杂化轨道理论(人教版选修3)

杂化轨道理论(人教版选修3)
杂化轨道理论(人教版选修3)

2.2 分子的立体构型第2课时杂化轨道理论

练基础落实

知识点1杂化轨道

1.下列有关杂化轨道的说法不正确的是()

A.原子中能量相近的某些轨道,在成键时能重新组合成能量相等的新轨道B.轨道数目杂化前后可以相等,也可以不等

C.杂化轨道成键时,要满足原子轨道最大重叠原理、最小排斥原理

D.杂化轨道可分为等性杂化轨道和不等性杂化轨道

2.关于原子轨道的说法正确的是()

A.凡是中心原子采取sp3杂化方式成键的分子其几何构型都是正四面体B.CH4分子中的sp3杂化轨道是由4个H原子的1s轨道和C原子的2p轨道混合起来而形成的

C.sp3杂化轨道是由同一个原子中能量相近的s轨道和p轨道混合起来形成的一组能量相近的新轨道

D.凡AB3型的共价化合物,其中心原子A均采用sp3杂化方式成键

3.根据价层电子对互斥理论及原子的杂化理论判断NF3分子的空间构型和中心原子的杂化方式为()

A.直线形sp杂化B.三角形sp2杂化

C.三角锥形sp2杂化D.三角锥形sp3杂化

知识点2利用杂化轨道判断分子的空间构型

4.下列分子中的中心原子杂化轨道的类型相同的是()

A.CO2与SO2B.CH4与NH3

C.BeCl2与BF3D.C2H2与C2H4

5.下列说法中正确的是()

A.PCl3分子是三角锥形,这是因为磷原子是sp2杂化的结果

B.sp3杂化轨道是由任意的1个s轨道和3个p轨道混合形成的4个sp3杂化轨道

C.中心原子采取sp3杂化的分子,其几何构型可能是四面体形或三角锥形或V形

D.AB3型的分子空间构型必为平面三角形

6.下列分子的空间构型可用sp2杂化轨道来解释的是()

①BF3②CH2===CH2③④CH≡CH

⑤NH3⑥CH4

A.①②③B.①⑤⑥C.②③④D.③⑤⑥

7.下列推断正确的是()

A.BF3为三角锥形分子

B.NH+4的电子式为,离子呈平面正方形结构

C.CH4分子中的4个C—H键都是氢原子的1s轨道与碳原子的2p轨道形成的s—p σ键

D.CH4分子中的碳原子以4个sp3杂化轨道分别与4个氢原子的1s轨道重叠,形成C—H σ键

8.下列分子中的中心原子的杂化方式为sp杂化,分子的空间结构为直线形且分子中没有形成π键的是()

A.CH≡CH B.CO2C.BeCl2D.BF3

练综合拓展

9.有关乙炔分子中的化学键描述不正确的是()

A.两个碳原子采用sp杂化方式

B.两个碳原子采用sp2杂化方式

C.每个碳原子都有两个未杂化的2p轨道形成π键

D.两个碳原子形成两个π键

10.苯分子(C6H6)为平面正六边形结构,下列有关苯分子的说法错误的是()

①苯分子中的中心原子C的杂化方法为sp2杂化②苯分子内的共价键键角为120°③苯分子中的共价键的键长均相等④苯分子的化学键是单、双键相交替的结构

A.①②B.①③C.②③D.③④

11.下列关于苯分子的性质描述错误的是()

A.苯分子呈平面正六边形,六个碳碳键完全相同,键角皆为120°

B.苯分子中的碳原子采取sp2杂化,6个碳原子中未参与杂化的2p轨道以“肩并肩”形式形成一个大π键

C.苯分子中的碳碳键是介于单键和双键之间的一种特殊类型的键

D.苯能使溴水和酸性KMnO4溶液褪色

12.

如图是乙烯分子的模型,对乙烯分子中的化学键分析正确的是()

A.sp2杂化轨道形成σ键、未杂化的2p轨道形成π键

B.sp2杂化轨道形成π键、未杂化的2p轨道形成σ键

C.C—H之间是sp2形成的σ键,C—C之间是未能参加杂化的2p轨道形成的π键

D.C—C之间是sp2形成的σ键,C—H之间是未参加杂化的2p轨道形成的π键

13.甲醛分子的结构式为,下列描述正确的是()

A.甲醛分子中有4个σ键

B.甲醛分子中的C原子为sp3杂化

C.甲醛分子中的O原子为sp杂化

D.甲醛分子为平面三角形,有一个π键垂直于三角形平面

14.在BrCH===CHBr分子中,C—Br键采用的成键轨道是()

A.sp—p B.sp2—s C.sp2—p D.sp3—p

15.化合物YX2、ZX2中X、Y、Z都是前三周期元素,X与Y同周期,Y与Z同主族,Y元素的最外层p轨道上的电子数等于前一电子层电子总数;X原子最外层的p轨道中有一个轨道填充了2个电子。则

(1)X元素基态原子的电子排布式是__________________,Y原子的价层电子的电子排

布图是_________________________________________________。

(2)YX2的分子构型是____________。

(3)YX2分子中,Y原子的杂化类型是__________,一个YX2分子中含________个π键。

16.有A、B、C、D、E五种短周期元素,其中A、B、C属于同一周期,A原子最外层p能级的电子数等于次外层的电子总数;B原子最外层中有两个不成对的电子;D、E原子核内各自的质子数与中子数相等;B元素可分别与A、C、D、E生成RB2型化合物,并知在DB2和EB2中,D与B的质量比为7∶8,E与B的质量比为1∶1。试回答:

(1)写出D元素基态原子的电子排布式:____________________________________。

(2)写出AB2的路易斯结构式:__________________。

(3)B、C两元素的第一电离能大小关系为________>________(填元素符号),原因是

_________________________________________________________________ _______

_________________________________________________________________ _______。

(4)根据VSEPR模型预测C的氢化物的立体结构为________,中心原子C 的轨道杂化

类型为________。

(5)C的单质分子中π键的数目为________,B、D两元素的气态氢化物的稳定性大小关

系为________>________(填化学式)。

参考答案

1.B[原子轨道形成杂化轨道前后,轨道数目不变化,用于形成杂化轨道的原子轨道的能量相近,并满足最大重叠程度。]

2.C

3.D[判断分子的杂化方式要根据中心原子的孤电子对数以及与中心原子相连的原子个数。在NF3分子中,N原子的孤电子对数为1,与其相连的原子数为3,所以根据理论可推知中心原子的杂化方式为sp3杂化,空间构型为三角锥形,类似于NH3。]

4.B[A项中CO2为sp杂化,SO2为sp2杂化,A项错;B项中均为sp3杂化,B项正确;C项中BeCl2为sp杂化,BF3为sp2杂化,C项错;D项中C2H2为sp杂化,C2H4为sp2杂化,D项错。]

