编码器基础知识
数字逻辑电路基础知识整理

数字逻辑电路基础知识整理数字逻辑电路是电子数字系统中的基础组成部分,用于处理和操作数字信号。
它由基本的逻辑门和各种组合和顺序逻辑电路组成,可以实现各种功能,例如加法、减法、乘法、除法、逻辑运算等。
下面是数字逻辑电路的一些基础知识整理:1. 逻辑门:逻辑门是数字逻辑电路的基本组成单元,它根据输入信号的逻辑值进行逻辑运算,并生成输出信号。
常见的逻辑门包括与门、或门、非门、异或门等。
2. 真值表:真值表是描述逻辑门输出信号与输入信号之间关系的表格,它列出了逻辑门的所有输入和输出可能的组合,以及对应的逻辑值。
3. 逻辑函数:逻辑函数是描述逻辑门输入和输出信号之间关系的数学表达式,可以用来表示逻辑门的操作规则。
常见的逻辑函数有与函数、或函数、非函数、异或函数等。
4. 组合逻辑电路:组合逻辑电路由多个逻辑门组合而成,其输出信号仅取决于当前的输入信号。
通过适当的连接和布线,可以实现各种逻辑操作,如加法器、多路选择器、比较器等。
5. 顺序逻辑电路:顺序逻辑电路由组合逻辑电路和触发器组成,其输出信号不仅取决于当前的输入信号,还取决于之前的输入信号和系统状态。
顺序逻辑电路可用于存储和处理信息,并实现更复杂的功能,如计数器、移位寄存器、有限状态机等。
6. 编码器和解码器:编码器将多个输入信号转换成对应的二进制编码输出信号,解码器则将二进制编码输入信号转换成对应的输出信号。
编码器和解码器可用于信号编码和解码,数据传输和控制等应用。
7. 数字信号表示:数字信号可以用二进制表示,其中0和1分别表示低电平和高电平。
数字信号可以是一个比特(bit),表示一个二进制位;也可以是一个字(word),表示多个二进制位。
8. 布尔代数:布尔代数是逻辑电路设计的数学基础,它通过符号和运算规则描述了逻辑门的操作。
布尔代数包括与、或、非、异或等基本运算,以及与运算律、或运算律、分配律等运算规则。
总的来说,数字逻辑电路是由逻辑门和各种组合和顺序逻辑电路组成的,它可以实现各种基本逻辑运算和数字信号处理。
数据通信基础知识

数据通信基础知识数据通信是现代社会中不可或缺的一部分,它依赖于各类不同的网络技术、传输媒介以及各种通信设备来实现信息的传输。
数据通信作为计算机网络的一个分支领域,在信息技术的发展历史中,一直扮演着至关重要的角色。
因此,对于数据通信的基础知识的掌握,对于从事计算机行业的人员来说显得格外重要。
一、数据通信的基本概念数据通信指的是通过各种可以传输数据的设备或网络工具将数据以特定的格式从一处传输到另一处的通信过程。
数据本身是以二进制编码方式来存储和传输,这种编码方式只包括数字0和1。
在数据通信领域,每一个0和1被定义为一个比特,也就是二进制信息位。
数据通信是实现计算机之间连接的基础,我们是通过数据通信技术将计算机与其他设备和网络连接起来。
二、数据通信的主要组成部分1.信源:信源指的是产生和发送信息的物理设备。
比如计算机、手机等都是信源的代表。
信源产生的数据信号可能是按照数字或者模拟信号来产生。
2.编码器:在数据信号经过信源后,信源产生的信号不一定是经过处理的二进制码流,因此需要对信源产生的信号进行编码操作,将原始信号转换为正确的数码形式,这就要用到编码器。
3.信道:信道就是传输信息信号的传输媒介,信道的种类很多,例如:电缆、光纤、无线电波等等。
4.解码器:按照收发双方协议规定,收到的信息信号需要进行解码操作,将数码形式转换为指定的信号形式并还原原始信息。
5.信宿:信宿是指接收信息的物理设备,例如计算机、手机等。
三、数据通信的传输模式在数据通信中有两种主要的传输模式:串行传输和并行传输。
串行传输:串行传输是指每一个二进制数位依次流动地发出,它的传输速度比并行传输要慢很多,但是传输的反差强度高。
