初三数学第一次月考试卷
福建省厦门第一中学2022-2023学年九年级下学期第一次月考数学试题(3月)

福建省厦门一中2022-2023学年(下)3月阶段性诊断练习初三年数学试卷命题:陈奕;审核:郑辉龙2023.3 (满分:150分,考试时间:120分钟)注意事项:1.答案一律写在答题卡上,否则不得分;2.可直接用2B 铅笔画图.一、选择题(本大题有8小题,每小题4分,共32分) 1.(−2)0=A .1B .-2C .0D .−122.如图1,由四个正方体组成的几何体的左视图是A .B .C .D .3.反比例函数y =4x 的图象经过以下各点中的A .(2,12)B .(3,34)C .(-2,-2)D .(4,-1)4.如图,将△ABC 折叠,使AC 边落在AB 边上,展开后得到折痕l ,则l 是△ABC 的A .中线B .高C .角平分线D .中位线5.当物体表面所受的压力F (N )一定时,物体表面所受的压强P (Pa )与受力面积S (m 2)的函数关系式为P =FS(S ≠0),这个函数的图象大致是A .B .C .D .6.如图,在直角△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,则sin A =A .BC ACB .ACABC .AD ACD .BD BCPSOPSO正面lCBA DCBA7.我国魏晋时期的数学家刘徽首创“割圆术”:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣”,即通过圆内接正多边形割圆,从正六边形开始,每次边数成倍增加,依次可得圆内接正十二边形,内接正二十四边形,…边数越多割得越细,正多边形的周长就越接近圆的周长.再根据“圆周率等于圆周长与该圆直径的比”来计算圆周率.设圆的半径为R ,圆内接正六边形的周长l 6=6R ,则π=l 62R=3,再利用圆的内接正十二边形来计算圆周率,则圆周率π约为 A .12sin15°B .12cos15°C .12sim30°D .12cos30°8.已知抛物线y =2x 2−bx 上有点(m ,n ),且m 是关于x 的方程4x −b =0的解,则下列说法正确的是A .对于任意实数x ,都有y ≤nB .对于任意实数x ,都有y ≥nC .小树于任意实数x ,都有y <nD .对于任意实数x ,都有y >n二、填空题(本大题有8小题,每小题4分,共32分) 9.已知锐角α满足cosα=√32,则α=_______°.10.因式分解:x 2+2x +1=_______.11.写一个常数k =_______,使反比例函数y =kx (k ≠0)图象满足:在同一象限内y 随x 的增大而增大. 12.某校为推荐一项作品参加“科技创新”比赛,对甲、乙、丙、丁四项候选作品进行量化评分,具体成绩(百分制)如表所示.如果按照创新性占60%,实用性占40%计算总成绩,并根据总成绩择优推荐,那么应推荐的作品是_______. 13.如图,某小区门口的栏杆短臂AO =1m ,长臂OB =12m .当短臂端点高度下降AC =0.5m ,则长臂端点高度上升BD 长等于_______m (栏杆的宽度忽略不计).14.如图,以O 为位似中心,将△AOB 放大得到△COD ,其中B (3,0),D (4,0),则△AOB与△COD 的相似比为_______.15.如图,以点O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,点P 为切点,AB =2√3,OP =1,则劣弧⌒AB 的长为_______.A 12A 11A 10A 9A 8A 7A 6A 5A 4A 3A 2M A 1O O FE D C B A 第14题DCB A Oy x第15题第13题16.如图,△OMN是边长为10的等边三角形,反比例函数y=kx(x>0)的图象与边MN、OM分别交于点A、B(点B不与点M重合).若AB⊥OM 于点B,则k的值为_______.三、解答题(共9题,满分86分)17.(本题8分)(1)计算:2sin45°+│−√2+2−1│;(2)解不等式组:{x+3>2①2x−13≤1②.18.(本题8分)如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E,CF⊥AD于点F.求证:AF=BE.19.(本题8分)学收为实现垃圾分类投放,准备在校园内摆放大、小两种垃圾桶.购买2个大垃圾桶和4个小垃圾桶共需600元;购买6个大垃圾桶和8个小垃圾桶共需1560元.求大、小两种垃圾桶的单价.20.(本题8分)如图,一次函数y=k+b(k≠0)与反比例面数y=mx(m≠0)的图象相交于A(-3,-2),B(n,6),直线AB与x轴、y轴分别交于C、D两点.(1)求一次函数与反比例函数的解析式;(2)直接写出关于x的不等式kx+b>mx的解集.21.(本题8分)如图,一艘海轮自西向东航行,在点B处时测得海岛A位于北偏东67°,航行12海里到达C点,又测得小岛A在北偏东45°方向上.已知位于海岛A的周围8海里内有暗礁,如果渔船不改变航线继续向东航行,那么它有没有触码的危险?请说明理由.(参考数据:sin67°≈1213,cos67°≈513,tm67°≈125)编号A1A2A3A4A5A6A7每日峰时段用电量占比80%20%50%10%20%50%60%第16题FEDCBA东北45°67°CBA22.(本题10分)已知△ABC 中,∠A =22.5°,∠B =45°.(1)求作:⊙O ,使得圆心O 落在AB 边上,且⊙O 经过A 、C 两点;(尺规作图,保留作图痕迹,不必写作法)(2)在(1)所作的图形中,若与AB 相交于D ,连接CD ,①求证:直线BC 是⊙O 的切线; ②求tan ∠BCD 的值.23.(本题10分)【阅读理解】某市电力公司对居民用电设定如下两种收费方式:方式一:“分档”计算电费(见表一),按电量先计算第一档,超过的部分再计算第二档,依次类推,最后求和即为总电费;方式二:“分档+分时”计算电费(见表一、表二),即总电费等于“分档电费、峰时段增加的电费、谷时段减少的电费的总和”.如:某用户该月用电总量500度,其中峰时段用电量300度,谷时段用电量200度,若该用户选择方式二缴费,则总电费为:[230×0.5+(420-230)×0.55+(500-420)×0.8+300×0.03+200×(-0.2)=252.5(元). 【问题解决】已知小明家4月份的月用电量相当于全年的平均月用电量,现从他家4月份的日用电量数据中随机抽取7天作为样本,制作成如图表:(1)若从上述样本中随机抽取一天,求所抽取的日用电量为15度以上的概率;(2)若每月按30天计,请通过样本数据计算月用电费,帮小明决定选择哪一种方式缴费合算?CBA 0A 7A 6A 5A 4A 3A 2A 1编号日用电量(度)12131444403814102030405024.(本题12分)定义:若三角形有两个内角的差为90°,则这样的三角形叫做“准直角三角形”.(1)若△ABC 是“准直角三角形”,∠C >90°,∠A =50°,则∠B =_______°; (2)如图1,△ABC 中,∠C =90°,AB =6,BC =2.若D 是AC 上的一点,CD =√22,请判断△ABD是否为准直角三角形,并说明理由;(3)如图2,在四边形ABCD 中,CD =CB ,∠ABD =∠BCD ,AB =5,BD =8,且△ABC 是“准直角三角形“,求△BCD 的面积.25.(本题14分)如图,在平面直角坐标系中,抛物线y =−x 2+bx +c 与x 轴交于A (-1,0),B (3,0)两点,与y 轴交于点C . (1)求抛物线的解析式;(2)点D 为第一象限内抛物线上的一动点,作DE ⊥x 轴于点E ,交BC 于点F ,过点F 作BC 的垂线与抛物线的对称轴和y 轴分别交于点G 、H ,设点D 的横坐标为m . ①求DF +HF 的最大值;②连接EG ,若∠GEH =45°,求m 的值.图1D CBA图2DCB AABCD备用图备用图。
湖南省长沙市湖南师大附中2022学年九年级下学期第一次月考数学试题(含答案与解析)

C.10D.16
【9题答案】
【答案】B
【解析】
【分析】由题意知,盒子中白球的个数可能是 ,计算求解即可.
【详解】解:由题意知
∴盒子中白球的个数可能是8个
故选B.
【点睛】本题考查了频率.解题的关键在于明确大量试验可以用频率估计概率.
10.在一次数学活动课上,某数学老师在4张同样的纸片上各写了一个正整数,从中随机取2张,并将它们上面的数相加,重复这样做,每次所得的和都是5,6,7,8中的一个数,并且这4个数都能取到,根据以上信息,下列判断正确的是()
【详解】解:A.不是中心对称图形,故本选项不符合题意;
B.不是中心对称图形,故本选项不符合题意;
C.是中心对称图形,故本选项符合题意;
D.不是中心对称图形,故本选项不符合题意.
故选:C.
【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转 后与原图重合,掌握中心对称图形的概念是解题的关键.
14.已知扇形的圆心角为 ,半径为 ,则扇形的弧长是 .
15.如图,在△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是________.
16.如图,AB为半圆O的直径,点C为半圆上的一点,CD⊥AB于点D,若AB=10,CD=4,则tan∠BCD的值为________.
(1)参加这次调查的学生总人数为___________人;
(2)请补全条形统计图;
(3)扇形统计图中类别 所对应扇形的圆心角度数为__________ ;
(4)类别 的4名学生中有3名男生和1名女生,班主任想从这4名学生中随机选取2名学生进行访谈,请用列举法(画树状图或列表)求所选取的2名学生恰好都是男生的概率.
2021-2022学年甘肃省兰州九十二中九年级(下)第一次月考数学试卷

2021-2022学年甘肃省兰州九十二中九年级(下)第一次月考数学试卷一、单项选择题(每小题3分,共30分)1.(3分)﹣2021的相反数是()A.2021B.﹣2021C.D.﹣2.(3分)剪纸是最古老的中国民间艺术之一,作为一种镂空艺术,它能给人以视觉上透空的感觉和艺术享受.春节期间,剪纸爱好者发起“百牛迎新春”剪纸创作活动.下列作品中,是轴对称图形的是()A.B.C.D.3.(3分)下列计算正确的是()A.x2•x=3x B.2x2+x=2x3C.3x2÷x=2x D.(x2)3=x64.(3分)据全国政协十三届四次会议召开新闻发布会报道,截止2021年2月28日,中国已累计接种新冠疫苗约5200万剂次.数据5200万剂用科学记数法可表示为()A.5200×104剂B.52×106剂C.5.2×106剂D.5.2×107剂5.(3分)如图,在平面直角坐标系xOy中,将四边形ABCD先向下平移,再向右平移得到四边形A1B1C1D1,已知A(﹣3,5),B(﹣4,3),A1(3,3),则B1的坐标为()A.(1,2)B.(2,1)C.(1,4)D.(4,1)6.(3分)如图.直线AB、CD被直线ED所裁,若AB∥CD,∠1=130°,则∠2=()A.40°B.50°C.60°D.70°7.(3分)如图,在⊙O中,点A在上,∠ABO=50°,∠BAC=110°,则∠ACO=()A.80°B.70°C.60°D.55°8.(3分)明代数学家程大位所著的《算法统宗》中有这样一道题:有83000根短竹,每根短竹可制成毛笔的笔管3个或笔套5个,怎样安排用于制作笔管或笔套的短竹的数量,使制成的1个笔管与1个笔套正好配套?设用于制作笔管的短竹数为x根,用于制作笔套的短竹数为y根,可列方程组为()A.B.C.D.9.(3分)已知a、b、c是△ABC的三条边长,化简|a+b﹣c|﹣|c﹣a﹣b|的结果为()A.2a+2b﹣2c B.2a+2b C.2c D.010.(3分)如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=8,E是△ABC边上一动点,沿A→C→B 的路径移动,过点E作ED⊥AB,垂足为D.设AD=x,△ADE的面积为y,则下列能大致反映y与x 函数关系的图象是()A.B.C.D.二、填空题(每小题4分,共32分)11.(4分)因式分解:m3﹣9m=.12.(4分)不等式2x+9≥3(x+2)的解集为.13.(4分)若关于x的方程(m﹣2)x2﹣2x+1=0有两个不等的实根,则m的取值范围是.14.(4分)一个正多边形每一个外角为36°,则这个多边形的内角和为.15.(4分)已知点A(2,y1),B(﹣1,y2)都在反比例函数y=(k<0)的图象上,则y1y2.(填>,<,=)16.(4分)如图所示,若用半径为8,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是.17.(4分)如图,AB是⊙O的直径,点C和点D是⊙O上位于直径AB两侧的点,连接AC,AD,BD,CD,若⊙O的半径是13,BD=24,则sin∠ACD的值是.18.(4分)按一定规律排列的多项式:﹣x+2y,x2+4y,﹣x3+6y,x4+8y,﹣x5+10y,…,根据上述规律,则第n个多项式是.三、解答题(本大题共10小题,共88分)19.(6分)计算|1﹣|+(π﹣2021)0﹣3tan30°+()﹣1.20.(6分)先化简,再求值:,其中a=.21.(8分)如图,在Rt△ABC中,∠C=90°.(1)尺规作图:作Rt△ABC的外接圆⊙O;作∠ACB的角平分线交⊙O于点D,连接AD.(不写作法,保留作图痕迹)(2)若AC=6,BC=8,求AD的长.22.(10分)甘肃科技馆(如图①所示)是甘肃省有史以来投资和建设规模最大的社会公益性科普项目,是实施科教兴国战略和创新驱动发展战略的重要基础设施建设.甘肃科技馆的建成,标志着甘肃省科普阵地建设迈上了新台阶某数学课题研究小组对测量甘肃科技馆的高度这一课题进行了探究,过程如下:问题提出:如图②是测量甘肃科技馆高度AB的示意图,求甘肃科技馆的高度AB.方案设计:如图②,该数学课题研究小组通过调查研究设计了甘肃科技馆楼顶B到地面的高度为AB在测点C用仪器测得点B的仰角为α,前进一段距离到达测点E,再用该仪器测得点B的仰角为β,且点A、B、C、D、E、F均在同一竖直平面内.数据收集:α=45°,β=54°,CE=10m,测角仪CD(EF)高1m.问题解决:根据上述方案及数据,求甘肃科技馆的高度.(计算结果保留整数,参考数据:≈1.41,sin54°≈0.81,cos54°≈0.59,tan54°≈1.38)23.(8分)2021年是“十四五发展规划的开局之年,也是武威市向旅游强市转型跨越的关键年.2021甘肃省《政府工作报告》中提出把铜奔马文化旅游景区列为今年全省5A级申报创建的重点工作,这也为武威市5A级景区创建和文化旅游名市建设指明了前进方向.甲乙两个旅行团途经武威时决定分别在“A.铜奔马文化旅游景区、B.天梯山石窟、C.苏武沙漠大景区、D石羊河大景区”中随机选择一个景区进行游览.(1)求甲旅行团选择“A.铜奔马文化旅游景区”的概率是多少?(2)甲、乙两个旅行团选择同一个景区游览的概率是多少?(要求画树状图或列表求概率)24.(8分)武汉市七一中学在2020年中考复课前对初三学生了解“新冠肺炎”相关知识进行综合测试,满分100为分.学校为了调查学生对于相关知识的掌握程度,在九年级学生中随机抽取了部分学生进行模拟测试,并将测试成绩绘制成下面两幅统计图.试根据统计图中提供的数据,回答下面问题:(1)计算样本中,成绩为98分的学生有人,并补全条形统计图;(2)样本中,测试成绩的中位数是分,众数是分;(3)若我校九年级共有550名学生,根据此次模拟成绩估计我校九年级中考综合素质测试将有多少名学生可以获得满分.25.(10分)接种疫苗是预防控制传染病最有效的手段.甲、乙两地分别对本地各40万人接种新冠病毒疫苗.甲地在前期完成5万人员接种后,甲、乙两地同时以相同速度接种.甲地经过a天接种后,由于情况变化,接种速度放缓.图中的折线BCD和线段OA分别反映了甲、乙两地的接种人数y(万人)与接种时间x(天)之间的函数关系.根据图象所提供的信息回答下列问题:(1)乙地比甲地提前了天完成疫苗接种工作;(2)试写出乙地接种人数y2(万人)与接种时间x(天)之间的函数解析式;(3)当甲地放缓接种速度后,每天可接种万人.26.(10分)如图,A,B,C是半径为2的⊙O上三个点,AB为直径,∠BAC的平分线交⊙O于点D,过点D作AC的垂线,交AC的延长线于点E,延长ED交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)若DF=4,求tan∠EAD的值.27.(10分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC.BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E.连接OE.(1)求证:四边形ABCD是菱形;(2)若AE=5,OE=3,求线段CE的长,28.(12分)如图,已知抛物线y=ax2+bx+3与x轴交于点A(﹣1,0)、B(3,0),顶点为M.(1)求抛物线的解析式和点M的坐标;(2)点E是线段BC上方抛物线上的一个动点,设△BEC的面积为S,求出S的最大值,并求出此时点E的坐标;(3)在抛物线的对称轴上是否存在点P,使得以A、P、C为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.参考答案一、单项选择题(每小题3分,共30分)1.A;2.C;3.D;4.D;5.B;6.B;7.C;8.D;9.D;10.D;二、填空题(每小题4分,共32分)11.m(m+3)(m﹣3);12.x≤3;13.m<3且m≠2;14.1440°;15.<;16.;17.;18.(﹣x)n+2ny.;三、解答题(本大题共10小题,共88分)19.2.;20.,1.;21.;22.37m.;23.(1);(2).;24.14;98;100;25.20;y2=0.5x(0≤x≤80);0.25;26.(1)证明过程见解析;(2).。