5.C[PCl3分子中心磷原子上的价电子对数=σ键电子对数+孤电子对数

=3+5-3×1

2=4,因此PCl3分子中磷原子以sp

3杂化,选项A错误;sp3杂化轨

道是原子最外电子层上的s轨道和3个p轨道“混合”起来,形成能量相等、成分相同的4个轨道,故选项B错误;一般中心原子采取sp3杂化的分子所得到的空间构型为四面体形,如甲烷分子,但如果有杂化轨道被中心原子上的孤电子对占据,则构型发生变化,如NH3、PCl3分子是三角锥形,H2O分子是V形,故选项D错误,C正确。]

6.A

7.D[BF3为平面三角形,NH+4为正四面体形,CH4分子中碳原子的2s轨道与2p轨道形成4个sp3杂化轨道,然后与氢的1s轨道重叠,形成4个s-sp3σ键。]

8.C9.B

10.D[由于苯分子的结构为平面正六边形,可以说明分子内的键角为120°,所以中心原子的杂化方式均为sp2杂化,所形成的碳碳共价键是完全相同的。其中碳碳键的键长完全相同,而与碳氢键的键长不相等。]

11.D12.A

13.D[从结构式看,甲醛分子为平面三角形,所以中心原子C应为sp2杂化,形成三个杂化轨道,分别与O原子和两个H原子形成σ键,还有一个未参与杂化的p轨道与O原子形成π键,该π键垂直于杂化轨道的平面,O原子不是中心原子,不发生轨道杂化。]

14.C[分子中的两个碳原子都是采用sp2杂化,溴原子的价电子排布为4s24p5,4p轨道上有一个单电子,与碳原子的一个sp2杂化轨道成键。]

15.(1)1s22s22p4

(2)直线形(3)sp杂化 2

解析解此类题,首先从信息中寻找突破口,如:Y属于短周期元素,Y元素的最外层p轨道上的电子数等于前一电子层电子总数,可判断p轨道上有2个电子,Y为碳元素;X原子最外层的p轨道中有一个轨道填充了2个电子,则p 轨道上有4个电子,根据X、Y同周期可知X为氧元素;s p杂化得到夹角为180°的直线形杂化轨道,所以CO2的分子构型为直线形,Y原子的杂化类型为sp杂

化;双键中一个是σ键,一个是π键,CO2的结构式为OCO,故含2个π键。

16.1s22s22p63s23p2(2)

(3)N O N原子最外层的电子处于半充满状态,比较稳定(4)三角锥形sp3杂化

(5)2H2O SiH4

解析阅读题干寻找突破口,如A原子最外层p能级的电子数等于次外层的电子总数,可知A原子的核外电子排布为1s22s22p2,A为碳元素;然后顺藤摸瓜,如A、B、C属于同一周期,B原子最外层中有两个不成对的电子,可知

B为氧元素;DB2中

7

M(D)

8

16=1∶2,可知M(D)=28,D中质子数等于中子数,

可知D为硅元素,同理可知E为硫元素。

杂化轨道理论高中

杂化轨道理论高中 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

高中杂化轨道理论(图解) 一、原子轨道角度分布图 二、共价键理论和分子结构 价键法(VB法)价键理论一: 1、要点: ⑴、共价键的形成条件:①、先决条件:原子具有未成对电子;②、配对电子参与成键的原子轨道要满足对称匹配、能量相近以及最大重叠的原则;③、两原子具有成单的自旋相反的电子配对,服从保里不相容原理。 ⑵、共价键的本质:是由于原子相互接近时轨道重叠,原子间通过共用自旋相反的电子使能量降低而成键。 ⑶、共价键的特征:①、饱和性,一个原子有几个未成对电子(包括激发后形成的未成对电子),便和几个自旋相反的电子配对成键;而未成对电子数是有限的,故形成化学键的数目是有限的。②、根据原子轨道最大重叠原理,原子轨道沿其角度分布最大值方向重叠,即共价键具有一定的方向性。 ⑷、共价键的类型:单键、双键和叁键。 ①、σ键和π键。 ⅰ、σ键:沿键轴方向重叠,呈圆柱形对称,称为σ轨道,生成的键称为σ键σ是希腊字母,相当于英文的s,是对称Symmetry[`simitri]这个字的第一个字母)。 σ键形成的方式: ⅱ、π键:两个p轨道彼此平行地重叠起来,轨道的对称面是通过键轴的平面,这个对称面就叫节面,这样的轨道称为π轨道,生成的键称为π键(π相当于英文的p,是平行parallel[`p?r?lel]的第一个字母)。 π键的形成过程:

, σ键和π键的比较 σ键 (共价键中都存在σ键) π键 (只存在不饱和共价键中) 重 叠 方 式 (成建方向) 沿两电子云(原子轨道)的键轴方向以“头碰头”的方式遵循原子轨道最大程度重叠原理进行重叠 两互相平行的电子云(原子轨道)以“肩并肩”的方式遵循原子轨道最大程度重叠原理进行重叠 重叠程度 重叠程度较大 重叠程度较小 电子云形状 共价键电子云(重叠部分)呈轴对称 共价键电子云(重叠部分)呈镜像对称 牢 固 程 度 强度较大,键能大,较牢固,不易断裂 强度较小,键能较小,不很牢固,易断裂 化学活泼性 不活泼,比π键稳定 活泼,易发生化学反应 类 型 s-s 、s-p 、、p-p 、s- SP 杂化轨道、s- SP 2杂化轨道、s- SP 3杂化轨道、杂化轨道间 p -p π键,、p -p 大π键 是否能旋转 可绕键轴旋转 不可旋转, 存在 的规 律 共价单键是σ键,共价双键有一个σ键,有一个π键;共价叁键有一个σ键,有 两个π键。 可单独存在任何共价键中 不单独存在,与σ键共存 概 念 含有未成对(单)电子的原子轨道沿两电叠子云(原子轨道)的键轴方向以“头碰头”的方式遵循原 子轨道最大程度重叠原理进行重所形成的具有沿键呈轴对称特征的共价键 含有未成对(单)电子的两个互相平行的电子云(原子轨道)以“肩并肩”的方式遵循原子轨道最大程度重 叠原理进行重叠所形成的具有镜像对 称特征的共价键 成功解释了共价键的方向性和饱和性,但在解释一些分子的空间结构方面却遇到了困难。例如CH 4分子的形成,按照价键理论,C 原子只有两个未成对的电子,只能与两个H 原子形成两个共价键,而且键角应该大约为90°。但这与实验事实不符,因为C 与H 可形成CH 4分子,其空间构型为正四面体,∠HCH = 109°28′。为了更好地解释多原子分子的实际空间构型和性质,1931年鲍林和斯莱脱(Slater )在电子配对理论的基础上,提出了杂化轨道理论(hybrid orbital theory),丰富和发展了现代价键理论。 ⑴、杂化轨道理论的基本要点 健 型 项 目