串行传输通常应用在一些要求传输距离较远、传输速度较慢但是信号质量要求比较高的场合,如电子标签、传感器等。
并行传输:并行传输就是将多个二进制数同时传输,它的传输速度比串行传输要快,但受到电磁干扰的影响也比串行传输严重。
数字集成电路考试 知识点

数字集成电路考试知识点一、数字逻辑基础。
1. 数制与编码。
- 二进制、十进制、十六进制的相互转换。
例如,将十进制数转换为二进制数可以使用除2取余法;将二进制数转换为十六进制数,可以每4位二进制数转换为1位十六进制数。
- 常用编码,如BCD码(8421码、余3码等)。
BCD码是用4位二进制数来表示1位十进制数,8421码是一种有权码,各位的权值分别为8、4、2、1。
2. 逻辑代数基础。
- 基本逻辑运算(与、或、非)及其符号表示、真值表和逻辑表达式。
例如,与运算只有当所有输入为1时,输出才为1;或运算只要有一个输入为1,输出就为1;非运算则是输入和输出相反。
- 复合逻辑运算(与非、或非、异或、同或)。
异或运算的特点是当两个输入不同时输出为1,相同时输出为0;同或则相反。
- 逻辑代数的基本定理和规则,如代入规则、反演规则、对偶规则。
利用这些规则可以对逻辑表达式进行化简和变换。
- 逻辑函数的化简,包括公式化简法和卡诺图化简法。
卡诺图化简法是将逻辑函数以最小项的形式表示在卡诺图上,通过合并相邻的最小项来化简逻辑函数。
二、门电路。
1. 基本门电路。
- 与门、或门、非门的电路结构(以CMOS和TTL电路为例)、电气特性(如输入输出电平、噪声容限等)。
CMOS门电路具有功耗低、集成度高的优点;TTL门电路速度较快。
- 门电路的传输延迟时间,它反映了门电路的工作速度,从输入信号变化到输出信号稳定所需要的时间。
2. 复合门电路。
- 与非门、或非门、异或门等复合门电路的逻辑功能和实现方式。
这些复合门电路可以由基本门电路组合而成,也有专门的集成电路芯片实现其功能。
三、组合逻辑电路。
1. 组合逻辑电路的分析与设计。
- 组合逻辑电路的分析方法:根据给定的逻辑电路写出逻辑表达式,化简表达式,列出真值表,分析逻辑功能。
- 组合逻辑电路的设计方法:根据逻辑功能要求列出真值表,写出逻辑表达式,化简表达式,画出逻辑电路图。
2. 常用组合逻辑电路。
伺服电机 基础知识

伺服电机基础知识
伺服电机是一种能够将输入的脉冲信号转换为相应的角位移或线性位移的装置,具有快速响应、精确控制和稳定性高等特点。
以下是伺服电机的基础知识:
1. 工作原理:伺服电机内部通常包括一个电机(如直流或交流电机)和一个编码器。
当输入一个脉冲信号时,电机会产生一定的角位移或线性位移,同时编码器会反馈电机的实际位置。
驱动器根据反馈值与目标值进行比较,调整电机转动的角度或距离,以达到精确控制的目的。
2. 分类:伺服电机主要分为直流伺服电机和交流伺服电机两大类。
此外,根据有无刷之分,直流伺服电机又可以分为有刷伺服电机和无刷伺服电机。
3. 特点:
精确控制:伺服电机能够精确地跟踪和定位目标值,实现高精度的位置和速度控制。
快速响应:伺服电机具有快速的动态响应,能够在短时间内达到设定速度并快速停止。
稳定性高:伺服电机具有较高的稳定性,能够连续工作而不会出现较大的误差。
噪声低:交流伺服电机通常采用无刷设计,运行时噪声较低。
维护方便:伺服电机的结构和维护都比较简单,便于使用和维护。
4. 应用领域:伺服电机广泛应用于各种需要精确控制和快速响应的场合,如数控机床、包装机械、纺织机械、机器人等领域。
5. 选型原则:在选择伺服电机时,需要考虑电机的规格、尺寸、转速、负载等参数,以及实际应用场景和工作环境等因素。
