高中化学杂化轨道

(完整版)高中化学选修三期末测试题2含答案

高二期末检测试题 化学10.7.8本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间100分钟。可能用到的相对原子质量:C:12 H:1 0:16 P:31 S:32 Na:23 N:14 CI:35.5 Mg:24 第Ⅰ卷(选择题) 一、选择题(每小题只有一个正确选项,每小题3分,共51分) 1.在物质结构研究的历史上,首先提出原子结构有核模型的科学家是()A.汤姆生B.玻尔C.卢瑟福D.普朗克 2.以下能级符号不正确的是()A.3s B.3p C.3d D.3f 3.在多电子原子中决定电子能量的因素是 A.n B.n、l C.n、l、m D.n、l、m、m s 4.下列叙述中正确的是()A.在共价化合物的分子晶体中不可能存在离子键 B.在离子晶体中不可能存在非极性键 C.全由非金属元素组成的化合物一定是共价化合物 D.直接由原子构成的晶体一定是原子晶体 5.下列各组中,元素的电负性递增的是 A.Na K Rb B.N B Be C.O S Se D.Na P CI 6. 关于氢键,下列说法正确的是() A.每一个水分子内含有两个氢键 B.冰、水和水蒸气中都存在氢键 C.DNA中的碱基互补配对是通过氢键来实现的 D.H2O是一种非常稳定的化合物,这是由于氢键所致 7.下列物质的溶、沸点高低顺序正确的是()A.MgO>H2O>O2>N2 B.CBr4>CI4>CCI4>CH4 C.金刚石>晶体硅>二氧化硅>碳化硅 D.金刚石>生铁>纯铁>钠 8.氮化硼是一种新合成的结构材料,它是超硬、耐磨,耐高温的物质,下列各组物质熔化时所克服的粒子间的作用与氮化硼熔化时所克服的粒子间作用相同的是 ( ) A.硝酸钠和金刚石B.晶体硅和水晶 C.冰和干冰D.苯和酒精 9.氨气分子空间构型是三角锥形,而甲烷是正四面体形,这是因为 A.两种分子的中心原子的杂化轨道类型不同,NH3为sp2型杂化,而CH4是sp3型杂化。

化学选修3期末试题

化学选修3 期末考试 一、选择题(单选,每小题3分,共48分) 1.下列对化学反应的认识错误的是() A.会引起化学键的变化 B.会产生新的物质 C.必然引起物质状态的变 D.必然伴随着能量的变化2.对2与2说法正确的是() A.都是直线形结构 B.中心原子都采取杂化轨道 原子和C原子上都没有孤对电子2为V形结构,2为直线形结构3.下列叙述中正确的是() A.金属的熔点和沸点都很高 B.H2O2、5都是含有极性键的非极性分子 C.、、、的酸性依次增强 D.H2O是一种非常稳定的化合物,这是由于氢键所致 4.下列无机含氧酸的酸性强弱比较正确的是() 2>33>H34 C>223>3 5.已知X、Y是主族元素,I为电离能,单位是。根据下表所列数据判断错. 误的是() A.元素X的常见化合价是+1价 B.元素Y是ⅢA族的元素 C.元素X与氯形成化合物时,化学式可能是 D.若元素Y处于第3周期,它可与冷水剧烈反应 6.下列说法错误的是() A.s轨道呈圆形,p轨道呈哑铃形 B.元素在元素周期表的区 C.1.5g 3+中含有的电子数为0.8 D.中的碱基互补配对是通过氢键来实现的 7. 下列说法中错误的是() A.根据对角线规则,铍和铝的性质具有相似性 B.在H3、4+和[(3)4]2+中都存在配位键 C.元素电负性越大的原子,吸引电子的能力越强 D.P4和4都是正四面体分子且键角都为109o28ˊ

8. 用价层电子对互斥理论()预测H2S和2的立体结构,两个结论都正确的是( ) A.直线形;三角锥形 B.V形;三角锥形 C.直线形;平面三角形 D.V形;平面三角形 9.为() A.485 · -1 10. 对充有氖气的霓红灯管通电,灯管发出红色光。产生这一现象的主要原因() A.电子由激发态向基态跃迁时以光的形式释放能量 B.电子由基态向激发态跃迁时吸收除红光以外的光线 C.氖原子获得电子后转变成发出红光的物质 D.在电流作用下,氖原子与构成灯管的物质反应 11. 在乙炔分子中有3个σ键、两个π键,它们分别是() A.杂化轨道形成σ键、未杂化的两个2p轨道形成两个π键,且互相垂直 B.杂化轨道形成σ键、未杂化的两个2p轨道形成两个π键,且互相平行 C.之间是形成的σ键,之间是未参加杂化的2p轨道形成的π键D.之间是形成的σ键,之间是未参加杂化的2p轨道形成的π键12.已知氯化铝易溶于苯和乙醚,其熔点为190℃,则下列结论错误的是() A.氯化铝是电解质 B.固体氯化铝是分子晶体 C.可用电解熔融氯化铝的办法制取金属铝 D.氯化铝为非极性分子 13.关于原子轨道的说法正确的是() A.凡是中心原子采取3杂化轨道成键的分子其几何构型都是正四面体 4分子中的3杂化轨道是由4个H原子的1s 轨道和C原子的2p轨道混 合形成 3杂化轨道是由同一个原子中能量相近的s 轨道和p轨道混合起来形成的一组新轨道 D.凡3型的共价化合物,其中中心原子A均采用3杂化轨道成键 14. 下列说法或表示方法中正确的是