沪科版数学九年级上册第一次月考试卷含答案解析

沪科版数学九年级上册第一次月考试题一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)下列各数是无理数的是()A.B.C.D.162.(4分)在平面直角坐标系中,直线y=x﹣1经过()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限3.(4分)某班一个小组7名同学的体育测试成绩(满分30分)依次为:27,29,27,25,27,30,25,这组数据的中位数和众数分别是()A.27,25 B.25,27 C.27,27 D.27,304.(4分)如图,已知四边形ABCD是平行四边形,要使它成为菱形,那么需要添加的条件可以是()A.AC⊥BD B.AB=AC C.∠ABC=90°D.AC=BD5.(4分)已知(5,﹣1)是双曲线y=(k≠0)上的一点,则下列各点中不在该图象上的是()A.(,﹣15)B.(5,1)C.(﹣1,5)D.(10,﹣)6.(4分)已知x:y=5:2,则下列各式中不正确的是()A.=B.= C.=D.=7.(4分)函数y=﹣2x2﹣8x+m的图象上有两点A(x1,y1),B(x2,y2),若﹣2<x1<x2,则()A.y1<y2B.y1>y2C.y1=y2D.y1、y2的大小不确定8.(4分)将抛物线y=2x2+1的图象向右平移2个单位,再向下平移3个单位,得到的抛物线是()A.y=2(x+2)2﹣3 B.y=2(x+2)2﹣2 C.y=2(x﹣2)2﹣3 D.y=2(x﹣2)2﹣29.(4分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:①2a+b=0②当﹣1≤x≤3时,y<0③若(x1,y1)、(x2,y2)在函数图象上,当x1<x2时,y1<y2④9a+3b+c=0其中正确的是()A.①②④ B.①④C.①②③ D.③④10.(4分)在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A. B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)因式分解:2a2﹣3a=.12.(5分)若函数y=﹣kx+2k+2与y=(k≠0)的图象有两个不同的交点,则k的取值范围是.13.(5分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①a+b+c=0;②4a+b=0;③abc<0;④4ac﹣b2<0;⑤当x≠2时,总有4a+2b>ax2+bx 其中正确的有(填写正确结论的序号).14.(5分)二次函数y=x2的图象如图,点O为坐标原点,点A在y轴的正半轴上,点B、C在二次函数y=x2的图象上,四边形OBAC为菱形,且∠OBA=120°,则菱形OBAC 的面积为.三、(本大题共2小题,每小题8分,满分16分)15.(8分)已知二次函数y=﹣2x2+4x+6.(1)求该函数图象的顶点坐标.(2)求此抛物线与x轴的交点坐标.16.(8分)已知:=,说明:ab+cd是a2+c2和b2+d2的比例中项.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,一次函数y1=﹣x+5与反比例函数y2=的图象交于A(1,m)、B(4,n)两点.(1)求A、B两点的坐标和反比例函数的解析式;(2)根据图象,直接写出当y1>y2时x的取值范围;(3)求△AOB的面积.18.(8分)已知实数x、y、z满足,试求的值.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,已知抛物线y=ax2+bx+c,根据图象,回答下列问题:(1)判断下列各代数式的符号:a,b,c,b2﹣4ac,a﹣b+c,4a2﹣2b+c;(2)写出不等式ax2+bx+c<0的解集;(3)若方程ax2+bx+c=k,有两个不相等的实根,求k的取值范围.20.(10分)如图所示,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.(1)在如图的坐标系中求抛物线的解析式;(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到达拱桥顶?六、(本题满分12分)21.(12分)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB的长.七、(本题满分12分)22.(12分)已知关于x的一元二次方程x2+2x+=0有两个不相等的实数根,k为正整数.(1)求k的值;(2)当次方程有一根为零时,直线y=x+2与关于x的二次函数y=x2+2x+的图象交于A、B两点,若M是线段AB上的一个动点,过点M作MN⊥x轴,交二次函数的图象于点N,求线段MN的最大值及此时点M的坐标.八、(本题满分14分)23.(14分)某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x (单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)(2016•松江区二模)下列各数是无理数的是()A.B.C.D.16【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A、是有理数,故A错误;B、是无理数,故B正确;C、是有理数,故C错误;D、16是有理数,故D错误;故选:B.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(4分)(2016•松江区二模)在平面直角坐标系中,直线y=x﹣1经过()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限【分析】根据k,b的符号判断直线所经过的象限.【解答】解:由已知,得:k=1>0,b=﹣1<0,故图象经过第一、三、四象限.故选C.【点评】考查了一次函数的图象与系数的关系,一次函数图象的四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.3.(4分)(2016•松江区二模)某班一个小组7名同学的体育测试成绩(满分30分)依次为:27,29,27,25,27,30,25,这组数据的中位数和众数分别是()A.27,25 B.25,27 C.27,27 D.27,30【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:在这一组数据中27是出现次数最多的,故众数是27;将这组数据从小到大的顺序排列后,处于中间位置的那个数是27,这组数据的中位数是27.故选C【点评】本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,可能会求得错误答案.4.(4分)(2016•松江区二模)如图,已知四边形ABCD是平行四边形,要使它成为菱形,那么需要添加的条件可以是()A.AC⊥BD B.AB=AC C.∠ABC=90°D.AC=BD【分析】根据菱形的判定方法有四种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形,④对角线平分对角,作出选择即可.【解答】解:A、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,故本选项正确;B、∵四边形ABCD是平行四边形,AB=AC≠BC,∴平行四边形ABCD不是,故本选项错误;C、∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,不能推出,平行四边形ABCD是菱形,故本选项错误;D、∵四边形ABCD是平行四边形,AC=BD∴四边形ABCD是矩形,不是菱形.故选:A.【点评】本题考查了平行四边形的性质,菱形的判定方法;注意:菱形的判定定理有:①有一组邻边相等的平行四边形是菱形,②四条边都相等的四边形是菱形,③对角线互相垂直的平行四边形是菱形.5.(4分)(2015秋•蚌埠期中)已知(5,﹣1)是双曲线y=(k≠0)上的一点,则下列各点中不在该图象上的是()A.(,﹣15)B.(5,1)C.(﹣1,5)D.(10,﹣)【分析】根据反比例函数图象上点的坐标特点解答即可.【解答】解:因为点(5,﹣1)是双曲线y=(k≠0)上的一点,将(5,﹣1)代入y=(k≠0)得k=﹣5;四个选项中只有B不符合要求:k=5×1≠﹣5.故选B.【点评】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.6.(4分)(2016秋•蚌埠期中)已知x:y=5:2,则下列各式中不正确的是()A.=B.= C.=D.=【分析】根据合比性质,可判断A,根据分比性质,可判断B,根据合比性质、反比性质,可判断C,根据分比性质、反比性质,可判断D.【解答】解:A、由合比性质,得=,故A正确;B、由分比性质,得=,故B正确;C、由反比性质,得y:x=2:5.由合比性质,得=,再由反比性质,得=,故C正确;D、由反比性质,得y:x=2:5.由分比性质,得=.再由反比性质,得=,故D错误;故选;D.【点评】本题考查了比例的性质,利用了反比性质,合比性质、分比性质,记住性质是解题关键.7.(4分)(2016春•温州校级期中)函数y=﹣2x2﹣8x+m的图象上有两点A(x1,y1),B (x2,y2),若﹣2<x1<x2,则()A.y1<y2B.y1>y2C.y1=y2D.y1、y2的大小不确定【分析】先确定抛物线的对称轴及开口方向,再根据点与对称轴的远近,判断函数值的大小.【解答】解:∵y=﹣2x2﹣8x+m=﹣2(x+2)2+m+8,∴对称轴是x=﹣2,开口向下,距离对称轴越近,函数值越大,∵﹣2<x1<x2,∴y1>y2.故选B.【点评】主要考查了二次函数的图象性质及单调性的规律.8.(4分)(2015秋•蚌埠期中)将抛物线y=2x2+1的图象向右平移2个单位,再向下平移3个单位,得到的抛物线是()A.y=2(x+2)2﹣3 B.y=2(x+2)2﹣2 C.y=2(x﹣2)2﹣3 D.y=2(x﹣2)2﹣2 【分析】直接根据“左加右减、上加下减”的原则进行解答即可.【解答】解:将抛物线y=2x2+1的图象向右平移2个单位,再向下平移3个单位,得到的抛物线是y=2(x﹣2)2+1﹣3,即y=2(x﹣2)2﹣2.故选D.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.9.(4分)(2015•凉山州)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:①2a+b=0②当﹣1≤x≤3时,y<0③若(x1,y1)、(x2,y2)在函数图象上,当x1<x2时,y1<y2④9a+3b+c=0其中正确的是()A.①②④ B.①④C.①②③ D.③④【分析】①函数图象的对称轴为:x=﹣==1,所以b=﹣2a,即2a+b=0;②由抛物线的开口方向可以确定a的符号,再利用图象与x轴的交点坐标以及数形结合思想得出当﹣1≤x≤3时,y≤0;③由图象可以得到抛物线对称轴为x=1,由此即可确定抛物线的增减性;④由图象过点(3,0),即可得出9a+3b+c=0.【解答】解:①∵函数图象的对称轴为:x=﹣==1,∴b=﹣2a,即2a+b=0,故①正确;②∵抛物线开口方向朝上,∴a>0,又∵二次函数y=ax2+bx+c的图象与x轴交点为(﹣1,0)、(3,0),∴当﹣1≤x≤3时,y≤0,故②错误;③∵抛物线的对称轴为x=1,开口方向向上,∴若(x1,y1)、(x2,y2)在函数图象上,当1<x1<x2时,y1<y2;当x1<x2<1时,y1>y2;故③错误;④∵二次函数y=ax2+bx+c的图象过点(3,0),∴x=3时,y=0,即9a+3b+c=0,故④正确.故选:B.【点评】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,抛物线与x轴的交点,难度适中.10.(4分)(2015•泉州)在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A. B.C.D.【分析】首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.【解答】解:A、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,对称轴x=﹣<0,应在y轴的左侧,故不合题意,图形错误.B、对于直线y=bx+a来说,由图象可以判断,a<0,b<0;而对于抛物线y=ax2+bx来说,图象应开口向下,故不合题意,图形错误.C、对于直线y=bx+a来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,对称轴x=﹣位于y轴的右侧,故符合题意,D、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,a<0,故不合题意,图形错误.故选:C.【点评】此主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2016•松江区二模)因式分解:2a2﹣3a=a(2a﹣3).【分析】直接找出公因式a,提取公因式得出答案.【解答】解:2a2﹣3a=a(2a﹣3).故答案为:a(2a﹣3).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.(5分)(2015•甘孜州)若函数y=﹣kx+2k+2与y=(k≠0)的图象有两个不同的交点,则k的取值范围是k>﹣且k≠0.【分析】根据反比例函数与一次函数的交点问题,两函数的交点坐标满足方程组,接着消去y得到关于x的一元二次方程kx2﹣(2k+2)x+k=0,由于有两个不同的交点,则关于x的一元二次方程kx2+2x+1=0有两个不相等的实数解,于是根据根的判别式的意义得到△=(2k+2)2﹣4k2>0,然后解一元一次不等式即可.【解答】解:把方程组消去y得到﹣kx+2k+2=,整理得kx2﹣(2k+2)x+k=0,根据题意得△=(2k+2)2﹣4k2>0,解得k>﹣,即当k时,函数y=﹣kx+2k+2与y=(k≠0)的图象有两个不同的交点,故答案为k且k≠0.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.13.(5分)(2015秋•蚌埠期中)二次函数y=ax2+bx+c的图象如图所示,以下结论:①a+b+c=0;②4a+b=0;③abc<0;④4ac﹣b2<0;⑤当x≠2时,总有4a+2b>ax2+bx 其中正确的有①②④⑤(填写正确结论的序号).【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①由图象可知:当x=1时y=0,∴a+b+c=0.∴正确;②由图象可知:对称轴x=﹣=2,∴4a+b=0,∴正确;由抛物线与x轴有两个交点可以推出b2﹣4ac>0,正确;③由抛物线的开口方向向下可推出a<0因为对称轴在y轴右侧,对称轴为x=﹣>0,又因为a<0,b>0;由抛物线与y轴的交点在y轴的负半轴上,∴c<0,故abc>0,错误;④由抛物线与x轴有两个交点可以推出b2﹣4ac>0∴4ac﹣b2<0正确;⑤∵对称轴为x=2,∴当x=2时,总有y=ax2+bx+c=4a+2b+c>0,∴4a+2b>ax2+bx正确.故答案为:①②④⑤.【点评】此题考查学生掌握二次函数的图象与性质,考查了数形结合的数学思想,是一道中档题.解本题的关键是根据图象找出抛物线的对称轴.14.(5分)(2015•菏泽)二次函数y=x2的图象如图,点O为坐标原点,点A在y轴的正半轴上,点B、C在二次函数y=x2的图象上,四边形OBAC为菱形,且∠OBA=120°,则菱形OBAC的面积为2.