杂化轨道详细解说

高中化学7:杂化轨道 1、概念理解 原子在形成分子时,原子轨道不可能只重叠而本身不变,实际上个原子的价电子运动状态必然改变,而使成键能力尽可能增加,体系能量尽可能降低。能量相近的不同原子轨道重新合成相同数目的新原子轨道。通常有sp型、dsp型、spd型等。 杂化并非一个实际过程,而是一个数学概念。为了得到波动方程有关价层电子的解,及波函数而采取的一个步骤。 和原有的s、p轨道相比,杂化轨道分布图具有一个肥大的正瓣,这一区域大大有利于成键轨道之间的重叠。而且杂化轨道空间分布合理,降低了成键电子的排斥。2个方面都有利于体系能量的下降。 2、价层电子对互斥理论(VSEPR理论)对轨道形状的推测2.1、价层电子对互斥理论(VSEPR理论): 对于一个ABm型分子(或离子),围绕中心A原子的价层对子对(包括成键电子对和未成键的孤电子对)的空间分布是受静电相互作用所支配。电子对之间尽可能互相远离,这样斥力小,体系趋于稳定。 2.2、A原子价层电子对数的确定: [A原子价层电子数 + B原子提供的用于形成共价单键的电子数(双剑、三键均按生成一个单键考虑)]/2 若是阴离子,电子数要加阴离子电荷数,阳离子则要减去。 B是H或卤素元素,每个原子提供一个共用电子。 B若是是氧族元素,规定不提供共用电子。

四氯化碲TeCl4分子:Te有6个价层电子,加上4个Cl提供的共用电子,中心Te原子价层电子数等于10,对数为5。 SO42-离子:S有6个价层电子,规定O原子不提供共用电子,加上离子电荷数2,中心S原子价层电子数等于8,对数为4。 2.3、VSEPR理论推测分子形状: 判断非过渡元素化合物的分子(或离子)的几何构型是相当成功的。价层电子对数在4以内,未发现例外;价层电子对数为5、6时,发现个别例外;价层电子对数为7以上时,中心不单一,出入较大;步骤:1、确定中心原子的价层电子对数 2、确定价层电子对对应的最佳分布构型:2直线、3平面三角、4正四面体、5三角双锥体、6正八面体。 3、依据价层电子对相互作用斥力大小选出最稳定布局。依此布局将配位原子排列在中心原子周围。 电子对之间斥力大小:孤-孤>孤-成>成-成 按照力学分析,很好理解。 2个同等力作用1个点,稳定结构是直线,夹角180度。 3个同等力作用1个点,稳定结构是平面,夹角120度。 4个同等力作用1个点,稳定结构是(正四面体、平面正方体等),正四面体夹角109.5度。 5个同等力作用1个点,稳定结构是三角双锥体 6个同等力作用1个点,稳定结构是正八面体

高中化学选修3知识点总结

高中化学选修3知识点总结 二、复习要点 1、原子结构 2、元素周期表和元素周期律 3、共价键 4、分子的空间构型 5、分子的性质 6、晶体的结构和性质 (一)原子结构 1、能层和能级 (1)能层和能级的划分 ①在同一个原子中,离核越近能层能量越低。 ②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。 ③任一能层,能级数等于能层序数。 ④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。 ⑤能层不同能级相同,所容纳的最多电子数相同。 (2)能层、能级、原子轨道之间的关系 每能层所容纳的最多电子数是:2n2(n:能层的序数)。 2、构造原理 (1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。 (2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。

(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E(5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np (4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。 根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。 (5)基态和激发态 ①基态:最低能量状态。处于最低能量状态的原子称为基态原子。 ②激发态:较高能量状态(相对基态而言)。基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。处于激发态的原子称为激发态原子。 ③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。利用光谱分析可以发现新元素或利用特征谱线鉴定元素。 3、电子云与原子轨道 (1)电子云:电子在核外空间做高速运动,没有确定的轨道。因此,人们用“电子云”模型来描述核外电子的运动。“电子云”描述了电子在原子核外出现的概率密度分布,是核外电子运动状态的形象化描述。 (2)原子轨道:不同能级上的电子出现概率约为90%的电子云空间轮廓图称为原子轨道。s电子的原子轨道呈球形对称,ns能级各有1个原子轨道;p电子的原子轨道呈纺锤形,n p能级各有3个原子轨道,相互垂直(用p x、p y、p z表示);n d能级各有5个原子轨道;n f能级各有7个原子轨道。 4、核外电子排布规律 (1)能量最低原理:在基态原子里,电子优先排布在能量最低的能级里,然后排布在能量逐渐升高的能级里。 (2)泡利原理:1个原子轨道里最多只能容纳2个电子,且自旋方向相反。 (3)洪特规则:电子排布在同一能级的各个轨道时,优先占据不同的轨道,且自旋方向相同。 (4)洪特规则的特例:电子排布在p、d、f等能级时,当其处于全空、半充满或全充满时,即p0、d0、f0、p3、d5、f7、p6、d10、f14,整个原子的能量最低,最稳定。 能量最低原理表述的是“整个原子处于能量最低状态”,而不是说电子填充到能量最低的轨道中去,泡利原理和洪特规则都使“整个原子处于能量最低状态”。 电子数 (5)(n-1)d能级上电子数等于10时,副族元素的族序数=n s能级电子数 (二)元素周期表和元素周期律 1、元素周期表的结构 元素在周期表中的位置由原子结构决定:原子核外的能层数决定元素所在的周期,原子的价电子总数决定元素所在的族。 (1)原子的电子层构型和周期的划分 周期是指能层(电子层)相同,按照最高能级组电子数依次增多的顺序排列的一行元素。即元素周期表中的一个横行为一个周期,周期表共有七个周期。同周期元素从左到右(除稀有气体外),元素的金属性逐渐减弱,非金属性逐渐增强。 (2)原子的电子构型和族的划分 族是指价电子数相同(外围电子排布相同),按照电子层数依次增加的顺序排列的一列元素。即元素周期表中的一个列为一个族(第Ⅷ族除外)。共有十八个列,十六个族。同主族周期元素从上到下,元素的金属性逐渐增强,非金属性逐渐减弱。 (3)原子的电子构型和元素的分区 按电子排布可把周期表里的元素划分成5个区,分别为s区、p区、d区、f区和ds区,除ds区外,区的名称来自按构造原理最后填入电子的能级的符号。 2、元素周期律

高中化学 杂化轨道理论的基本要点

杂化轨道理论的基本要点 1.只有能量相近的原子轨道才能进行杂化,同时只有在形成分子的过程中才会发生,而孤立的原子是不可能发生杂化的。在形成分子时,通常存在激发、杂化、轨道重叠等过程。 2.杂化轨道的成键能力比原来未杂化的轨道的成键能力强,形成的化学键的键能大。因为杂化后原子轨道的形状发生变化,电子云分布集中在某一方向上,比未杂化的s、p、d轨道的电子云分布更为集中,重叠程度增大,成键能力增强。 3.杂化轨道的数目等于参加杂化的原子轨道的总数。 4.杂化轨道成键时,要满足化学键间最小排斥原理。键与键间排斥力的大小决定于键的方向,即决定于杂化轨道间的夹角。故杂化轨道的类型与分子的空间构型有关。 杂化轨道理论是鲍林为了解释分子的立体结构提出的。中心原子杂化轨道、孤电子对数及与之相连的原子数间的关系是:杂化轨道数=孤电子对数+与之相连的原子数。杂化前后轨道总数比变,杂化轨道用来形成σ键或容纳孤对电子,未杂化的轨道与杂化轨道所在平面垂直,可用来形成π键。 常见杂化方式 (1)sp杂化:直线型如:CO2、CS2 (2)sp2杂化:平面三角形(等性杂化为平面正三角形)如: BCl3C2H4 不等性杂化为V字型如:H2O H2S OF2