高中化学选修3知识点总结

高中化学选修3知识点总结 二、复习要点 1、原子结构 2、元素周期表和元素周期律 3、共价键 4、分子的空间构型 5、分子的性质 6、晶体的结构和性质 (一)原子结构 1、能层和能级 (1)能层和能级的划分 ①在同一个原子中,离核越近能层能量越低。 ②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。 ③任一能层,能级数等于能层序数。 ④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。 ⑤能层不同能级相同,所容纳的最多电子数相同。 (2)能层、能级、原子轨道之间的关系 每能层所容纳的最多电子数是:2n2(n:能层的序数)。 2、构造原理 (1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。 (2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。

(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E(5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np (4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。 根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。 (5)基态和激发态 ①基态:最低能量状态。处于最低能量状态的原子称为基态原子。 ②激发态:较高能量状态(相对基态而言)。基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。处于激发态的原子称为激发态原子。 ③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。利用光谱分析可以发现新元素或利用特征谱线鉴定元素。 3、电子云与原子轨道 (1)电子云:电子在核外空间做高速运动,没有确定的轨道。因此,人们用“电子云”模型来描述核外电子的运动。“电子云”描述了电子在原子核外出现的概率密度分布,是核外电子运动状态的形象化描述。 (2)原子轨道:不同能级上的电子出现概率约为90%的电子云空间轮廓图称为原子轨道。s电子的原子轨道呈球形对称,ns能级各有1个原子轨道;p电子的原子轨道呈纺锤形,n p能级各有3个原子轨道,相互垂直(用p x、p y、p z表示);n d能级各有5个原子轨道;n f能级各有7个原子轨道。 4、核外电子排布规律 (1)能量最低原理:在基态原子里,电子优先排布在能量最低的能级里,然后排布在能量逐渐升高的能级里。 (2)泡利原理:1个原子轨道里最多只能容纳2个电子,且自旋方向相反。 (3)洪特规则:电子排布在同一能级的各个轨道时,优先占据不同的轨道,且自旋方向相同。 (4)洪特规则的特例:电子排布在p、d、f等能级时,当其处于全空、半充满或全充满时,即p0、d0、f0、p3、d5、f7、p6、d10、f14,整个原子的能量最低,最稳定。 能量最低原理表述的是“整个原子处于能量最低状态”,而不是说电子填充到能量最低的轨道中去,泡利原理和洪特规则都使“整个原子处于能量最低状态”。 电子数 (5)(n-1)d能级上电子数等于10时,副族元素的族序数=n s能级电子数 (二)元素周期表和元素周期律 1、元素周期表的结构 元素在周期表中的位置由原子结构决定:原子核外的能层数决定元素所在的周期,原子的价电子总数决定元素所在的族。 (1)原子的电子层构型和周期的划分 周期是指能层(电子层)相同,按照最高能级组电子数依次增多的顺序排列的一行元素。即元素周期表中的一个横行为一个周期,周期表共有七个周期。同周期元素从左到右(除稀有气体外),元素的金属性逐渐减弱,非金属性逐渐增强。 (2)原子的电子构型和族的划分 族是指价电子数相同(外围电子排布相同),按照电子层数依次增加的顺序排列的一列元素。即元素周期表中的一个列为一个族(第Ⅷ族除外)。共有十八个列,十六个族。同主族周期元素从上到下,元素的金属性逐渐增强,非金属性逐渐减弱。 (3)原子的电子构型和元素的分区 按电子排布可把周期表里的元素划分成5个区,分别为s区、p区、d区、f区和ds区,除ds区外,区的名称来自按构造原理最后填入电子的能级的符号。 2、元素周期律

高中化学 杂化轨道理论的基本要点

杂化轨道理论的基本要点 1.只有能量相近的原子轨道才能进行杂化,同时只有在形成分子的过程中才会发生,而孤立的原子是不可能发生杂化的。在形成分子时,通常存在激发、杂化、轨道重叠等过程。 2.杂化轨道的成键能力比原来未杂化的轨道的成键能力强,形成的化学键的键能大。因为杂化后原子轨道的形状发生变化,电子云分布集中在某一方向上,比未杂化的s、p、d轨道的电子云分布更为集中,重叠程度增大,成键能力增强。 3.杂化轨道的数目等于参加杂化的原子轨道的总数。 4.杂化轨道成键时,要满足化学键间最小排斥原理。键与键间排斥力的大小决定于键的方向,即决定于杂化轨道间的夹角。故杂化轨道的类型与分子的空间构型有关。 杂化轨道理论是鲍林为了解释分子的立体结构提出的。中心原子杂化轨道、孤电子对数及与之相连的原子数间的关系是:杂化轨道数=孤电子对数+与之相连的原子数。杂化前后轨道总数比变,杂化轨道用来形成σ键或容纳孤对电子,未杂化的轨道与杂化轨道所在平面垂直,可用来形成π键。 常见杂化方式 (1)sp杂化:直线型如:CO2、CS2 (2)sp2杂化:平面三角形(等性杂化为平面正三角形)如: BCl3C2H4 不等性杂化为V字型如:H2O H2S OF2

(3)sp3杂化:空间四面体(等性杂化为正四面体)如:CH4、CCl4 不等性杂化为三角锥如:NH3PCl3H3O+ sp3d杂化:三角双锥 sp3d2杂化:八面体(等性杂化为正八面体) 杂化轨道理论认为:原子在形成分子时,由于原子间相互作用的影响,若干不同类型能量相近的原子轨道混合起来,重新组合成一组新轨道,这种重新组合的过程称为杂化hybridation),所形成的新的原子轨道称为杂化轨道(hybrid orbit)。 什么叫杂化?同一原子的能量相近的原有的原子轨道“混杂”起来,重新组合形成新轨道的过程,叫做杂化。 什么叫杂化轨道?新组合的原子轨道叫做杂化轨道。 为什么要杂化?杂化轨道形成的化学键的强度更大,体系的能量更低。 杂化的动力:受周围原子的影响。 为什么杂化后成键,体系的能量降低?杂化轨道在一个方向上更集中,便于轨道最大重叠。 杂化轨道的构型决定了分子的几何构型:杂化轨道有利于形成σ键,但不能形成π键。由于分子的空间几何构型是以σ键为骨架,故杂化轨道的构型就决定了其分子的几何构型。 一.杂化轨道理论的基本要点 (1)概念:原子在形成分子时,为了增强成键能力,同一原子中能量相近的不同类型(S、P、D…)的几个原子轨道可以相互叠加进行重新组

