Matlab_Simulink模型到C_C_代码的自动实现(1)

Matlab_Simulink模型到C_C_代码的自动实现(1)
Matlab_Simulink模型到C_C_代码的自动实现(1)

 Ξ 收稿日期:2006-09-10

作者简介:张祥(1977-),女,四川资阳人,硕士研究生,讲师,主要从事智能控制、控制理论与应用研究.

【计算机与通信工程】

Matlab/Simulink 模型到C/C ++代码的自动实现

Ξ

张 祥,杨志刚,张彦生

(重庆交通大学机电与汽车工程学院,重庆 400074)

摘要:介绍了如何利用Matlab/S imulink 的RT W (Real-T ime W orkshop )代码生成工具将S imulink 模型

自动转换成C/C ++代码的方法,通过这种方式可以利用S imulink 方便地建立系统模型,同时也解决了S imlink 模型在Matlab/S imulink 环境下速度较慢的问题,大大减少了软件工程师的编程工作量.转换后的C 代码能脱离Matlab 环境独立运行,这进一步扩大用该方法生成的C 代码的适用范围.关 键 词:Matlab/S imulink ,RT W 代码生成工具,C/C ++代码中图分类号:TP311.11 文献标识码:A 文章编号:1671-0924(2006)11-0111-03

Automatic R ealization from Matlab/Simulink Models to C/C ++Code

ZHANG X iang ,Y ANG Zhi-gang ,ZHANG Y an-sheng

(School of E lectromechanics and Autom obile Engineering ,Chongqing Jiaotong University ,Chongqing 400074,China )

Abstract :This paper proposes a method of using the RT W (Real-T ime W orkshop )code generation tool to convert Matlab/Simulink to the C/C ++code.Accordingly the system ’s m odel is constructed conveniently by using simulink.This can not only av oid the problem of low simulation speed of the m odel in matlab/Simulink circumstance ,but als o deduce the w orkload of the programming engineer.In addition ,the convert 2ed C code can run independently out of Matlab circumstance ,which expands the use domain of the converted C code by this method.

K ey w ords :Matlab/Simulink ;RT W code generation tool ;C/C ++code

0 引言

目前,市场对产品的需求呈现多样性、快速性的趋势,这使产品开发面临着多样性需求与快速开发之间的矛盾,并行工程(设计、实现、测试和生产准备同时进行)被提上了日程.其中系统设计软件(S imulink 软件)是用Matlab 语言建立的一种新型的图形建模工具,它免去了程序代码编程带来的低效与繁琐,可以方便地建立系统的模型(例如系统被控对象的模型、控制器模型),通过仿真可以观察到控

制算法的性能;而且,如果控制算法不理想,还可以很快地进行反复设计和反复实验,直到找到比较好的控制方案.具体实现时,不需要将设计的控制算法进行编程,可直接把S imulink 建立起来的控制器模型通过RT W 工具转换成可执行代码,下载到存储器中,这样大大减轻了软件工程师的编码工作量,并且将S imulink 模型转换成的C/C ++代码能脱离Matlab 环境独立运行.下面详细介绍如何实现S imulink 模型向C/C ++代码的转换.需要注意的是,要想成功地运行RT W Windows T arget ,则需在电脑上安装M i 2cros oft Visual C ++5.0以上版本的编译器.

第20卷 第11期V ol.20 N o.11重 庆 工 学 院 学 报

Journal of Chongqing Institute of T echnology

2006年11月N ov.2006

1 Simulink 模型向C/C ++代码转换方法

本文中以电子节气门控制模型throttlectr.mdl 为例,将

该模型通过RT W 自动生成C/C ++代码.首先在Matlab 主窗口打开此模型,和Matlab/S imulink 软件环境下仿真不同,将S imulink 模型利用RT W 生成C 代码时,实时仿真需要选择定步长的仿真算法,所以在转换之前应进行相应的设置[1].仿真的控制参数由S imulation/S imulation parameters 菜单项来选择.定步长的仿真算法在该对话框下的S olver op 2tions 栏目选择,如图1所示

.

图1 定步长仿真算法

RT W 用户界面通过S imulink 提供的仿真参数框

“S imulink Parameters

”设定,其界面如图2所示.

图2 参数设置对话框

应将Real -T ime W orkshop 标签下的Categ ory 选为T ar 2get C on figuration.选择了代码生成方式后还应选择目标代码类型,在图2所示的对话框中,单击System target file 栏对应的Browse 按钮,出现图3所示的对话框,则可以从中选择所期望转换后生成的目标代码类型,这里选择Visual C/C ++Project Makefile only for the “grt ”target.选择图2界面W orkspace I/O

页,选中其中的tout 和y out 前的复选框.