【分析】连结BC交OA于D,如图,根据菱形的性质得BC⊥OA,∠OBD=60°,利用含30度的直角三角形三边的关系得OD=BD,设BD=t,则OD=t,B(t,t),利用二次函数图象上点的坐标特征得t2=t,解得t1=0(舍去),t2=1,则BD=1,OD=,然后根据菱形性质得BC=2BD=2,OA=2OD=2,再利用菱形面积公式计算即可.【解答】解:连结BC交OA于D,如图,∵四边形OBAC为菱形,∴BC⊥OA,∵∠OBA=120°,∴∠OBD=60°,∴OD=BD,设BD=t,则OD=t,∴B(t,t),把B(t,t)代入y=x2得t2=t,解得t1=0(舍去),t2=1,∴BD=1,OD=,∴BC=2BD=2,OA=2OD=2,∴菱形OBAC的面积=×2×2=2.故答案为2.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形面积=ab(a、b是两条对角线的长度).也考查了二次函数图象上点的坐标特征.三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2015秋•当涂县校级期中)已知二次函数y=﹣2x2+4x+6.(1)求该函数图象的顶点坐标.(2)求此抛物线与x轴的交点坐标.【分析】(1)利用配方法把一般式化为顶点式,即可求出抛物线的顶点坐标;(2)令y=0,解方程,即可求出抛物线与x轴的交点坐标.【解答】解:(1)∵y=﹣2x2+4x+6=﹣2(x﹣1)2+8,∴顶点坐标为(1,8);(2)令y=0,则﹣2x2+4x+6=0,解得x=﹣1,x=3.所以抛物线与x轴的交点坐标为(﹣1,0),(3,0).【点评】此题考查了二次函数的性质、抛物线与x轴的交点及二次函数的三种形式,都是二次函数的基础知识,要求学生熟练掌握.16.(8分)(2016秋•当涂县月考)已知:=,说明:ab+cd是a2+c2和b2+d2的比例中项.【分析】根据比例的性质,由=可得ad=bc,再根据比例中项的概念计算ab+cd的平方是否等于a2+c2和b2+d2的乘积作出判断.【解答】解:∵=,∴ad=bc,∵(ab+cd)2=a2b2+2abcd+c2d2,(a2+c2)(b2+d2)=a2b2+a2d2+b2c2+c2d2=a2b2+2abcd+c2d2,∴(ab+cd)2=(a2+c2)(b2+d2),∴ab+cd是a2+c2和b2+d2的比例中项.【点评】本题考查了比例的性质和比例中项的概念.在a,b,c中,若b2=ac,则b是a,c 的比例中项.四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2015秋•蚌埠期中)如图,一次函数y1=﹣x+5与反比例函数y2=的图象交于A(1,m)、B(4,n)两点.(1)求A、B两点的坐标和反比例函数的解析式;(2)根据图象,直接写出当y1>y2时x的取值范围;(3)求△AOB的面积.【分析】(1)先根据一次函数图象上点的坐标特征得到m=﹣1+5=4,n=﹣4+5=1,这样得到A点坐标为(1,4),B点坐标为(4,1),然后利用待定系数求反比例函数的解析式;(2)观察函数图象找出一次函数图象都在反比例函数图象上方时x的取值范围;(3)先确定一次函数图象与x轴交点D,与y轴交点C的坐标,然后利用S△AOB=S△COD ﹣S△COA﹣S△BOD进行计算.【解答】解:(1)分别把A(1,m)、B(4,n)代入y1=﹣x+5,得m=﹣1+5=4,n=﹣4+5=1,所以A点坐标为(1,4),B点坐标为(4,1),把A(1,4)代入y2=,得k=1×4=4,所以反比例函数解析式为y2=;(2)根据图象可知,当y1>y2时x的取值范围是x<0或1<x<4时;(3)如图,设一次函数图象与x轴交于点D,与y轴交于点C.当x=0时,y=﹣x+5=5,则C点坐标为(0,5),当y=0时,﹣x+5=0,解得x=5,则D点坐标为(5,0),所以S△AOB=S△COD﹣S△COA﹣S△BOD=×5×5﹣×5×1﹣×5×1=7.5.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.18.(8分)(2016秋•当涂县月考)已知实数x、y、z满足,试求的值.【分析】先根据x、y、z满足,求出:x=y,z=y,然后代入求值即可.【解答】解:∵实数x、y、z满足,∴x=y,z=y,将x=y,z=y代入可得:==.【点评】本题考查了分式的值,解答本题的关键在于根据x、y、z满足,求出:x=y,z=y,然后代入求值.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2016秋•当涂县月考)如图,已知抛物线y=ax2+bx+c,根据图象,回答下列问题:(1)判断下列各代数式的符号:a,b,c,b2﹣4ac,a﹣b+c,4a2﹣2b+c;(2)写出不等式ax2+bx+c<0的解集;(3)若方程ax2+bx+c=k,有两个不相等的实根,求k的取值范围.【分析】(1)根据顶点坐标和与x轴交点(1,0)可求出抛物线的解析式,从而得出a、b、c的值,并能计算出b2﹣4ac,a﹣b+c,4a2﹣2b+c的值;也可以利用图象确定a、b、c的符号,根据抛物线的个数确定b2﹣4ac的符号,根据x=﹣1时所对应的y值确定a﹣b+c的符号;(2)先求出抛物线与x轴另一个交点的坐标,再根据图象写出不等式ax2+bx+c<0的解集,即y<0时,所对应的x的取值;(3)抛物线与y=k有两个不同的交点,当k=6时,有一个交点,当k>6时,无交点,当k <6时,有两个交点,所以k<6.【解答】解:(1)由图象可知其顶点坐标为(﹣1,6),∴可设抛物线解析式为y=a(x+1)2+6,又∵图象过(1,0),∴代入得:0=a(1+1)2+6,得a=﹣,∴y=﹣(x+1)2+6=﹣x2﹣3x+,∴a<0,b<0,c>0,∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,由图可知:当x=﹣1时,y=6,即a﹣b+c=6>0,4a2﹣2b+c=4×(﹣)2﹣2×(﹣3)+=9+6+>0;(2)由对称性得:抛物线与x轴另一个交点为(﹣3,0),∴不等式ax2+bx+c<0的解集为x<﹣3或x>1;(3)方程ax2+bx+c=k,有两个不相等的实根,相当于抛物线与y=k有两个不同的交点,∴k<6.【点评】本题考查了二次函数与一元二次方程及不等式的关系,利用数形结合,解决问题;同时还考查了抛物线y=ax2+bx+c中,a,b,c,b2﹣4ac,a﹣b+c等符号的判别,可以通过计算解析式代入求得,也可以根据图象直接判别;这就需要熟练掌握以下几点:①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.③.常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).④抛物线与x轴交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.20.(10分)(2006•兰州)如图所示,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.(1)在如图的坐标系中求抛物线的解析式;(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到达拱桥顶?【分析】先设抛物线的解析式,再找出几个点的坐标,代入解析式后可求解.【解答】解:(1)设所求抛物线的解析式为:y=ax2(a≠0),由CD=10m,可设D(5,b),由AB=20m,水位上升3m就达到警戒线CD,则B(10,b﹣3),把D、B的坐标分别代入y=ax2得:,解得.∴y=;(2)∵b=﹣1,∴拱桥顶O到CD的距离为1m,∴=5(小时).所以再持续5小时到达拱桥顶.【点评】命题立意:此题是把一个实际问题通过数学建模,转化为二次函数问题,用二次函数的性质加以解决.六、(本题满分12分)21.(12分)(2013•重庆)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB的长.【分析】(1)根据矩形的对边平行可得AB∥CD,再根据两直线平行,内错角相等求出∠BAC=∠FCO,然后利用“角角边”证明△AOE和△COF全等,再根据全等三角形的即可得证;(2)连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.【解答】(1)证明:在矩形ABCD中,AB∥CD,∴∠BAC=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OE=OF;(2)解:如图,连接OB,∵BE=BF,OE=OF,∴BO⊥EF,∴在Rt△BEO中,∠BEF+∠ABO=90°,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,∴∠BAC=∠ABO,又∵∠BEF=2∠BAC,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∵BC=2,∴AC=2BC=4,∴AB===6.【点评】本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键.七、(本题满分12分)22.(12分)(2016秋•当涂县月考)已知关于x的一元二次方程x2+2x+=0有两个不相等的实数根,k为正整数.(1)求k的值;(2)当次方程有一根为零时,直线y=x+2与关于x的二次函数y=x2+2x+的图象交于A、B两点,若M是线段AB上的一个动点,过点M作MN⊥x轴,交二次函数的图象于点N,求线段MN的最大值及此时点M的坐标.【分析】(1)根据△>0,列出不等式即可解决问题.(2)利用方程组求出A、B两点坐标,确定自变量x的取值范围,构建二次函数,利用二次函数的性质即可解决问题.【解答】解:(1)∵关于x的一元二次方程x2+2x+=0有两个不相等的实数根.∴△=b2﹣4ac=4﹣4×>0,∴k﹣1<2,∴k<3.∵k为正整数,∴k为1,2.(2)把x=0代入方程x2+2x+=0得k=1,∴二次函数为y=x2+2x,由,解得或,∴直线y=x+2与二次函数y=x2+2x的交点为A(﹣2,0),B(1,3)由题意可设M(m,m+2),其中﹣2<m<1,则N(m,m2+2m),MN=m+2﹣(m2+2m)=﹣m2﹣m+2=﹣(m+)2+.∴当m=﹣时,MN的长度最大值为.此时点M的坐标为(﹣,).【点评】本题考查二次函数综合题、一次函数、一元二次方程的判别式等知识,解题的关键是学会转化的思想思考问题,把问题转化为不等式、二次函数解决,属于中考常考题型.八、(本题满分14分)23.(14分)(2015•南京)某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?【分析】(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)根据线段AB经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(3)利用总利润=单位利润×产量列出有关x的二次函数,求得最值即可.【解答】解:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)设线段AB所表示的y1与x之间的函数关系式为y=k1x+b1,∵y=k1x+b1的图象过点(0,60)与(90,42),∴∴,∴这个一次函数的表达式为;y=﹣0.2x+60(0≤x≤90);(3)设y2与x之间的函数关系式为y=k2x+b2,∵经过点(0,120)与(130,42),∴,解得:,∴这个一次函数的表达式为y2=﹣0.6x+120(0≤x≤130),设产量为xkg时,获得的利润为W元,当0≤x≤90时,W=x[(﹣0.6x+120)﹣(﹣0.2x+60)]=﹣0.4(x﹣75)2+2250,∴当x=75时,W的值最大,最大值为2250;当90≤x≤130时,W=x[(﹣0.6x+120)﹣42]=﹣0.6(x﹣65)2+2535,由﹣0.6<0知,当x>65时,W随x的增大而减小,∴90≤x≤130时,W≤2160,∴当x=90时,W=﹣0.6(90﹣65)2+2535=2160,因此当该产品产量为75kg时,获得的利润最大,最大值为2250.【点评】本题考查了二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型,难度不大.。
九年级数学第一次月考试卷分析

一、试题分析试题难度适宜,能重视考查基础知识、基本技能和数学思想方法。
部分题目可直接运用公式、定理、性质、法则解决,无繁难计算、证明,对教学有导向作用。
二、从学生得分情况上分析考试成绩比较理想,其中,我所代的(1)(2)班中120分以上20人,过差人数10人。
与以前相比较学生对知识的掌握较为牢靠。
运算仔细认真,分析解决问题的能力有所提高。
三、从学生的失分情况上分析教情与学情1.基础题和中档题的落实还应加强。
比如,学生必会,应该拿分的一些中档题得分情况并不理想。
这是因为我们在教学中对学习困难的学生关注不够,课堂密度小,双基的落实不到位。
2.学生数学能力的培养上还有待加强。
(1)审题和数学阅读理解能力较弱。
如第25题,学生根本就没有读懂题,也未考虑到应该分两种情况;还有第26题,其实在航海问题中,曾讲过这种类型,但学生根本就没有理解此题,造成思维混乱。
因而,无从下手;造成严重失分。
(2)计算能力较弱。
从所阅卷中可以看出,一部分学生的计算能力较弱。
比如,第21题与第22题,这是送分题,但学生因为粗心,或记错一个三角函数值而出错;另外,最基本的方程也未得满分。
(3)运用数学思想方法解决数学问题的能力还需加强。
试卷设置了一些涉及到开放性、探究性、应用性的问题,比如:第18题,第26题等;从阅卷和最后的得分情况可以看到学生的得分率都不高,学生所学知识较死,应变能力也不好。
这说明平时教学中,注重的只是告诉学生怎么解,而忽略了为什么这么解,也就是只有结果没有过程。
造成学生应变差,题目稍有变化,就不知如何下手。
学生不会综合运用所学知识结合数学思想去解决问题,这也是优秀率低的一个主要原因。
四、今后几点措施1.加强对课程标准的研究。
比如从试卷中体现出来的:立足基础性、注重能力性、感受时代性、强调应用性、渗透探究性、关注创新性、重视综合性、体验过程性。
特别指出的是考试过程也是学习过程。
2.加强对学生学习方法的指导和学习能力的培养。
天津市河西区自立中学上学期第一次月考九年级数学试卷(含答案)