6. 日常维护:为了保持伺服电机的良好性能和使用寿命,需要定期进行清洁和维护,如检查电机表面是否有灰尘、油污等,检查电机的接线是否牢固等。
以上是关于伺服电机的基础知识,如需了解更多信息,建议咨询专业人士。
定位基础知识

5.10PLC通过编码器的反馈脉冲值来控制速度0- 2000高速2000-3000 中速3000-3500 低速三要素指定速度指定方向指点位移功率小的设备直接控制(0-10W)不需要驱动器驱动器又叫驱动放大器三种模式开环半闭环闭环直线式编码器如光栅尺Z相作为起始点或者零点2个码道2个发光原件和2个感光原件输出脉冲串遮光板作用形成AB相脉冲正转A超前 B 90度反转B超前 A 90度AB相脉冲输出和差分线性驱动都是由电路放大整形后形成的输出一组2进制数最常用格雷码停电后通过存储器电路存储编码器当前位置(存储器供电利用电池),在次上电PLC读取存储器的编码器位置m/n 编码器旋转的圈数d/L 电机转动的圈数Z相脉冲必须用差分线性驱动电路形成的正反转脉冲正转A相输出B相不输出反转B相输出A相不输出脉冲+方向A相脉冲B相方向单脉冲输出一个高速脉冲输出接口1个脉冲串AB相脉冲输出2个高数脉冲输出接口2个脉冲串AB差分线性驱动输出4个脉冲串编码器分辨率编码器反馈给伺服驱动器中偏差计数器脉冲数电机行走一圈所走的脉冲数n 电机工作的转速N 电机运行的圈数 D 螺距P 脉冲数d距离一个脉冲行走的距离脉冲当量= 螺距/编码器分辨率X0 旋转的角度CMX主动轮控制器连接CDV从动轮连接电机P*CMX=P0*CDVF=P/秒不能满足点位的要求所以2个不能同时满足D 电机转动一圈工作台移动的距离希望的脉冲当量快速设置的算法电机一圈的位移量=D/K D 螺距K 减速比O 原点绝对位置定位方式和当前值没关系电气原点 1 通过一定方式停止2 地址值为零。
数字逻辑电路基础知识整理

数字逻辑电路基础知识整理数字逻辑电路是由离散的数字信号构成的电子电路系统,主要用于处理和操作数字信息。
它是计算机和其他数字系统的基础。
以下是一些数字逻辑电路的基础知识的整理:1. 逻辑门:逻辑门是数字电路的基本构建单元。
它们根据输入信号的逻辑关系生成输出信号。
常见的逻辑门有与门、或门、非门、异或门等。
其中,与门输出仅当所有输入都为1时才为1;或门输出仅当至少一个输入为1时才为1;非门将输入信号取反;异或门输出仅当输入中的1的数量为奇数时才为1。
2. 逻辑运算:逻辑运算是对逻辑门的扩展,用于实现更复杂的逻辑功能。
常见的逻辑运算包括与运算、或运算、非运算、异或运算等。
与运算将多个输入信号进行AND操作,返回结果;或运算将多个输入信号进行OR操作,返回结果;非运算对输入信号进行取反操作;异或运算将多个输入信号进行异或操作,返回结果。
3. 编码器和解码器:编码器将多个输入信号转换为较少数量的输出信号,用于压缩信息;解码器则将较少数量的输入信号转换为较多数量的输出信号,用于还原信息。
常用的编码器有优先编码器和BCD编码器,常用的解码器有二进制-十进制解码器和译码器。
4. 多路选择器:多路选择器根据选择输入信号从多个输入信号中选择一个信号输出。
它通常有一个或多个选择输入信号和多个数据输入信号。
选择输入信号决定了从哪个数据输入信号中输出。
多路选择器可用于实现多路复用、数据选择和信号路由等功能。
5. 触发器和寄存器:触发器是存储单元,用于存储和传输信号。
常见的触发器有弗洛普触发器、D触发器、JK触发器等。
寄存器由多个触发器组成,用于存储和传输多个比特的数据。
6. 计数器和时序电路:计数器用于计数和生成递增或递减的序列。
它通过触发器和逻辑门组成。
时序电路在不同的时钟脉冲或控制信号下执行特定的操作。
常见的时序电路有时钟发生器、定时器和计数器。
7. 存储器:存储器用于存储和读取数据。