图3 实时工具目标选择对话框 设置好编译环境后,按下图2中的Build 按钮,这时即

可生成S imulinik 模型的C/C ++代码,最终生成下列文件:①throttlectr.c ,是通过目标语言编译器(tornado.tlc )创建的模型的单机C 代码;②throttlectr.h ,是包含状态变量和参数的包含头文件;③throttlectr-data.c ,是对模型中所有用到的参数进行赋值的C 代码.另外还有3个包含模型信息的头文件throttlectr-private.h ,throttlectr-types.h ,rtm odel.h 和一个

throttlectr.mak 文件.上述生成的所有文件存储在Matlab 目

录下的W ork 文件夹中.需要指出是以上生成的.c 和.h 文件并不能脱离Matlab 独立运行,要将转换后的代码脱离

Matlab 独立运行还需要一系列的源文件.将生成的throt 2tlctr.mak 文件在Visual C ++环境下打开,throttlectr.mak 自

动调用独立于Matalb 运行所需要的源文件,这些源文件均可在Matlab 中找到.

2 Mat 文件的读取

在VC 下运行throttlectr.mak 文件,其运行结果是生成

一数据文件———throttlectr.mat 文件.mat 文件是Matlab 系统保存文件的默认文件格式,通过mat 文件可以实现Matlab 与其它编程环境的数据交互,为不同应用程序之间移动

matlab 数据提供了一种便利的机制[2-5].

在操作mat 文件的子程序中,主要有以下子函数,它们的名字和相应提供的功能说明如下:

matopen :打开mat 文件;matclose :关闭mat 文件;

matG etDir :取mat 文件中的变量列表;matG etF p :取mat 文件中的C 语言FI LE 句柄;matG etArray :从mat 文件中取一个矩阵;matPutArray :向mat 文件中存一个矩阵;matDeleteArray :从mat 文件中删除一个矩阵;

matPutArrayG lobal :向mat 文件中存一个矩阵,使得当用load 命令装入这个mat 文件时,该矩阵对应的变量称为global 变量;

matG etArrayHeader :读取mat 文件中的Matlab 矩阵头信

息;

matG etNextArrayHeader:读取mat 文件中下一个Matlab

的矩阵头信息;

下面给出一段读取throttlectr.mat 文件的例子,并将读出的数据写入throttlectr.txt 文档中.

int main ()

{int result ;maArray 3p ,3q ;M ATFile 3pm ;int m ,n ,j ;double 3x ,3y ;

FI LE 3fOut =NU LL ;

211重庆工学院学报

const char 3file =“throttlectr.mat ”;fOut =fopen (“throttlectr.txt ”,“a +”);pm =matOpen (file ,“r ”);q =matG etVariable (pm ,“rt-y out ”);p =matG etVariable (pm.“rt-tout ”);m =mxG etM (p );

fprintf (fOut ,“the number of rows is %d \n ”,m );n =mxG etN (p );

fprintf (fOut ,“the number of column is %d \n ”,n );if (p ==NU LL ){

fprintf (fOut ,“Error reading in file %s \n ”,file );return (1);}

fprintf (fOut ,“%d \n ”,p );y =mxG etPr (q );x =mxG etPr (p );for (j =0;j

fprintf (fOut ,“%-5d f \n ”,y[j ]);}

return ((result ==0)?EXIT -S UCCESS:EXIT -FAI LURE ):}

3 代码验证

在完成了Matlab/S imulink 模型到C/C ++代码的自动转换后,则可将生成的可执行C 代码与S imulink 模型进行性能比较.图4为电子节气门的S imulink 模型———throttlec 2

tr.mdl ,运行该模型得到图5所示的结果,在VC 下运行在由S imulink 的RT W 生成的throttlectr.mak 文件,并运行上述给

出的读取throttlectr.mat 文件程序,得到图6所示结果.从图

5与图6中可以得到两者运行结果几乎是相同的,这说明

由S imulink 的RT W 生成的C/C ++代码的正确性,并且由

S imulink 模型转换成C/C ++代码的过程中没有进行代码

的编辑,从而减轻了用户编写代码的工作量

.

图4 电子节气门的S imulink

模型

图5 S imulink

模型仿真得到的结果

图6 S imulink 模型转换为C 代码程序运行的结果

4 结束语

RT W 能够从系统设计的S imulink 模型直接生成面向目

标的代码,减少了用户编写代码的工作量;通过一定方式的处理所生成的代码能独立于Matlab 运行,这就可以完成从编译、连接、下载直至运行的整个过程.

参考文献:

[1] 陈永春.从Matlab/S imulink 模型到代码实现[M].北

京:清华大学出版社,2002.[2] 罗桂山,吕庭豪.M AT LAB 与VC ++融合方法的探讨

[J ].计算机与数字工程,2004,32(3):19-21.[3] 邹益民.M AT LAB 与C 语言的混合编程[J ].计算机应

用,2000(2):51.[4] 董长虹.Matlab 接口技术与应用[M].北京:国防工业

出版社,2004.

