数学活动三角点阵中前n行的点数计算

合集下载

2025年广东省中考数学一轮突破-单元强化练习——方程与不等式

2025年广东省中考数学一轮突破-单元强化练习——方程与不等式
3x≤15,即 6< -3+x + 12-2x ≤15.②当3≤x≤6时, -3+x +
12-2x =x-3+12-2x=9-x.∵3≤x≤6,∴3≤9-x≤6,即
3≤ -3+x + 12-2x ≤6.③当x>6时, -3+x + 12-2x =x-3+2x-
12=3x-15.∵x>6,∴3x-15>3,即 -3+x + 12-2x >3.综上所述,
(1)设经过x s,则点A表示的数为-3+x,点B表示的数为12-2x,根
据题意,得 12-2x- -3+x =3,解得x=4或x=6.∴经过4 s或6 s,点
A,B之间的距离等于3个单位长度.
(2)由(1)知,点A,B到原点距离之和为 -3+x + 12-2x .①当0≤x<3
时, -3+x + 12-2x =3-x+12-2x=15-3x.∵0≤x<3,∴6<15-
用栅栏把它分成两个面积为1∶2的矩形,已知栅栏的总长度为24 m,设
较小矩形的宽为x m(如图).
(1)若矩形养殖场的总面积为36 m2,求此时x的值.
(2)当x为多少时,矩形养殖场的总面积S最大?最大值为多少?
(1)依题意得,较大矩形平行于墙的一边长为(填“能”或“不
能”)为500.
1
提示:由题意得 n+1 =500,即n2+n-1 000=0.∵Δ=12-
2
4×(-1 000)=4 001,∴此方程无正整数解.∴三角点阵中前n行的点数之
和不能是500.
(3)【运用】某广场要摆放若干种造型的盆景,其中一种造型要用420
盆同样规格的花,按照第一排2盆,第二排4盆,第三排6盆,……第n排
5x+2y=10,
A.ቊ
2x+5y=8
2x+5y=10,

2024年四川省凉山州中考数学试卷(附答案)

2024年四川省凉山州中考数学试卷(附答案)

2024年四川省凉山州中考数学试卷(附答案)一、选择题(共12小题,每小题4分,共48分)在每小题给出的四个选项中只有一项的,请把正确选项的字母序号填涂在答题卡上对应的位置。

