第三章 默示力学量的算符 习题

合集下载

第3章 矩阵力学基本力学量和算符

第3章 矩阵力学基本力学量和算符
为此,先讨论力学量的平均值。对以波函数 (r, t) 描述的状态,按照波函数的统计解释,
r,t 2 dr 表示在 t 时刻在 r r dr 中找到粒子的概率,因此坐标 r 的平均值显然是
r
坐标 r 的函数 f (r) 的平均值是




(r, t )
2
rdr
f (r) * (r,t) f (r) (r,t)dr
第三章矩阵力学基础(I)—力学量和算符
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线0生高不产中仅工资22艺料22高试可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料22荷试,下卷而高总且中体可资配保料置障试时23卷,23调需各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看2工且55作尽22下可2都能护1可地关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编5试求写、卷技重电保术要气护交设设装底备备4置。高调、动管中试电作线资高气,敷料中课并3设试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

量子力学第三章算符

量子力学第三章算符

第三章算符与力学量算符3、1 算符概述设某种运算把函数u变为函数v,用算符表示为:(3、1-1)称为算符。

u与v中得变量可能相同,也可能不同。

例如,,,,,,则,x,,,都就是算符。

1.算符得一般运算(1)算符得相等:对于任意函数u,若,则。

(2)算符得相加:对于任意函数u,若,则。

算符得相加满足交换律。

(3)算符得相乘:对于任意函数u,若,则。

算符得相乘一般不满足交换律。

如果,则称与对易。

2.几种特殊算符(1)单位算符对于任意涵数u,若u=u,则称为单位算符。

与1就是等价得。

(2)线性算符对于任意函数u与v,若,则称为反线性算符。

(3)逆算符对于任意函数u,若则称与互为逆算符。

即,。

并非所有得算符都有逆算符,例如把零作为算符时,称之为零算符,零算符就没有逆算符。

对于非齐次线性微分方程:,其中为与函数构成得线性算符,a为常数。

其解u可表示为对应齐次方程得通解u。

与非齐次方程得特解之与,即。

因,所以不存在使。

一般说来,在特解中应允许含有对应齐次方程得通解成分,但如果当a=0时,=0,则中将不含对应齐次方程得通解成分,这时存在使,从而由得:。

从上述分析可知,就是否存在逆算符还与算符所作用得函数有关。

(4)转置算符令,则称与得转置算符,就是一个向左作用得算符。

若算符表示一般函数(或常数),由于函数得左乘等于右乘,所以函数得转置就等于它本身。

定义波函数与得标积为:(3、1-2)与得标积以及与得标积为:若上两式中得与都就是任意波函数,则称上两式中得与为任意标积中得算符。

下面考虑在任意标积中得性质。

波函数与在无限远点也应满足连续性条件:[可都等于零],,所以得:可见在任意标积中,。

(5)转置共轭算符(也称为厄密共轭算符)与厄密算符转置共轭算符通常也就是向左作用得算符,同时算符本身要取共轭。

以标记得转置共轭算符,则若在任意标积中,,则称为厄密算符。

即厄密算符得定义为:或写为(3、1-3)可以证明,位置算符与动量算符都就是厄密算符。

曾谨言量子力学第3章

曾谨言量子力学第3章
ˆ O ˆ iO ˆ O 1 ˆ ˆ ˆ 1 ˆ ˆ ˆ 令 O (O O ), O (O O ) 2 2i

则O+和O-均是厄米算符。
定理: 在体系的任何状态下,厄米算符的平均值必为实数。 证明:
ˆ ( , A ˆ ) ( A ˆ , ) ( , A ˆ ) A ˆ A
ˆ A ˆ A
(41)
Note: 所有力学量的算符均是厄米算符 性质: (1) 两个厄米算符之和仍是厄米算符 (2)两个厄米算符之积不一定是厄米算符 (3)无论厄米算符A,B是否对易,算符
1 ˆ ˆ ˆˆ 1 ˆ ˆ ˆˆ ( AB BA), ( AB BA) 均是厄米算符 2 2i
(4)任何算符总可分解为两个厄米算符的线性组合
球坐标系下的角动量算符 r x 2 y 2 z 2 x r sin θ cosφ 2 2 y r sin θ sin φ , θ arctan( x y / z ) z r cosθ φ arctan(y / x ) ˆ l x i sin φ θ cotθ cosφ φ ˆ l y i cosφ θ cotθ sin φ φ ˆ l z i φ 2 1 1 ˆ2 2 l sin θ θ sin θ θ sin 2 θ φ 2
如 算符A 则
ˆ ˆ p (i) i p
的厄米共轭算符A+定义为

ˆ φ ) ( A ˆ ψ ,φ ) (ψ , A

(41)
~ ˆ φ ) (A ˆ ψ , φ ) (φ , A ˆ ψ ) (φ , A ˆ ψ ) (ψ , A ˆ φ) (ψ , A

量子力学教程习题答案周世勋

量子力学教程习题答案周世勋

解:
= 1
= 0
*
= 0
同理可证其它的正交归一关系。
*
1
综合两方面,两电子组成体系的波函数应是反对称波函数,即
2
独态:
*
三重态:
单击添加文本具体内容简明扼要地阐述你的观点
单击此处添加副标题
*
解:电子波函数的空间部分满足定态S-方程
*
*
两电子的空间波函数能够组成一个对称波函数和一个反对称波函数,其形式为
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
跟课本P.39(2.7-4)式比较可知,线性谐振子的能量本征值和本征函数为
式中
02
为归一化因子,即
03
求线性谐振子哈密顿量在动量表象中的矩阵元。
01
解:
02
*
第五章 微扰理论
*
运营计划简约通用模板
《量子力学教程》 习题解答
单击此处添加副标题
《量子力学教程》 习题解答说明 为了满足量子力学教学和学生自学的需要,完善精品课程建设,我们编写了周世勋先生编写的《量子力学教程》的课后习题解答。本解答共分七章,其中第六章为选学内容。 第一章 第二章 第三章 第四章 第五章 第六章 第七章
*
01
第一章 绪论
第七章 自旋和全同粒子
03
第三章 力学量的算符表示
单击此处添加正文
05
第五章 微扰理论
单击此处添加正文
02
第二章 波函数和薛定谔方程
单击此处添加正文
04
第四章 态和力学量的表象
单击此处添加正文