[5] 杨杰.数据采集系统中数据获取和处理的C ++

Builder 实现[J ].重庆工学院学报,2005(3):51-55.

(责任编辑 刘 舸)

3

11张 祥,等:Matlab/Simulink 模型到C/C ++代码的自动实现

图论算法及其MATLAB程序代码

图论算法及其MATLAB 程序代码 求赋权图G =(V ,E ,F )中任意两点间的最短路的Warshall-Floyd 算法: 设A =(a ij )n ×n 为赋权图G =(V ,E ,F )的矩阵,当v i v j ∈E 时a ij =F (v i v j ),否则取a ii =0,a ij =+∞(i ≠j ),d ij 表示从v i 到v j 点的距离,r ij 表示从v i 到v j 点的最短路中一个点的编号. ①赋初值.对所有i ,j ,d ij =a ij ,r ij =j .k =1.转向② ②更新d ij ,r ij .对所有i ,j ,若d ik +d k j <d ij ,则令d ij =d ik +d k j ,r ij =k ,转向③. ③终止判断.若d ii <0,则存在一条含有顶点v i 的负回路,终止;或者k =n 终止;否则令k =k +1,转向②. 最短路线可由r ij 得到. 例1求图6-4中任意两点间的最短路. 解:用Warshall-Floyd 算法,MATLAB 程序代码如下: n=8;A=[0281Inf Inf Inf Inf 206Inf 1Inf Inf Inf 8607512Inf 1Inf 70Inf Inf 9Inf Inf 15Inf 03Inf 8 Inf Inf 1Inf 3046 Inf Inf 29Inf 403 Inf Inf Inf Inf 8630];%MATLAB 中,Inf 表示∞ D=A;%赋初值 for (i=1:n)for (j=1:n)R(i,j)=j;end ;end %赋路径初值 for (k=1:n)for (i=1:n)for (j=1:n)if (D(i,k)+D(k,j)

(图论)matlab模板程序

(图论)matlab模板程序

第一讲:图论模型 程序一:可达矩阵算法 %根据邻接矩阵A(有向图)求可达矩阵P(有向图) function P=dgraf(A) n=size(A,1); P=A; for i=2:n P=P+A^i; end P(P~=0)=1; %将不为0的元素变为1 P; 程序二:无向图关联矩阵和邻接矩阵互换算法F表示所给出的图的相应矩阵 W表示程序运行结束后的结果 f=0表示把邻接矩阵转换为关联矩阵 f=1表示把关联矩阵转换为邻接矩阵 %无向图的关联矩阵和邻接矩阵的相互转换 function W=incandadf(F,f) if f==0 %邻接矩阵转换为关联矩阵 m=sum(sum(F))/2; %计算图的边数 n=size(F,1); W=zeros(n,m); k=1; for i=1:n for j=i:n if F(i,j)~=0 W(i,k)=1; %给边的始点赋值为1 W(j,k)=1; %给边的终点赋值为1 k=k+1; end end end elseif f==1 %关联矩阵转换为邻接矩阵 m=size(F,2); n=size(F,1); W=zeros(n,n); for i=1:m a=find(F(:,i)~=0); W(a(1),a(2))=1; %存在边,则邻接矩阵的对应值为1 W(a(2),a(1))=1;

end else fprint('Please imput the right value of f'); end W; 程序三:有向图关联矩阵和邻接矩阵互换算法 %有向图的关联矩阵和邻接矩阵的转换 function W=mattransf(F,f) if f==0 %邻接矩阵转换为关联矩阵 m=sum(sum(F)); n=size(F,1); W=zeros(n,m); k=1; for i=1:n for j=i:n if F(i,j)~=0 %由i发出的边,有向边的始点 W(i,k)=1; %关联矩阵始点值为1 W(j,k)=-1; %关联矩阵终点值为-1 k=k+1; end end end elseif f==1 %关联矩阵转换为邻接矩阵 m=size(F,2); n=size(F,1); W=zeros(n,n); for i=1:m a=find(F(:,i)~=0); %有向边的两个顶点 if F(a(1),i)==1 W(a(1),a(2))=1; %有向边由a(1)指向a(2) else W(a(2),a(1))=1; %有向边由a(2)指向a(1) end end else fprint('Please imput the right value of f'); end W;