1.(4分)下列各数中:5,﹣,﹣3,0,﹣25.8,+2,负数有()A.1个B.2个C.3个D.4个【分析】根据正数和负数的定义判断即可,注意:0既不是负数也不是正数.【解答】解:5>0,是正数;,是负数;﹣3<0,是负数;0既不是正数,也不是负数;﹣25.8<0,是负数;+2>0,是正数;∴负数有,﹣3,﹣25.8,共3个.故选:C.2.(4分)如图,由3个相同的小正方体搭成的几何体的俯视图是()A.B.C.D.【答案】B.3.(4分)下列运算正确的是()A.2ab+3ab=5ab B.(ab2)3=a3b5C.a8÷a2=a4D.a2•a3=a6【答案】A.4.(4分)一副直角三角板按如图所示的方式摆放,点E在AB的延长线上,当DF∥AB时,∠EDB的度数为()A .10°B .15°C .30°D .45°【答案】B .5.(4分)点P (a ,﹣3)关于原点对称的点是P ′(2,b ),则a +b 的值是()A .1B .﹣1C .﹣5D .5【答案】A .6.(4分)如图,在Rt △ABC 中,∠ACB =90°,DE 垂直平分AB 交BC 于点D ,若△ACD 的周长为50cm ,则AC +BC =()A .25cmB .45cmC .50cmD .55cm【答案】C .7.(4分)匀速地向如图所示的容器内注水,直到把容器注满.在注水过程中,容器内水面高度h 随时间t 变化的大致图象是()A .B .C .D .【答案】C .8.(4分)在一次芭蕾舞比赛中,甲、乙两个芭蕾舞团都表演了舞剧《天鹅湖》,每个团参加表演的8位女演员身高的折线统计图如下.则甲、乙两团女演员身高的方差s甲2、s乙2大小关系正确的是()A.s甲2>s乙2B.s甲2<s乙2C.s甲2=s乙2D.无法确定【答案】B.9.(4分)若关于x的一元二次方程(a+2)x2+x+a2﹣4=0的一个根是x=0,则a的值为()A.2B.﹣2C.2或﹣2D.【答案】A.10.(4分)数学活动课上,同学们要测一个如图所示的残缺圆形工件的半径,小明的解决方案是:在工件圆弧上任取两点A,B,连接AB,作AB的垂直平分线CD交AB于点D,交于点C,测出AB=40cm,CD=10cm,则圆形工件的半径为()A.50cm B.35cm C.25cm D.20cm【答案】C.11.(4分)如图,一块面积为60cm2的三角形硬纸板(记为△ABC)平行于投影面时,在点光源O的照射下形成的投影是△A1B1C1,若OB:BB1=2:3,则△A1B1C1的面积是()A.90cm2B.135cm2C.150cm2D.375cm2【答案】D.12.(4分)抛物线y=(x﹣1)2+c经过(﹣2,y1),(0,y2),(,y3)三点,则y1,y2,y3的大小关系正确的是()A.y1>y2>y3B.y2>y3>y1C.y3>y1>y2D.y1>y3>y2【答案】D.二、填空题(共5小题,每小题4分,共20分)13.(4分)已知a2﹣b2=12,且a﹣b=﹣2,则a+b=.【分析】利用平方差公式:a2﹣b2=(a+b)(a﹣b)计算即可.【解答】解:∵a2﹣b2=12,∴(a+b)(a﹣b)=12,∵a﹣b=﹣2,∴a+b=﹣6,故答案为:﹣6.【点评】本题考查平方差公式,此为基础且重要知识点,必须熟练掌握.14.(4分)方程=的解是.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可确定出分式方程的解.【解答】解:去分母得:2x=3x﹣9,解得:x=9,经检验x=9是分式方程的解,故答案为:x=9【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.15.(4分)如图,△ABC中,∠BCD=30°,∠ACB=80°,CD是边AB上的高,AE是∠CAB的平分线,则∠AEB的度数是100°.【分析】由CD是边AB上的高,∠BCD=30°,∠ACB=80°,可求得∠CAB、∠CBA的度数,因为AE是∠CAB的平分线,可得∠EAB的度数,根据三角形内角和定理,可得∠AEB的度数.【解答】解:∵CD是边AB上的高,∴∠CDB=∠CDA=90°,∵∠BCD=30°,∠ACB=80°,∴∠ACD=∠ACB﹣∠BCD=50°,∠CBD=90°﹣∠BCD=60°,∴∠CAB=90°﹣∠ACD=40°,∵AE是∠CAB的平分线,∴∠EAB=∠CAB=20°,∴∠AEB=180°﹣∠EAB﹣∠EBA=100°,故答案为:100°.【点评】本题考查了三角形内角和定理,角平分线的定义,关键是掌握三角形内角和定理,角平分线的定义.16.(4分)如图,四边形ABCD各边中点分别是E、F、G、H,若对角线AC=24,BD=18,则四边形EFGH的周长是.【解答】解:∵四边形ABCD各边中点分别是E、F、G、H,∴EF、FG、GH、HE分别为△ABC、△BCD、△ADC、△ABD的中位线,∴EF=AC=×24=12,GH=AC=12,FG=BD=×18=9,HE=BD=9,∴四边形EFGH的周长为:12+9+12+9=42,故答案为:42.17.(4分)如图,一次函数y=kx+b的图象经过A(3,6)、B(0,3)两点,交x轴于点C,则△AOC的面积为.【分析】先利用待定系数法求出直线AB的解析式,再求出点C坐标,根据三角形面积公式计算面积即可.【解答】解:∵一次函数y=kx+b的图象经过A(3,6)、B(0,3)两点,∴,解得,∴一次函数解析式为y=x+3,当y=0时,x=﹣3,∴C(﹣3,0),==9.∴S△AOC故答案为:9.三、解答题(共5小题,共32分)解答应写出文字说明、证明过程或演算步骤.18.(5分)计算:+|2﹣|+2﹣1+cos30°﹣(﹣1)0.【分析】利用分母有理化法则,零指数幂,特殊锐角三角函数值,绝对值的性质计算即可.【解答】解:原式=+2﹣++﹣1=+2﹣++﹣1=2.【点评】本题考查分母有理化,特殊锐角三角函数值,零指数幂,绝对值,熟练掌握相关运算法则是解题的关键.19.(5分)求不等式组﹣3<4x﹣7≤9的整数解.【分析】先根据不等式的性质求出不等式的解集,再根据求不等式组解集的规律求出不等式组的解集,最后求出不等式组的整数解即可.【解答】解:﹣3<4x﹣7≤9,即,解不等式①,得x>1,解不等式②,得x≤4,所以不等式组的解集是1<x≤4,所以不等式组﹣3<4x﹣7≤9的整数解是2,3,4.【点评】本题考查了解一元一次不等式组和一元一次不等式组的整数解,能根据求不等式组解集的规律求出不等式组的解集是解此题的关键.20.(7分)为保证每位同学在学校组织的课外体育活动中,都能参与自己最喜欢的球类项目,学校体育社团随机抽取部分同学进行“最喜欢的球类项目”的调查(每人只能选择一项),根据调查结果绘制成以下两幅不完整的统计图:请根据统计图回答下列问题:(1)本次调查的总人数是50人,估计全校1500名学生中最喜欢乒乓球项目的约有120人;(2)补全条形统计图;(3)学校体育社团为了制订训练计划,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两名进行个别访谈,请用列表法或画树状图法求抽取的两人恰好是甲和乙的概率.【分析】(1)根据最喜欢足球的有18人,对应的百分比是36%,据此即可求得总人数;利用1500除以最喜欢乒乓球所占的百分数,即可求解;(2)求出喜欢篮球的人数和喜欢羽毛球的人数,然后补全统计图即可;(3)首先画出树状图,得出共有12种等可能的结果数,其中抽取两人恰好是甲乙的结果数为2,再根据概率公式,计算即可.【解答】解:(1)本次调查的总人数是为:18×36%=50(人),估计全校1500名学生中最喜欢乒乓球项目的约有1500×=120(人),故答案为:50,120;(2)喜欢篮球的人数为:50×24%=12(人),喜欢乒乓球的人数为:50﹣18﹣12﹣10﹣4=6(人),补全条形统计图如下:(3)解:画树状图如下:共有12种等可能的结果数,其中抽取两人恰好是甲乙的结果数为2,∴甲乙两位同学同时被抽中的概率为:=.【点评】本题考查了条形统计图、扇形统计图、用样本估计总体、利用树状图法求概率、概率公式,解本题的关键在充分利用统计图解答.21.(7分)为建设全城旅游西昌,加快旅游产业发展.2022年9月29日位于西昌主城区东部的历史风貌核心区唐园正式开园,坐落于唐园内的怀远塔乃唐园至高点,为七层密檐式八角砖混结构阁楼式塔楼,建筑面积为1845.4平方米,塔顶金碧辉煌,为“火珠垂莲”窣(sū)堵坡造型.某校为了让学生进一步了解怀远塔,组织九年级(2)班学生利用综合实践课测量怀远塔的高度.小江同学站在如图所示的怀远塔前的平地上A点处,测得塔顶C的仰角为30°,眼睛B距离地面1.8m,向塔前行67m,到达点D处,测得塔顶C的仰角为60°,求塔高CF.(参考数据:≈1.414,≈1.732,结果精确到0.01m)【分析】先用CG表示EG,BG,再根据BG﹣EG=67m,列方程求出CG,进一步可求出CF,从而解决问题.