常见的存储器包括随机存取存储器(RAM)和只读存储器(ROM)。
网络摄像机培训IPC基础知识
网络摄像机培训-基础知识
——产品管理部
内容提要
1 网络摄像机的基本概念 2 网络摄像机的硬件构成 3 网络摄像机的主要功能 4 网络摄像机的特色 5 网络摄像机的应用优点 6 网络摄像机的产品介绍 7 网络摄像机的未来发展趋势
网络摄像机的定义
网络摄像机基本概念
网络摄像机是视频监控系统的前端采集及处理设备,主要完成原始视频 的采集和压缩,并通过网络传输到后端的存储和管理设备。它结合了传统摄 像机和网络视频的技术,除具备一般的摄像机图像捕捉功能外,还能让用户 通过网络实现远程视频监控、存储以及对采集到的图像信息做出分析和采取 相关的措施。 有自己的微处理器和内存,一般用操作系统,内置服务器,支 持多种网络协议,拥有地址和动态域名,可以通过浏览器输入地址进行视频 观看。
其他设备
网络摄像机的主要功能
➢ 视频编码:采集并编码压缩视频信号; ➢ 音频功能:采集压缩音频信号,实现音频实时播放或录音; ➢ 网络功能:编码压缩的视音频信号通过网口传输; ➢ 云台、镜头控制功能:通过网络控制云台、镜头的各种动作; ➢ 存储功能:可以把压缩的视音频信号临时存储在本地存储介质(卡等); ➢ 报警输入输出:能接受、处理报警输入输出信号,即具备报警联动功能; ➢ 移动检测报警:检测场景内移动物体并产生报警,灵敏度可调; ➢ 视频分析:自动对视频场景进行分析,比对原则并触发报警;
➢ 现有采集系统 ➢ 清晰度受限 ➢ 制式625扫描线去消影575线 ➢ 信号调制带宽6.5 ➢ 帧率受限 ➢ 25帧 30帧 ➢ 传输结构的缺陷 ➢ 介质 ➢ 容量
模拟摄像机+编码器与网络摄像机的差异
网络摄像机
图像码流
采集系统与编码系统直 接交换数字信号 实现更高分辨率、帧率
信息论基础课件2[1][1].1.1- 2
a2
…
ar p(ar)
p(a2) …
0 p(a i ) 1i 1,2, r
p(a i ) 1
信息论与编码-信源熵
需要注意的是,大写字母X,Y,Z代表随机变量,指 的是信源整体,带下标的小写字母代表随机事件的 某一结果或信源的某个元素。两者不可混淆。
信息论与编码-信源熵
(4) 如p(xi)=1,则I(xi) =0 ;(必然事件不含有任何不确定 性,所以不含有任何信息量)
(5) 自信息量也是一个随机变量,它没有确定的值。
信息论与编码-信源熵
例2、 设有12枚同值硬币,其中有一枚为假币,且只知道假币
的重量与真币的重量不同,但不知究竟是轻是重。现采 用天平比较两边轻重的方法来测量(因无法码)。问至 少需要称多少次才能称出假币? 解:用天平每称一次能获得一定的信息量,能消除部分的不 确定性。测量若干次后,能消除全部不确定性,获得全部信 息,也就能确定出假币。 设“在12枚同值硬币中,某一枚为假币”该事件为a, p(a ) 1 / 12 则 p 又设“假币是重、或是轻”该事件为b,则(b) 1 / 2
(5)当X与Y相互独立时,
p( y j / xi ) p( y j ), p( xi / y j ) p( xi ), p( xi y j ) p( xi ) p( y j )
( 6) p( x i / y j ) p( x i y j )
p( x i y j )
i 1
n
p( y j / xi )
i 1 n j 1 i 1 j 1 i 1
n
m
n
m
n
p( xi y j ) p( y j ), p( xi y j ) p( xi )
数字电子技术基础知识点总结
第四章 触发器