图论算法及matlab程序的三个案例

图论实验三个案例 单源最短路径问题 Dijkstra 算法 Dijkstra 算法是解单源最短路径问题的一个贪心算法。其基本思想是,设置一个顶点集合S 并不断地作贪心选择来扩充这个集合。一个顶点属于集合S 当且仅当从源到该顶点的最短路径长度已知。设v 是图中的一个顶点,记()l v 为顶点 v 到源点v 1的最短距离, ,i j v v V ?∈,若 (,)i j v v E ?,记i v 到j v 的权ij w =∞。 Dijkstra 算法: ① 1{}S v =,1()0l v =;1{}v V v ??-,()l v =∞,1i =,1{}S V v =-; ② S φ=,停止,否则转③; ③ ()min{(),(,)} j l v l v d v v =, j v S ∈,v S ?∈; ④ 存在 1 i v +,使 1()min{()} i l v l v +=,v S ∈; ⑤ 1{} i S S v +=, 1{} i S S v +=-,1i i =+,转②; 实际上,Dijkstra 算法也是最优化原理的应用:如果12 1n n v v v v -是从1v 到 n v 的最短路径,则 12 1 n v v v -也必然是从1v 到 1 n v -的最优路径。 在下面的MATLAB 实现代码中,我们用到了距离矩阵,矩阵第i 行第j 行元 素表示顶点i v 到j v 的权ij w ,若i v 到j v 无边,则realmax ij w =,其中realmax 是 MATLAB 常量,表示最大的实数+308)。 function re=Dijkstra(ma)

图论与网络优化课程设计_Matlab实现

图论与网络优化课程设计 四种基本网络(NCN、ER、WS、BA) 的构造及其性质比较 摘要:网络科学中被广泛研究的基本网络主要有四种,即:规则网络之最近邻耦合网络(Nearest-neighbor coupled network),本文中简称NCN;ER随机网络G(N,p);WS小世界网络;BA无标度网络。本文着重研究这几种网络的构造算法程序。通过运用Matlab软件和NodeXL网络分析软件,计算各种规模下(例如不同节点数、不同重连概率或者连边概率)各自的网络属性(包括边数、度分布、平均路径长度、聚类系数),给出图、表和图示,并进行比较和分析。 关键字:最近邻耦合网络;ER随机网络;WS小世界网络;BA无标度网络;Matlab;NodeXL。

四种基本网络(NCN、ER、WS、BA) 的构造及其性质比较 1.概述 1.网络科学的概述 网络科学(Network Science)是专门研究复杂网络系统的定性和定量规律的一门崭新的交叉科学,研究涉及到复杂网络的各种拓扑结构及其性质,与动力学特性(或功能)之间相互关系,包括时空斑图的涌现、动力学同步及其产生机制,网络上各种动力学行为和信息的传播、预测(搜索)与控制,以及工程实际所需的网络设计原理及其应用研究,其交叉研究内容十分广泛而丰富。网络科学中被广泛研究的基本网络主要有四种,即:规则网络之最近邻耦合网络(Nearest-neighbor coupled network),本文中简称NCN;ER随机网络G(N,p);WS小世界网络;BA无标度网络。本文着重研究这几种网络的构造算法程序。计算各种规模下(例如不同节点数、不同重连概率或者连边概率)各自的网络属性(包括边数、度分布、平均路径长度、聚类系数),给出图、表和图示,并进行比较和分析。 2.最近邻耦合网络的概述 如果在一个网络中,每一个节点只和它周围的邻居节点相连,那么就称该网络为最近邻耦合网络。这是一个得到大量研究的稀疏的规则网络模型。 常见的一种具有周期边界条件的最近邻耦合网络包含围成一个环的N个节点,其中每K个邻居节点相连,这里K是一个偶数。这类网络的一个重要特征个节点都与它左右各/2 就是网络的拓扑结构是由节点之间的相对位置决定的,随着节点位置的变化网络拓扑结构也可能发生切换。 NCN的Matlab实现: %function b = ncn(N,K) %此函数生成一个有N个节点,每个节点与它左右各K/2个节点都相连的最近邻耦合网络 %返回结果b为该最近邻耦合网络对应的邻接矩阵 function b = ncn(N,K) b=zeros(N); for i = 1:N for j = (i+1):(i+K/2) if j<=N b(i,j)=1; b(j,i)=1; else b(i,j-N)=1;