【解答】解:由题意,知∠CBG=30°,∠CEG=60°,∠CGB=∠CGE=90°,GF=ED=BA=1.8m,BE=67m,在Rt△CBG中,BG==CG,在Rt△CEG中,EG==CG,∵BG﹣EG=BE,∴CG﹣CG=67,解得CG≈58.02(m),∴CF=CG+GF=58.02+1.8=59.82(m),答:塔高CF为59.82m.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,理解题意,熟练运用三角函数关系是解题的关键.22.(8分)如图,正比例函数y1=x与反比例函数y2=(x>0)的图象交于点A(m,2).(1)求反比例函数的解析式;(2)把直线y1=x向上平移3个单位长度与y2=(x>0)的图象交于点B,连接AB、OB,求△AOB 的面积.【分析】(1)待定系数法求出反比例函数解析式即可;(2)先得到平移后直线解析式,联立方程组求出点B 坐标,根据平行线可得S △AOB =S △ADO 代入数据计算即可.【解答】解:(1)∵点A (m ,2)在正比例函数图象上,∴2=,解得x =4,∴A (4,2),∵A (4,2)在反比例函数图象上,∴k =8,∴反比例函数解析式为y 2=.(2)把直线y 1=x 向上平移3个单位得到解析式为y =,直线与y 轴交点坐标为D (0,3),连接AD ,联立方程组,解得,(舍去),∴B (2,4),∴S △AOB =S △ADO ==6.【点评】本题考查了一次函数与反比例函数的交点问题,熟练掌握函数的平移法则是关键.四、填空题(共2小题,每小题5分,共10分)23.(5分)已知y2﹣x=0,x2﹣3y2+x﹣3=0,则x的值为3.【分析】由已知条件可得y2=x,将其代入x2﹣3y2+x﹣3=0中整理后解一元二次方程求得符合题意的x 的值即可.【解答】解:∵y2﹣x=0,∴y2=x≥0,∵x2﹣3y2+x﹣3=0,∴x2﹣3x+x﹣3=0,即x2﹣2x﹣3=0,解得:x1=3,x2=﹣1(舍去),即x的值为3,故答案为:3.【点评】本题考查一元二次方程的解,结合已知条件得到关于x的方程是解题的关键.24.(5分)如图,⊙M的圆心为M(4,0),半径为2,P是直线y=x+4上的一个动点,过点P作⊙M的切线,切点为Q,则PQ的最小值为2.【解答】解:如图,连接MP、MQ,∵PQ是⊙M的切线,∴MQ⊥PQ,∴PQ==,当PM最小时,PQ最小,当MP⊥AB时,MP最小,直线y=x+4与x轴的交点A的坐标为(﹣4,0),与y轴的交点B的坐标为(0,4),∴OA=OB=4,∴∠BAO=45°,AM=8,当MP⊥AB时,MP=AM•sin∠BAO=8×=4,∴PQ的最小值为:==2,故答案为:2.五、解答题(共4小题,共40分)25.(8分)阅读下面材料,并解决相关问题:如图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点,…,第n行有n个点…,容易发现,三角点阵中前4行的点数之和为10.(1)探索:三角点阵中前8行的点数之和为36,前15行的点数之和为120,那么,前n行的点数之和为.(2)体验:三角点阵中前n行的点数之和不能(填“能”或“不能”)为500.(3)运用:某广场要摆放若干种造型的盆景,其中一种造型要用420盆同样规格的花,按照第一排2盆,第二排4盆,第三排6盆,…,第n排2n盆的规律摆放而成,则一共能摆放多少排?【解答】解:(1)由题知,三角点阵中前1行的点数之和为:1;三角点阵中前2行的点数之和为:1+2;三角点阵中前3行的点数之和为:1+2+3;三角点阵中前4行的点数之和为:1+2+3+4;…,所以三角点阵中前n行的点数之和为:1+2+3+…+n=.当n=8时,,即三角点阵中前8行的点数之和为36.当n=15时,,即三角点阵中前15行的点数之和为120.故答案为:36,120,.(2)不能.令得,解得n=,因为n为正整数,所以三角点阵中前n行的点数之和不能为500.故答案为:不能.(3)由题知,前n排盆景的总数可表示为n(n+1),令n(n+1)=420得,解得n1=﹣21,n2=20.因为n为正整数,所以n=20,即一共能摆20排.26.(10分)如图,在菱形ABCD中,∠ABC=60°,AB=2,E是BC边上一个动点,连接AE,AE的垂直平分线MN交AE于点M,交BD于点N,连接EN、CN.(1)求证:EN=CN;【分析】(1)利用线段垂直平分线的性质和菱形的性质即可证明出结论;(2)过点N作NG⊥BC于点G,连接AN,AG,过点A作AH⊥BC于点H,证明出2EN+BN的最小值为2AH,再求出AH即可解决问题.【解答】解:(1)连接AN,如图,∵四边形ABCD是菱形,∴点A,点C关于直线BD轴对称,∴AN=CN,∵AE的垂直平分线MN交AE于点M,交BD于点N,∴AN=EN,∴EN=CN;(2)过点N作NG⊥BC于点G,连接AN,AG,过点A作AH⊥BC于点H,∵四边形ABCD是菱形,∠ABC=60°,∴∠DBC=30°,∴BN=2NG,∵AE的垂直平分线MN交AE于点M,交BD于点N,∴EN=AN,∴2EN+BN=2AN+2NG=2(AN+NG)≥2AG≥2AH,∵∠ABC=60°,AB=2,∴AH=AB•sin60°=,∴2EN+BN的最小值为2.27.(10分)如图,AB是⊙O的直径,点C在⊙O上,AD平分∠BAC交⊙O于点D,过点D的直线DE ⊥AC,交AC的延长线于点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)连接EO并延长,分别交⊙O于M、N两点,交AD于点G,若⊙O的半径为2,∠F=30°,求GM•GN的值.【解答】.(1)证明:连接OD,∵AD平分∠BAC,∴∠DAE=∠OAD,∵OA=OD,∴∠OAD=∠ODA,∴∠DAE=∠ODA,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∵OD是⊙O的半径,∴EF是⊙O的切线;(2)解:连接MD,AN,在Rt△ODF中,OB=OD=2,∠F=30°,∴OD=OF,∠BOD=60°,∴OF=4,∴DF==2,∴AF=2+4=6,在Rt△AEF中,∠F=30°,∴AE=AF=3,∵∠F=30°,OD⊥EF,∴∠DOF=60°=∠2+∠3,∵OA=OD,∵∠2=∠3,∴∠2=30°,∴∠2=∠F,∴AD=DF=2,∵OD∥AE,∴△DGO∽△AGE,∴==,∴DG=AD,AG=AD,∵∠ANM=∠MDG,∠MGD=∠AGN,∴△MGD∽△AGN,∴=,∴GM•GN=GD•GA=AD•AD=AD2=×(2)2=.28.(12分)如图,抛物线y=﹣x2+bx+c与直线y=x+2相交于A(﹣2,0),B(3,m)两点,与x轴相交于另一点C.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一个动点(不与A、B重合),过点P作直线PD⊥x轴于点D,交直线AB于点E,当PE=2ED时,求P点坐标;(3)抛物线上是否存在点M使△ABM的面积等于△ABC面积的一半?若存在,请直接写出点M的坐标;若不存在,请说明理由.【分析】(1)把B(3,m)代入y=x+2求出B(3,5),再用待定系数法可得抛物线的解析式为y=﹣x2+2x+8;(2)设P(t,﹣t2+2t+8),则E(t,t+2),D(t,0),由PE=2DE,可得﹣t2+2t+8﹣(t+2)=2(t+2),解出t的值可得P的坐标为(1,9);=×6×5=15,设M (3)过M作MK∥y轴交直线AB于K,求出C(4,0),知AC=6,故S△ABC(m,﹣m2+2m+8),则K(m,m+2),可得MK=|﹣m2+2m+8﹣(m+2)|=|﹣m2+m+6|,S△ABM=MK •|x B﹣x A|=|﹣m2+m+6|,根据△ABM的面积等于△ABC面积的一半,有|﹣m2+m+6|=×15,可得|﹣m2+m+6|=3,即﹣m2+m+6=3或﹣m2+m+6=﹣3,解出m的值可得答案.【解答】解:(1)把B(3,m)代入y=x+2得:m=3+2=5,∴B(3,5),把A(﹣2,0),B(3,5)代入y=﹣x2+bx+c得:,解得,∴抛物线的解析式为y=﹣x2+2x+8;(2)设P(t,﹣t2+2t+8),则E(t,t+2),D(t,0),∵PE=2DE,∴﹣t2+2t+8﹣(t+2)=2(t+2),解得t=1或t=﹣2(此时P不在直线AB上方,舍去);∴P的坐标为(1,9);(3)抛物线上存在点M,使△ABM的面积等于△ABC面积的一半,理由如下:过M作MK∥y轴交直线AB于K,如图:在y=﹣x2+2x+8中,令y=0得0=﹣x2+2x+8,解得x=﹣2或x=4,∴A(﹣2,0),C(4,0),∴AC=6,∵B(3,5),=×6×5=15,∴S△ABC设M(m,﹣m2+2m+8),则K(m,m+2),∴MK=|﹣m2+2m+8﹣(m+2)|=|﹣m2+m+6|,=MK•|x B﹣x A|=|﹣m2+m+6|×5=|﹣m2+m+6|,∴S△ABM∵△ABM的面积等于△ABC面积的一半,∴|﹣m2+m+6|=×15,∴|﹣m2+m+6|=3,∴﹣m2+m+6=3或﹣m2+m+6=﹣3,解得m=或m=,∴M的坐标为(,)或(,)或(,)或(,).。