天津市河西区自立中学2019-2019学年上学期第一次月考九年级数学试卷一、单选题(共12题,共36分)1.方程(1)0x x -=的两根分别为( ).A .11x =,21x =-B .10x =,21x =-C .10x =,21x =D .121x x == 2.抛物线22y x =-与y 轴交点的坐标是( ). A .(2,0)B .(2,0)-C .(0,2)D .(0,2)- 3.抛物线2y ax bx c =++与x 轴的交点是(1,0)-,(3,0),则这条抛物线的对称轴是( ).A .直线1x =-B .直线0x =C .直线1x =D .直线3x =4.某广场有一喷水池,水从地面喷出,如图,以在水平地面内的一条水平线为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线24y x x =-+(单位:米)的一部分,则水喷出的最大高度是( ). A .4米B .3米C .2米D .1米 5.若二次函数22(1)23y m x mx m m =+-+--图象经过原点,则m 的值为( ).A .1-或3B .3C .1-D .3-或16.下列生态环保标志中,是中心对称图形的是( ).A .B .C .D .7.如图所示,ABC △的顶点坐标是(4,6)A ,(5,2)B ,(2,1)C ,如果将ABC △绕点C 按逆时针方向旋转90︒,得到A B C '''△,那么点A 的对应点A '的坐标是( ).A .(3,3)-B .(3,3)-C .(2,4)-D .(1,4)8.在同一直角坐标系中,一次函数y ax c =+和二次函数2y ax c =+的图象大致为( ).A .xyOB .xy OC .xyOD .xyO9.将抛物线224y x =+绕原点O 旋转180︒,则旋转后的抛物线的解析式为( ).A .224y x =--B .224y x =-+C .224y x =-D .22y x =-10.已知抛物线2(1)y x m =-+(m 是常数),点11(,)A x y ,22(,)B x y 在抛物线上,若121x x <<,122x x +>,则下列大小比较正确的是( ). A .12m y y >> B .21m y y >> C .12y y m >> D .21y y m >> 11.已知二次函数2()1y x m =--,当3x ≤时,y 随x 的增大而减小,则m 的取值范围是( ).A .3m =B .3m >C .3m ≥D .3m ≤12.如图是二次函数2y ax bx c =++的图象的一部分,图象过点(3,0)A -,对称轴为直线1x =-,给出四个结论:①24b ac >;②20a b +=;③0c a -<;④若点1(4,)B y -,2(1,)C y 为函数图象上的两点,则12y y <,其中正确结论是( ).A .②④B .②③C .①③D .①④二、填空题(共6题,共18分)13.二次函数22(1)y x =-图象的顶点坐标为__________.14.某一型号飞机着陆后滑行的距离y (单位:m )与滑行时间x (单位:s )之间的函数表达式是260 1.5y x x =-,该型号飞机着陆后滑行的最大距离是__________m .15.已知抛物线2y ax bx c =++过(2,3)-,(4,3)两点,那么抛物线的对称轴为直线__________. 16.设m 、n 是方程2370x x +-=的两个根,则24m m n ++=__________.17.边长为1的正方形OABC 的顶点A 在x 正半轴上,点C 在y 正半轴上,将正方形OABC 绕顶点O 顺时针旋转75︒,如图所示,使点B 恰好落在函数2(0)y ax a =<的图象上,则a 的值为__________.18.若关于x 的一元二次方程(3)(5)x x m --=有实数根1x 、2x ,且12x x ≠,有下列结论:①13x =,25x =;②1m >-;③二次函数12()()y x x x x m =--+的图象与x 轴的公共点是(3,0)和(5,0).其中,正确的结论是__________(填序号).三、解答题(共6题,共66分) 19.(10分)解下列方程.20.(10分)二次函数23y x bx =++的图像经过点(3,0). (1)求b 的值.(2)求出该二次函数图像的顶点坐标和对称轴. (3)画出该二次函数的图像.(4)根据图像回答,当x 取何值时,0y <?21.(10分)如图,有长为24m 的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借用一段墙体(墙体的最大可用长度10m a =).(1)如果所围成的花圃的面积为245m ,试求宽AB 的长.(2)按题目的设计要求,能围成面积比245m 更大的花圃吗?请求出最大面积,并说明围法;如果不能,请说明理由.22.(12分)某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如果调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?23.(12分)在平面直角坐标系中,点(4,0)A ,点(0,3)B ,把ABO △绕点B 逆时针旋转,则A BO ''△,点A 、O 旋转后的对应点为A '、O ',旋转角为α.(1)如图1,若90α=︒,求AA '的长. (2)如图2,若120α=︒,求O '的坐标.(3)在(2)的条件下,边OA 上的一点P 旋转后的对应点为P ',当PO BP ''+取得最小值时,求点P '的坐标.24.(12分)在平面直角坐标系中,平行四边形ABOC 如图放置,点(0,4)A ,(1,0)C -,将此平行四边形绕点O 顺时针旋转90︒,得到平行四边形A B OC '''. (1)若抛物线经过点C 、A 、A ',求此抛物线的解析式.(2)在(1)情况下,点M 是第一象限内抛物线上的一动点,问:当点M 在何处时,AMA '△的面积最大?最大面积是多少?并求出此时M的坐标.(3)在(1)的情况下,若P为抛物线上一动点,N为x轴上的一动点,点Q坐标为(1,0),当P、N、B、Q构成以BQ作为一边的平行四边形时,求点P的坐标.参考答案1-10、CDCAB BADAA 11-12、CD13、(1,0)14、60015、x=116、417、18、②③19、20、21、22、23、24、。
2022-2023学年人教版九年级第一学期第一次月考数学试卷(含解析)
广东省九年级(上)第一次月考数学试卷1一、选择题(每小题3分,共30分)1.(3分)若关于x的方程x2+(m+1)x+=0的一个实数根是1,则m的值是()A.B.C.1或D.12.(3分)下列说法中错误的是()A.有一个角是直角的平行四边形是矩形B.有一组邻边相等的平行四边形是菱形C.对角线互相垂直的矩形是菱形D.对角线相等的四边形是矩形3.(3分)如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD上.若∠ECD =35°,∠AEF=15°,则∠B的度数为何?()A.50B.55C.70D.754.(3分)在大量重复试验中,关于随机事件发生的频率和概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.在相同的条件下进行试验,如果试验次数相同,则各实验小组所得频率的值也会相同D.随着试验次数的增加,频率一般会逐步稳定在概率数值附近5.(3分)根据四边形的不稳定性,当变动∠B的度数时,菱形ABCD的形状会发生改变,当∠B=60°时,如图1,AC=;当∠B=90°时,如图2,AC=()A.B.2C.2D.6.(3分)某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是()A.一副去掉大小王的普迺扑克牌洗匀后,从中任抽一张牌的花色是红桃B.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率C.抛一枚硬币,出现正面的概率D.抛一个质地均匀的正六面体骰子(六个面上分别标有1,2,3,4,5,6),向上的面点数是57.(3分)如图,在正方形ABCD中,AB=2,延长AB至点E,使得BE=1,EF⊥AE,EF =AE.分别连接AF,CF,M为CF的中点,则AM的长为()A.2B.3C.D.8.(3分)共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为()A.1000(1+x)2=1000+440B.1000(1+x)2=440C.440(1+x)2=1000D.1000(1+2x)=1000+4409.(3分)如图是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或9B.3或5C.4或6D.3或610.(3分)如图,已知正方形ABCD的边长为4,P是对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接AP,EF.给出下列结论:①PD=EC;②四边形PECF的周长为8;③△APD一定是等腰三角形;④AP=EF;⑤EF的最小值为2;⑥AP⊥EF.其中正确结论的序号为()A.①②④⑤⑥B.①②④⑤C.②④⑤D.②④⑤⑥二、填空题(每小题4分,共20分)11.(4分)等腰△ABC的两边长都是方程x2﹣6x+8=0的根,则△ABC的周长为.12.(4分)某商店设计了一种促销活动来吸引顾客:在一个不透明的箱子里放有4个相同的乒乓球,乒乓球上分别标有“0元”、“10元”、“20元”、“30元”的字样.规定:顾客在本超市一次性消费满200元,就可以在箱子里先后摸出两个小球(每一次摸出后不放回).某顾客刚好消费200元,则该顾客所获得购物券的金额不低于30元的概率是.13.(4分)有3个正方形如图所示放置,阴影部分面积依次记为S1,S2,若S1的面积为2,则S2的面积为.14.(4分)如图,在菱形ABCD中,过点B作BE⊥AD,BF⊥CD,垂足分别为点E,F,延长BD至G,使得DG=BD,连接EG,FG,若AE=DE,AB=2,则EG=.15.(4分)如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE 折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为.三、解答题(本大题共7个小题,满分70分)16.(8分)解下列方程(1)2x2﹣8x﹣1=0(用配方法)(2)3x(x﹣1)=2﹣2x(选择合适方法)17.(9分)如图,在平行四边形ABCD中,以点A为圆心,AB长为半径两弧交AD于点F,再分别以点B,F为圆心,大于BF为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)AB AF(选填“=”,“≠”,“>”,“<”):AE∠BAD的平分线.(选填“是”或“不是”)(2)在(1)的条件下,求证:四边形ABEF是菱形.(3)AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为,∠ABC=°.18.(10分)如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?19.(10分)如图,在梯形ABCD中,AD∥BC,E是BC的中点,AD=5,BC=12,CD=4,∠C=45°,点P是BC边上一动点,设PB的长为x,(1)当x为何值时,以点P、A、D、E为顶点的四边形为直角梯形?(2)当x为何值时,以点P、A、D、E为顶点的四边形为平行四边形?(3)点P在BC边上运动的过程中,以P、A、D、E为顶点的四边形能否构成菱形?试说明理由.20.(11分)我市城建公司新建了一个购物中心,共有商铺30间,据调查分析,当每间的年租金为10万元时,可全部租出:若每间的年租金每增加0.5万元,则少租出商铺一间,为提供优质服务,城建公司引入物业公司代为管理,租出的商铺每间每年需向物业公司缴纳物业费1万元,未租出的商铺不需要向物业公司缴纳物业费.(1)当每间商铺的年租金定为13万元时,能租出间.(2)当每问商铺的年租金定为多少万元时,该公司的年收益为286万元,且使租客获得实惠?(收益=租金﹣物业费)21.(11分)为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求AE的长(用x的代数式表示);(2)当y=108m2时,求x的值.22.(11分)如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系和位置关系;(不要求证明)(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出判断判断予以证明;(3)如图3,若点E、F分别是BC、AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)若关于x的方程x2+(m+1)x+=0的一个实数根是1,则m的值是()A.B.C.1或D.1【解答】解:把x=1代入方程,得1+(m+1)+=0,解得,m=﹣故选:A.2.(3分)下列说法中错误的是()A.有一个角是直角的平行四边形是矩形B.有一组邻边相等的平行四边形是菱形C.对角线互相垂直的矩形是菱形D.对角线相等的四边形是矩形【解答】解:根据矩形的定义及性质知,有一个角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形,故A,B正确;根据菱形的定义及性质知对角线互相垂直的矩形是正方形,也是菱形,故C正确;对角线相等的四边形有可能是等腰梯形,故D错误;故选:D.3.(3分)如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD上.若∠ECD =35°,∠AEF=15°,则∠B的度数为何?()A.50B.55C.70D.75【解答】解:∵四边形CEFG是正方形,∴∠CEF=90°,∵∠CED=180°﹣∠AEF﹣∠CEF=180°﹣15°﹣90°=75°,∴∠D=180°﹣∠CED﹣∠ECD=180°﹣75°﹣35°=70°,∵四边形ABCD为平行四边形,∴∠B=∠D=70°(平行四边形对角相等).故选:C.4.(3分)在大量重复试验中,关于随机事件发生的频率和概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.在相同的条件下进行试验,如果试验次数相同,则各实验小组所得频率的值也会相同D.随着试验次数的增加,频率一般会逐步稳定在概率数值附近【解答】解:∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,∴D选项说法正确.故选:D.5.(3分)根据四边形的不稳定性,当变动∠B的度数时,菱形ABCD的形状会发生改变,当∠B=60°时,如图1,AC=;当∠B=90°时,如图2,AC=()A.B.2C.2D.【解答】解:如图1、2中连接AC.在图1中,∵AB=BC,∠B=60°,∴△ABC是等边三角形,∴AB=BC=AC=,在图2中,∵∠B=90°,AB=BC=,∴AC==2.故选:B.6.(3分)某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是()A.一副去掉大小王的普迺扑克牌洗匀后,从中任抽一张牌的花色是红桃B.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率C.抛一枚硬币,出现正面的概率D.抛一个质地均匀的正六面体骰子(六个面上分别标有1,2,3,4,5,6),向上的面点数是5【解答】解:A、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为,不符合题意;B、从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率是,符合题意;C、抛一枚硬币,出现正面的概率为,不符合题意;D、抛一个质地均匀的正六面体骰子(六个面上分别标有1,2,3,4,5,6),向上的面点数是5的概率是,不符合题意,故选:B.7.(3分)如图,在正方形ABCD中,AB=2,延长AB至点E,使得BE=1,EF⊥AE,EF =AE.分别连接AF,CF,M为CF的中点,则AM的长为()A.2B.3C.D.【解答】解:连接AC,∵四边形ABCD是正方形,∴∠BAC=45°.∵EF⊥AE,EF=AE,∴△AEF是等腰直角三角形,∴∠EAF=45°,∴∠CAF=90°.∵AB=BC=2,∴AC==2.∵AE=EF=AB+BE=2+1=3,∴AF==3,∴CF===.∵M为CF的中点,∴AM=CF=.故选:D.8.(3分)共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为()A.1000(1+x)2=1000+440B.1000(1+x)2=440C.440(1+x)2=1000D.1000(1+2x)=1000+440【解答】解:由题意可得,1000(1+x)2=1000+440,故选:A.9.(3分)如图是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或9B.3或5C.4或6D.3或6【解答】解:如图,∵若直线AB将它分成面积相等的两部分,∴(6+9+x)×9﹣x•(9﹣x)=×(6+9+x)×9﹣6×3,解得x=3,或x=6,故选:D.10.(3分)如图,已知正方形ABCD的边长为4,P是对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接AP,EF.给出下列结论:①PD=EC;②四边形PECF的周长为8;③△APD一定是等腰三角形;④AP=EF;⑤EF的最小值为2;⑥AP⊥EF.其中正确结论的序号为()A.①②④⑤⑥B.①②④⑤C.②④⑤D.②④⑤⑥【解答】解:①如图,延长FP交AB与G,连PC,延长AP交EF与H,∵GF∥BC,∴∠DPF=∠DBC,∵四边形ABCD是正方形∴∠DBC=45°∴∠DPF=∠DBC=45°,∴∠PDF=∠DPF=45°,∴PF=EC=DF,∴在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,∴DP=EC.故①正确;②∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四边形PECF为矩形,∴四边形PECF的周长=2CE+2PE=2CE+2BE=2BC=8,故②正确;③∵点P是正方形ABCD的对角线BD上任意一点,∠ADP=45度,∴当∠P AD=45度或67.5度或90度时,△APD是等腰三角形,除此之外,△APD不是等腰三角形,故③错误.④∵四边形PECF为矩形,∴PC=EF,∠PFE=∠ECP,由正方形为轴对称图形,∴AP=PC,∠BAP=∠ECP,∴AP=EF,∠PFE=∠BAP,故④正确;⑤由EF=PC=AP,∴当AP最小时,EF最小,则当AP⊥BD时,即AP=BD==2时,EF的最小值等于2,故⑤正确;⑥∵GF∥BC,∴∠AGP=90°,∴∠BAP+∠APG=90°,∵∠APG=∠HPF,∴∠PFH+∠HPF=90°,∴AP⊥EF,故⑥正确;本题正确的有:①②④⑤⑥;故选:A .