多目标优化实例和matlab程序

NSGA-II 算法实例 目前的多目标优化算法有很多, Kalyanmoy Deb 的带精英策略的快速非支配排序遗传算法(NSGA-II) 无疑是其中应用最为广泛也是最为成功的一种。本文用的算法是MATLAB 自带的函数gamultiobj ,该函数是基于NSGA-II 改进的一种多目标优化算法。 一、 数值例子 多目标优化问题 424221********* 4224212212112 12min (,)10min (,)55..55 f x x x x x x x x x f x x x x x x x x x s t x =-++-=-++-≤≤??-≤≤? 二、 Matlab 文件 1. 适应值函数m 文件: function y=f(x) y(1)=x(1)^4-10*x(1)^2+x(1)*x(2)+x(2)^4-x(1)^2*x(2)^2; y(2)=x(2)^4-x(1)^2*x(2)^2+x(1)^4+x(1)*x(2); 2. 调用gamultiobj 函数,及参数设置: clear clc fitnessfcn=@f; %适应度函数句柄 nvars=2; %变量个数 lb=[-5,-5]; %下限 ub=[5,5]; %上限 A=[];b=[]; %线性不等式约束 Aeq=[];beq=[]; %线性等式约束 options=gaoptimset('paretoFraction',0.3,'populationsize',100,'generations',200,'stallGenLimit',200,'TolFun',1e-100,'PlotFcns',@gaplotpareto); % 最优个体系数paretoFraction 为0.3;种群大小populationsize 为100,最大进化代数generations 为200, % 停止代数stallGenLimit 为200, 适应度函数偏差TolFun 设为1e-100,函数gaplotpareto :绘制Pareto 前端 [x,fval]=gamultiobj(fitnessfcn,nvars,A,b,Aeq,beq,lb,ub,options)

matlab图论程序算法大全

精心整理 图论算法matlab实现 求最小费用最大流算法的 MATLAB 程序代码如下: n=5;C=[0 15 16 0 0 0 0 0 13 14 for while for for(i=1:n)for(j=1:n)if(C(i,j)>0&f(i,j)==0)a(i,j)=b(i,j); elseif(C(i,j)>0&f(i,j)==C(i,j))a(j,i)=-b(i,j); elseif(C(i,j)>0)a(i,j)=b(i,j);a(j,i)=-b(i,j);end;end;end for(i=2:n)p(i)=Inf;s(i)=i;end %用Ford 算法求最短路, 赋初值 for(k=1:n)pd=1; %求有向赋权图中vs 到vt 的最短路

for(i=2:n)for(j=1:n)if(p(i)>p(j)+a(j,i))p(i)=p(j)+a(j,i);s(i)=j;pd=0;end ;end;end if(pd)break;end;end %求最短路的Ford 算法结束 if(p(n)==Inf)break;end %不存在vs 到vt 的最短路, 算法终止. 注意在求最小费用最大流时构造有 while if elseif if if pd=0; 值 t=n; if elseif if(s(t)==1)break;end %当t 的标号为vs 时, 终止调整过程 t=s(t);end if(pd)break;end%如果最大流量达到预定的流量值 wf=0; for(j=1:n)wf=wf+f(1,j);end;end %计算最大流量 zwf=0;for(i=1:n)for(j=1:n)zwf=zwf+b(i,j)*f(i,j);end;end%计算最小费用

图论算法及matlab程序的三个案例

图论实验三个案例 单源最短路径问题 1.1 Dijkstra 算法 Dijkstra 算法是解单源最短路径问题的一个贪心算法。其基本思想是,设置一个顶点集合S 并不断地作贪心选择来扩充这个集合。一个顶点属于集合S 当且仅当从源到该顶点的最短路径长度已知。设v 是图中的一个顶点,记()l v 为顶点 v 到源点v 1的最短距离, ,i j v v V ?∈,若 (,)i j v v E ?,记i v 到 j v 的权 ij w =∞ 。 Dijkstra 算法: ① 1{}S v =,1()0l v =;1{}v V v ??-,()l v =∞,1i =,1{}S V v =-; ② S φ=,停止,否则转③; ③ ()min{(),(,)} j l v l v d v v =, j v S ∈,v S ?∈; ④ 存在1i v +,使1()min{()}i l v l v +=,v S ∈; ⑤ 1{}i S S v += ,1{}i S S v +=-,1i i =+,转②; 实际上,Dijkstra 算法也是最优化原理的应用:如果121n n v v v v - 是从1v 到n v 的最短路径,则121n v v v - 也必然是从1v 到1n v -的最优路径。 在下面的MATLAB 实现代码中,我们用到了距离矩阵,矩阵第i 行第j 行元素表示顶点i v 到 j v 的权 ij w ,若i v 到 j v 无边,则 realmax ij w =,其中realmax 是 MATLAB 常量,表示最大的实数(1.7977e+308)。 function re=Dijkstra(ma)