中考数学专项复习《一元二次方程的应用(3)》练习(无答案) 浙教版(2021年整理)

中考数学专项复习《一元二次方程的应用(3)》练习(无答案) 浙教版(2021年整理)

2017年中考数学专项复习《一元二次方程的应用(3)》练习(无答案)浙教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年中考数学专项复习《一元二次方程的应用(3)》练习(无答案)浙教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年中考数学专项复习《一元二次方程的应用(3)》练习(无答案)浙教版的全部内容。

一元二次方程的应用(03)一、选择题1.从一块正方形的木板上锯掉2m宽的长方形木条,剩下的面积是48m2,则原来这块木板的面积是()A.100m2B.64m2C.121m2D.144m22.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是( )A.5个B.6个C.7个D.8个3.用一条长为40cm的绳子围成一个面积为acm2的长方形,a的值不可能为()A.20 B.40 C.100 D.120二、填空题4.如图,一块四周镶有宽度相等的花边的长方形十字绣,它的长为120cm,宽为80cm,如果十字绣中央长方形图案的面积为6000cm2,则花边宽为.5.一块矩形菜地的面积是120m2,如果它的长减少2m,那么菜地就变成正方形,则原菜地的长是m.6.某小区2013年绿化面积为2000平方米,计划2015年绿化面积要达到2880平方米.如果每年绿化面积的增长率相同,那么这个增长率是.7.某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为.8.如图,在Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高.动点P从点A出发,沿A→D方向以cm/s的速度向点D运动.设△ABP的面积为S1,矩形PDFE的面积为S2,运动时间为t秒(0<t<8),则t= 秒时,S1=2S2.三、解答题9.随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程并且甲、乙两队的工作效率与题干的不同,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)10.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?11.有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?12.电动自动车已成为市民日常出行的首选工具.据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车销售量的月均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1至3月共盈利多少元?13.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?14.某工厂一种产品2013年的产量是100万件,计划2015年产量达到121万件.假设2013年到2015年这种产品产量的年增长率相同.(1)求2013年到2015年这种产品产量的年增长率;(2)2014年这种产品的产量应达到多少万件?15.随着市民环保意识的增强,烟花爆竹销售量逐年下降.咸宁市2011年销售烟花爆竹20万箱,到2013年烟花爆竹销售量为9。