二、填空题(每小题4分,共20分)11.(4分)等腰△ABC 的两边长都是方程x 2﹣6x +8=0的根,则△ABC 的周长为 12或6或10. .【解答】解:∵x 2﹣6x +8=0, ∴(x ﹣4)(x ﹣2)=0, ∴x 1=4,x 2=2,∵等腰△ABC 的两边长都是方程x 2﹣6x +8=0的根, ∴等腰△ABC 的三边为4、4、4或2、2、2或4、4、2, ∴△ABC 的周长为12或6或10. 故答案为12或6或10.12.(4分)某商店设计了一种促销活动来吸引顾客:在一个不透明的箱子里放有4个相同的乒乓球,乒乓球上分别标有“0元”、“10元”、“20元”、“30元”的字样.规定:顾客在本超市一次性消费满200元,就可以在箱子里先后摸出两个小球(每一次摸出后不放回).某顾客刚好消费200元,则该顾客所获得购物券的金额不低于30元的概率是 .【解答】解:列表得: ∵共有12种等可能结果,该顾客所获得购物券的金额不低于30元的有8种情况,∴P(不低于30元)==.故答案为:.13.(4分)有3个正方形如图所示放置,阴影部分面积依次记为S1,S2,若S1的面积为2,则S2的面积为.【解答】解:如图,∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠DCA=45°=∠ACB=∠DAC,∵四边形EFNM是正方形,∴MN=FN,EF∥AC,∠AMF=∠FNC=90°∴∠DAC=∠AEM=45°=∠ACD=∠CFN∴AM=ME=MN=NC=NF∵EF∥AC∴△DEF∽△DAC∴∴S△ADC=18同理可得:△CGH∽△CAB,AB=2GH,∴∴S2=故答案为:14.(4分)如图,在菱形ABCD中,过点B作BE⊥AD,BF⊥CD,垂足分别为点E,F,延长BD至G,使得DG=BD,连接EG,FG,若AE=DE,AB=2,则EG=.【解答】解:如图,连接AC、EF,在菱形ABCD中,AC⊥BD,∵BE⊥AD,AE=DE,∴AB=BD,又∵菱形的边AB=AD,∴△ABD是等边三角形,∴∠ADB=60°,设EF与BD相交于点H,AB=4x,∵AE=DE,∴由菱形的对称性,CF=DF,∴EF是△ACD的中位线,∴DH=DO=BD=x,在Rt△EDH中,EH=DH=x,∵DG=BD,∴GH=BD+DH=4x+x=5x,在Rt△EGH中,由勾股定理得,EG==x,所以,==.∵AB=2,∴EG=.故答案是:.15.(4分)如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE 折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为或.【解答】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB﹣BM=7﹣x,又折叠图形可得AD=AD′=5,∴x2+(7﹣x)2=25,解得x=3或4,即MD′=3或4.在Rt△END′中,设ED′=a,①当MD′=3时,AM=7﹣3=4,D′N=5﹣3=2,EN=4﹣a,∴a2=22+(4﹣a)2,解得a=,即DE=,②当MD′=4时,AM=7﹣4=3,D′N=5﹣4=1,EN=3﹣a,∴a2=12+(3﹣a)2,解得a=,即DE=.故答案为:或.三、解答题(本大题共7个小题,满分70分)16.(8分)解下列方程(1)2x2﹣8x﹣1=0(用配方法)(2)3x(x﹣1)=2﹣2x(选择合适方法)【解答】解:(1)移项,得2x2﹣8x=1,两边都除以2,得x2﹣4x=,方程的两边都加上4,得x2﹣4x+4=,即(x﹣2)2=所以x﹣2=±,所以x1=2+,x2=;(2)移项,得3x(x﹣1)+2x﹣2=0,即3x(x﹣1)+2(x﹣1)=0,所以(x﹣1)(3x+2)=0,x﹣1=0或3x+2=0,所以x1=1,x2=﹣17.(9分)如图,在平行四边形ABCD中,以点A为圆心,AB长为半径两弧交AD于点F,再分别以点B,F为圆心,大于BF为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)AB=AF(选填“=”,“≠”,“>”,“<”):AE是∠BAD的平分线.(选填“是”或“不是”)(2)在(1)的条件下,求证:四边形ABEF是菱形.(3)AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为10,∠ABC=120°.【解答】(1)解:AB=AF;AE平分∠BAD的平分线;故答案为=,是;(2)证明:∵AE平分∠BAF,∴∠BAE=∠F AE,∵AF∥BE,∴∠BAE=∠BEA,∴AB=EB,而AF=AB,∴AF=BE,AF∥BE,∴四边形ABEF为平行四边形,而AB=AF,∴四边形ABEF是菱形;(3)解:∵四边形ABEF是菱形;而四边形ABEF的周长为40,∴AB=10,OA=OE,OB=OF=5,AE⊥BF,∴△ABF为等边三角形,∴∠BAF=60°,∴∠ABC=120°,∵OA=OB=5,∴AE=2OA=10.故答案为10,120.18.(10分)如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?【解答】解:(1)∵共有4种等可能的结果,落回到圈A的只有1种情况,∴落回到圈A的概率P1=;(2)列表得:∵共有16种等可能的结果,最后落回到圈A的有(1,3),(2,2)(3,1),(4,4),∴最后落回到圈A的概率P2==,∴她与嘉嘉落回到圈A的可能性一样.19.(10分)如图,在梯形ABCD中,AD∥BC,E是BC的中点,AD=5,BC=12,CD=4,∠C=45°,点P是BC边上一动点,设PB的长为x,(1)当x为何值时,以点P、A、D、E为顶点的四边形为直角梯形?(2)当x为何值时,以点P、A、D、E为顶点的四边形为平行四边形?(3)点P在BC边上运动的过程中,以P、A、D、E为顶点的四边形能否构成菱形?试说明理由.【解答】解:(1)过D作DM⊥BC于M,∵CD=4,∠C=45°,∴DM=CM=DC×sin45°=4×=4,∵E是BC的中点,BC=12,∴BE=CE=6,∴EM=6﹣4=2,在Rt△DME中,由勾股定理得:DE==2,∵要使以点P、A、D、E为顶点的四边形为直角梯形,∴只能是∠APB=90°,即AP⊥BC,AP⊥AD,如图2,∵AP=DM,AP∥DM,∴四边形APMD是矩形,∴AD=PM=5,∴PE=5﹣2=3,∴BP=12﹣6﹣3=3,即当x为3时,以点P、A、D、E为顶点的四边形为直角梯形,当P和M重合时,以点P、A、D、E为顶点的四边形为直角梯形,此时x=12﹣4=8,所以当x为3或8时,以点P、A、D、E为顶点的四边形为直角梯形;(2)分为两种情况:①如图3,当P在E的左边时,∵AD=PE=5,CE=6,∴BP=12﹣6﹣5=1;②如图4,当P在E的右边时,∵AD=EP=5,∴BP=12﹣(6﹣5)=11;即当x为1或11时,以点P、A、D、E为顶点的四边形为平行四边形;(3)点P在BC边上运动的过程中,以P、A、D、E为顶点的四边形能构成菱形,理由是:分为两种情况:①当P在E的左边时,如图3,∵AD=5,DE=2,∴AD≠DE,即此时以点P、A、D、E为顶点的四边形APED不是菱形;②如图4,过点D作DM⊥BC于点M,当P在E的右边时,过A作AQ⊥BC于Q,则AQ=DM=4,∵AD=AE=EP=5,∴BP=BP=6+5=11;即当x为11时,以点P、A、D、E为顶点的四边形为菱形.20.(11分)我市城建公司新建了一个购物中心,共有商铺30间,据调查分析,当每间的年租金为10万元时,可全部租出:若每间的年租金每增加0.5万元,则少租出商铺一间,为提供优质服务,城建公司引入物业公司代为管理,租出的商铺每间每年需向物业公司缴纳物业费1万元,未租出的商铺不需要向物业公司缴纳物业费.(1)当每间商铺的年租金定为13万元时,能租出24间.(2)当每问商铺的年租金定为多少万元时,该公司的年收益为286万元,且使租客获得实惠?(收益=租金﹣物业费)【解答】解:(1)30﹣×1=24(间),∴当每间商铺的年租金定为13万元时,能租出24间.故答案是:24;(2)设每间商铺的年租金增加x万元,则每间商铺的年租金为(10+x)万元,依题意有:(30﹣×1)×(10+x)﹣(30﹣×1)×1=286,解得:x1=2,x2=4,∵使租客获得实惠,∴x1=2符合题意,∴每间商铺的年租金定为12万元.答:当每间商铺的年租金定为12万元时,该公司的年收益为286万元.21.(11分)为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求AE的长(用x的代数式表示);(2)当y=108m2时,求x的值.【解答】解:(1)∵三块矩形区域的面积相等,∴矩形AEFD面积是矩形BCFE面积的2倍,∴AE=2BE,设BE=a,则AE=2a,AB=3a,∴8a+2x=80,∴a=﹣x+10,∴AE=2a=﹣x+20;(2)∵矩形区域ABCD的面积=AB•BC,∴3(﹣x+10)•x=108,整理得x2﹣40x+144=0,解得x=36或4,即当y=108m2时,x的值为36或4.22.(11分)如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系和位置关系;(不要求证明)(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出判断判断予以证明;(3)如图3,若点E、F分别是BC、AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.【解答】解:(1)结论:FG=CE,FG∥CE.理由:如图1中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.(2)结论仍然成立.理由:如图2中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.(3)结论仍然成立.理由:如图3中,设DE与FC的延长线交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,∴∠CBF=∠DCE=90°在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.。
2022-2023学年北师大版九年级数学上册第一次月考测试卷含答案
九年级数学上册第一次月考试卷(满分150分 时间:120分钟)一.单选题。
(每小题4分,共48分)1.方程:①2x 2-13x=1,②2x 2-5xy+y 2=0,③7x 2+1=0,④y22=0,其中是一元二次方程是( )A.①②B.②③C.③④D.①③ 2.矩形,菱形,正方形具有的性质是( )A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分对角 3.下列命题中,不正确的是( )A.顺次连接菱形各边中点所得的四边形是矩形B.有一个角是直角的菱形是正方形C.对角线相等且垂直的四边形是正方形D.有一个角是60°的等腰三角形是等边三角形 4.不解方程,判断方程2x 2-4x -1=0的根的情况是( )A.没有实数根B.有两个相等实数根C.有两个不相等实数根D.无法确定 5.在大量重复试验中,关于随机事件发生的频率和概率,下列说法正确的是( ) A.频率就是概率 B.频率与试验次数无关C.在相同的条件下进行试验,如果试验次数相同,则各实验小组所得的频率的值也相同D.随着试验次数的增加,频率一定会逐步稳定在概率数值附近6.若m ,n 是一元二次方程x 2+2x -2021=0的两个实数根,则2m+2n -mn 的值为( ) A.2021 B.2019 C.2017 D.20157.用配方法解方程2x 2+4x+1=0,配方后的方程是( )A.(2x+2)2=﹣2B. (2x+2)2=﹣3C.(x+12)2=12D.(x+1)2=12 8.某公司今年一月产值200万元,现计划扩大生产,使今后两年的产值都比前一年增长一个相同的百分数,这样三年(包括今年)的总产值就达到了1400万元,设这个百分数为x ,则可列方程为( )A.200(1+x )2=1400B.200+200(1+x )+200(1+x )2=1400C.1400(1+x )2=200D.200(1+x )3=14009.有一个不透明的口袋中,装有5个红球和3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到白球的概率是( ) A.15 B.13 C.58 D.3810.根据四边形的不稳定性,当变动∠B的度数时,菱形ABCD的形状会发生改变,当∠B=60°时,如图1,AC=√2,当∠B=90°时,如图2,AC=().A.√2B.2C.2√2D.√3(第10题图)(第11题图)(第12题图)11.如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD上,若∠ECD=35°,∠AEF=15°,则∠B的度数为()A.50°B.55°C.70°D.75°12.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=13AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,下列结论:①EF=2BE,②PF=2PE,③FQ=2EQ,④△PBF是等边三角形,其中正确的是()A.①②B.②③C.①③D.①④二.填空题。
九年级数学下学期第一次月考试题(含解析) 新人教版-新人教版初中九年级全册数学试题
某某省池州市石台中学2015-2016学年九年级数学下学期第一次月考试题一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣22.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师X超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米4.分式有意义,则x的取值X围是()A.x>1 B.x≠1C.x<1 D.一切实数5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和108.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:110.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]]=2;[π]=3,按此规定[2020﹣]=.12.分解因式:4a2﹣16b2=.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是(填序号).三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.16.解不等式:1﹣>.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.18.如图,马路边安装的路灯由支柱上端的钢管ABCD支撑,AB=25cm,CG⊥AF,FD⊥AF,点G、点F分别是垂足,BG=40cm,GF=7cm,∠ABC=120°,∠BCD=160°,请计算钢管ABCD的长度.(钢管的直径忽略不计,结果精确到1cm.参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图某某息解答下列问题.(1)本次调查的学生人数为人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是(只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数 y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b 的取值X围;(3)将函数 y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么X围时,满足≤t≤1?2015-2016学年某某省池州市石台中学九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣2【考点】有理数大小比较.【分析】根据有理数比较大小的法则进行比较即可.【解答】解:∵|﹣3|=3,|﹣2|=2,3>2,∴﹣3<﹣2,∴﹣3<﹣2<0<2,∴最小的数是﹣3.故选B.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.2.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘除法法则,合并同类项的定义,进行逐项分析解答,用排除法找到正确的答案.