(3)sp3杂化:空间四面体(等性杂化为正四面体)如:CH4、CCl4 不等性杂化为三角锥如:NH3PCl3H3O+ sp3d杂化:三角双锥 sp3d2杂化:八面体(等性杂化为正八面体) 杂化轨道理论认为:原子在形成分子时,由于原子间相互作用的影响,若干不同类型能量相近的原子轨道混合起来,重新组合成一组新轨道,这种重新组合的过程称为杂化hybridation),所形成的新的原子轨道称为杂化轨道(hybrid orbit)。 什么叫杂化?同一原子的能量相近的原有的原子轨道“混杂”起来,重新组合形成新轨道的过程,叫做杂化。 什么叫杂化轨道?新组合的原子轨道叫做杂化轨道。 为什么要杂化?杂化轨道形成的化学键的强度更大,体系的能量更低。 杂化的动力:受周围原子的影响。 为什么杂化后成键,体系的能量降低?杂化轨道在一个方向上更集中,便于轨道最大重叠。 杂化轨道的构型决定了分子的几何构型:杂化轨道有利于形成σ键,但不能形成π键。由于分子的空间几何构型是以σ键为骨架,故杂化轨道的构型就决定了其分子的几何构型。 一.杂化轨道理论的基本要点 (1)概念:原子在形成分子时,为了增强成键能力,同一原子中能量相近的不同类型(S、P、D…)的几个原子轨道可以相互叠加进行重新组

高中参考资料化学人教版选修3 第二章 训练4 杂化轨道理论

训练4杂化轨道理论 [基础过关] 一、原子轨道杂化与杂化轨道 1.下列有关杂化轨道的说法不正确的是() A.原子中能量相近的某些轨道,在成键时能重新组合成能量相等的新轨道 B.轨道数目杂化前后可以相等,也可以不等 C.杂化轨道成键时,要满足原子轨道最大重叠原理、最小排斥原理 D.杂化轨道可分为等性杂化轨道和不等性杂化轨道 2.下列关于杂化轨道的叙述正确的是() A.杂化轨道可用于形成σ键,也可用于形成π键 B.杂化轨道可用来容纳未参与成键的孤电子对 C.NH3中N原子的sp3杂化轨道是由N原子的3个p轨道与H原子的s轨道杂化而成的 D.在乙烯分子中1个碳原子的3个sp2杂化轨道与3个氢原子的s轨道重叠形成3个C—H σ键二、杂化轨道类型及其判断 3.根据价层电子对互斥理论及原子的杂化轨道理论判断NF3分子的立体构型和中心原子的杂化方式为 () A.直线形sp杂化B.三角形sp2杂化 C.三角锥形sp2杂化D.三角锥形sp3杂化 4.在BrCH===CHBr分子中,C—Br键采用的成键轨道是() A.sp—p B.sp2—s C.sp2—p D.sp3—p 5.下列分子中的中心原子杂化轨道的类型相同的是() A.CO2和SO2B.CH4和NH3 C.BeCl2和BF3D.C2H2与C2H4 三、杂化轨道类型与分子构型 6.下列说法中正确的是() A.PCl3分子是三角锥形,这是因为磷原子是sp2杂化的结果 B.sp3杂化轨道是由任意的1个s轨道和3个p轨道混合形成的4个sp3杂化轨道 C.中心原子采取s p3杂化的分子,其立体构型可能是四面体形或三角锥形或V形 D.AB3型的分子立体构型必为平面三角形 7.下列推断正确的是() A.BF3为三角锥形分子 B.NH+4的电子式为[H··N H , H · · H]+,离子呈平面正方形结构 C.CH4分子中的4个C—H键都是氢原子的1s轨道与碳原子的2p轨道形成的s-p σ键D.甲醛分子为平面三角形,有一个π键垂直于三角形平面 8.甲烷分子(CH4)失去一个H+,形成甲基阴离子(CH-3),在这个过程中,下列描述不合理的是

关于中心原子杂化轨道数的计算方法

第26卷第3期2011年6月 大学化学 UNIVERSITY CHEMISTRY Vol.26No.3 Jun.2011关于中心原子杂化轨道数的计算方法 苏金昌 (大庆教育中心黑龙江大庆163001) 摘要对于H m AB n 型的共价分子(或离子),本文提出用公式G=V/2-3n计算中心原子A的杂化轨道 数,并由此确定对应的杂化轨道类型。该方法简单、直接、有效。 关键词中心原子价层电子总数杂化轨道数杂化轨道类型 杂化轨道理论是大学化学的重要基础理论之一,主要用来讨论共价分子(或离子)的成键情况以及预测其几何构型或阐述其物理化学性质。对于如何判定给定的分子(或离子)的中心原子轨道杂化方式,在杂化轨道理论里并没有系统论述,导致在应用杂化轨道理论教与学时遇到困难。为了有利于应用杂化轨道理论阐述相关问题,本文给出一个有关中心原子杂化轨道数的计算公式,并根据计算得出的杂化轨道数确定对应的杂化轨道类型。 1中心原子杂化轨道数的计算公式 在H m AB n型共价分子(或离子)中,设A为选定的中心原子,H为与A直接相连的氢原子(或氢离子)配位体,B为与A直接相连的非氢原子及其离子(或价电子数不大于8的原子团及其离子,如OH 与OH-)配位体;n、m分别为B、H的数目(即配位数);V为H m AB n型分子(或离子)的价电子总数,即所有原子(m个H、1个A和n个B)的价电子数之代数和。计算价电子总数V时应该注意的是:对于阴离子要再加上所带的电荷数,例如,PO3-4的价电子总数V=5+6?4+3=32;对于阳离子要再减去所带的电荷数,例如,NH4+的价电子总数V=5+1?4-1=8。 根据价键理论,在共价分子(或离子)中,氢原子(H)的价层一般满足2电子的稳定结构,而非氢原子(B)的价层一般满足8电子的稳定结构。当每个H、B都通过一个双电子的σ键与A共享2个电子时,满足2电子稳定结构的每个H的价电子就都参与了双电子σ键的形成,并没有剩余未成键的价电子;而每个B的价层8个电子中除了有2个是与中心原子A共用的σ键电子外,还有6个是未参与双电子σ键的电子,n个B共有6n个电子未参与σ键形成。那么,对于H m AB n的V个价电子中余下的(V-6n)个价电子,如果假定它们都有在A与B、A与H之间形成双电子σ键的倾向,则中心原子A倾向参与形成双电子σ键的最大数为:(V-6n)/2,即V/2-3n。 假定在共价分子(或离子)中,中心原子键合时之所以进行轨道杂化,其主要目的是最大限度地促进中心原子与配位体之间形成更多牢固的σ键,即尽可能地促使σ键的数目倾向于最大。因为“头碰头”式重叠的σ键越多、越牢固,构成的分子(或离子)就越稳定。可见,中心原子倾向参与形成σ键的最大数与其杂化轨道数之间存在着对应关系。若令G表示中心原子A的杂化轨道数,则计算中心原子杂化轨道数的公式可写为: G=V/2-3n(1)由式(1)可知,G的大小与V、n有关。即对于H m AB n型分子(或离子),其中心原子(A)的杂化轨道数(G),由分子(或离子)的价电子总数(V)和非氢配位体数目(n)决定。 (1)计算得出的中心原子的杂化轨道数及其杂化轨道类型、杂化轨道空间取向的对应关系归