化学选修3期末考试试卷

○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________ ○…………内…………○…………装…………○…………订…………○…………线…………○………… 绝密★启用前 选修3期末7 **测试试卷 考试范围:xxx ;考试时间:100分钟;命题人:xxx 题号 一 二 三 四 五 总分 得分 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请修改第I 卷的文字说明 评卷人 得分 一、单项选择 1. 下面元素周期表中全部是金属元素的区域为() A .只有s 区 B .只有d 区 C .s 区、d 区和ds 区 D .d 区和ds 区 2. 下列表示氧离子核外电子排布的化学用语不正确的是() A .O 2- 1s 22s 22p 6 B .O 2- C .O 2- D .O 2- 3. 下列能级中轨道数为5的是() A .s 能级 B .p 能级 C .d 能级 D .f 能级 4. 据报道:用激光可将置于铁室中的石墨靶上的碳原子“炸松”,再用一个射频电火花喷射出氮气,可使碳、氮原子结合成碳氮化合物(C 3N 4)的薄膜,该碳氮化合物比金刚石还坚硬,则下列说法正确的是() A .该碳氮化合物呈片层状结构 B .该碳氮化合物呈立体网状结构 C .该碳氮化合物中C —N 键键长大于金刚石中C —C 键键长 D .相邻主族非金属元素形成的化合物的硬度比单质小 5. X 、Y 、Z 为短周期元素,X 原子最外层只有一个电子,Y 原子的最外层电子数比内层电子总数少4,Z 的最外层电子数是内层电子总数的3倍。下列有关叙述正确的是( ) A .X 肯定是金属元素 B .Y 、Z 两元素形成的化合物熔点较低

高中参考资料化学人教版选修3 第二章 训练4 杂化轨道理论

训练4杂化轨道理论 [基础过关] 一、原子轨道杂化与杂化轨道 1.下列有关杂化轨道的说法不正确的是() A.原子中能量相近的某些轨道,在成键时能重新组合成能量相等的新轨道 B.轨道数目杂化前后可以相等,也可以不等 C.杂化轨道成键时,要满足原子轨道最大重叠原理、最小排斥原理 D.杂化轨道可分为等性杂化轨道和不等性杂化轨道 2.下列关于杂化轨道的叙述正确的是() A.杂化轨道可用于形成σ键,也可用于形成π键 B.杂化轨道可用来容纳未参与成键的孤电子对 C.NH3中N原子的sp3杂化轨道是由N原子的3个p轨道与H原子的s轨道杂化而成的 D.在乙烯分子中1个碳原子的3个sp2杂化轨道与3个氢原子的s轨道重叠形成3个C—H σ键二、杂化轨道类型及其判断 3.根据价层电子对互斥理论及原子的杂化轨道理论判断NF3分子的立体构型和中心原子的杂化方式为 () A.直线形sp杂化B.三角形sp2杂化 C.三角锥形sp2杂化D.三角锥形sp3杂化 4.在BrCH===CHBr分子中,C—Br键采用的成键轨道是() A.sp—p B.sp2—s C.sp2—p D.sp3—p 5.下列分子中的中心原子杂化轨道的类型相同的是() A.CO2和SO2B.CH4和NH3 C.BeCl2和BF3D.C2H2与C2H4 三、杂化轨道类型与分子构型 6.下列说法中正确的是() A.PCl3分子是三角锥形,这是因为磷原子是sp2杂化的结果 B.sp3杂化轨道是由任意的1个s轨道和3个p轨道混合形成的4个sp3杂化轨道 C.中心原子采取s p3杂化的分子,其立体构型可能是四面体形或三角锥形或V形 D.AB3型的分子立体构型必为平面三角形 7.下列推断正确的是() A.BF3为三角锥形分子 B.NH+4的电子式为[H··N H , H · · H]+,离子呈平面正方形结构 C.CH4分子中的4个C—H键都是氢原子的1s轨道与碳原子的2p轨道形成的s-p σ键D.甲醛分子为平面三角形,有一个π键垂直于三角形平面 8.甲烷分子(CH4)失去一个H+,形成甲基阴离子(CH-3),在这个过程中,下列描述不合理的是

高中化学专题4第1单元第1课时杂化轨道理论与分子空间构型教案苏教版选修3

第1课时杂化轨道理论与分子空间构型 [核心素养发展目标] 1.了解杂化轨道理论,能从微观角度理解中心原子的杂化轨道类型对分子空间构型的影响。2.通过对杂化轨道理论的学习,掌握中心原子杂化轨道类型的判断方法,建立分子空间构型分析的思维模型。 一、杂化轨道及其理论要点 1.试解释CH4分子为什么具有正四面体的空间构型? (1)杂化轨道的形成 碳原子2s轨道上的1个电子进入2p空轨道,1个2s轨道和3个2p轨道“混合”起来,形成能量相等、成分相同的4个sp3杂化轨道,可表示为 (2)共价键的形成 碳原子的4个sp3杂化轨道分别与4个H原子的1s轨道重叠形成4个相同的σ键。 (3)CH4分子的空间构型 甲烷分子中的4个C—H键是等同的,C—H键之间的夹角——键角是109.5°,形成正四面体型分子。 2.轨道杂化与杂化轨道 (1) 轨道的杂化:在外界条件影响下,原子内部能量相近的原子轨道重新组合形成一组新轨道的过程叫做原子轨道的杂化。 (2)杂化轨道:重新组合后的新的原子轨道,叫做杂化原子轨道,简称杂化轨道。 (3)轨道杂化的过程:激发→杂化→轨道重叠。 3.杂化轨道的类型 杂化轨道理论的要点 (1)原子形成分子时,通常存在激发、杂化和轨道重叠等过程。发生轨道杂化的原子一定是中心原子。