【解答】解:A、原式=a6﹣2=a4,故本选项错误,B、原式=(5﹣3)a2=2a2,故本选项错误,C、原式=a2a3=a5,故本选项正确,D、原式中的两项不是同类项,不能进行合并,故本选项错误,故选C.【点评】本题主要考查同底数幂的乘除法法则,合并同类项的定义,关键在于根据相关的法则进行逐项分析解答.3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师X超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:20微米=20÷1 000 000米==2×10﹣5米,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.分式有意义,则x的取值X围是()A.x>1 B.x≠1C.x<1 D.一切实数【考点】分式有意义的条件.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:由分式有意义,得x﹣1≠0.解得x≠1,故选:B.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义⇔分母为零;分式有意义⇔分母不为零;分式值为零⇔分子为零且分母不为零.5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c【考点】平行线的判定与性质.【分析】直接利用平行线的判定方法分别进行判断得出答案.【解答】解:A、若∠3=∠2,则d∥e,故此选项错误,符合题意;B、若∠3+∠5=180°,则a∥c,正确,不合题意;C、若∠1=∠2,则a∥c,正确,不合题意;D、若a∥b,b∥c,则a∥c,正确,不合题意;故选:A.【点评】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,当t=时,乙到达B城,y甲=250;综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知正确的有①②共两个,故选B.【点评】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和10【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:6、7、8、9、10、10、12,最中间的数是9,则这组数据的中位数是9;10出现了2次,出现的次数最多,则众数是10;故选C.【点评】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数8.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】由于a≠0,那么a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限,利用这些结论即可求解.【解答】解:∵a≠0,∴a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限.A、图中直线经过直线经过第一、二、四象限,双曲线经过第二、四象限,故A选项错误;B、图中直线经过第第一、二、三象限,双曲线经过第二、四象限,故B选项正确;C、图中直线经过第二、三、四象限,故C选项错误;D、图中直线经过第一、二、三象限,双曲线经过第一、三象限,故D选项错误.故选:B.【点评】此题考查一次函数,反比例函数中系数及常数项与图象位置之间关系.直线y=kx+b、双曲线y=,当k>0时经过第一、三象限,当k<0时经过第二、四象限.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1【考点】相似三角形的判定与性质;平行四边形的性质.【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选:B.【点评】本题考查了平行四边形的性质以及相似三角形的判定和性质,注:相似三角形的面积之比等于相似比的平方.10.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.【考点】解直角三角形;等腰直角三角形.【分析】利用等腰直角三角形的判定与性质推知BC=AC,DE=EC=DC,然后通过解直角△DBE来求tan∠DBC的值.【解答】解:∵在△ABC中,∠BAC=90°,AB=AC,∴∠ABC=∠C=45°,BC=AC.又∵点D为边AC的中点,∴AD=DC=AC.∵DE⊥BC于点E,∴∠CDE=∠C=45°,∴DE=EC=DC=AC.∴tan∠DBC===.故选:A.【点评】本题考查了解直角三角形的应用、等腰直角三角形的性质.通过解直角三角形,可求出相关的边长或角的度数或三角函数值.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]]=2;[π]=3,按此规定[2020﹣]= 2015 .【考点】估算无理数的大小.【分析】先求出的X围,再求出2020﹣的X围,即可得出答案.【解答】解:∵4<<5,∴﹣4>﹣5,∴2016>2020﹣>2015,∴[2020﹣]=2015,故答案为:2015.【点评】本题考查了估算无理数的大小的应用,解此题的关键是求出2016>2020﹣>2015,难度不是很大.12.分解因式:4a2﹣16b2= 4(a+2b)(a﹣2b).【考点】提公因式法与公式法的综合运用.【分析】根据提取公因式,再运用公式法,可分解因式.【解答】解:原式=4(a2﹣4b2)=4(a+2b)(a﹣2b),故答案为:4(a+2b)(a﹣2b).【点评】本题考查了因式分解,先提取公因式,再运用公式,分解到不能再分解为止.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:7250(1+8.5%)(1﹣x%)2=7200 .【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设2014、2015两年平均每年降价的百分率是x,那么2014年的房价为7250(1+8.5%)(1﹣x%),2015年的房价为7250(1+8.5%)(1﹣x%)2,然后根据2015年的7200元/m2即可列出方程解决问题.【解答】解:设设两年平均每年降价的百分率为x%,根据题意得:7250(1+8.5%)(1﹣x%)2=7200;故答案为:7250(1+8.5%)(1﹣x%)2=7200.【点评】本题是一道一元二次方程的运用题,是一道降低率问题,与实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是①②④(填序号).【考点】几何变换综合题.【分析】①根据矩形的性质,得∠DAC=∠ACB,再由平移的性质,可得出∠A1=∠ACB,A1D1=CB,从而证出结论;②易得△AC1F∽△ACD,根据面积比等于相似比平方可得出s与x的函数关系式③根据菱形的性质,四条边都相等,可推得当C1在AC中点时四边形ABC1D1是菱形.④当x=2时,点C1与点A重合,可求得BD=DD1=BD1=2,从而可判断△BDD1为等边三角形.【解答】解:①∵四边形ABCD为矩形,∴BC=AD,BC∥AD∴∠DAC=∠ACB∵把△ACD沿CA方向平移得到△A1C1D1,∴∠A1=∠DAC,A1D1=AD,AA1=CC1,在△A1AD1与△CC1B中,,∴△A1AD1≌△CC1B(SAS),故①正确;②易得△AC1F∽△ACD,∴解得:S△AC1F=(x﹣2)2(0<x<2);故②正确;③∵∠ACB=30°,∴∠CAB=60°,∵AB=1,∴AC=2,∵x=1,∴AC1=1,∴△AC1B是等边三角形,∴AB=D1C1,又AB∥BC1,∴四边形ABC1D1是菱形,故③错误;④如图所示:则可得BD=DD1=BD1=2,∴△BDD1为等边三角形,故④正确.综上可得正确的是①②④.故答案为:①②④【点评】本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的判定及解直角三角形的知识,解答本题需要我们熟练掌握全等三角形的判定及含30°角的直角三角形的性质,有一定难度.三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.【考点】分式的化简求值.【分析】先算减法通分,再算除法,由此顺序化简,再进一步代入求得数值即可.【解答】解:原式===.当a=﹣3时,原式=.【点评】此题考查分式的化简求值,掌握运算顺序,化简的方法把分式化到最简,然后代值计算.16.解不等式:1﹣>.【考点】解一元一次不等式.【分析】根据解不等式的基本步骤,依次去分母、去括号、移项、合并同类项、系数化为1可得解集.【解答】解:去分母,得:6﹣(x﹣3)>2x,去括号,得:6﹣x+3>2x,移项,得:﹣x﹣2x>﹣6﹣3,合并同类项,得:﹣3x>﹣9,系数化为1,得:x<9.【点评】本题主要考查解不等式的能力,熟知解不等式的基本步骤是基础,去分母和系数化为1时注意不等号的方向是解不等式易错点.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.【考点】平行线分线段成比例.【分析】根据PQ∥BC可得,进而得出,再解答即可.【解答】解:∵PQ∥BC,∴,,∴MN∥BC,∴==,∴,∴,∵AP=AQ,∴PQ=3.【点评】此题考查了平行线段成比例,关键是根据平行线等分线段定理进行解答.18.如图,马路边安装的路灯由支柱上端的钢管ABCD支撑,AB=25cm,CG⊥AF,FD⊥AF,点G、点F分别是垂足,BG=40cm,GF=7cm,∠ABC=120°,∠BCD=160°,请计算钢管ABCD的长度.(钢管的直径忽略不计,结果精确到1cm.参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【考点】解直角三角形的应用.【分析】根据直角三角形的解法分别求出BC,CD的长,即可求出钢管ABCD的长度.【解答】解:在△BCG中,∠GBC=30°,BC=2BG=80cm,CD=≈41.2,钢管ABCD的长度=AB+BC+CD=25+80+41.2=146.2≈146cm.答:钢管ABCD的长度为146cm.【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?【考点】二元一次方程组的应用.【分析】(1)设八年级(一)班有x人、(二)班有y人,根据两个班的购票费之和为1126元和824元建立方程组求出其解即可;(2)根据单独购票的费用大于团体购票的费用确定选择团体购票,可以节省的费用为1126﹣824元.【解答】解:(1)设八年级(一)班有x人、(二)班有y人,由题意,得,解得:.答:八年级(一)班有48人、(二)班有55人;(2)∵1126>824,∴选择团体购票.团体购票节省的费用为:1126﹣824=302元.∴团体购票节省的费用302元.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时建立方程组求出各班的人数是关键.20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.【考点】相似三角形的判定与性质;翻折变换(折叠问题).【分析】(1)根据折叠的性质得出∠C=∠AED=90°,利用∠DEB=∠C,∠B=∠B证明三角形相似即可;(2)由折叠的性质知CD=DE,AC=AE.根据题意在Rt△BDE中运用勾股定理求DE,进而得出AD即可.【解答】证明:(1)∵∠C=90°,△ACD沿AD折叠,∴∠C=∠AED=90°,∴∠DEB=∠C=90°,又∵∠B=∠B,∴△BDE∽△BAC;(2)由勾股定理得,AB=10.由折叠的性质知,AE=AC=6,DE=CD,∠AED=∠C=90°.∴BE=AB﹣AE=10﹣6=4,在Rt△BDE中,由勾股定理得,DE2+BE2=BD2,即CD2+42=(8﹣CD)2,解得:CD=3,在Rt△ACD中,由勾股定理得AC2+CD2=AD2,即32+62=AD2,解得:AD=.【点评】本题考查了相似三角形的判定和性质,关键是根据1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、勾股定理求解.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图某某息解答下列问题.(1)本次调查的学生人数为60 人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是ACD (只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?【考点】扇形统计图;条形统计图.【专题】数形结合.【分析】(1)根据完成课外作业时间低于60分钟的学生数占被调查人数的10%.可求出抽查的学生人数;(2)根据总人数,现有人数为补上那12人,画图即可;(3)根据中位数、众数、频率的意义对各选项依次进行判断即可解答;(4)先求出60人里学生每天完成课外作业时间在120分钟以下的人的比例,再按比例估算全校的人数.【解答】解:(1)6÷10%=60(人).(2)补全的频数分布直方图如图所示:(3)A.由图(1)知,学生完成作业所用时间的中位数在第三组内,正确;B.由图(1)知,学生完成作业所用时间的众数不在第三组内,错误;C.图(2)中,90~120数据组所在扇形的圆心角为108°.正确;D.图(1)中,落在第五组内数据的频率为0.15,正确.故答案为:60;ACD.(4)==60%,即样本中,完成作业时间不超过120分钟的学生占60%.∴560×60%=336.答:九年级学生中,课业负担适中的学生约为336人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.【考点】二次函数的应用.【专题】销售问题.【分析】(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【解答】解:(1)当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(200﹣2x)(90﹣30)=﹣120x+12000,综上所述:y=;(2)当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,当x=45时,y最大=﹣2×452+180×45+2000=6050,当50≤x≤90时,y随x的增大而减小,当x=50时,y最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元.【点评】本题考查了二次函数的应用,利用单价乘以数量求函数解析式,利用了函数的性质求最值.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数 y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b 的取值X围;(3)将函数 y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么X围时,满足≤t≤1?【考点】二次函数综合题.【专题】代数综合题;压轴题.【分析】(1)根据有界函数的定义和函数的边界值的定义进行答题;(2)根据函数的增减性、边界值确定a=﹣1;然后由“函数的最大值也是2”来求b的取值X围;(3)需要分类讨论:m<1和m≥1两种情况.由函数解析式得到该函数图象过点(﹣1,1)、(0,0),根据平移的性质得到这两点平移后的坐标分别是(﹣1,1﹣m)、(0,﹣m);最后由函数边界值的定义列出不等式≤1﹣m≤1或﹣1≤﹣m≤﹣,易求m取值X围:0≤m≤或≤m≤1.【解答】解:(1)根据有界函数的定义知,函数y=(x>0)不是有界函数.y=x+1(﹣4≤x≤2)是有界函数.边界值为:2+1=3;(2)∵函数y=﹣x+1的图象是y随x的增大而减小,∴当x=a时,y=﹣a+1=2,则a=﹣1当x=b时,y=﹣b+1.则,∴﹣1<b≤3;(3)若m>1,函数向下平移m个单位后,x=0时,函数值小于﹣1,此时函数的边界t>1,与题意不符,故m≤1.当x=﹣1时,y=1 即过点(﹣1,1)当x=0时,y最小=0,即过点(0,0),都向下平移m个单位,则(﹣1,1﹣m)、(0,﹣m)≤1﹣m≤1或﹣1≤﹣m≤﹣,∴0≤m≤或≤m≤1.【点评】本题考查了二次函数综合题型.掌握“有界函数”和“有界函数的边界值”的定义是解题的关键.。
辽宁省鞍山市铁东区华育外国语实验学校2022-2023学年九年级上学期第一次月考数学试卷(含答案)
2022-2023学年辽宁省鞍山市铁东区华育外国语实验学校九年级(上)第一次月考数学试卷考试注意事项:1、考生须诚信考试,遵守考场规则和考试纪律,并自觉服从监考教师和其他考试工作人员管理;2、监考教师发卷后,在试卷指定的地方填写本人准考证号、姓名等信息;考试中途考生不准以任何理由离开考场;3、考生答卷用笔必须使用同一规格同一颜色的笔作答(作图可使用铅笔) ,不准用规定以外的笔答卷,不准在答卷上作任何标记。