杂化轨道理论(高中)

高中杂化轨道理论(图解) 一、原子轨道角度分布图 S Px Py Pz 二、共价键理论和分子结构 价键法(VB法)价键理论一: 1、要点: ⑴、共价键的形成条件:①、先决条件:原子具有未成对电子;②、配对电子参与成键的原子轨道要满足对称匹配、能量相近以及最大重叠的原则;③、两原子具有成单的自旋相反的电子配对,服从保里不相容原理。 ⑵、共价键的本质:是由于原子相互接近时轨道重叠,原子间通过共用自旋相反的电子使能量降低而成键。 ⑶、共价键的特征:①、饱和性,一个原子有几个未成对电子(包括激发后形成的未成对电子),便和几个自旋相反的电子配对成键;而未成对电子数是有限的,故形成化学键的数目是有限的。②、根据原子轨道最大重叠原理,原子轨道沿其角度分布最大值方向重叠,即共价键具有一定的方向性。 ⑷、共价键的类型:单键、双键和叁键。 ①、σ键和π键。 ⅰ、σ键:沿键轴方向重叠,呈圆柱形对称,称为σ轨道,生成的键称为σ键σ是希腊字母,相当于英文的s,是对称Symmetry[`simitri]这个字的第一个字母)。 σ键形成的方式: ⅱ、π键:两个p轨道彼此平行地重叠起来,轨道的对称面是通过键轴的平面,这个对称面就叫节面,这样的轨道称为π轨道,生成的键称为π键(π相当于英文的p,是平行parallel[`p?r?lel]的第一个字母)。 π键的形成过程: ,

σ键和π键的比较 σ键 (共价键中都存在σ键) π键 (只存在不饱和共价键中) 重 叠 方 式 (成建方向) 沿两电子云(原子轨道)的键轴方向以 “头碰头”的方式遵循原子轨道最大程度重叠原理进行重叠 两互相平行的电子云(原子轨道)以“肩并肩”的方式遵循原子轨道最大程度重叠原理进行重叠 重叠程度 重叠程度较大 重叠程度较小 电子云形状 共价键电子云(重叠部分)呈轴对称 共价键电子云(重叠部分)呈镜像对称 牢 固 程 度 强度较大,键能大,较牢固,不易断裂 强度较小,键能较小,不很牢固,易断裂 化学活泼性 不活泼,比π键稳定 活泼,易发生化学反应 类 型 s-s 、s-p 、、p-p 、 s- SP 杂化轨道、s- SP 2 杂化轨道、s- SP 3 杂化轨道、杂化轨道间 p -p π键,、p -p 大π键 是否能旋转 可绕键轴旋转 不可旋转, 存在 的规 律 共价单键是σ键,共价双键有一个σ键,有一个π键;共价叁键有一个σ键,有两个π键。 可单独存在任何共价键中 不单独存在,与σ键共存 概 念 含有未成对(单)电子的原子轨道沿两电叠子云(原子轨道)的键轴方向以“头碰头”的方式遵循原子轨道最大程度重叠原理进行重所形成的具有沿键呈轴对称特征的共价键 含有未成对(单)电子的两个互相平行的电子云(原子轨道)以“肩并肩”的方式 遵循原子轨道最大程度重叠原理进行重叠 所形成的具有镜像对称特征的共价键 2、价键理论二:杂化轨道理论,价键理论简明地阐明了共价键的形成过程和本质,成功解释了共价键的方向性和饱和性,但在解释一些分子的空间结构方面却遇到了困难。例如CH 4分子的形成,按照价键理论,C 原子只有两个未成对的电子,只能与两个H 原子形成两个共价键,而且键角应该大约为90°。但这与实验事实不符,因为C 与H 可形成CH 4分子,其空间构型为正四面体,∠HCH = 109°28′。为了更好地解释多原子分子的实际空间构型和性质,1931年鲍林和斯莱脱(Slater )在电子配对理论的基础上,提出了杂化轨道理论(hybrid orbital theory),丰富和发展了现代价键理论。 ⑴、杂化轨道理论的基本要点 原子在形成分子时,为了增强成键能力,同一原子中能量相近的不同类型(s 、p 、d …) 的几个原子轨道可以相互叠加进行重新组合,形成能量、形状和方向与原轨道不同的新的原子轨道。这种原子轨道重新组合的过程称为原子轨道的杂化,所形成的新的原子轨道称为杂化轨道。 注意:①、只有在形成分子的过程中,中心原子能量相近的原子轨道才能进行杂化,孤立的原子不可能发生杂化。②、只有能量相近的轨道才能互相杂化。常见的有:ns np nd , (n-1)d ns np ;③、杂化前后,总能量不变。但杂化轨道在成键时更有利于轨道间的重叠,即杂化轨道的成键能力比未杂化的原子轨道的成键能力增强,形成的化学键的键能大。这是 健 型 项 目

杂化轨道理论(图解)