(2)原子轨道的杂化只有在形成分子的过程中才会发生,孤立的原子是不可能发生杂化的。 (3)只有能量相近的轨道才能杂化(如2s、2p)。 (4)杂化前后原子轨道数目不变(参加杂化的轨道数目等于形成的杂化轨道数目),且杂化轨道的能量相同。 (5)杂化轨道成键时要满足化学键间最小排斥原理,使轨道在空间取得最大夹角分布。故杂化后轨道的伸展方向、形状发生改变,但杂化轨道的形状完全相同。 例1 下列关于杂化轨道的说法错误的是( ) A.所有原子轨道都参与杂化形成杂化轨道 B.同一原子中能量相近的原子轨道参与杂化 C.杂化轨道能量集中,有利于牢固成键 D.杂化轨道中不一定有一个电子 答案 A 解析参与杂化的原子轨道,其能量不能相差太大,如1s轨道与2s、2p轨道能量相差太大,不能形成杂化轨道,即只有能量相近的原子轨道才能参与杂化,故A项错误,B项正确;杂化轨道的电子云一头大一头小,成键时利用大的一头,可使电子云重叠程度更大,形成牢固的化学键,故C项正确;并不是所有的杂化轨道中都会有电子,也可以是空轨道,也可以有一对孤电子对(如NH3),故D项正确。 例2 下列有关sp2杂化轨道的说法错误的是( ) A.由同一能层上的s轨道与p轨道杂化而成 B.共有3个能量相同的杂化轨道 C.每个sp2杂化轨道中s轨道成分占三分之一 D.sp2杂化轨道最多可形成2个σ键 答案 D 解析同一能层上s轨道与p轨道的能量差异不是很大,相互杂化的轨道的能量差异也不能过大,A项正确;同种类型的杂化轨道能量相同,B项正确;sp2杂化轨道是由一个s轨道与2个p轨道杂化而成的,C项正确;sp2杂化轨道最多可形成3个σ键,D项错误。 二、用杂化轨道理论解释分子的形成及分子中的成键情况 1.用杂化轨道理论解释BeCl2、BF3分子的形成 (1)BeCl2分子的形成 杂化后的2个sp杂化轨道分别与氯原子的3p轨道发生重叠,形成2个σ键,构成直线形的BeCl2分子。 (2)BF3分子的形成