初一数学整式试题答案及解析

初一数学整式试题答案及解析

初一数学整式试题答案及解析1.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b)D.(a+2b)(a-b)=a2+ab-2b2【答案】C.【解析】∵图甲中阴影部分的面积=a2-b2,图乙中阴影部分的面积=(a+b)(a-b),而两个图形中阴影部分的面积相等,∴阴影部分的面积=a2-b2=(a+b)(a-b).故选C.【考点】平方差公式的几何背景.2.式子2014-a2+2ab-b2的最大值是()A.2012B.2013C.2014D.2015【答案】C.【解析】2014-a2+2ab-b2=2014-(a2-2ab+b2)=2014-(a-b)2,∵(a-b)2≥0,∴原式的最大值为:2014.故选C.【考点】1.因式分解-运用公式法;2.偶次方.3.计算:_____________;【答案】【解析】根据单项式除法法则和同底数幂相除法则即可得出答案单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.所以.注意:容易忽略负号和中a的指数为1.【考点】1.单项式除法;2.同底数幂相除.4.解方程:.【答案】.【解析】根据完全平方和公式以及平方差公式将各项展开,然后通过移项合并同类项化简方程,最终将未知数系数化为1得出方程的解.,将等式两边展开得:,移项将含有x的量移到等式左边,常数项移到右边并合并同类项得,所以方程的解为,将代入原方程进行检验.【考点】1.解方程;2.完全平方和公式;3.平方差公式;4.合并同类项.5.若与的和仍是单项式,则【答案】.【解析】两含字母的单项式的和是单项式,那么这两个单项式可以合并同类项.对于与,由同类项的定义可得,,即.所以.【考点】1.同类项;2.幂运算.6.找规律填空:……【答案】,,,.【解析】由前三个整式乘积的结果,,,猜测出的指数为.;猜测【考点】1.整式的乘法;2.归纳,猜想.7.定义一种新运算:,例如,那么的值等于()A.B.-2C.-1D.【答案】A.【解析】.故选A.【考点】1.新定义运算;2.负整数指数幂.8.( )A.B.C.D.【答案】A.【解析】.故选A.考点: 1.幂的乘方;2.同底数幂相乘.9.若3x n y2与xy1-m是同类项,则m+n= .【答案】0.【解析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m、n的值.试题解析:∵3x n y2与−xy1-m是同类项,∴1-m=2,n=1,解得:m=-1,n=1.∴m+n=-1+1=0.考点: 同类项.10.多项式与多项式的和是,多项式与多项式的和是,那么多项式减去多项式的差是()A.2B.2C.2D.2【答案】A【解析】由题意可知①;②.①②:.故选A.11.化简=________【答案】【解析】同底数幂的除法法则:同底数幂相除,底数不变,指数相减.=.【考点】同底数幂的除法点评:本题属于基础应用题,只需学生熟练掌握同底数幂的除法法则,即可完成.12.计算:()A.B.C.D.【答案】A【解析】根据单项式除以单项式的法则化简即可.,故选A.【考点】单项式除单项式点评:计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.13.生活中有人喜欢把请人传送的便条折成图丁形状,折叠过程如图所示(阴影部分表示纸条反面),如果折成图丁形状的纸条宽x cm, 并且一端超出P点1 cm,另一端超出P点2 cm,那么折成的图丁所示的平面图形的面积为 cm2.(用含x的代数式表示)【答案】【解析】依题意分析,易知所求两个阴影三角形为正方形的一半。

数学学练优五年级答案

数学学练优五年级答案

数学学练优五年级答案【篇一:人教版五年级语文上册配套练习册答案及提示】lass=txt>垛庄镇麦腰小学五年级1 窃读记我会找胸胖胆肿胎胭胳膊窗窥窟窝室穿突帘我会写充足饭碗屋檐书柜知趣我会比略(二)1.“高尔基没办法,只好到月亮下看书或者爬到神龛底下的凳子上,借着长明灯的光去读书。

”“他在灯下看书入了迷,忘记给火炉上的茶壶加水,等到发现时那个茶壶已经烧坏了。

”“只要她答应让我看书,我就不提出控告。

” 2.略 3.爱读书的高尔基 4.c2 小苗与大树的对话我会填绿叶绿林旺盛盛饭传记传说我会说 1.中西贯通古今贯通文理贯通理解略 2.略我会读 1.(1)到处都是,形容及其常见。

(2)比喻事物不受限制地流行。

2.略 3.略 4略3 走遍天下书为侣我会写盒子娱乐某种零用钱我会比略我会填 1.l ling 雨五① 2.s song 讠②我会选 1.作 2.坐 3.座 4.座我会读(一)1.一遍又一遍思考编下去一些片段为什么喜欢它们其他部分列个单子想象 2.动脑思考,编故事,回头欣赏优美片段。

然后,读其他部门,列单子,想象作者的生活经历。

(二)1.毅力生活风光大海艰难货物 2.比喻把书看成非凡的战舰,把书看成神奇的车骑。

3.书可以把我们带到浩瀚的天地,也可以带我们领略人世的真谛,它可以让穷人变成精神上的富人,而且它还装载了人类灵魂中全部的美丽。

所以书是神奇的,我们要热爱读书!4 我的“长生果”我会填流光溢彩悲惨宽大沉甸甸清冷蓝色我会写一心一意如火如荼百战百胜能屈能伸欣欣向荣津津乐道振振有词蒸蒸日上我会读 1.指超出同类,形容超群出众。

2. ①有计划地读书;②猜读。

第一单元综合练习二、伴侣酸楚鼓励囫囵吞枣炒菜忽略支撑毫不犹豫理由惧怕三、踮脚店主零钱雪花贪婪禁不住盒子脸盆赶趟流淌某处谋略屋檐瞻仰偷窃急切四、1.不求甚解 2.与众不同 3.借鉴 4.滚瓜烂熟五、辘辘瓜熟言而喻不同一律欢合求甚解念念2六、1.白首方悔读书迟 2.心到眼到口到 3.多看书 4.书籍七、1.因为虽然但是因此 2.(1)比喻意思是说书是人类的精神食粮,是人类文明延续的营养,充分表达了书与人类文明发展的关系。

苏科版数学综合练习三(九上)

苏科版数学综合练习三(九上)