考生书写在答题卡规定区域外的答案无效。
4、考试开始信号发出后,考生方可开始作答。
一、选择题(每题3分,共24分)1.如图是四款新能源汽车的标志,其中是中心对称图形的是()A.B.C.D.2.下列各式中,y是x的二次函数的是()A.y=3x B.y=x2+(3﹣x)xC.y=(x﹣1)2D.y=ax2+bx+c3.如图,在△ABC中,DE∥BC,AD=2,BD=3,DE=6,则BC的长为()A.10B.15C.18D.164.把方程3x2+x=2(x﹣2)化成ax2+bx+c=0的形式,则a,b,c的值分别为()A.3,1,4B.3,﹣1,4C.3,﹣1,﹣4D.3,4,﹣1 5.如图,已知AB∥CD∥EF,那么下列结论正确的是()A.B.C.D.6.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,设每个支干长出x个小分支,则下列方程中正确的是()A.1+x2=91B.(1+x)2=91C.1+x+x2=91D.1+(1+x)+(1+x)2=917.如图,已知点A(2,0),B(0,4),C(2,4),线段AB绕着某点旋转一个角度与线段CD重合,若点A的对应点是点C,则这个旋转中心的坐标为()A.(5,2)B.(1,5)C.(4,2)D.(1,5)或(4,2)8.在同一直角坐标系中,当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.二、填空题(每题3分,共24分)9.在平面直角坐标系中,点A(﹣2,1)与点B关于原点对称,则点B的坐标为.10.若一元二次方程x2﹣4x﹣2=0的两个实数根为m,n,则的值为.11.已知点A(﹣3,y1)、B(﹣1,y2)、C(2,y3)在抛物线y=﹣2x2,则y1,y2,y3的大小关系是(用“<”连接).12.如图,在矩形ABCD中,若AB=3,AC=5,若AE=1,=.13.如果关于x的一元二次方程(x﹣3)(mx﹣n)=0有两个实数根,且其中一个根为另一个根的3倍,则的值为.14.如图,在平面直角坐标系xOy中,三角板的直角顶点P的坐标为(2,2),一条直角边与x轴的正半轴交于点A,另一直角边与y轴交于点B,三角板绕点P在坐标平面内转动的过程中,当△POA为等腰三角形时,则点B的坐标是.15.关于抛物线y=﹣x2,给出下列说法:①物线开口向下,顶点是原点;②当x>1时,y随x的增大而减小;③当﹣1<x<2时,﹣4<y<﹣1;④若(m,p)、(n,p)是该抛物线上两点,则m+n=0.其中正确的说法有.16.如图,在正方形ABCD中,对角线AC与BD相交于点O,点E为边BC中点,连接DE交AC于点F,把线段DF绕点D顺时针旋转90°得DG,连接AG、FG,点M为线段FG的中点,连接AM、OM、BG,下列结论正确的有.①FA2+FC2=FG2②AM=BG③=④三、解答题:(17题8分,18题8分,19题一-24题各10分,25题12分,26题14分)17.(8分)解下列方程:(1)2x2+8x+3=0(配方法);(2)3t2﹣t﹣3=0.18.(8分)△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度,按要求作图:(1)画出△ABC关于原点O的中心对称图形△A1B1C1.(2)画出将△ABC绕点O顺时针旋转90°得到△A2B2C2.19.如图,AD、BC相交于点P,连接AC、BD,且∠1=∠2,AC=3,CP=2,DP=1,求BD的长.20.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实数根x1,x2.(1)求实数k的取值范围.(2)若方程两实根x1,x2满足|x1|+|x2|=x1•x2,求k的值.21.如图,在矩形ABCD中,E是BC的中点,DF⊥AE,垂足为F.(1)求证:△ABE∽△DFA;(2)若AB=9,BC=6,求EF的长.22.一块长30cm,宽12cm的矩形铁皮.(1)如图1,在铁皮的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作成一个底面积为144cm2的无盖方盒,如果设切去的正方形的边长为xcm,则可列方程为.(2)由于实际需要,计划制作一个有盖的长方体盒子,为了合理使用材料,某学生设计了如图2的裁剪方案,空白部分为裁剪下来的边角料,其中左侧两个空白部分为正方形,问能否折出底面积为104cm2的有盖盒子(盒盖与盒底的大小形状完全相同)?如果能,请你求出裁去的左侧正方形的边长;如果不能,请说明理由.23.如图,在Rt△ABC中,∠ABC=90°,点D是斜边AC的中点,连接DB,线段AE⊥线段BD交BC于点E,交DB于点G,垂足为点G.(1)求证:EB2=EG•EA;(2)联结CG,若∠CGE=∠DBC,求证:BE=CE.24.“南国梨”素有“梨中之王”美称,主产于中国辽宁省的鞍山,某南国梨种植基地2020年种植64亩,到2022年的种植面积达到100亩.(1)求该基地这两年“南国梨”种植面积的平均增长率.(2)某超市调查发现,当“南国梨”的售价为8元/千克时,每周能售出400千克,售价每千克上涨0.5元,每周销售量减少10千克,已知该超市“南国梨”的进价为6元/千克,为了维护消费者利益,物价部门规定,该水果售价不能超过17元/千克.若使销售“南国梨”每周获利2400元,则售价应多少元/千克?25.(12分)如图,在△ABC中,AB=AC,E是线段BC上一动点(不与B、C重合),连接AE,将线段AE绕点A逆时针旋转与∠BAC相等的角度,得到线段AF,连接EF,点M和点N分别是边BC,EF的中点.(1)如图1,若∠BAC=120°,当点E是BC边的中点时,=,直线BE与MN相交所成的锐角的度数为度.(2)如图2,若∠BAC=120°,当点E是BC边上任意一点时(不与BC重合),上述两个结论是否成立?若成立,请写出证明过程;若不成立,请说明理由.(3)若∠BAC=60°,AB=6,点E在直线BC上运动,=,若其它条件不变,过点C作CP∥MN,交直线EF于P,直接写出P到BC的距离.26.如图,在平面直角坐标系中,直线y=﹣x+3与x轴,y轴分别相交于A、B两点,抛物线y=ax2经过AB的中点D.(1)直接写出抛物线解析式;(2)如图1,在直线AB上方,y轴右侧的抛物线上是否存在一点M,使S△ABM=,若存在,求出M点坐标;若不存在,请说明理由.(3)如图2,点C是OB中点,连接CD,点P是线段AB上的动点,将△BCP沿CP翻折,使点B落在点B'处,当PB'平行于x轴时,请直接写出BP的长.参考答案一、选择题(每题3分,共24分)1.如图是四款新能源汽车的标志,其中是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,进行判断即可.解:A.是中心对称图形,故此选项符合题意;B.不是中心对称图形,故此选项不合题意;C.不是中心对称图形,故此选项不合题意;D.不是中心对称图形,故此选项不合题意;故选:A.【点评】本题考查的是中心对称图形的概念,正确掌握相关定义是解题关键.2.下列各式中,y是x的二次函数的是()A.y=3x B.y=x2+(3﹣x)xC.y=(x﹣1)2D.y=ax2+bx+c【分析】根据二次函数的定义逐个判断即可.解:A.y是x的一次函数,不是二次函数,故本选项不符合题意;B.y=x2+(3﹣x)x=x2+3x﹣x2=3x,y是x的一次函数,不是二次函数,故本选项不符合题意;C.y是x的二次函数,故本选项符合题意;D.当a=0时,y不是x的二次函数,故本选项不符合题意;故选:C.【点评】本题考查了二次函数的定义,能熟记二次函数的定义是解此题的关键,注意:形如y=ax2+bx+c(a、b、c为常数,a≠0)的函数,叫二次函数.3.如图,在△ABC中,DE∥BC,AD=2,BD=3,DE=6,则BC的长为()A.10B.15C.18D.16【分析】通过证明△ADE∽△ABC,可得,即可求解.解:∵AD=2,BD=3,∴AB=5,∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴BC=15,故选:B.【点评】本题考查了相似三角形的判定和性质,证明三角形相似是解题的关键.4.把方程3x2+x=2(x﹣2)化成ax2+bx+c=0的形式,则a,b,c的值分别为()A.3,1,4B.3,﹣1,4C.3,﹣1,﹣4D.3,4,﹣1【分析】将原方程转化为一般形式,进而可得出a,b,c的值.解:将原方程转化为一般形式为3x2﹣x+4=0,∴a=3,b=﹣1,c=4.故选:B.【点评】本题考查了一元二次方程的一般形式,熟练掌握将给定一元二次方程转化为一般形式的方法是解题的关键.5.如图,已知AB∥CD∥EF,那么下列结论正确的是()A.B.C.D.【分析】根据平行线分线段成比例定理逐个判断即可.解:A.∵AB∥CD∥EF,∴=≠,故本选项不符合题意;B.∵AB∥CD∥EF,∴=,故本选项不符合题意;C.∵AB∥CD∥EF,∴=,故本选项不符合题意;D.∵AB∥CD∥EF,∴=,故本选项符合题意;故选:D.【点评】本题考查了平行线分线段成比例定理,能根据平行线分线段成比例定理得出正确的比例式是解此题的关键.6.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,设每个支干长出x个小分支,则下列方程中正确的是()A.1+x2=91B.(1+x)2=91C.1+x+x2=91D.1+(1+x)+(1+x)2=91【分析】根据题意,可以列出相应的方程:主干+支干+小分支=91,进而得出答案.解:由题意可得,1+x+x•x=1+x+x2=91.故选:C.【点评】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程.7.如图,已知点A(2,0),B(0,4),C(2,4),线段AB绕着某点旋转一个角度与线段CD重合,若点A的对应点是点C,则这个旋转中心的坐标为()A.(5,2)B.(1,5)C.(4,2)D.(1,5)或(4,2)【分析】对应点连线段的垂直平分线的交点即为旋转中心.解:观察图象可知,旋转中心P的坐标为(4,2).故选:C.【点评】本题考查坐标与图形变化﹣旋转,解题的关键是理解对应点连线段的垂直平分线的交点即为旋转中心.8.在同一直角坐标系中,当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.【分析】根据ab>0,可以得到a>0,b>0或a<0,b<0,然后分类讨论y=ax2与y=ax+b的图象所在的象限,本题得以解决.解:∵ab>0,∴a>0,b>0或a<0,b<0,当a>0,b>0时,函数y=ax2的图象开口向上,顶点在原点,函数y=ax+b的图象经过第一、三、四象限,故选项A、B错误,不符合题意;当a<0,b<0时,函数y=ax2的图象开口向下,顶点在原点,函数y=ax+b的图象经过第二、三、四象限,故选项C错误,不符合题意,选项D正确,符合题意;故选:D.【点评】本题考查一次函数的图象、二次函数的图象,解答本题的关键是明确题意,利用一次函数的性质和二次函数的性质解答.二、填空题(每题3分,共24分)9.在平面直角坐标系中,点A(﹣2,1)与点B关于原点对称,则点B的坐标为(2,﹣1).【分析】关于原点的对称点,横纵坐标都变成原来相反数,据此求出点B的坐标.解:在平面直角坐标系中,点A(﹣2,1)与点B关于原点对称,则点B的坐标为(2,﹣1).故答案为:(2,﹣1).【点评】本题考查了关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).10.若一元二次方程x2﹣4x﹣2=0的两个实数根为m,n,则的值为﹣2.【分析】先根据根与系数的关系得到m+n=4,mn=﹣2,然后利用整体代入的方法计算.解:根据题意得m+n=4,mn=﹣2,所以原式==﹣2.故答案为﹣2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.11.已知点A(﹣3,y1)、B(﹣1,y2)、C(2,y3)在抛物线y=﹣2x2,则y1,y2,y3的大小关系是y1<y3<y2(用“<”连接).【分析】先分别计算出自变量为﹣3、﹣1和2所对应的函数值,然后比较函数值的大小即可.解:当x=﹣3时,y1=﹣2x2=﹣18;当x=﹣1时,y2=﹣2x2=﹣2;当x=2时,y3=﹣2x2=﹣8,所以y1<y3<y2.故答案为:y1<y3<y2.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.12.如图,在矩形ABCD中,若AB=3,AC=5,若AE=1,=.【分析】由矩形的性质得出∠ABC=90°,AD∥BC,利用勾股定理求出BC=4,利用相似三角形的性质,即可求出结果.解:∵四边形ABCD是矩形,∴∠ABC=90°,AD∥BC,∵AB=3,AC=5,∴BC==4,∵AD∥BC,∴∠EAF=∠BCF,∠AEF=∠CBF,∴△EAF∽△BCF,∴=,故答案为:.【点评】本题考查了矩形的性质,相似三角形的判定与性质,掌握矩形的性质,勾股定理,相似三角形的判定与性质是解决问题的关键.13.如果关于x的一元二次方程(x﹣3)(mx﹣n)=0有两个实数根,且其中一个根为另一个根的3倍,则的值为2或18.【分析】利用一元二次方程的定义及因式分解法解一元二次方程,可求出方程的两根,结合其中一个根为另一个根的3倍,即可求出的值.解:∵关于x的一元二次方程(x﹣3)(mx﹣n)=0有两个实数根,∴m≠0,且原方程的解为x1=3,x2=.当3是的3倍时,3=3×,∴=1,∴=2;当是3的3倍时,=3×3,∴=2×3×3=18.∴的值为2或18.故答案为:2或18.【点评】本题考查了因式分解法解一元二次方程以及一元二次方程的定义,利用因式分解法求出原方程的两个根是解题的关键.14.如图,在平面直角坐标系xOy中,三角板的直角顶点P的坐标为(2,2),一条直角边与x轴的正半轴交于点A,另一直角边与y轴交于点B,三角板绕点P在坐标平面内转动的过程中,当△POA为等腰三角形时,则点B的坐标是(0,2)或(0,0)或(0,4﹣2).【分析】分三种情况:①当OA=AP时,由已知可得B(0,2);②当AP=OP时,B 与O重合,即B(0,0);③当OP=OA=2时,过P作PM⊥x轴于M,作PN⊥y 轴于N,证明△PNB≌△PMA(ASA),可得BN=AM=2﹣2,即有OB=NO﹣BN=4﹣2,故B(0,4﹣2).解:①当OA=AP时,如图:∵P的坐标为(2,2),∴此时A(2,0),∵∠APB=90°,∴B(0,2);②当AP=OP时,如图:∵P的坐标为(2,2),∴∠POA=∠PAO=45°,∴∠P=90°,∴此时B与O重合,即B(0,0);③当OP=OA=2时,过P作PM⊥x轴于M,作PN⊥y轴于N,如图:∵∠APB=90°,∴∠NPB=90°﹣∠BPM=∠MPA,∵NP=MP=2,∠PNB=∠PMA,∴△PNB≌△PMA(ASA),∴BN=AM=2﹣2,∴OB=NO﹣BN=2﹣(2﹣2)=4﹣2,∴B(0,4﹣2),综上所述,点B的坐标是(0,2)或(0,0)或(0,4﹣2).【点评】本题考查平面直角坐标系中的旋转,解题的关键是分类画出图形,讨论得到答案.15.关于抛物线y=﹣x2,给出下列说法:①物线开口向下,顶点是原点;②当x>1时,y随x的增大而减小;③当﹣1<x<2时,﹣4<y<﹣1;④若(m,p)、(n,p)是该抛物线上两点,则m+n=0.其中正确的说法有①②④.【分析】由抛物线的解析式可求得其对称轴、开口方向、顶点坐标,进一步可得出其增减性,可得出答案.解:∵y=﹣x2,∴①抛物线开口向下,顶点是原点,故①正确;②抛物线开口向下,对称轴为x=0,当x>1时,y随x的增大而减小,故②正确;③当﹣1<x<2时,﹣4<y≤0,故③错误;④若(m,p)、(n,p)是该抛物线上两点,可知这两点关于y轴对称,所以m+n=0,故④正确.所以正确的有①②④,故答案为:①②④.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y =a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).16.如图,在正方形ABCD中,对角线AC与BD相交于点O,点E为边BC中点,连接DE交AC于点F,把线段DF绕点D顺时针旋转90°得DG,连接AG、FG,点M为线段FG的中点,连接AM、OM、BG,下列结论正确的有①③④.