选修三杂化轨道练习

1.有关乙炔分子中的化学键描述不正确的是 A.两个碳原子采用sp杂化方式 B.两个碳原子采用sp2杂化方式 C.每个碳原子都有两个未杂化的2p轨道形成π键 D.两个碳原子形成两个π键 2.氨气分子空间构型是三角锥形,而甲烷是正四面体形,这是因为 A.两种分子的中心原子杂化轨道类型不同,NH3为sp2型杂化,而CH4是sp3型杂化。 B.NH3分子中N原子形成三个杂化轨道,CH4分子中C原子形成4个杂化轨道。 C.NH3分子中有一对未成键的孤对电子,它对成键电子的排斥作用较强。 D.氨气分子是极性分子而甲烷是非极性分子。 3.在乙烯分子中有5个σ键、一个π键,它们分别是 A.sp2杂化轨道形成σ键、未杂化的2p轨道形成π键 B.sp2杂化轨道形成π键、未杂化的2p轨道形成σ键C.C-H之间是sp2形成的σ键,C-C之间未参加杂化的2p轨道形成的是π键 D.C-C之间是sp2形成的σ键,C-H之间是未参加杂化的2p轨道形成的π键 4. 下列化合物分子中一定既含单键又含双键的是 A.CO2 B.C2H4O C.COCl2 D.H2O2 5.对δ键的认识不正确的是 A.σ键不属于共价键,是另一种化学键 B.s-s σ键与s-p σ键的对称性相同 C.分子中含有共价键,则至少含有一个σ键 D.含有π键的化合物与只含σ键的化合物的化学性质不同 6.σ键可由两个原子的s轨道、一个原子的s轨道和另一个原子的p轨道以及一个原子的p轨道和另一个原子的p轨道以“头碰头”方式重叠而成。则下列分子中的σ键是由一个原子的s轨道和另一个原子的p轨道以“头碰头”方式重叠构建而成的是A.H2 B.HCl C.Cl2 D.F2 7.下列分子中存在π键的是A.H2 B.Cl2 C.N2 D.HCl 8.下列说法中,错误的是 A.键长越长,化学键越牢固 B.成键原子间原子轨道重叠越多,共价键越牢固 C.对双原子分子来讲,键能越大,含有该键的分子越稳定 D.原子间通过共用电子对所形成的化学键叫共价键 9.下列分子中心原子是sp2杂化的是A.PBr3 B.CH4 C.BF3 D.H2O 10.原子间成键时,同一原子中能量相近的某些原子轨道要先杂化,其原因是 A、保持共价键的方向性 B、进行电子重排 C、增加成键能力 D、使不能成键的原子轨道能够成键 11.下列说法中不正确的是 A、分子中的价电子对(包括成键电子对和孤电子对)之间存在相互排斥作用 B、分子中的价电子对之间趋向于彼此远离 C、分子在很多情况下并不是尽可能采取对称的空间构型 D、当价电子对数目分别是2、3、4时,价电子对分布的几何构型分别为直线型、平面三角型、正四面体型 12.下列关于价电子对数目计算中正确的是 A、中心原子的价电子数等于中心原子的最外层电子数 B、配位原子中卤素原子、氢原子提供1个电子 C、配位原子中氧原子和硫原子提供2个电子 D、当氧原子和硫原子作中心原子时,按不提供价电子计算 13.下列选项中分子的空间构型相同的是A、CO2、SO2B、NH3、BF3C、CH4、SiF4 D、C2H2、BeCl2 是典型的平面正三角型分子,当它溶于氢氟酸或NaF溶液中都形成BF4—,则BF3和BF4—中B原子的杂化类型是 A、sp2、sp2 B、sp3、sp3 C、sp2、 sp3 D、sp 、sp2 15.下列分子和离子中属平面型分子的是A、ClF3 B、NF3 C、BF3 D、SeO32— 16. 关于原子轨道的说法正确的是() A、凡是中心原子采取sp3杂化轨道成键的分子其几何构型都是正四面体 B、CH4分子中的sp3杂化轨道是由4个H原子的1s 轨道和C原子的2p轨道混合起来而形成的 C、sp3杂化轨道是由同一个原子中能量相近的s 轨道和p轨道混合起来形成的一组能量相近的新轨道 D、凡AB3型的共价化合物,其中中心原子A均采用sp3杂化轨道成键 17. 用Pauling的杂化轨道理论解释甲烷分子的四面体结构,下列说法不正确的是 A、C原子的四个杂化轨道的能量一样 B、C原子的sp3杂化轨道之间的夹角一样 C、C原子的4个价电子分别占据4个sp3杂化轨道 D、C原子有1个sp3杂化轨道由孤对电子占据 18.下列对sp3、sp2、sp杂化轨道的夹角的比较,得出结论正确的是 A、sp杂化轨道的夹角最大 B、sp2杂化轨道的夹角最大 C、sp3杂化轨道的夹角最大 D、sp3、sp2、sp杂化轨道的夹角相等19. 乙烯分子中含有4个C-H和1个C=C双键,6个原子在同一平面上。下列关于乙烯分子的成键情况分析正确的是 A、每个C原子的2s轨道与2p轨道杂化,形成两个sp杂化轨道 B、每个C原子的1个2s轨道与2个2p轨道杂化,形成3个sp2杂化轨道 C、每个C原子的2s轨道与3个2p轨道杂化,形成4个sp3杂化轨道 D、每个C原子的3个价电子占据3个杂化轨道,1个价电子占据1个2p轨道 20.下列分子中的中心原子杂化轨道的类型相同的是A. CO2与SO2 B. CH4与NH3 C. BeCl2与BF3 D. C2H2与C2H4 11. 对SO2与CO2说法正确的()A、都是直线形结构 B、中心原子都采取sp杂化轨道 C、S原子和C原子上都没有孤对电子 D、SO2为V形结构,CO2为直线形结构 21. 铵根离子中存在的化学键类型按离子键、共价键和配位键分类,应含有() A、离子键和共价键 B、离子键和配位键 C、配位键和共价键 D、离子键 22. 下列属于配合物的是()A、NH4Cl B、 C、CuSO4. 5H2O D、Co(NH3)6Cl3 23. 下列分子或离子中,能提供孤对电子与某些金属离子形成配位键的是() ①H2O ②NH3③F-④CN-⑤COA、①② B、①②③ C、①②④ D、①②③④⑤ 24. 配合物在许多方面有着广泛的应用。下列叙述不正确的是() A、以Mg2+为中心的大环配合物叶绿素能催化光合作用 B、Fe2+的卟啉配合物是输送O2的血红素 C、[Ag(NH3)2]+是化学镀银的有效成分 D、向溶液中逐滴加入氨水,可除去硫酸锌溶液中的Cu2+ 25. 下列微粒:①H3O+②NH4+③CH3COO-④ NH3⑤CH4中含有配位键的是() A、①② B、①③ C、④⑤ D、②④ 26.写出符合下列条件的相应的分子或离子的化学式: ⑴硼原子用sp2杂化轨道形成三个σ键: ⑵氮原子用sp3杂化轨道形成四个完全相同的化学键:;氮原子形成一个σ键两个π键 ⑶碳原子分别以sp 、sp2、sp3杂化轨道成键、、。 27、W、X、Y、Z四种元素的原子序数依次增大。其中Y原子的L电子层中,成对电子与未成对电子占据的轨道数相等,且无空轨道;X原子的L电子层中未成对电子数与Y相同,但还有空轨道;W、Z的原子序数相差10,且Z原子的第一电离能在同周期中最低。 (1)写出下列元素的元素符号:W ,X ,Y ,Z 。 (2)XY分子中,X原子与Y原子都达到8电子稳定结构,则XY分子中X和Y原子用于成键的电子数目分别 是;根据电子云重叠方式的不同,分子里共价键的主要类型有。28. ClO-、ClO2-、ClO3-、ClO 4-中Cl都是以sp3杂化轨道与O原子成键的,试推测下列微粒的立体结构 29. 2,3 ,H2S ,PH3

化学选修3期末测试卷A(含答案)