数学综合练习31、(2014•历下区二模)下列关于x 的方程中,一定是一元二次方程的为( )A .ax 2+bx+c=0B .x 2-2=(x+3)2C .x2+3 x −5=0D .x 2-1=02、(2014•沙坪坝区模拟)已知x=1是关于x 的一元二次方程x 2+mx-2=0的一个根,则m 的值是( )A . -1B .0C .1D .0或13、(2014•内江)若关于x 的一元二次方程(k-1)x 2+2x-2=0有不相等实数根,则k 的取值范围是( )A .k >21B .k≥21C .k >21且k≠1D .k≥21且k≠1 4、(2014•宜宾)若关于x 的一元二次方程的两个根为x 1=1,x 2=2,则这个方程可以是( )A .x 2+3x-2=0B .x 2-3x+2=0C .x 2-2x+3=0D .x 2+3x+2=05、(2014•白银)用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x 米,则根据题意可列出关于x 的方程为( )A .x (5+x )=6B .x (5-x )=6C .x (10-x )=6D .x (10-2x )=66、(2014•抚州)关于x 的一元二次方程x 2-5x+k=0有两个不相等的实数根,则k 可取的最大整数为 ;7、解方程:x 2+2x-3=0 3x (x-2)=2(2-x ) x 2-4x +2=0 -x 2-2x =2x +1(配方法).8(2014•北京)已知关于x 的方程mx 2-(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m 的值.9、已知关于x的方程(m-1)x2+5x+m2-3m+2=0的常数项为0,(1)求m的值;(2)求方程的解.10、(2014•温州模拟)观察下面方程的解法:x4-13x2+36=0解:原方程可化为(x2-4)(x2-9)=0∴(x+2)(x-2)(x+3)(x-3)=0∴x+2=0或x-2=0或x+3=0或x-3=0∴x1=2,x2=-2,x3=3,x4=-3你能否求出方程x2-3|x|+2=0的解?11、(2014•新疆)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?12、如图6,A、B、C、D为矩形的四个顶点,AB=16cm,BC=6cm,动点P、Q分别从点A、C同时出发,点P以3 cm/s的速度向点B移动,点Q以2 cm/s的速度向点D移动.当点P运动到点B停止时,点Q也随之停止运动。

第3章《字母表示数》中考题集(10):3.6 探索规律

第3章《字母表示数》中考题集(10):3.6探索规律© 2011 菁优网选择题1、(2010•扬州)电子跳蚤游戏盘是如图所示的△ABC,AB=6,AC=7,BC=8.如果跳蚤开始时在BC边的P0处,BP0=2.跳蚤第一步从P0跳到AC边的P1(第1次落点)处,且CP1=CP0;第二步从P1跳到AB边的P2(第2次落点)处,且AP2=AP1;第三步从P2跳到BC边的P3(第3次落点)处,且BP3=BP2;…;跳蚤按上述规则一直跳下去,第n次落点为P n(n为正整数),则点P2007与P2010之间的距离为()A、1B、2C、3D、42、(2010•烟台)如图,一串有趣的图案按一定的规律排列,请仔细观察,按此规律第2010个图案是A、B、C、D、3、(2010•温州)用若干根相同的火柴棒首尾顺次相接围成一个梯形(提供的火柴棒全部用完),下列根数的火柴棒不能围成梯形的是()A、5B、6C、7D、84、(2010•日照)古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是()A、15B、25C、55D、12255、(2010•黔南州)木材加工厂堆放木料的方式如图所示,依次规律,可得出第6堆木料的根数是()第一堆第二堆第三堆A、15B、18C、28D、246、(2010•绵阳)如图,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为2,4,6,…,2n,…,请你探究出前n行的点数和所满足的规律、若前n行点数和为930,则n=()A、29B、30C、31D、327、(2010•茂名)用棋子摆出下列一组“口”字,按照这种方法白下区,则摆第n个“口”字需用旗子()第1个第2个第3个…第N个A、4n枚B、(4n﹣4)枚C、(4n+4)枚D、n2枚8、(2010•济南)观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+…+8n(n是正整数)的结果为()A、(2n+1)2B、(2n﹣1)2C、(n+2)2D、n29、(2010•呼和浩特)在计算机程序中,二叉树是一种表示数据结构的方法.如图,一层二叉树的结点总数为1,二层二叉树的结点总数为3,三层二叉树的结点总数为7…照此规律,七层二叉树的结点总数为()A、63B、64C、127D、12810、(2010•河北)将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是()A、6B、5C、3D、211、(2009•重庆)观察下列图形,则第n个图形中三角形的个数是()A、2n+2B、4n+4C、4n﹣4D、4n12、(2009•永州)如图是蜘蛛结网过程示意图,一只蜘蛛先以O为起点结六条线OA,OB,OC,OD,OE,OF后,再从线OA上某点开始按逆时针方向依次在OA,OB,OC,OD,OE,OF,OA,OB…上结网,若将各线上的结点依次记为:1,2,3,4,5,6,7,8,…,那么第200个结点在()A、线OA上B、线OB上C、线OC上D、线OF上13、(2009•营口)计算:31+1=4,32+1=10,33+1=28,34+1=82,35+1=244,…,归纳计算结果中的,猜测32009+1的个位数字是()A、0B、2C、4D、814、(2009•河北)古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A、13=3+10B、25=9+16C、36=15+21D、49=18+3115、(2008•台州)课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为1,2,3)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为4,5,6,7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为100的微生物会出现在()A、第3天B、第4天C、第5天D、第6天16、(2008•台湾)有一长条型链子,其外型由边长为1公分的正六边形排列而成.如图表示此链之任一段花纹,其中每个黑色六边形与6个白色六边形相邻.若链子上有35个黑色六边形,则此链子共有几个白色六边形()A、140B、142C、210D、21217、(2008•黔东南州)观察图给出的四个点阵,s表示每个点阵中的点的个数,按照图形中的点的个数变化规律,猜想第n个点阵中的点的个数s为()A、3n﹣2B、3n﹣1C、4n+1D、4n﹣318、(2008•聊城)如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是()A、54个B、90个C、102个D、114个19、(2007•湘潭)为庆祝“六•一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆n个“金鱼”需用火柴棒的根数为()A、2+6nB、8+6nC、4+4nD、8n20、(2007•日照)如图所示的阴影部分图案是由方格纸上3个小方格组成,我们称这样的图案为L形.那么在由4×5个小方格组成的方格纸上最多可以画出不同位置的L形图案的个数是()个.A、16个B、32个C、48个D、64个21、(2007•济宁)如图,是一个装饰物品连续旋转所成的三个图形,照此规律旋转,下一个呈现出来的图形是()A、B、C、D、22、(2007•河北)我国古代的“河图”是由3×3的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.下图给出了“河图”的部分点图,请你推算出P处所对应的点图是()A、B、C、D、23、(2007•佛山)观察下列图形,并判断照此规律从左向右第2007个图形是()A、B、C、D、24、(2007•鄂尔多斯)观察表1,寻找规律.表2是从表1中截取的一部分,其中a,b,c的值分别为()A、20,25,24B、25,20,24C、18,25,24D、20,30,2525、(2006•厦门)如图,有一数表,则从数2005到2006的箭头方向是()A、↑→2005B、2005→↑C、→↓2005D、↓→200526、(2006•无锡)探索规律:根据下图中箭头指向的规律,从2004到2005再到2006,箭头的方向是()A、B、C、D、27、(2006•山西)根据下表中的规律,从左到右的空格中应依次填写的数字是()A、100,011B、011,100C、011,101D、101,11028、(2006•南平)将长为1m的绳子,截去一半,然后将剩下的再截去一半,如此下去,若余下的绳子长不足1cm,则至少需截几次()A、6次B、7次C、8次D、9次29、(2006•安顺)探索以下规律:根据规律,从2006到2008,箭头的方向图是()A、B、C、D、30、(2006•余姚市)将棱长相等的正方体按如图所示的形状摆放,从上往下依次为第一层、第二层、第三层….则第2004层正方体的个数为()A、2009010B、2005000C、2007005D、2004答案与评分标准选择题1、(2010•扬州)电子跳蚤游戏盘是如图所示的△ABC,AB=6,AC=7,BC=8.如果跳蚤开始时在BC边的P0处,BP0=2.跳蚤第一步从P0跳到AC边的P1(第1次落点)处,且CP1=CP0;第二步从P1跳到AB边的P2(第2次落点)处,且AP2=AP1;第三步从P2跳到BC边的P3(第3次落点)处,且BP3=BP2;…;跳蚤按上述规则一直跳下去,第n次落点为P n(n为正整数),则点P2007与P2010之间的距离为()A、1B、2C、3D、4考点:规律型:图形的变化类。