①FA2+FC2=FG2②AM=BG③=④【分析】由四边形ABCD是正方形,得AD=CD,∠ADC=∠BCD=90°,则∠DCA=∠DAC=45°,由旋转得DG=DF,∠GDF=90°,则∠ADG=∠CDF,即可证明△ADG≌△CDF,得AG=CF,∠DAG=∠DCF=45°,则∠FAG=90°,所以FA2+FC2=FA2+AG2=FG2,可判断①正确;作GI⊥AB交BA的延长线于点I,设AB=AD=BC=DC=2m,则BE=CE=BC=m,由勾股定理得DE=m,AC=2m,则OC=OD=OA=m,再证明△CEF∽△ADF,得===,则AG=CF=AC=m,DF=DE=m,FG=DF =m,再求得BG=m,由∠FAG=90°,点M为线段FG的中点,得AM =FM=GM=FG,可知AM≠BG,可判断②错误;因为OF=m﹣m=m,所以=,可判断③正确;连接DM,作MH⊥OA于点H,则DM=AM=FG,再证明△OMD≌△OMA,得∠DOM=∠AOM=∠AOD=45°,根据三角形的中位线定理求得HM=AG=m,则OM =HM=m,所以=,可判断④正确,于是得到问题的答案.解:∵四边形ABCD是正方形,∴AD=CD,∠ADC=∠BCD=90°,∴∠DCA=∠DAC=45°,由旋转得DG=DF,∠GDF=90°,∴∠ADG=∠CDF=90°﹣∠ADE,∴△ADG≌△CDF(SAS),∴AG=CF,∠DAG=∠DCF=45°,∴∠FAG=90°,∴FA2+AG2=FG2,∴FA2+FC2=FG2,故①正确;作GI⊥AB交BA的延长线于点I,设AB=AD=BC=DC=2m,∵点E为边BC中点,∴BE=CE=BC=m,∴DE==m,AC==2m,∵OC=OA=AC=m,OD=OB=BD,且AC=BD,∴OC=OD=OA=m,∵CE∥AD,∴△CEF∽△ADF,∴====,∴AG=CF=AC=m,DF=DE=m,∴FG===DF=×m=m,∵∠I=90°,∠IAG=90°﹣∠DAG=45°,∴∠IGA=∠IAG=45°,∴AI=GI,∴2AI2=2GI2=AI2+GI2=AG2=(m)2=m2,∴AI=GI=m,∴BG==m,∴FG≠BG,∵∠FAG=90°,点M为线段FG的中点,∴AM=FM=GM=FG,∴AM≠BG,故②错误;∵OF=m﹣m=m,∴==,故③正确;连接DM,作MH⊥OA于点H,则DM=AM=FG,∵AD⊥BD,∴∠AOD=90°,∵OD=OA,DM=AM,OM=OM,∴△OMD≌△OMA(SSS),∴∠DOM=∠AOM=∠AOD=45°,∵∠FHM=∠FAG=90°,∴HM∥AG,∴==1,∴FH=AH,∴HM=AG=×m=m,∵∠HMO=∠HOM=45°,∴HO=HM,∴OM===HM=×m=m,∴==,故④正确,故答案为:①③④.【点评】此题重点考查正方形的性质、旋转的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质、平行线分线段成比例定理、相似三角形的判定与性质、三角形的中位线定理、勾股定理等知识,此题综合性强,难度较大,正确地作出所需要的辅助线是解题的关键.三、解答题:(17题8分,18题8分,19题一-24题各10分,25题12分,26题14分)17.(8分)解下列方程:(1)2x2+8x+3=0(配方法);(2)3t2﹣t﹣3=0.【分析】(1)利用解一元二次方程﹣配方法,进行计算即可解答;(2)利用解一元二次方程﹣公式法,进行计算即可解答.解:(1)2x2+8x+3=0,x2+4x+=0,x2+4x=﹣,x2+4x+4=﹣+4,(x+2)2=,x+2=±,x+2=或x+2=﹣,x1=﹣2,x2=﹣﹣2;(2)3t2﹣t﹣3=0,∵Δ=(﹣)2﹣4×3×(﹣3)=2+36=38>0,∴t=,∴t1=,t2=.【点评】本题考查了解一元二次方程﹣公式法,配方法,熟练掌握解一元二次方程的方法是解题的关键.18.(8分)△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度,按要求作图:(1)画出△ABC关于原点O的中心对称图形△A1B1C1.(2)画出将△ABC绕点O顺时针旋转90°得到△A2B2C2.【分析】(1)根据中心对称的性质作图即可.(2)根据旋转的性质作图即可.解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.【点评】本题考查作图﹣旋转变换、中心对称,熟练掌握旋转和中心对称的性质是解答本题的关键.19.如图,AD、BC相交于点P,连接AC、BD,且∠1=∠2,AC=3,CP=2,DP=1,求BD的长.【分析】先由∠1=∠2,∠APC=∠BPD,证明△APC∽△BPD,然后列比例式求出BD 的长.解:∵∠1=∠2,∠APC=∠BPD,∴△APC∽△BPD,∴=,BD===,∴BD的长为.【点评】此题考查相似三角形的判定与性质,难度不大,是很好的练习题.20.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实数根x1,x2.(1)求实数k的取值范围.(2)若方程两实根x1,x2满足|x1|+|x2|=x1•x2,求k的值.【分析】(1)根据方程有两个不相等的实数根可得Δ=(2k+1)2﹣4(k2+1)=4k2+4k+1﹣4k2﹣4=4k﹣3>0,求出k的取值范围;(2)首先判断出两根均小于0,然后去掉绝对值,进而得到2k+1=k2+1,结合k的取值范围解方程即可.解:(1)∵原方程有两个不相等的实数根,∴Δ=(2k+1)2﹣4(k2+1)=4k2+4k+1﹣4k2﹣4=4k﹣3>0,解得:k>;(2)∵k>,∴x1+x2=﹣(2k+1)<0,又∵x1•x2=k2+1>0,∴x1<0,x2<0,∴|x1|+|x2|=﹣x1﹣x2=﹣(x1+x2)=2k+1,∵|x1|+|x2|=x1•x2,∴2k+1=k2+1,∴k1=0,k2=2,又∵k>,∴k=2.【点评】此题考查了一元二次方程ax2+bx+c=0根的判别式和根与系数的关系的应用,(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根;(4)x1+x2=﹣;(5)x1•x2=.21.如图,在矩形ABCD中,E是BC的中点,DF⊥AE,垂足为F.(1)求证:△ABE∽△DFA;(2)若AB=9,BC=6,求EF的长.【分析】(1)由矩形性质得AD∥BC,进而由平行线的性质得∠AEB=∠DAF,再根据两角对应相等的两个三角形相似;(2)由E是BC的中点,求得BE,再由勾股定理求得AE,再由相似求AF,即可求EF.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠DAF=∠AEB,∵DF⊥AE,∴∠AFD=∠B=90°,∴△ABE∽△DFA;(2)解:∵E是BC的中点,BC=6,∴BE=3,∵AB=9,∴AE==3,∵四边形ABCD是矩形,∴AD=BC=4,∵△ABE∽△DFA,∴=,=,AF=,∴EF=AE﹣AF=.【点评】本题主要考查了矩形的性质,相似三角形的性质与判定,勾股定理,关键是证明三角形相似.22.一块长30cm,宽12cm的矩形铁皮.(1)如图1,在铁皮的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作成一个底面积为144cm2的无盖方盒,如果设切去的正方形的边长为xcm,则可列方程为(30﹣2x)(12﹣2x)=144;.(2)由于实际需要,计划制作一个有盖的长方体盒子,为了合理使用材料,某学生设计了如图2的裁剪方案,空白部分为裁剪下来的边角料,其中左侧两个空白部分为正方形,问能否折出底面积为104cm2的有盖盒子(盒盖与盒底的大小形状完全相同)?如果能,请你求出裁去的左侧正方形的边长;如果不能,请说明理由.【分析】(1)设切去的正方形的边长为xcm,则折成的方盒的底面为长(30﹣2x)cm,宽为(12﹣2x)cm的矩形,根据矩形的面积公式,即可得出关于x的一元二次方程,此问得解;(2)设切去的正方形的边长为ycm,则折成的长方体盒子的底面为长(﹣y)cm,宽为(12﹣2y)cm的矩形,根据矩形的面积公式,即可得出关于y的一元二次方程,解之取其较小值即可.解:(1)设切去的正方形的边长为xcm,则折成的方盒的底面为长(30﹣2x)cm,宽为(12﹣2x)cm的矩形,依题意,得:(30﹣2x)(12﹣2x)=144.故答案为:(30﹣2x)(12﹣2x)=144;(2)设切去的正方形的边长为ycm,则折成的长方体盒子的底面为长(﹣y)cm,宽为(12﹣2y)cm的矩形,依题意,得:(﹣y)(12﹣2y)=104,整理,得:y2﹣21y+38=0,解得:y1=2,y2=19(不合题意,舍去),∴y=2.答:能折出底面积为104cm2的有盖盒子,正方形的边长为2cm.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23.如图,在Rt△ABC中,∠ABC=90°,点D是斜边AC的中点,连接DB,线段AE⊥线段BD交BC于点E,交DB于点G,垂足为点G.(1)求证:EB2=EG•EA;(2)联结CG,若∠CGE=∠DBC,求证:BE=CE.【分析】(1)根据相似三角形的判定与性质可得结论;(2)由直角三角形的性质得BD=AC=CD,再由相似三角形的判定与性质可得EC2=GE•EA,结合(1)的结论可得答案.【解答】证明:(1)∵AE⊥BD,∴∠BGE=90°,∵∠ABC=90°,∴∠BGE=∠ABE,∵∠BEG=∠AEB,∴△ABE∽△BGE,∴=,即EB2=EG•EA;(2)在Rt△ABC中,点D是斜边AC的中点,∴BD=AC=CD,∴∠DBC=∠DCB,∵∠CGE=∠GEC,∴∠CGE=∠DCB,∵∠GEC=∠GEC,∴△GEC∽△CEA,∴=,∴EC2=GE•EA,由(1)知EB2=EG•EA,∴EC2=EB2,∴BE=CE.【点评】此题考查的是相似三角形的判定与性质、直角三角形的性质、等腰三角形的性质,掌握相似三角形的判定与性质是解决此题关键.24.“南国梨”素有“梨中之王”美称,主产于中国辽宁省的鞍山,某南国梨种植基地2020年种植64亩,到2022年的种植面积达到100亩.(1)求该基地这两年“南国梨”种植面积的平均增长率.(2)某超市调查发现,当“南国梨”的售价为8元/千克时,每周能售出400千克,售价每千克上涨0.5元,每周销售量减少10千克,已知该超市“南国梨”的进价为6元/千克,为了维护消费者利益,物价部门规定,该水果售价不能超过17元/千克.若使销售“南国梨”每周获利2400元,则售价应多少元/千克?【分析】(1)设该基地这两年“南国梨”种植面积的平均增长率为x,利用该南国梨种植基地2022年种植面积=该南国梨种植基地2020年种植面积×(1+该基地这两年“南国梨”种植面积的平均增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设售价为y元/千克,则每千克的销售利润为(y﹣6)元,每周能售出(560﹣20y)千克,利用总利润=每千克的销售利润×每周的销售量,即可得出关于y的一元二次方程,解之取其符合题意的值即可得出结论.解:(1)设该基地这两年“南国梨”种植面积的平均增长率为x,依题意得:64(1+x)2=100,解得:x1=0.25=25%,x2=﹣2.25(不符合题意,舍去).答:该基地这两年“南国梨”种植面积的平均增长率为25%.(2)设售价为y元/千克,则每千克的销售利润为(y﹣6)元,每周能售出400﹣10×=(560﹣20y)千克,依题意得:(y﹣6)(560﹣20y)=2400,整理得:y2﹣34y+288=0,解得:y1=16,y2=18(不符合题意,舍去).答:售价应为16元/千克.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.25.(12分)如图,在△ABC中,AB=AC,E是线段BC上一动点(不与B、C重合),连接AE,将线段AE绕点A逆时针旋转与∠BAC相等的角度,得到线段AF,连接EF,点M和点N分别是边BC,EF的中点.(1)如图1,若∠BAC=120°,当点E是BC边的中点时,=,直线BE与MN相交所成的锐角的度数为60度.(2)如图2,若∠BAC=120°,当点E是BC边上任意一点时(不与BC重合),上述两个结论是否成立?若成立,请写出证明过程;若不成立,请说明理由.(3)若∠BAC=60°,AB=6,点E在直线BC上运动,=,若其它条件不变,过点C作CP∥MN,交直线EF于P,直接写出P到BC的距离2.【分析】(1)证明AC⊥EF,利用直角三角形30度角的性质证明即可;(2)结论成立.如图2中,连接AM,AN.证明△BAE∽△MAN,推出∠B=∠AMN=30°,==2,可得结论;(3)如图3中,连接AM,AN,过点P作PH⊥BC于点H.证明△BAE∽△MAN,推出==,∠AMN=∠ABE=60°,利用平行线分线段成比例定理求出PC,可得结论.解:(1)如图1中,∵AB=AC,BM=CM,∴AM⊥CB,∠BAM=∠CAM=∠BAC=60°,∵∠EAF=∠BAC=120°,∴∠CAE=∠CAF=60°,∵AE=AF,∴AC⊥EF,EN=FN,∵∠C=∠B=30°,∴EC=2MN,∠FEC=60°∴BE=2MN,直线BE与MN相交所成的锐角的度数为60°.故答案为:,60;(2)结论成立.理由:如图2中,连接AM,AN.∵AB=AC,BM=CM,∴AM⊥CM,∵∠BAC=120°,∴∠B=∠C=30°,∴∠BAM=60°,∴AB=2AM,同法可证AE=2AN,∠EAN=60°,∴∠BAM=∠EAN=60°,∴∠BAE=∠MAN,∵==2,∴△BAE∽△MAN,∴∠B=∠AMN=30°,==2,∴=,∠NMC=60°,∴直线BE与MN相交所成的锐角的度数为60°;(3)如图3中,连接AM,AN,过点P作PH⊥BC于点H.∵△ABC,△AEF都是等边三角形,BM=CM,EN=FN,∴AM⊥BC,AN⊥EF,∴==,∵∠BAM=∠EAN=30°,∴∠BAE=∠MAN,∴△BAE∽△MAN,∴==,∠AMN=∠ABE=60°,∵∠AMC=90°,∴∠NMC=30°,∵AB=6,BE:EC=1:2,∴BE=2,EC=4,∵BM=CM=3,∴EM=1,∴MN=,∵MN∥CP,∴=,∠PCH=∠NMC=30°,∴=,∴CP=4,∴PH=PC=2,∴点P到BC的距离为2.故答案为:2.【点评】本题属于几何变换综合题,考查了等腰三角形的性质,等边三角形的性质,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于思考常考题型.26.如图,在平面直角坐标系中,直线y=﹣x+3与x轴,y轴分别相交于A、B两点,抛物线y=ax2经过AB的中点D.(1)直接写出抛物线解析式;(2)如图1,在直线AB上方,y轴右侧的抛物线上是否存在一点M,使S△ABM=,若存在,求出M点坐标;若不存在,请说明理由.(3)如图2,点C是OB中点,连接CD,点P是线段AB上的动点,将△BCP沿CP翻折,使点B落在点B'处,当PB'平行于x轴时,请直接写出BP的长.【分析】(1)根据题意可得B(0,3),A(4,0),根据抛物线y=ax2经过AB的中点D,可得D(2,),进而可得抛物线解析式;(2)过点M作MN∥y轴交AB于点N,设M(m,m2),则N(m,﹣m+3),所以MN=m2+m﹣3,根据S△ABM=S△BMN+S△AMN=MN•OA=,列出方程求解即可解决问题;(3)根据点P是线段AB上的动点,将△BCP沿CP翻折,使点B落在点B'处,当PB'平行于x轴时,设PB′交y轴于点E,设P(x,﹣x+3),则EP=x,OE=﹣x+3,可得BE=x,根据勾股定理可得PB=x,然后根据翻折可得CB′=CB=,PB=PB′=x,根据勾股定理求出x的值,进而可以解决问题.解:(1)∵直线y=﹣x+3与x轴,y轴分别相交于A、B两点,令x=0,则y=3,∴B(0,3),令y=0,则x=4,∴A(4,0),∵抛物线y=ax2经过AB的中点D,∴D(2,),将D(2,)代入抛物线y=ax2,得a=,∴抛物线解析式为y=x2;(2)如图1,在直线AB上方,y轴右侧的抛物线上存在一点M,使S△ABM=,理由如下:过点M作MN∥y轴交AB于点N,设M(m,m2),则N(m,﹣m+3),∴MN=m2﹣(﹣m+3)=m2+m﹣3,∵S△ABM=,∴S△ABM=S△BMN+S△AMN=MN•OA=,∴(m2+m﹣3)×4=,整理得m2+2m﹣15=0,解得m1=3,m2=﹣5(舍去),∴M点坐标为(3,);(3)如图,点P是线段AB上的动点,将△BCP沿CP翻折,使点B落在点B'处,当PB'平行于x轴时,设PB′交y轴于点E,∵B(0,3),∴OB=3,设P(x,﹣x+3),则EP=x,OE=﹣x+3,∴BE=OB﹣OE=3﹣(﹣x+3)=x,∵点C是OB中点,∴OC=BC=,∴PB2=BE2+PE2=(x)2+x2=x2,∴PB=x(负值舍去),根据翻折可知:CB′=CB=,PB=PB′=x,在Rt△CB′E中,CE=OC﹣OE=﹣(﹣x+3)=x﹣,B′E=PB′﹣PE=x﹣x=x,根据勾股定理得:CE2+B′E2=CB′2,∴(x﹣)2+(x)2=()2,整理得x2﹣x=0,解得x1=,x2=0(舍去),∴PB=x=×=,答:BP的长为.【点评】本题属于二次函数综合题,主要考查了待定系数法求函数解析式,坐标系中图形的面积计算方法,轴对称的性质,勾股定理,一元二次方程,解本题的关键是判断出CD平行于x轴.。