绝密★启用前 化学选修3期末测试卷A(含答案) 题号一二三四五总分 得分 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I卷(选择题) 请修改第I卷的文字说明 评卷人得分 一、单项选择 1. 下列说法正确的是() A.一个水分子与其他水分子间只能形成2个氢键 B.含氢键的分子熔、沸点一定升高 C.分子间作用力包括氢键和范德华力 D.当H2O由液体变为气体时只破坏了氢键 2. 下列各组物质中,按熔点由低到高的顺序排列正确的是() ①O2、I2、Hg②CO、KCl、SiO2③Na、K、Rb④Na、Mg、Al A.①③ B.①④ C.②③ D.②④ 3. 下列有关石墨晶体的说法正确的是() A.由于石墨晶体导电,所以它是金属晶体 B.由于石墨的熔点很高,所以它是原子晶体 C.由于石墨质软,所以它是分子晶体 D.石墨晶体是一种混合晶体 4. 已知某元素+3价离子的电子排布为:1s22s22p63s23p63d5,该元素在周期表中的位置正确的是()A.第三周期Ⅷ族,p区B.第三周期ⅤB族,ds区 C.第四周期Ⅷ族,d区D.第四周期ⅤB族,f区 5. NH3分子空间构型是三角锥形,而CH4是正四面体形,这是因为() A.两种分子的中心原子杂化轨道类型不同,NH3为sp2杂化,而CH4是sp3杂化 B.NH3分子中N原子形成3个杂化轨道,CH4分子中C原子形成4个杂化轨道 C.NH3分子中有一对未成键的孤对电子,它对成键电子的排斥作用较强D.NH3分子中有3个σ键,而CH4分子中有4个σ键 6. 下列不属于影响离子晶体结构的因素的是() A.晶体中阴、阳离子的半径比 B.离子晶体的晶格能 C.晶体中阴、阳离子的电荷比 D.离子键的纯粹程度 7. 下面关于SiO2晶体网状结构的叙述正确的是() A.存在四面体结构单元,O处于中心,Si处于4个顶角 B.最小的环上,有3个Si原子和3个O原子 C.最小的环上,Si和O原子数之比为1∶2 D.最小的环上,有6个Si原子和6个O原子 8. 下列各组晶体中,化学键类型相同,晶体类型也相同的是() ①SiO2和SO3②晶体硼和HCl③CO2和SO2④晶体硅和金刚石⑤晶体氖和晶体氮⑥硫黄和碘A.①②③B.④⑤⑥ C.③④⑥D.①③⑤ 9. 下列分子中键角最大的是() A.CH4 B.NH3 C.H2O D.CO2 10. 下列性质的递变中,不正确的是() A.O、S、Na的原子半径依次增大 B.LiOH、KOH、CsOH的碱性依次增强 C. NH3、PH3、AsH3的熔点依次增强 D.HCl、HBr、HI的还原性依次增强 11. 下列说法正确的是() A.用乙醇或CCl4可提取碘水中的碘单质 B.NaCl和SiC熔化时,克服粒子间作用力的类型相同 C.24Mg32S晶体中电子总数与中子总数之比为1∶1 D.H2S和SiF4分子中各原子最外层都满足8电子结构 12. 相邻两周期的两个同主族元素,其质子数相差的数目不可能为() A. 2 B. 8 C. 18 D.16 13. 下列说法中,正确的是( ) A. 乙醇分子中含有6个极性键 B.乙烯分子中不含非极性键 C.电子云表示电子在核外单位体积的空间出现的机会多少 D.苯分子是单键和双键交替的结构 14. 已知X、Y、Z三种元素组成的化合物是离子晶体,其晶胞如图所示,则下面表示该化合物的化学式正确的是()

人教版高中化学选修四期末试卷

高中化学学习材料 (精心收集**整理制作) 安阳市第36中学20160125期末试卷—— 高二化学试题 满分100分,时间90分钟 2016年1月 C-12 O-16 Na-23 Al-27 S-32 Mn-55 Mg-24 Cl-35.5 N-14 Fe-56 H-1 Cu-64 一、选择题(每题只有一个选项符合要求,每题2分,共50分) 1.下列离子方程式中正确的是() A.Ba(OH)2溶液中加NaHSO4溶液至中性:Ba2++OH-+H++SO42-=BaSO4↓+H2O B.钠与硫酸铜溶液反应:Cu 2++2Na = 2Na++Cu C.用食醋检验水垢中碳酸钙的存在:CaCO3+2H+= Ca2++CO2↑+H2O D.KI溶液与H2SO4酸化的H2O2溶液混合:2I-+H2O2+2H+= 2H2O+I2 2.25℃时,水的电离达到平衡:H2O H++OH-,下列叙述正确的是() A.向水中加入稀氨水,平衡逆向移动,c(OH-)降低 B.向水中加入少量固体硫酸氢钠,c(H+)增大,Kw不变 C.向水中加入少量固体CH3COONa,平衡逆向移动,c(H+)降低 D.将水加热,Kw增大,pH不变 3.下列各组物质的分类正确的是() A.同位素:1H、D+、T2 B.电解质:CaCO3、CH3COOH、NH4HCO3 C.胶体:饱和氯化铁溶液、淀粉溶液、牛奶 D.硅酸盐产品:晶体硅、水泥、陶瓷4.下列说法不正确的是() ①C2H6分子中既含极性键又含非极性键; ②若R2-和M+的电子层结构相同,则原子序数:R>M ③F2、Cl2、Br2、I2熔点随相对分子质量增大而升高; ④NCl3、PCl3、CO2、CS2分子中各原子均达到8电子稳定结构; ⑤若X的质子数为a,中子数为b,则该原子可表示为a b X; ⑥由于非金属性Cl>Br>I,所以酸性HCl>HBr>HI; ⑦由于氨和水分子之间能形成氢键,NH3极易溶于水; ⑧原子序数为34号的元素属于长周期的副族元素 A.②⑤⑥⑧ B.①③④⑦ C.②④⑤⑦ D.③⑤⑦⑧ 5. 下列实验能达到预期目的的是() ①用乙醇和浓硫酸除去乙酸乙酯中的少量乙酸;②用NaOH溶液除去苯中的少量苯酚; ③用饱和NaHCO3溶液除去CO2中的少量SO2;④用酒精萃取碘水中的碘;