图论举例MATLAB

例1 某公司在六个城市621,,,c c c 中有分公司,从i c 到j c 的直接航程票价记在下述矩阵的),(j i 位置上。(∞表示无直接航路),请帮助该公司设计一张城市1c 到其它城市间的票价最便宜的路线图。 ? ? ??? ? ? ? ? ?????????∞∞∞∞∞∞ 055252510550102025251001020402010015252015050102540500 用矩阵n n a ?(n 为顶点个数)存放各边权的邻接矩阵,行向量pb 、1index 、2index 、 d 分别用来存放P 标号信息、标号顶点顺序、标号顶点索引、最短通路的值。其中分量 ?? ?=顶点未标号 当第顶点已标号 当第i i i pb 01)(; )(2i index 存放始点到第i 点最短通路中第i 顶点前一顶点的序号; )(i d 存放由始点到第i 点最短通路的值。 求第一个城市到其它城市的最短路径的Matlab 程序如下: clear; clc; M=10000; a(1,:)=[0,50,M,40,25,10]; a(2,:)=[zeros(1,2),15,20,M,25]; a(3,:)=[zeros(1,3),10,20,M]; a(4,:)=[zeros(1,4),10,25]; a(5,:)=[zeros(1,5),55]; a(6,:)=zeros(1,6); a=a+a'; pb(1:length(a))=0;pb(1)=1;index1=1;index2=ones(1,length(a)); d(1:length(a))=M;d(1)=0;temp=1; while sum(pb)=2

图论算法及其MATLAB程序代码

图论算法及其MATLAB程序代码 求赋权图G = (V, E , F )中任意两点间的最短路的Warshall-Floyd算法: 设A = (a ij )n×n为赋权图G = (V, E , F )的矩阵, 当v i v j∈E时a ij= F (v i v j), 否则取a ii=0, a ij = +∞(i≠j ), d ij表示从v i到v j点的距离, r ij表示从v i到v j点的最短路中一个点的编号. ①赋初值. 对所有i, j, d ij = a ij, r ij = j. k = 1. 转向② ②更新d ij, r ij . 对所有i, j, 若d ik + d k j<d ij, 则令d ij = d ik + d k j, r ij = k, 转向③. ③终止判断. 若d ii<0, 则存在一条含有顶点v i的负回路, 终止; 或者k = n终止; 否则令k = k + 1, 转向②. 最短路线可由r ij得到. 例1求图6-4中任意两点间的最短路. 图6-4 解:用Warshall-Floyd算法, MA TLAB程序代码如下: n=8;A=[0 2 8 1 Inf Inf Inf Inf 2 0 6 Inf 1 Inf Inf Inf 8 6 0 7 5 1 2 Inf 1 Inf 7 0 Inf Inf 9 Inf Inf 1 5 Inf 0 3 Inf 8 Inf Inf 1 Inf 3 0 4 6 Inf Inf 2 9 Inf 4 0 3 Inf Inf Inf Inf 8 6 3 0]; % MATLAB中, Inf表示∞ D=A; %赋初值 for(i=1:n)for(j=1:n)R(i,j)=j;end;end%赋路径初值 for(k=1:n)for(i=1:n)for(j=1:n)if(D(i,k)+D(k,j)

图论matlab程序

第一讲:图论模型 程序一:可达矩阵算法 function P=dgraf(A) n=size(A,1); P=A; for i=2:n P=P+A^i; end P(P~=0)=1; P; 程序二:关联矩阵和邻接矩阵互换算法 function W=incandadf(F,f) if f==0 m=sum(sum(F))/2; n=size(F,1); W=zeros(n,m); k=1; for i=1:n for j=i:n if F(i,j)~=0 W(i,k)=1; W(j,k)=1; k=k+1; end end end elseif f==1 m=size(F,2); n=size(F,1); W=zeros(n,n); for i=1:m a=find(F(:,i)~=0); W(a(1),a(2))=1; W(a(2),a(1))=1; end else fprint('Please imput the right value of f'); end W;

程序三:有向图关联矩阵和邻接矩阵互换算法 function W=mattransf(F,f) if f==0 m=sum(sum(F)); n=size(F,1); W=zeros(n,m); k=1; for i=1:n for j=i:n if F(i,j)~=0 W(i,k)=1; W(j,k)=-1; k=k+1; end end end elseif f==1 m=size(F,2); n=size(F,1); W=zeros(n,n); for i=1:m a=find(F(:,i)~=0); if F(a(1),i)==1 W(a(1),a(2))=1; else W(a(2),a(1))=1; end end else fprint('Please imput the right value of f'); end W;

超全图论matlab程序

超全的图论程序 关注微信公众号“超级数学建模”,教你做有料、有趣的数模人 程序一:可达矩阵算法 function P=dgraf(A) n=size(A,1); P=A; for i=2:n P=P+A^i; end P(P~=0)=1; P; 程序二:关联矩阵和邻接矩阵互换算法 function W=incandadf(F,f) if f==0 m=sum(sum(F))/2; n=size(F,1); W=zeros(n,m); k=1; for i=1:n for j=i:n if F(i,j)~=0 W(i,k)=1; W(j,k)=1; k=k+1; end end end elseif f==1 m=size(F,2); n=size(F,1); W=zeros(n,n); for i=1:m a=find(F(:,i)~=0); W(a(1),a(2))=1; W(a(2),a(1))=1; end else fprint('Please imput the right value of f'); end W;