杂化轨道理论(图解)一、原子轨道角度分布图 S Px Py Pz dz2 dx2-y2dxy dxz dyz 二、共价键理论和分子结构 ㈠、共价键理论简介 1、经典的化学键电子理论: 1916年德国化学家柯塞尔(Kossel)和1919年美国化学家路易斯(Lewis)等提出了化学键的电子理论。他们根据稀有气体原子的电子层结构特别稳定这一事实,提出各元素原子总是力图(通过得失电子或共用电子对)使其最外层具有8电子的稳定结构。柯塞尔用电子的得失解释正负离子的结合。路易斯提出,原子通过共用电子对而形成的化学键称为共价键(covalent [k?u`veilent]bond[b?nd])。用黑点代表价电子(即最外层s,p轨道上的电子),可以表示原子形成分子时共用一对或若干对电子以满足稀有气体原子的电子结构。为了方便,常用短线代替黑点,用“-”表示共用1对电子形成的共价单键,用“=”表示2对电子形成的共价双键,“≡”表示3对电子形成的共价叁键。原子单独拥有的未成键的电子对叫做孤对电子(lone[l?un]pair[pε?]electron[i`lektr?n])。Lewis结构式的书写规则又称八隅规则(即8电子结构)。 评价贡献:Lewis共价概念初步解释了一些简单非金属原子间形成共价分子的过程及其与离子键的区别。局限性:①、未能阐明共价键的本质和特性;②、八隅规则的例外 PCl5SF6BeCl2BF3NO,NO2… 中心原子周围价电子数101246含奇数价电子的分子… ③、不能解释某些分子的性质。含有未成对电子的分子通常是顺磁性的(即它们在磁场中表现出磁性)例如O2。 2、1927年德国的海特勒Heitler和美籍德国人的伦敦London两位化学家建立了现代价键理论,简称VB理论(电子配对法)。1931年,鲍林在电子配对的基础上提出了杂化轨道理论的概念,获1954年诺贝尔化学奖。 3、1928年-1932年,德国的洪特和美国的马利肯两位化学家提出分子轨道理论,简称MO理论。马利肯由于建立和发展分子轨道理论荣获得1966年诺贝尔化学奖。 MO法和VB法是两种根本不同的物理方法;都是电子运动状态的近似描述;在一定条件

化学选修三知识点

第一章原子结构与性质 一.原子结构 1.能级与能层 2.原子轨道 3.原子核外电子排布规律 ⑴构造原理:随着核电荷数递增,大多数元素的电中性基态原子的电子按右图顺序填入核外电子运动轨道(能级),叫做构造原理。 能级交错:由构造原理可知,电子先进入4s轨道,后进入3d轨道,这种现象叫能级交错。 说明:构造原理并不是说4s能级比3d能级能量低(实际上4s能级比3d能级能量高),而是指这样顺序填充电子可以使整个原子的能量最低。也就是说,整个原子的能量不能机械地看做是各电子所处轨道的能量之和。 (2)能量最低原理 现代物质结构理论证实,原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。 构造原理和能量最低原理是从整体角度考虑原子的能量高低,而不局限于某个能级。 (3)泡利(不相容)原理:基态多电子原子中,不可能同时存在4个量子数完全相同的电子。换言之,

一个轨道里最多只能容纳两个电子,且电旋方向相反(用“↑↓”表示),这个原理称为泡利(Pauli )原理。 (4)洪特规则:当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则叫洪特(Hund )规则。比如,p3的轨道式 为或 ,而不是。 洪特规则特例:当p 、d 、f 轨道填充的电子数为全空、半充满或全充满时,原子处于较稳定的状态。即p0、d0、f0、p3、d5、f7、p6、d10、f14时,是较稳定状态。 前36号元素中,全空状态的有4Be 2s22p0、12Mg 3s23p0、20Ca 4s23d0;半充满状态的有:7N 2s22p3、15P 3s23p3、24Cr 3d54s1、25Mn 3d54s2、33As 4s24p3;全充满状态的有10Ne 2s22p6、18Ar 3s23p6、29Cu 3d104s1、30Zn 3d104s2、36Kr 4s24p6。 4. 基态原子核外电子排布的表示方法 (1)电子排布式 ①用数字在能级符号的右上角表明该能级上排布的电子数,这就是电子排布式,例如K :1s22s22p63s23p64s1。 ②为了避免电子排布式书写过于繁琐,把内层电子达到稀有气体元素原子结构的部分以相应稀有气体的元素符号外加方括号表示,例如K :[Ar]4s1。 (2)电子排布图(轨道表示式) 每个方框或圆圈代表一个原子轨道,每个箭头代表一个电子。 如基态硫原子的轨道表示式为 二.原子结构与元素周期表 1.原子的电子构型与周期的关系 (1)每周期第一种元素的最外层电子的排布式为ns1。每周期结尾元素的最外层电子排布式除He 为1s2外,其余为ns2np6。He 核外只有2个电子,只有1个s 轨道,还未出现p 轨道,所以第一周期结尾元素的电子排布跟其他周期不同。 (2)一个能级组最多所容纳的电子数等于一个周期所包含的元素种类。但一个能级组不一定全部是能量相同的能级,而是能量相近的能级。 2.元素周期表的分区 (1)根据核外电子排布 ①分区 ②各区元素化学性质及原子最外层电子排布特点 ↑↓ ↑ ↓ ↓ ↓ ↑ ↑ ↑

高中化学物质结构杂化轨道理论

第2课时 杂化轨道理论 [学习目标定位] 知道杂化轨道理论的基本内容,能根据杂化轨道理论确定简单分子的立体构型。 一 杂化轨道理论 1.杂化轨道及其理论要点 (1)阅读教材内容,并讨论甲烷分子中四个C —H 键的键能、键长,为什么都完全相同? 答案 在形成CH 4分子时,碳原子的一个2s 轨道和三个2p 轨道发生混杂,形成四个能量相等的sp 3杂化轨道。四个sp 3杂化轨道分别与四个H 原子的1s 轨道重叠成键形成CH 4分子,所以四个C —H 是等同的。可表示为 (2)由以上分析可知 ①在外界条件影响下,原子内部能量相近的原子轨道重新组合形成一组新轨道的过程叫做原子轨道的杂化,重新组合后的新的原子轨道,叫做杂化原子轨道,简称杂化轨道。 ②轨道杂化的过程:激发→杂化→轨道重叠。 (3)杂化轨道理论要点 ①原子在成键时,同一原子中能量相近的原子轨道可重新组合成杂化轨道。 ②参与杂化的原子轨道数等于形成的杂化轨道数。 ③杂化改变了原子轨道的形状、方向。杂化使原子的成键能力增加。 2.杂化轨道类型和立体构型 (1)sp 杂化——BeCl 2分子的形成 ①BeCl 2分子的形成 杂化后的2个sp 杂化轨道分别与氯原子的3p 轨道发生重叠,形成2个σ键,构成直线形的BeCl 2分子。 ②sp 杂化:sp 杂化轨道是由一个n s 轨道和一个n p 轨道杂化而得,每个sp 杂化轨道含有12 s

和1 2 p 轨道的成分。sp 杂化轨道间的夹角为180°,呈直线形(如BeCl 2)。 ③sp 杂化后,未参与杂化的两个n p 轨道可以用于形成π键,如乙炔分子中的C ≡C 键的形成。 (2)sp 2杂化——BF 3分子的形成 ①BF 3分子的形成 ②sp 2杂化:sp 2杂化轨道是由一个n s 轨道和两个n p 轨道杂化而得,每个sp 2杂化轨道含有 1 3s 和2 3 p 的成分。sp 2杂化轨道间的夹角为120°,呈平面三角形(如BF 3)。 ③sp 2杂化后,未参与杂化的一个n p 轨道可以用于形成π键,如乙烯分子中的C===C 键的形成。 (3)sp 3杂化——CH 4分子的形成 ①CH 4分子的立体构型 ②sp 3杂化:sp 3杂化轨道是由一个n s 轨道和三个n p 轨道杂化而得,每个sp 3杂化轨道含有 1 4s 和3 4p 的成分。sp 3杂化轨道的夹角为109°28′,呈空间正四面体形(如CH 4、CF 4、CCl 4)。 [归纳总结] 杂化类型与分子间的空间构型