高中化学物质结构杂化轨道理论

第2课时 杂化轨道理论 [学习目标定位] 知道杂化轨道理论的基本内容,能根据杂化轨道理论确定简单分子的立体构型。 一 杂化轨道理论 1.杂化轨道及其理论要点 (1)阅读教材内容,并讨论甲烷分子中四个C —H 键的键能、键长,为什么都完全相同? 答案 在形成CH 4分子时,碳原子的一个2s 轨道和三个2p 轨道发生混杂,形成四个能量相等的sp 3杂化轨道。四个sp 3杂化轨道分别与四个H 原子的1s 轨道重叠成键形成CH 4分子,所以四个C —H 是等同的。可表示为 (2)由以上分析可知 ①在外界条件影响下,原子内部能量相近的原子轨道重新组合形成一组新轨道的过程叫做原子轨道的杂化,重新组合后的新的原子轨道,叫做杂化原子轨道,简称杂化轨道。 ②轨道杂化的过程:激发→杂化→轨道重叠。 (3)杂化轨道理论要点 ①原子在成键时,同一原子中能量相近的原子轨道可重新组合成杂化轨道。 ②参与杂化的原子轨道数等于形成的杂化轨道数。 ③杂化改变了原子轨道的形状、方向。杂化使原子的成键能力增加。 2.杂化轨道类型和立体构型 (1)sp 杂化——BeCl 2分子的形成 ①BeCl 2分子的形成 杂化后的2个sp 杂化轨道分别与氯原子的3p 轨道发生重叠,形成2个σ键,构成直线形的BeCl 2分子。 ②sp 杂化:sp 杂化轨道是由一个n s 轨道和一个n p 轨道杂化而得,每个sp 杂化轨道含有12 s

和1 2 p 轨道的成分。sp 杂化轨道间的夹角为180°,呈直线形(如BeCl 2)。 ③sp 杂化后,未参与杂化的两个n p 轨道可以用于形成π键,如乙炔分子中的C ≡C 键的形成。 (2)sp 2杂化——BF 3分子的形成 ①BF 3分子的形成 ②sp 2杂化:sp 2杂化轨道是由一个n s 轨道和两个n p 轨道杂化而得,每个sp 2杂化轨道含有 1 3s 和2 3 p 的成分。sp 2杂化轨道间的夹角为120°,呈平面三角形(如BF 3)。 ③sp 2杂化后,未参与杂化的一个n p 轨道可以用于形成π键,如乙烯分子中的C===C 键的形成。 (3)sp 3杂化——CH 4分子的形成 ①CH 4分子的立体构型 ②sp 3杂化:sp 3杂化轨道是由一个n s 轨道和三个n p 轨道杂化而得,每个sp 3杂化轨道含有 1 4s 和3 4p 的成分。sp 3杂化轨道的夹角为109°28′,呈空间正四面体形(如CH 4、CF 4、CCl 4)。 [归纳总结] 杂化类型与分子间的空间构型

化学选修三知识点

第一章原子结构与性质 一.原子结构 1.能级与能层 2.原子轨道 3.原子核外电子排布规律 ⑴构造原理:随着核电荷数递增,大多数元素的电中性基态原子的电子按右图顺序填入核外电子运动轨道(能级),叫做构造原理。 能级交错:由构造原理可知,电子先进入4s轨道,后进入3d轨道,这种现象叫能级交错。 说明:构造原理并不是说4s能级比3d能级能量低(实际上4s能级比3d能级能量高),而是指这样顺序填充电子可以使整个原子的能量最低。也就是说,整个原子的能量不能机械地看做是各电子所处轨道的能量之和。 (2)能量最低原理 现代物质结构理论证实,原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。 构造原理和能量最低原理是从整体角度考虑原子的能量高低,而不局限于某个能级。 (3)泡利(不相容)原理:基态多电子原子中,不可能同时存在4个量子数完全相同的电子。换言之,

一个轨道里最多只能容纳两个电子,且电旋方向相反(用“↑↓”表示),这个原理称为泡利(Pauli )原理。 (4)洪特规则:当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则叫洪特(Hund )规则。比如,p3的轨道式 为或 ,而不是。 洪特规则特例:当p 、d 、f 轨道填充的电子数为全空、半充满或全充满时,原子处于较稳定的状态。即p0、d0、f0、p3、d5、f7、p6、d10、f14时,是较稳定状态。 前36号元素中,全空状态的有4Be 2s22p0、12Mg 3s23p0、20Ca 4s23d0;半充满状态的有:7N 2s22p3、15P 3s23p3、24Cr 3d54s1、25Mn 3d54s2、33As 4s24p3;全充满状态的有10Ne 2s22p6、18Ar 3s23p6、29Cu 3d104s1、30Zn 3d104s2、36Kr 4s24p6。 4. 基态原子核外电子排布的表示方法 (1)电子排布式 ①用数字在能级符号的右上角表明该能级上排布的电子数,这就是电子排布式,例如K :1s22s22p63s23p64s1。 ②为了避免电子排布式书写过于繁琐,把内层电子达到稀有气体元素原子结构的部分以相应稀有气体的元素符号外加方括号表示,例如K :[Ar]4s1。 (2)电子排布图(轨道表示式) 每个方框或圆圈代表一个原子轨道,每个箭头代表一个电子。 如基态硫原子的轨道表示式为 二.原子结构与元素周期表 1.原子的电子构型与周期的关系 (1)每周期第一种元素的最外层电子的排布式为ns1。每周期结尾元素的最外层电子排布式除He 为1s2外,其余为ns2np6。He 核外只有2个电子,只有1个s 轨道,还未出现p 轨道,所以第一周期结尾元素的电子排布跟其他周期不同。 (2)一个能级组最多所容纳的电子数等于一个周期所包含的元素种类。但一个能级组不一定全部是能量相同的能级,而是能量相近的能级。 2.元素周期表的分区 (1)根据核外电子排布 ①分区 ②各区元素化学性质及原子最外层电子排布特点 ↑↓ ↑ ↓ ↓ ↓ ↑ ↑ ↑

