极性键的是,既含有离子键又含有极性键的是, 既含有非极性键又含有极性键的是。(填编号)

掌握离子键和共价键的基本特征和它们的区别

第 4 章分子结构 [ 教学要求 ] 1 .掌握离子键和共价键的基本特征和它们的区别。 2 .掌握价键理论,杂化轨道理论。 3 .掌握分子轨道理论的基本内容。 4 .了解分子间作用力及氢键的性质和特点。 [ 教学重点 ] 1 . VSEPR 2 . VB 法 3 . MO 法 [ 教学难点 ] MO 法 [ 教学时数 ] 8 学时 [ 主要内容 ] 1 .离子键:离子键的形成、离子的特征(电荷,半径,构型) 2 .共价键:价键理论-电子配对法(本质,要点,饱和性,方向性,类型σ键、π键)。 3 .杂化轨道理论:杂化轨道理论的提出,杂化轨道理论的基本要点,杂化轨道的类型 - sp 、spd 等各种类型及举例。 4 .分子轨道理论:分子轨道理论的基本要点,分子轨道的能级图,实例 - 同核:H2、 He 、O2、F2、N2;异核: NO 、 HF 。 5 .共价键的属性:键长,键角,键能,键级。 6 .分子间的作用力和氢键。 [ 教学内容 ] 4-1 化学键参数和分子的性质 分子结构的内容是:分子组成、分子空间结构和分子形成时的化学键键参数:用各种不同的化学量对化学键的各种属性的描述。 键能:在 101.3KPa , 298K 下,断开 1molAB 理想气体成 A 、 B 时过程的热效应,称AB 的键能,即离解能。记为△ H ° 298 ( AB ) A ─ B (g) =A (g) +B (g) △H° 298 ( AB ) 键能的一些说明: 对双原子分子,键能即为离解能,对多原子分子,键能有别于离解能。同种化学键可能因环境不同键能有很大差异。对同种化学键来说,离解产物的稳定性越高,键能越小。产物的稳定性可以从电荷的分散程度、结构的稳定性来判断。 键能越大键越稳定,对双原子分子来说分子就越稳定或化学惰性。 成键原子的半径越小,其键能越大,短周期中的元素的成键能力与其同族元素长周期的相比键能肯定要大得多。在同一周期中,从左到右原子半径减小,可以想见其成键能力应增大。但 F-F 、 O-O 、 N-N 单键的键能反常地低,是因为其孤电子对的斥力引起。 一般单键键能不如双键键能,双键键能不如叁键键能。但双键和叁键的键能与单键键能并无简单的倍数关系。一般来说,原子间形成的第一个键最稳定,第二个键次之,第三个键最小,若有第四个键则更小。 对双原子分子间形成的键:同核双原子分子同族元素从上到下键能下降,因为原子半径增大而成键能力下降;异核双原子分子在核间距一样(或几乎一样)时,电负性相差越大,

相关文档
最新文档