程序三:有向图关联矩阵和邻接矩阵互换算法 function W=mattransf(F,f) if f==0 m=sum(sum(F)); n=size(F,1); W=zeros(n,m); k=1; for i=1:n for j=i:n if F(i,j)~=0 W(i,k)=1; W(j,k)=-1; k=k+1; end end end elseif f==1 m=size(F,2); n=size(F,1); W=zeros(n,n); for i=1:m a=find(F(:,i)~=0); if F(a(1),i)==1 W(a(1),a(2))=1; else W(a(2),a(1))=1; end end else fprint('Please imput the right value of f'); end W;

图论最短路MATLAB程序

最短路法MATLAB 程序 例1: 某公司在六个城市621,,,c c c 中有分公司,从i c 到j c 的直接航程票价记在下述矩阵的),(j i 位置上。(∞表示无直接航路),请帮助该公司设计一张城市1c 到其它城市间的票价最便宜的路线图。 ??????????????????∞∞∞∞∞∞ 05525251055010202525100102040 2010015252015050102540500 用矩阵n n a ?(n 为顶点个数)存放各边权的邻接矩阵,行向量pb 、1index 、 2index 、d 分别用来存放P 标号信息、标号顶点顺序、标号顶点索引、最短通路的值。其中分量 ? ??=顶点未标号当第顶点已标号当第i i i pb 01)(; )(2i index 存放始点到第i 点最短通路中第i 顶点前一顶点的序号; )(i d 存放由始点到第i 点最短通路的值。 求第一个城市到其它城市的最短路径的Matlab 程序如下: 程序一: clc,clear

a=zeros(6); %邻接矩阵初始化 a(1,2)=50;a(1,4)=40;a(1,5)=25;a(1,6)=10; a(2,3)=15;a(2,4)=20;a(2,6)=25; a(3,4)=10;a(3,5)=20; a(4,5)=10;a(4,6)=25; a(5,6)=55; a=a+a'; %将矩阵数据对称赋予矩阵 a(find(a==0))=inf; %找到0值并赋值为inf pb(1:length(a))=0;pb(1)=1;index1=1;index2=ones(1,length(a)); d(1:length(a))=inf;d(1)=0; temp=1; %最新的P标号的顶点 while sum(pb)

图论matlab程序大全

图论程序大全 程序一:可达矩阵算法 function P=dgraf(A) n=size(A,1); P=A; for i=2:n P=P+A^i; end P(P~=0)=1; P; 程序二:关联矩阵和邻接矩阵互换算法function W=incandadf(F,f) if f==0 m=sum(sum(F))/2; n=size(F,1); W=zeros(n,m); k=1; for i=1:n for j=i:n if F(i,j)~=0 W(i,k)=1; W(j,k)=1;

k=k+1; end end end elseif f==1 m=size(F,2); n=size(F,1); W=zeros(n,n); for i=1:m a=find(F(:,i)~=0); W(a(1),a(2))=1; W(a(2),a(1))=1; end else fprint('Please imput the right value of f'); end W; 程序三:有向图关联矩阵和邻接矩阵互换算法 function W=mattransf(F,f) if f==0

m=sum(sum(F)); n=size(F,1); W=zeros(n,m); k=1; for i=1:n for j=i:n if F(i,j)~=0 W(i,k)=1; W(j,k)=-1; k=k+1; end end end elseif f==1 m=size(F,2); n=size(F,1); W=zeros(n,n); for i=1:m a=find(F(:,i)~=0); if F(a(1),i)==1 W(a(1),a(2))=1; else

(完整word版)图论算法及matlab程序的三个案例.docx

图论实验三个案例 单源最短路径问题 1.1 Dijkstra算法 Dijkstra 算法是解单源最短路径问题的一个贪心算法。其基本思想是,设置一个顶点集合 S 并不断地作贪心选择来扩充这个集合。一个顶点属于集合 S 当且 仅当从源到该顶点的最短路径长度已知。设v 是图中的一个顶点,记l (v) 为顶点 v 到源点 v1的最短距离,v i ,v j V ,若 (v i , v j ) E ,记 v i到 v j的权 w ij。 Dijkstra算法: ①S{ v 1 } , l (v 1 ) 0 ; v V { v 1 } , l (v) , i 1,S V { v1}; ②S ,停止,否则转③; ③l (v) min{ l (v), d (v j , v)} , v j S ,v S ; ④存在v i 1,使l (v i 1) min{ l (v)},v S; ⑤S S U { v i 1 } , S S { v i 1 } ,i i 1,转②; 实际上,Dijkstra算法也是最优化原理的应用:如果v 1 v 2 L v n 1 v n是从 v 1 到 v n的最 短路径,则v 1 v 2 L v n 1也必然是从 v 1 到 v n 1的最优路径。 实现代码中,我们用到了距离矩阵,矩阵第i 行第 j 行元 在下面的 MATLAB 素表示顶点v i 到 v j的权 w ij,若 v i 到 v j无边,则 w ij realmax ,其中 realmax 是 MATLAB常量,表示最大的实数 (1.7977e+308) 。 function re=Dijkstra(ma)