2014-2015学年洋墩中学九年级上数学第一次月考试卷

洋墩中学2014-2015(上)数学第一次月考试卷(2014.10)一、填空题:(每题3分,共30分);1、方程01322=--x x 的二次项系数是 ,一次项系数是 ,常数项是 ;2、22___)(_____6+=++x x x ;3、方程0162=-x 的根是 ;4、如果二次三项式16)122++-x m x (是一个完全平方式,那么m 的值是_______________.5、如果一元二方程0432=-++m x x 有一个根为0,则m= ;6、已知方程0252=+-mx x 的两个相等实根,那么=m ;7、方程 03442=--x x 中,△= ;8、若方程02=++q px x 的两个根是和3,积是-4,则q p ,的值分别为9、已知方程0132=+-x x 的两根是21,x x ;则:=+2221x x ,10、某钢厂今年1月份生产某种钢2 000吨,3月份生产这种钢2 420吨,设2、3月份两个月平均每月增长的百分率为x ,则可列方程为 ________________ 。

二、选择题:(每题3分,共24分)1、下列方程是关于x 的一元二次方程的是( );A 、02=++c bx axB 、2112=+x x C 、1222-=+x x x D 、)1(2)1(32+=+x x2、方程()()24330x x x -+-=的根为( );(A )3x = (B )125x = (C )12123,5x x =-= (D )12123,5x x ==3、解下面方程:(1)()225x -=(2)2320x x --=(3)260x x +-=,较适当的方法分别为( )(A )(1)直接开平法方(2)因式分解法(3)配方法 (B )(1)因式分解法(2)公式法(3)直接开平方法 (C )(1)公式法(2)直接开平方法(3)因式分解法 (D )(1)直接开平方法(2)公式法(3)因式分解法4、方程0)3)(1(=-+x x 的解是 ( ); A. 3,121-==x x B. 2,421-==x x C. 3,121=-=x x D. 2,421=-=x x5、方程0322=-+x x 的两根的情况是( );A 、没有实数根;B 、有两个不相等的实数根C 、有两个相同的实数根D 、不能确定 6、一元二次方程06242=-+-m x x 有两个相等的实数根,则m 等于 ( ) A. -5 B. -4 C. 4 D. 5 7、以3和1-为两根的一元二次方程是 ( );(A )0322=-+x x (B )0322=++x x (C )0322=--x x (D )0322=+-x x8、一款手机连续两次降价,由原来的1299元降到688元,设平均每次降价的百分率为x,则列方程为( )A. 2688(1)1299x +=B. 21299(1)688x +=C. 2688(1)1299x -=D. 21299(1)688x -=三、解方程(每题6分,共48分);注:有说明的按说明的解法解,没有说明的任选适当的方法解。

人教版小学数学点阵中的规律2

点阵中的规律教材内容:本节课的主要内容是北师大版5年级上册中的《尝试与猜测》,这部分内容是《课程标准》中的数形结合思想在教材中的具体体现。

这一节课主要是让学生通过观察、推理等活动,在生动的情景中找出图形的变化规律,培养学生的观察、归纳、概括能力。

教学重点:引导学生发现和概括点阵中的规律。

教学难点:寻求多种解决问题的方法,体会图形与数的联系。

教具准备:课件、图纸一、激趣导入,抛砖引玉师:同学们,明天是什么节?(是的)每逢国庆,咱们国家都要举行庄严、隆重的阅兵式,请看。

如果我们把方阵中的每一个人看成一个点,那么,由士兵组成的每个兵阵就变成了点阵,今天我们就来研究点阵中的规律(板书:点阵中的规律)二、数形结合,探索新知1.一探(1)出示正方形点阵(2)我们一起来观察一组点阵图,图中有6个点阵,你知道这些点阵中各有多少个点?(3)学生汇报,师板书师:你是怎么得到的?预测一:生:我是算出来的师:说说你的想法。

生1:1×1 2×2 3×3 4×4 5×5 6×6师板书1×1 2×2 3×3 4×4 5×5 6×6师:你的方法简单明了,很好。

师:我们一起来验证以此类推,像这样的第n个点阵的点数是?生汇报。

板书预测二:生:我是用每一行点数乘每一列点数,得到了点的总数。

师:我们一起来验证一下。

第3个点阵每行3个点,每列也是3个点,总数是9,第4个点阵,每行每列都是4个点,总数是16师板书1×1 2×2 3×3 4×4 5×5 6×6师:以此类推,像这样的第n个点阵的点数是?师:刚才同学们用行的点数乘列的点数得出了点阵的总数,除了这种方法,还有没有其他方法计算出图中的点数?请同学们利用老师发的点阵图进行独立研究。

2、二探师巡视后选取两张师:有结果了吗?生:有师:和他一样的请举手,谁来说说这是什么意思?(投影):生汇报,师板书 1 1+3 1+3+5 1+3+5+7 1+3+5+7+9 1+3+5+7+9+11师:请仔细观察这些算式,发现什么规律了吗?生汇报师:像这样的第n个点阵会有连续的几个奇数相加?板书小结:第n个点阵就从1连续加到2n-1,一共有n个奇数。

2020年中考数学一轮专项复习——规律探索(含答案)