人教版高中数学选修三分子的立体构型练习题

高中化学学习材料 (精心收集**整理制作) 第二节分子的立体结构(第一课时) 【案例练习】 1、下列物质中,分子的立体结构与水分子相似的是() A、CO2 B、H2S C、PCl3 D、SiCl4 2、下列分子的立体结构,其中属于直线型分子的是() A、H2O B、CO2 C、C2H2 D、P4 3、写出你所知道的分子具有以下形状的物质的化学式,并指出它们分子中的键角分别是多少?(1)直线形 (2)平面三角形 (3)三角锥形 (4)正四面体 4、下列分子中,各原子均处于同一平面上的是() A、NH3 B、CCl4 C、H2O D、CH2O 参考答案: 第二节分子的立体结构(第二课时) 【案例练习】 1、下列分子中心原子是sp2杂化的是() A、PBr3 B、CH4 C、BF3 D、H2O 2、氨气分子空间构型是三角锥形,而甲烷是正四面体形,这是因为 A.两种分子的中心原子的杂化轨道类型不同,NH3为sp2型杂化,而CH4是sp3型杂化 B.NH3分子中N原子形成三个杂化轨道,CH4分子中C原子形成4个杂化轨道 C.NH3分子中有一对未成键的孤对电子,它对成键电子的排斥作用较强 D.氨气分子是极性分子而甲烷是非极性分子 3、用Pauling的杂化轨道理论解释甲烷分子的四面体结构,下列说法不正确的是() A、C原子的四个杂化轨道的能量一样 B、C原子的sp3杂化轨道之间夹角一样 C、C原子的4个价电子分别占据4个sp3杂化轨道 D、C原子有1个sp3杂化轨道由孤对电子占据 4、用VSEPR 理论判断 物质成键电子对数孤电子对数分子或离子的形状 H2O NH4+ BF3

H3O+ 参考答案: 第二节分子的立体结构(第三课时) 【案例练习】 1、在[Cu(NH3)4]2+配离子中NH3与中心离子Cu2+结合的化学键是 A.离子键 B.非极性键 C.极性键 D.配位键 2、与人体血液中血红蛋白以配位键结合的一种有毒气体是 A.氯气 B.氮气 C.一氧化碳 D.甲烷 3、向盛有硫酸铜水溶液的试管里加入氨水,首先形成难溶物,继续添加氨水,难溶物 溶解得到深蓝色的透明溶液。下列对此现象说法正确的是 A.反应后溶液中不存在任何沉淀,所以反应前后Cu2+的浓度不变。 B.沉淀溶解后,将生成深蓝色的配合离子[Cu(NH3)4] 2+。 C.向反应后的溶液加入乙醇,溶液将会没有发生变化,因为[Cu(NH3)4] 2+不会与乙醇发生反应。 D.在[Cu(NH3)4] 2+离子中,Cu2+给出孤对电子,NH3提供空轨道。 4、下列属于配合物的是() A、NH4Cl B、Na2CO3﹒10H2O C、CuSO4﹒5H2O D、Co(NH3)6Cl3 参考答案:1D 2C 3B 4D 5B

化学 选修3课后习题

化学(选修3)课后习题 第一章原子结构与性质 1、原子结构 1.以下能级符号正确的是() A.6s B.2d C.3f D.7p 2.以下各能层中不包含p能级的是() A.N B.M C.L D.K 3、以下能级中轨道数为3的是() A.s能级B.p能级C.d能级D.f能级 4.下列各原子或离子的电子排布式错误的是() A.K+1s22s22p63s23p6B.F 1s22s22p5 C.S2-1s22s22p63s23p4D.Ar 1s22s22p63s23p6 5.下列各图中哪一个是氧原子最外层的电子排布图?() 6.以下电子排布式是不是基态原子的电子排布? A.1s12s1 ()B.1s22s12p1() C.1s22s22p63s2()D. 1s22s22p63p1 () 7.按构造原理写出第9、17、35号元素原子的电子排布式。它们核外电子分别有几层?最外层电子数分别为多少? 8.在元素周期表中找出钠和硫,按构造原理写出它们的电子排布式和电子排布图,并预言它们的最高价化合价和最低化合价。 2、原子结构与元素的性质 1.从原子结构的观点看,元素周期表中同一横行的短周期元素,其相同,不同;同一纵行的主族元素,其相同,不同。 2.除第一和第七周期外,每一周期的元素都是从元素开始,以结束。 3

4.甲元素原子核电荷数为17,乙元素的正二价离子跟氩原子的电子层结构相同: (1)甲元素在周期表中位于第周期,第主族,电子排布式是,元素符号是,它的最高价氧化物对应的水化物的化学式是 (2)乙元素在周期表中位于第周期,第主族,电子排布式是,元素符号是,它的最高价氧化物对应的水化物的化学式是 5.主族元素和副族元素的电子排布有什么不同的特征?主族元素的价电子层和副族元素的价电子层有何不同? 6.有人把氢在周期表中的位置从ⅠA移至ⅦA,怎样从电子排布和化合价理解这种做法? 7.元素的金属性与非金属性随核电荷数递增呈现周期性变化,给出具体例子对这种变化进行陈述。 8.怎样理解电负性可以度量金属性与非金属性的强弱? 9.元素的化合价为什么会随原子的核电荷数递增呈现周期性的变化? *10.假设元素周期系可以发展到第八周期,而且电子仍按构造原理填入能级,第八周期总共 应为多少种元素? 复习题 1.下列说法正确的是() A.处于最低能量的原子叫做基态原子 B.3p2表示3p能级有两个轨道 C.同一原子中,1s、2s、3s电子的能量逐渐减小 D.同一原子中,2p、3p、4p能级的轨道数依次增多 2.X、Y、Z三种元素的原子,其最外层电子排布分别为ns1、3s23p1和2s22p4,由这三种元素组成的化合物的化学式可能是() A.XYZ2B.X2YZ3C.X2YZ2D.XYZ3 3、下列说法中,不符合ⅦA族元素性质特征的是() A.从上到下原子半径逐渐减小