图论程序算法大全

图论算法matlab实现求最小费用最大流算法的 MATLAB 程序代码如下: n=5;C=[0 15 16 0 0 0 0 0 13 14 0 11 0 17 0 0 0 0 0 8 0 0 0 0 0]; %弧容量 b=[0 4 1 0 0 0 0 0 6 1 0 2 0 3 0 0 0 0 0 2 0 0 0 0 0]; %弧上单位流量的费用 wf=0;wf0=Inf; %wf 表示最大流量, wf0 表示预定的流量值 for(i=1:n)for(j=1:n)f(i,j)=0;end;end %取初始可行流f 为零流 while(1) for(i=1:n)for(j=1:n)if(j~=i)a(i,j)=Inf;end;end;end%构造有向赋权图 for(i=1:n)for(j=1:n)if(C(i,j)>0&f(i,j)==0)a(i,j)=b(i,j); elseif(C(i,j)>0&f(i,j)==C(i,j))a(j,i)=-b(i,j); elseif(C(i,j)>0)a(i,j)=b(i,j);a(j,i)=-b(i,j);end;end;end for(i=2:n)p(i)=Inf;s(i)=i;end %用Ford 算法求最短路, 赋初值 for(k=1:n)pd=1; %求有向赋权图中vs 到vt 的最短路 for(i=2:n)for(j=1:n)if(p(i)>p(j)+a(j,i))p(i)=p(j)+a(j,i);s(i)=j;pd=0;end;end;en d if(pd)break;end;end %求最短路的Ford 算法结束 if(p(n)==Inf)break;end %不存在vs 到vt 的最短路, 算法终止. 注意在求最小费用最大流时构造有 向赋权图中不会含负权回路, 所以不会出现k=n dvt=Inf;t=n; %进入调整过程, dvt 表示调整量 while(1) %计算调整量 if(a(s(t),t)>0)dvtt=C(s(t),t)-f(s(t),t); %前向弧调整量 elseif(a(s(t),t)<0)dvtt=f(t,s(t));end %后向弧调整量 if(dvt>dvtt)dvt=dvtt;end if(s(t)==1)break;end %当t 的标号为vs 时, 终止计算调整量 t=s(t);end %继续调整前一段弧上的流f pd=0;if(wf+dvt>=wf0)dvt=wf0-wf;pd=1;end%如果最大流量大于或等于预定的流量值 t=n;while(1) %调整过程 if(a(s(t),t)>0)f(s(t),t)=f(s(t),t)+dvt; %前向弧调整 elseif(a(s(t),t)<0)f(t,s(t))=f(t,s(t))-dvt;end %后向弧调整 if(s(t)==1)break;end %当t 的标号为vs 时, 终止调整过程

图论算法及其Matlab程序

求单源最短路径的Dijkstra算法的Matlab程序 function [d index1 index2]=Dijkf(a) M=max(max(a)); pb(1:length(a))=0; pb(1)=1; index1=1; index2=ones(1,length(a)); d(1:length(a))=M;d(1)=0;temp=1; while sum(pb)=2 index=index(1); end index2(temp)=index; end d; index1; index2; 求任意两点间最短路的Floyd算法的Matlab程序 function [D,R]=floyd(a) n=size(a,1); D=a; for i=1:n for j=1:n R(i,j)=j; end end for k=1:n for i=1:n for j=1:n if D(i,k)+D(k,j)

end end end D;R ; 求Euler回路的Fleury算法的Matlab程序function [eu,cEu]=arEuler(E) eu=0; cEu=[]; ncV=arComp(E); if max(ncV)>1 return end n=max(max(E(:,1:2))); m=size(E,1); for i=1:n b(i)=0; for j=1:m if E(j,1)==i|E(j,2)==i b(i)=b(i)+1; end end end rp=rem(b,2); srp=sum(rp); switch srp case 0, eu=1; case 2, eu=0.5; otherwise, return end if srp==0 v1=1; else v1=find(rp); v1=v1(1); end vc=v1; m=size(E,1); E1=[E(:,1:2),[1:m]'];

相关文档
最新文档