(完整word)高中化学选修3高考题型专项练习

期末总复习——高中化学选修3高考题型专项练习 1.纳米技术制成的金属燃料、非金属固体燃料氢气等已应用到社会生活和高科技领域。单位质量的A和B单质燃烧时均放出大量热,可用作燃料。已知A和B为短周期元素, 其原子的第一至第四电离能如下表所示: 电离能(kJ/mol) I1 I2I3I4 A 932 1821 15390 21771 B 738 1451 7733 10540 (1)某同学根据上述信息,推断B的核外电子排布如右图所示,该同学所画的电子排布图违背了。 (2)ACl2分子中A的杂化类型为。 (3)氢气作为一种清洁能源,必须解决它的储存问题,C60可用作储氢材料。已知金刚石中的C-C的键长为154.45pm,C60中C-C键长为145~140pm,有同学据此认为C60的熔点高于金刚石,你认为是否正确,并阐述理由。(4)科学家把C60和钾掺杂在一起制造了一种富勒烯化合物,其晶胞如图所示,该物质在低温时是一种超导体。写出基态钾原子的价电子 排布式,该物质的K原子和C60分子的个 数比为。 (5)继C60后,科学家又合成了Si60、N60,C、Si、N原子电负性由大到小的顺序是,NCl3分子空间构型为。 (6)Si60分子中每个硅原子只跟相邻的3个硅原子形成共价键,且每个硅原子最外层都满足8电子稳定结构,则Si60分子中π键的数目为。 2.下面是C60、金刚石和二氧化碳的分子模型。 请回答下列问题: (1)硅与碳同主族,写出硅原子基态时的核外电子排布式:_________________ (2)从晶体类型来看,C60属于_________晶体。 (3)二氧化硅结构跟金刚石结构相似,即二氧化硅的结构相当于在硅晶体结构中每个硅与硅的化学键之间插入一个O原子。观察图乙中金刚石的结构,分析二氧化硅的空间网状结构中,Si、O原子形成的最小环上O原子的数目是____________________; 晶体硅中硅原子与共价键的个数比为 (4)图丙是二氧化碳的晶胞模型,图中显示出的二氧化碳分子数为14个。实际上一个二氧化碳晶胞中含有_____个二氧化碳分子,二氧化碳分子中σ键与π键的个数比为。 (5)有机化合物中碳原子的成键方式有多种,这也是有机化合物种类繁多的原因之一。丙烷分子中2号碳原子的杂化方式是_______,丙烯分子中2号碳原子的杂化方式是_______,丙烯分子中最多有个原子共平面。 1s 2p 2s 3s 3p C60 K 甲乙丙

化学 选修3课后习题

化学(选修3)课后习题 第一章原子结构与性质 1、原子结构 1.以下能级符号正确的是() A.6s B.2d C.3f D.7p 2.以下各能层中不包含p能级的是() A.N B.M C.L D.K 3、以下能级中轨道数为3的是() A.s能级B.p能级C.d能级D.f能级 4.下列各原子或离子的电子排布式错误的是() A.K+1s22s22p63s23p6B.F 1s22s22p5 C.S2-1s22s22p63s23p4D.Ar 1s22s22p63s23p6 5.下列各图中哪一个是氧原子最外层的电子排布图?() 6.以下电子排布式是不是基态原子的电子排布? A.1s12s1 ()B.1s22s12p1() C.1s22s22p63s2()D. 1s22s22p63p1 () 7.按构造原理写出第9、17、35号元素原子的电子排布式。它们核外电子分别有几层?最外层电子数分别为多少? 8.在元素周期表中找出钠和硫,按构造原理写出它们的电子排布式和电子排布图,并预言它们的最高价化合价和最低化合价。 2、原子结构与元素的性质 1.从原子结构的观点看,元素周期表中同一横行的短周期元素,其相同,不同;同一纵行的主族元素,其相同,不同。 2.除第一和第七周期外,每一周期的元素都是从元素开始,以结束。 3

4.甲元素原子核电荷数为17,乙元素的正二价离子跟氩原子的电子层结构相同: (1)甲元素在周期表中位于第周期,第主族,电子排布式是,元素符号是,它的最高价氧化物对应的水化物的化学式是 (2)乙元素在周期表中位于第周期,第主族,电子排布式是,元素符号是,它的最高价氧化物对应的水化物的化学式是 5.主族元素和副族元素的电子排布有什么不同的特征?主族元素的价电子层和副族元素的价电子层有何不同? 6.有人把氢在周期表中的位置从ⅠA移至ⅦA,怎样从电子排布和化合价理解这种做法? 7.元素的金属性与非金属性随核电荷数递增呈现周期性变化,给出具体例子对这种变化进行陈述。 8.怎样理解电负性可以度量金属性与非金属性的强弱? 9.元素的化合价为什么会随原子的核电荷数递增呈现周期性的变化? *10.假设元素周期系可以发展到第八周期,而且电子仍按构造原理填入能级,第八周期总共 应为多少种元素? 复习题 1.下列说法正确的是() A.处于最低能量的原子叫做基态原子 B.3p2表示3p能级有两个轨道 C.同一原子中,1s、2s、3s电子的能量逐渐减小 D.同一原子中,2p、3p、4p能级的轨道数依次增多 2.X、Y、Z三种元素的原子,其最外层电子排布分别为ns1、3s23p1和2s22p4,由这三种元素组成的化合物的化学式可能是() A.XYZ2B.X2YZ3C.X2YZ2D.XYZ3 3、下列说法中,不符合ⅦA族元素性质特征的是() A.从上到下原子半径逐渐减小

相关文档
最新文档