基本要求 1.熟练掌握各类触发器的逻辑功能(功能表、特性方 程、状态转换图、驱动表)。 2. 熟练掌握各种不同结构的触发器的触发特点,并能 够熟练画出工作波形。 3.熟悉触发器的主要参数。 4.熟悉各类触发器间的相互转换。 5.了解各类触发器的结构和工作原理。
1 写出图示各电路的状态方程。
组合逻辑电路的设计
根据实际逻辑问题,求出所要求逻辑功能的最简单逻辑电路。 一、组合逻辑电路的设计步骤
1、逻辑抽象(约定):根据实际逻辑问题的因果关系确 定输入、输出变量,并定义逻辑状态的含义; 2、根据逻辑描述列出真值表; 3、由真值表写出逻辑表达式; 4、根据器件的类型,简化和变换逻辑表达式 5、 画出逻辑图。
(1) (54)D =(0101,0100)8421 =(1011,0100)2421
(2) (87.15)D =(1000,0111.0001,0101)8421 =(1110,1101.0001,1011)2421
(3) (239.03)D =(0010,0011,1001.0000,0011)8421 =(0010,0011,1111.0000,0011)2421
3.列出状态转换表或画出状态图和波形图;
4.确定电路的逻辑功能.
设计同步时序逻辑电路的一般步骤
同步时序电路的设计过程
由给定的逻 辑功能建立 原始状态图 和原始状态 表
状态 化简
状态 分配
选择 触发 器类 型
确定 激励方程组
和 输出方程组
画出 逻辑图 并检查 自启动 能力
(1)根据给定的逻辑功能建立原始状态图和原始状态表 ①明确电路的输入条件和相应的输出要求,分别确定输入变量 和输出变量的数目和符号。 ②找出所有可能的状态和状态转换之间的关系。 ③根据原始状态图建立原始状态表。
SEWServo伺服培训教程
SEWServo伺服培训教程SEWServo伺服是一种广泛应用于机械制造和工程领域的电子设备,它通过精确的控制电流,使机械设备的运作更加精准、稳定和有效率。
作为一种高级电子设备,SEWServo伺服需要进行专门的培训和教育,以便更好地使用和维护。
本文将介绍SEWServo伺服培训教程的相关内容,以帮助读者更好地理解和掌握SEWServo伺服的知识。
SEWServo伺服的基础知识SEWServo伺服是一种专门用于工业机械和工程设备的电子控制器。
它通常由三部分组成,包括伺服电机、伺服控制器和编码器。
伺服电机是SEWServo伺服的最核心部分,它通过精确的电流控制,使机械设备运行更为平稳和高效。
伺服控制器是伺服电机的“大脑”,它负责实时控制电流和机械运动。
编码器则用来监控机械设备的位置和速度变化,为伺服控制器提供有关运动状态的反馈信息。
SEWServo伺服的主要特点SEWServo伺服具有多种优点,使其成为工业机械中的重要元素。
其中最重要的特点如下:1. 精度高:SEWServo伺服能够实现非常高的精度要求,因为它能够根据编码器的反馈调节电流控制,使机械设备实现非常精准的位置控制。
2. 响应速度快:SEWServo伺服响应速度非常快,这是因为它可以调节电流和速度来控制机械运动,能够实时响应设备的运动要求。
3. 负载能力强:SEWServo伺服的负载能力非常强,能够控制机械设备的千分之一甚至更小的微小变化,从而提高设备的工作效率和稳定性。
SEWServo伺服的应用领域SEWServo伺服主要用于机械和工程设备领域。
它能够应用于各种工业自动化、加工、生产和制造领域,如电子、半导体、汽车、食品、医药、塑料和纺织等。
此外,SEWServo伺服还广泛应用于印刷和包装机器、工艺控制系统、医疗和科学仪器等领域。
SEWServo伺服培训教程SEWServo伺服培训教程包括基础和进阶两个部分。
基础部分主要介绍SEWServo伺服的基本知识和操作方法,包括伺服电机、伺服控制器和编码器的组成、电路原理、控制方式、调节程序和参数设置等方面。