2020年中考数学一轮专项复习——规律探索中考备考攻略规律探索型问题是根据已知条件或题干所提供的若干特例,通过观察、类比、归纳,发现题目所蕴含的数字或图形的本质规律与特征的一类探索性问题.纵观宜宾近五年中考,往往以选择题、填空题形式出现,这类问题在素材的选取、文字的表述、题型的设计等方面都比较新颖.其目的是考查收集、分析数据、处理信息的能力.所以规律探索型问题备受命题专家的青睐,逐渐成为中考数学的热门考题.规律探索型问题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形或条件,要求通过阅读、观察、分析、猜想来探索规律.它体现了“特殊到一般”的数学思想方法,既考查分析、解决问题能力,也考查观察、联想、归纳能力以及探究能力和创新能力.题型可涉及填空题、选择题或解答题.中考重难点突破数与式变化规律【典例1】(2019·达州中考)a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数11-(-1)=12.已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2 019的值是( )A .5B .-14C .43D .451.一组按规律排列的多项式:a +b ,a 2-b 3,a 3+b 5,a 4-b 7,…,其中第10个式子是( )A. a 10+b 19 B .a 10-b 19 C .a 10-b 17 D .a 10-b 212.有一组数:12,35,510,717,926,…,请观察它们的构成形式,用你发现的规律写出第n (n 为正整数)个数: .3.已知:1+112+122=112,1+122+132=116,1+132+142=1112,…,根据此规律1+192+1102= .4.(2019·自贡中考)阅读下列材料:小明为了计算1+2+22+…+22 017+22 018的值,采用以下方法:设S=1+2+22+…+22 017+22 018,①则2S=2+22+…+22 018+22 019.②②-①,得2S-S=S=22 019-1.∴S=1+2+22+…+22 017+22 018=22 019-1.请仿照小明的方法解决以下问题:(1)1+2+22+…+29=;(2)3+32+…+310=;(3)求1+a+a2+…+a n的和(a>0,n是正整数,请写出计算过程).点阵变化规律【典例2】如图,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为2、4、6、…、2n、…,若前n行点数和为930,则n=()A.29B.30C.31D.325.将全体正奇数排成一个三角形数阵:13 57911131517192123252729………………根据以上排列规律,数阵中第25行的第20个数是()A.639B.637C.635D.633循环排列规律【典例3】观察下列图形,并判断照此规律从左向右第2 018个图形是()A B C D6.如图是一列用若干根火柴棒摆成的由正方形组成的图案.(1)完成下表的填空:正方形个数 1 2 3 4 5 6 … 火柴棒根数4710131619…(2)某同学用若干根火柴棒按如图的方式摆图案,摆完了第1个后,摆第2个,接着摆第3个,第4个,…,当他摆完第n 个图案时剩下了20根火柴棒,要刚好摆完第(n +1)个图案还差2根.问最后摆的图案是第几个图案?图形生长变化规律【典例4】(2019·内江中考)如图,将△ABC 沿着过BC 的中点D 的直线折叠,使点B 落在AC 边上的B 1处,称为第一次操作,折痕DE 到AC 的距离为h 1;还原纸片后,再将△BDE 沿着过BD 的中点D 1的直线折叠,使点B 落在DE 边上的B 2处,称为第二次操作,折痕D 1E 1到AC 的距离记为h 2;按上述方法不断操作下去……经过第n 次操作后得到折痕D n -1E n -1,到AC 的距离记为h n .若h 1=1,则h n 的值为( )A .1+12n -1 B .1+12nC .2-12n -1 D .2-12n7.(2019·广元中考)如图,过点A 0(0,1)作y 轴的垂线交直线l :y =33x 于点A 1,过点A 1作直线l 的垂线,交y 轴于点A 2,过点A 2作y 轴的垂线交直线l 于点A 3,…,这样依次下去,得到△A 0A 1A 2、△A 2A 3A 4、△A 4A 546、…,其面积分别记为S 1、S 2、S 3、…,则S 100为( )A .⎝⎛⎭⎫332100B .(33)100C .33×4199D .33×2395与坐标有关的规律【典例5】如图,已知A 1(1,0),A 2(1,1),A 3(-1,1),A 4(-1,-1),A 5(2,-1),…,则点A 2018的坐标为 .8.(2019·攀枝花中考)正方形A 1B 1C 1A 2、A 2B 2C 2A 3、A 3B 3C 3A 4、…按如图所示的方式放置,点A 1、A 2、A 3、…和点B 1、B 2、B 3、…分别在直线y =kx +b (k >0)和x 轴上.已知点A 1(0,1),点B 1(1,0),则点C 5的坐标是 .中考备考过关1.某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k 棵树种植在点P k (x k ,y k )处,其中x 1=1,y 1=1,当k ≥2时,⎩⎨⎧x k =x k -1+1-5⎝⎛⎭⎫⎣⎡⎦⎤k -15-⎣⎡⎦⎤k -25,y k =y k -1+⎣⎡⎦⎤k -15-⎣⎡⎦⎤k -25,[a]表示非负实数a 的整数部分,如[2.6]=2,[0.2]=0.按此方案,第2 019棵树种植点的坐标为( )A .(5,2 019)B .(6,2 020)C .(3,403)D .(4,404)2.正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2、…按如图所示的方式放置,点A 1、A 2、A 3、…和点C 1、C 2、C 3、…分别在直线y =kx +b (k >0)和x 轴上,已知B 1(1,1),B 2(3,2),则点B n 的坐标是 .,(第2题图)) ,(第3题图))3. 我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为 个.4.(2019·广安中考)如图,在平面直角坐标系中,点A 1的坐标为(1,0),以OA 1为直角边作Rt △OA 1A 2,并使∠A 1OA 2=60°;再以OA 2为直角边作Rt △OA 2A 3,并使∠A 2OA 3=60°;再以OA 3为直角边作Rt △OA 3A 4,并使∠A 3OA 4=60°……按此规律进行下去,则点A 2 019的坐标为 .5.符号“f ”表示一种运算,它对一些数的运算结果如下:(1)f (1)=0,f (2)=1,f (3)=2,f (4)=3,…;(2)f ⎝⎛⎭⎫12=2,f ⎝⎛⎭⎫13=3,f ⎝⎛⎭⎫14=4,f ⎝⎛⎭⎫15=5,…. 利用以上规律计算:f ⎝⎛⎭⎫12 019-f (2 019)= .6.用同样大小的黑色棋子按如图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).7.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2 019个图形共有 个○.8.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5、-2、1、9,且任意相邻四个台阶上数的和都相等.尝试 (1)问前4个台阶上数的和是多少? (2)问第5个台阶上的数x 是多少?应用 求从下到上前31个台阶上数的和;发现 试用含k (k 为正整数)的式子表现出数“1”所在的台阶数.9.观察: 11×2=1-12,12×3=12-13,13×4=13-14,….解答下面的问题:(1)若n 为正整数,请你猜想1n ×(n +1)= ;(2)若n 为正整数,请你猜想11×2+12×3+13×4+…+1n ×(n +1)= ;(3)若x -1+(xy -2)2=0,求1xy +1(x +1)(y +1)+1(x +2)(y +2)+…+1(x +2 017)(y +2 017)的值.10.一列火车自A 城驶往B 城,沿途有n 个车站(包括起点站A 和终点站B ),该列火车挂有一节邮政车厢,行驶时需要在每个车站停靠,每停靠一站不仅要卸下已经通过的各车站发给该站的邮包一个,还要装上该站发给后面行程中每个车站的邮包一个.例如,当列车停靠在第x 个车站时,邮政车厢上需要卸下已经通过的(x -1)个车站发给该站的邮包(x -1)个,还要装上后面行程中要停靠的(n -x )个车站的邮包(n -x )个.(1)根据题意,完成下表:车站序号 在第x 个车站启程时邮政车厢上的邮包总个数1 n -12 (n -1)-1+(n -2)=2(n -2)3 2(n -2)-2+(n -3)=3(n -3)4 3(n -3)-3+(n -4)=4(n -4)5 … … n 0(2)根据上表写出列车在第x 个车站启程时,邮政车厢上共有的邮包个数y (用x 、n 表示); (3)当n =18时,列车在第几个车站启程时邮车上的邮包个数最多?参考答案中考重难点突破数与式变化规律【典例1】(2019·达州中考)a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数11-(-1)=12.已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2 019的值是( D )A .5B .-14C .43D .45【解析】∵a 1=5,a 2=11-a 1=11-5=-14,a 3=11-a 2=11-⎝⎛⎭⎫-14=45,a 4=11-a 3=11-45=5,…,∴数列以5、-14、45三个数依次不断循环.∵2 019÷3=673,∴a 2 019=a 3=45.1.一组按规律排列的多项式:a +b ,a 2-b 3,a 3+b 5,a 4-b 7,…,其中第10个式子是( B )A .a 10+b 19B .a 10-b 19C .a 10-b 17D .a 10-b 212.有一组数:12,35,510,717,926,…,请观察它们的构成形式,用你发现的规律写出第n (n 为正整数)个数:2n -1n 2+1W. 3.已知:1+112+122=112,1+122+132=116, 1+132+142=1112,…,根据此规律1+192+1102= 1190 W. 4.(2019·自贡中考)阅读下列材料:小明为了计算1+2+22+…+22 017+22 018的值,采用以下方法: 设S =1+2+22+…+22 017+22 018,① 则2S =2+22+…+22 018+22 019.② ②-①,得2S -S =S =22 019-1.∴S =1+2+22+…+22 017+22 018=22 019-1. 请仿照小明的方法解决以下问题: (1)1+2+22+…+29= ; (2)3+32+…+310= ;(3)求1+a +a 2+…+a n 的和(a >0,n 是正整数,请写出计算过程).解:(1)210-1;(2)311-12; (3)设S =1+a +a 2+…+a n ,①则aS =a +a 2+a 3+…+a n +a n +1.②②-①,得(a -1)S =a n +1-1.∴S =a n +1-1a -1,即1+a +a 2+…+a n =an +1-1a -1.点阵变化规律【典例2】如图,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为2、4、6、…、2n 、…,若前n 行点数和为930,则n =( B )A .29B .30C .31D .32【解析】设前n 行的点数和为S ,则S =2+4+6+…+2n =(2n +2)n2=n (n +1). 若S =930,则n (n +1)=930,即(n +31)(n -30)=0,∴n 1=-31(不合题意,舍去),n 2=30.5.将全体正奇数排成一个三角形数阵:1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 … … … … … …根据以上排列规律,数阵中第25行的第20个数是( A ) A .639 B .637 C .635 D .633循环排列规律【典例3】观察下列图形,并判断照此规律从左向右第2 018个图形是( B )A B C D【解析】根据题意可知前面4个笑脸循环出现,因为2 018÷4=504……2,所以第2 018个图形是循环出现到第2个图形.6.如图是一列用若干根火柴棒摆成的由正方形组成的图案.(1)完成下表的填空:正方形个数 1 2 3 4 5 6 … n火柴棒根数4 7 10 13 16 19 … 3n +1(2)某同学用若干根火柴棒按如图的方式摆图案,摆完了第1个后,摆第2个,接着摆第3个,第4个,…,当他摆完第n 个图案时剩下了20根火柴棒,要刚好摆完第(n +1)个图案还差2根.问最后摆的图案是第几个图案?解:(1)见上表;(2)由3(n +1)+1=22,解得n =6. ∴这位同学最后摆的图案是第7个图案.图形生长变化规律【典例4】(2019·内江中考)如图,将△ABC 沿着过BC 的中点D 的直线折叠,使点B 落在AC 边上的B 1处,称为第一次操作,折痕DE 到AC 的距离为h 1;还原纸片后,再将△BDE 沿着过BD 的中点D 1的直线折叠,使点B 落在DE 边上的B 2处,称为第二次操作,折痕D 1E 1到AC 的距离记为h 2;按上述方法不断操作下去……经过第n 次操作后得到折痕D n -1E n -1,到AC 的距离记为h n .若h 1=1,则h n 的值为( C )A .1+12n -1 B .1+12nC .2-12n -1 D .2-12n【解析】根据相似三角形的性质,对应高的比等于相似比,得出h 2=1+12h 1,依次得出h 3、h 4、…、h n ,再对h n 进行计算变形即可.,7.(2019·广元中考)如图,过点A 0(0,1)作y 轴的垂线交直线l :y =33x 于点A 1,过点A 1作直线l 的垂线,交y 轴于点A 2,过点A 2作y 轴的垂线交直线l 于点A 3,…,这样依次下去,得到△A 0A 1A 2、△A 2A 3A 4、△A 4A 546、…,其面积分别记为S 1、S 2、S 3、…,则S 100为( D )A .⎝⎛⎭⎫332100B .(33)100C .33×4199D .33×2395与坐标有关的规律【典例5】如图,已知A 1(1,0),A 2(1,1),A 3(-1,1),A 4(-1,-1),A 5(2,-1),…,则点A 2018的坐标为 (505,505) .【解析】根据各个点(点A 1和第四象限内的点除外)分别位于象限的角平分线上,逐步探索出下标和各点坐标之间的关系,根据规律推出点A 2 018的坐标.通过观察可得序号是4的倍数的点在第三象限,由2 018÷4=504……2,得点A 2 018在第一象限,其横、纵坐标都为(2 018-2)÷4+1=505.,8.(2019·攀枝花中考)正方形A 1B 1C 1A 2、A 2B 2C 2A 3、A 3B 3C 3A 4、…按如图所示的方式放置,点A 1、A 2、A 3、…和点B 1、B 2、B 3、…分别在直线y =kx +b (k >0)和x 轴上.已知点A 1(0,1),点B 1(1,0),则点C 5的坐标是 (47,16) W.中考备考过关1.某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k 棵树种植在点P k (x k ,y k )处,其中x 1=1,y 1=1,当k ≥2时,⎩⎨⎧x k =x k -1+1-5⎝⎛⎭⎫⎣⎡⎦⎤k -15-⎣⎡⎦⎤k -25,y k =y k -1+⎣⎡⎦⎤k -15-⎣⎡⎦⎤k -25,[a]表示非负实数a 的整数部分,如[2.6]=2,[0.2]=0.按此方案,第2 019棵树种植点的坐标为( D )A .(5,2 019)B .(6,2 020)C .(3,403)D .(4,404)2.正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2、…按如图所示的方式放置,点A 1、A 2、A 3、…和点C 1、C 2、C 3、…分别在直线y =kx +b (k >0)和x 轴上,已知B 1(1,1),B 2(3,2),则点B n 的坐标是 (2n -1,2n -1) W.,(第2题图)) ,(第3题图))3. 我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为 1 838 个.4.(2019·广安中考)如图,在平面直角坐标系中,点A 1的坐标为(1,0),以OA 1为直角边作Rt △OA 1A 2,并使∠A 1OA 2=60°;再以OA 2为直角边作Rt △OA 2A 3,并使∠A 2OA 3=60°;再以OA 3为直角边作Rt △OA 3A 4,并使∠A 3OA 4=60°……按此规律进行下去,则点A 2 019的坐标为 (-22 017,22 0173) W.5.符号“f ”表示一种运算,它对一些数的运算结果如下:(1)f (1)=0,f (2)=1,f (3)=2,f (4)=3,…;(2)f ⎝⎛⎭⎫12=2,f ⎝⎛⎭⎫13=3,f ⎝⎛⎭⎫14=4,f ⎝⎛⎭⎫15=5,…. 利用以上规律计算:f ⎝⎛⎭⎫12 019-f (2 019)= 1 W.6.用同样大小的黑色棋子按如图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 (3n +1) 枚(用含n 的代数式表示).7.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第 2 019个图形共有 6 058 个○.8.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5、-2、1、9,且任意相邻四个台阶上数的和都相等.尝试 (1)问前4个台阶上数的和是多少? (2)问第5个台阶上的数x 是多少?应用 求从下到上前31个台阶上数的和;发现 试用含k (k 为正整数)的式子表现出数“1”所在的台阶数.解:尝试 (1)由题意,得-5-2+1+9=3,故前4个台阶上的数字的和是3; (2)由题意,得-2+1+9+x =3,所以x =-5;应用 由题意知台阶上的数从下到上每4个循环,因为31÷4=7……3,所以7×3+1-2-5=15, 即从下到上前31个台阶上数的和是15. 发现 “1”所在的台阶数为4k -1.9.观察: 11×2=1-12,12×3=12-13,13×4=13-14,….解答下面的问题:(1)若n 为正整数,请你猜想1n ×(n +1)= ;(2)若n 为正整数,请你猜想11×2+12×3+13×4+…+1n ×(n +1)= ;(3)若x -1+(xy -2)2=0,求1xy +1(x +1)(y +1)+1(x +2)(y +2)+…+1(x +2 017)(y +2 017)的值.解:(1)1n -1n +1;(2)1-1n +1;[原式=1-12+12-13+13-14+…+1n -1n +1=1-1n +1.](3)∵x -1+(xy -2)2=0,∴x -1=0,xy -2=0, 解得x =1,y =2.则原式=11×2+12×3+13×4+…+12 018×2 019=1-12 019=2 018 2 019.10.一列火车自A城驶往B城,沿途有n个车站(包括起点站A和终点站B),该列火车挂有一节邮政车厢,行驶时需要在每个车站停靠,每停靠一站不仅要卸下已经通过的各车站发给该站的邮包一个,还要装上该站发给后面行程中每个车站的邮包一个.例如,当列车停靠在第x个车站时,邮政车厢上需要卸下已经通过的(x-1)个车站发给该站的邮包(x-1)个,还要装上后面行程中要停靠的(n-x)个车站的邮包(n-x)个.(1)根据题意,完成下表:(2(3)当n=18时,列车在第几个车站启程时邮车上的邮包个数最多?解:(1)见上表;(2)y=x(n-x);(3)当n=18时,y=x(18-x)=-x2+18x=-(x-9)2+81.当x=9时,y取最大值,所以列车在第9个车站启程时,邮政车厢上的邮包个数最多.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档