(完整版)中心原子杂化轨道类型的判断方法

中心原子杂化轨道类型的判断方法 徐长明(湖北省十堰市房县第三中学442100) 摘要:杂化轨道理论能解释大多数分子的几何构型及价键结构。在使用该理论时,首先必须确定中心原子的杂化类型,在未知分子构型的情况下,判断中心原子杂化轨道类型有时比较 困难,成为教学难点。 关键词:杂化轨道理论;价层电子对互斥理论;等电子原理 高中化学选修模块《物质结构与性质》(人教版)中介绍了杂化轨道理论,这一重要理论能解释大多数分子几何构型及价键结构。在使用该理论时,首先必须确定中心原子的杂化形式,在未知分子构型的情况下,判断中心原子杂化轨道类型有时比较困难,成为教学难点。下面总结几种高中阶段判断中心原子杂化轨道类型的方法。 一、根据价层电子对互斥理论判断 教材中介绍了价层电子对互斥理论,根据该理论能够比较容易而准确地判断AB m型共价化合物分子或离子的空间构型和中心原子杂化轨道类型。中心原子的价电子对数与价电子对的几何分布、中心原子杂化 轨道类型的对应关系如下表(价电子对数>4 的,高中阶段不作要求)。 运用该理论的关键是能准确计算出中心原子的价 电子对数,其计算方法是: 1.价电子对数n =σ键的电子对和中心原子上的孤电子对,中心原子上的孤电子对数=1/2(a-xb) 2.σ键的电子对可由分子式确定。例如,H20中0有2对σ键电子对;NH3中N有3对σ键电子对 3.式中a为中心原子的价电子数对于主族元素,中心原子(A)的价电子数=最外层电子数;x为与中心原子结合的原子数;b为与中心原子结合的原子最多能接受的电子数,氢为1 ,其他原子等于“8-该原子的价电子数”。离子在计算价电子对数时,还应加上负离子的电荷数或减去正离子的电荷数(绝对值) 4.杂化轨道由形成σ键的电子对和孤电子对占据,因此分子或离子的空间构型为杂化轨道构型去掉孤电子对后剩余的形状。 例如:指出下列分子或离子的中心原子的杂化轨道类型,并预测它们的空间构型: ⑴BeCl2 ⑵SO3 ⑶NH4+ 解析:⑴是AB2型分子,BeCl2 的价电子对数 n=1/2(2-2×1)+2=2,Be 采用sp 杂化,无孤电子对,故分子呈直线型; ⑵是AB3型分子,SO3的价电子对数n=1/2(6-3×2)+3=3,S 采用sp2杂化,无孤电子对,故分子呈平面三角形 ⑶是AB4 型离子,NH4+的价电子对数n=1/2(5-1-4×1)+4=4,N 采用sp3杂化,无孤电子对,故分子呈正四面体 二、根据分子的空间构型判断

杂化轨道理论(图解)

杂化轨道理论(图解) 一、原子轨道角度分布图 S Px Py Pz dz2 dx2-y2dxy dxz dyz 二、共价键理论和分子结构 ㈠、共价键理论简介 1、经典的化学键电子理论: 1916年德国化学家柯塞尔(Kossel)和1919年美国化学家路易斯(Lewis)等提出了化学键的电子理论。他们根据稀有气体原子的电子层结构特别稳定这一事实,提出各元素原子总是力图(通过得失电子或共用电子对)使其最外层具有8电子的稳定结构。柯塞尔用电子的得失解释正负离子的结合。路易斯提出,原子通过共用电子对而形成的化学键称为共价键(covalent [k?u`veilent]bond[b?nd])。用黑点代表价电子(即最外层s,p轨道上的电子),可以表示原子形成分子时共用一对或若干对电子以满足稀有气体原子的电子结构。为了方便,常用短线代替黑点,用“-”表示共用1对电子形成的共价单键,用“=”表示2对电子形成的共价双键,“≡”表示3对电子形成的共价叁键。原子单独拥有的未成键的电子对叫做孤对电子(lone[l?un]pair[pε?]electron[i`lektr?n])。Lewis结构式的书写规则又称八隅规则(即8电子结构)。 评价贡献:Lewis共价概念初步解释了一些简单非金属原子间形成共价分子的过程及其与 PCl5SF6BeCl2BF3NO,NO2… 中心原子周围价电子数10 12 4 6 含奇数价电子的分子… ③、不能解释某些分子的性质。含有未成对电子的分子通常是顺磁性的(即它们在磁场中表现出磁性)例如O2。 2、1927年德国的海特勒Heitler和美籍德国人的伦敦London两位化学家建立了现代价键理论,简称VB理论(电子配对法)。1931年,鲍林在电子配对的基础上提出了杂化轨道理论的概念,获1954年诺贝尔化学奖。 3、1928年-1932年,德国的洪特(F.Hund)和美国的马利肯(R.S.Mulliken)两位化学家提出分子轨道理论,简称MO理论。马利肯(R.S.Mulliken)由于建立和发展分子轨道理论荣获得1966年诺贝尔化学奖。 MO法和VB法是两种根本不同的物理方法;都是电子运动状态的近似描述;在一定条件

同步练习 2.2.2 杂化轨道理论(人教版选修3) (2)

2.2 分子的立体构型第2课时杂化轨道理论 练基础落实 知识点1杂化轨道 1.下列有关杂化轨道的说法不正确的是() A.原子中能量相近的某些轨道,在成键时能重新组合成能量相等的新轨道 B.轨道数目杂化前后可以相等,也可以不等 C.杂化轨道成键时,要满足原子轨道最大重叠原理、最小排斥原理 D.杂化轨道可分为等性杂化轨道和不等性杂化轨道 2.关于原子轨道的说法正确的是() A.凡是中心原子采取sp3杂化方式成键的分子其几何构型都是正四面体 B.CH4分子中的sp3杂化轨道是由4个H原子的1s轨道和C原子的2p轨道混合起来而形成的 C.sp3杂化轨道是由同一个原子中能量相近的s轨道和p轨道混合起来形成的一组能量相近的新轨道 D.凡AB3型的共价化合物,其中心原子A均采用sp3杂化方式成键 3.根据价层电子对互斥理论及原子的杂化理论判断NF3分子的空间构型和中心原子的杂化方式为() A.直线形sp杂化B.三角形sp2杂化 C.三角锥形sp2杂化D.三角锥形sp3杂化 知识点2利用杂化轨道判断分子的空间构型 4.下列分子中的中心原子杂化轨道的类型相同的是() A.CO2与SO2B.CH4与NH3 C.BeCl2与BF3D.C2H2与C2H4 5.下列说法中正确的是() A.PCl3分子是三角锥形,这是因为磷原子是sp2杂化的结果 B.sp3杂化轨道是由任意的1个s轨道和3个p轨道混合形成的4个sp3杂化轨道 C.中心原子采取sp3杂化的分子,其几何构型可能是四面体形或三角锥形或V形 D.AB3型的分子空间构型必为平面三角形 6.下列分子的空间构型可用sp2杂化轨道来解释的是() ①BF3②CH2===CH2③④CH≡CH ⑤NH3⑥CH4 A.①②③B.①⑤⑥C.②③④D.③⑤⑥ 7.下列推断正确的是() A.BF3为三角锥形分子 B.NH+4的电子式为,离子呈平面正方形结构 C.CH4分子中的4个C—H键都是氢原子的1s轨道与碳原子的2p轨道形成的s—p σ键 D.CH4分子中的碳原子以4个sp3杂化轨道分别与4个氢原子的1s轨道重叠,形成C—H σ键

相关文档
最新文档