第三章-量子力学中的力学量 lt

第三章-量子力学中的力学量  lt

第三章例题剖析1 一刚性转子转动惯量为I ,它的能量的经典表示式是ILH 22=,L 为角动量,求与此对应的量子体系在下列情况下的定态能量及波函数。

(1)转子绕一固定轴转动 (2)转子绕一固定点转动[解]:(1)ϕ∂∂-= i L zˆ 22222ˆˆϕ∂∂-= zL L2222222ˆ2ˆˆϕ∂∂-===I IL IL Hz能量的本征方程: )()(ˆϕψϕψE H =,or )()(2222ϕψϕψϕE I =∂∂- 引入 222IE =λ⇒=+0)()(222ϕψλϕψϕd dλϕϕψi Ae=)(由波函数的单值性 )()2(ϕψϕπψ=+λϕλϕπi i AeAe=+)2( ⇒ 12=πλi eππλn 22= ⇒ n =λ ,2,1,0±±=nIn E n 222 =∴,ϕψin Ae=其中 π21=A(2) IL H2ˆˆ2=,在球极坐标系中⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂-=22222sin 1sin sin 1ˆϕθθθθθ L 体系的能量算符本征方程:),(),(ˆϕθψϕθψE H= ),(),(sin 1sin sin 122222ϕθψϕθψϕθθθθθE I =⎥⎦⎤⎢⎣⎡∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂- ),(),(sin 1sin sin 1222ϕθλψϕθψϕθθθθθ-=⎥⎦⎤⎢⎣⎡∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂其中22IE =λ,以上方程在πθ≤≤0的区域内存在有限解的条件是λ必须取)1(+l l ,),2,1,0( =l ,即 )1(+=l l λ ,2,1,0=l于是方程的形式又可写成),()1(),(sin 1sin sin 1222ϕθψϕθψϕθθθθθ+-=⎥⎦⎤⎢⎣⎡∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂l l 此方程是球面方程,其解为),(),(ϕθϕθψlm Y =lm l ±±±==,,2,1,0,2,1,0由)1(+=l l λ及IE 2=λ,可解得体系的的能量本征值Il l E l 2)1(2+=,2,1,0=l2 氢原子处于 ()()()32121113,,,,,,44r r r ψθϕψθϕψθϕ=+状态,求:(1)归一化波函数(2)能量有无确定值?如果没有,求其可能值和取这些可能值的概率,并求平均值;(3)角动量平方有无确定值?如果没有,求其可能值和取这些可能值的概率,并求平均值; (4)角动量的z 分量有无确定值?如果有,求其确定值。

量子力学教程-周世勋-第三章算符

量子力学教程-周世勋-第三章算符
C 为常数
ˆ, B ˆ, B ˆ ] = C[ A ˆ ] C 为常数 [CA
ˆ +A ˆ ,B ˆ ,B ˆ ,B ˆ] ˆ] = [A ˆ]+[A [A 1 2 1 2 ˆA ˆ ˆ ˆ ,B ˆ +A ˆ [A ˆ ,B ˆ] ˆ ]A [A 1 2 , B] = [ A 1 2 1 2
∂ ˆ ˆ ∂ ˆ ˆ ˆ, ∂ B ˆ] [ A, B ] = [ A , B] + [ A ∂t ∂t ∂t
中,因
+ * % d d ˆ + = ⎛ h ∂ ⎞ = ⎛− h ∂ ⎞ = P ˆ 。也可以直接从定义式(3.1-3)出发,来 = − ,所以 P x x ⎜ ⎟ ⎜ ⎟ dx dx ⎝ i ∂x ⎠ ⎝ i ∂x ⎠
ˆ 是厄密算符。 证明 P x


−∞
ˆ φ dx = ϕ *φ |∞ − ϕ *P −∞ x
3.其他对易关系 (1)角动量算符与位置算符之间的对易关系
67
ˆ , x] = [ yP ˆ , zP ˆ , x] = 0 [L x z y ˆ , y ] = [ yP ˆ − zP ˆ , y ] = − z[ P ˆ , y ] = z[ y, P ˆ ] = ihz [L x z y y y
ˆ −1 , FF ˆ =G ˆ ˆ −1 = F ˆ −1 F ˆ = 1。 F
并非所有的算符都有逆算符,例如把零作为算符时,称之为零算符,零算符就没有逆算符。
ˆ为 ˆ ( x ) = af ( x ) ,其中 F 对于非齐次线性微分方程: Fu
d 与函数构成的线性算符,a 为常数。 dx
ˆ = 0, 其解 u 可表示为对应齐次方程的通解 u。与非齐次方程的特解 υ 之和,即 u = u0 + v 。因 Fu 0

量子力学chap-3


( r ) ( x ) ( y ) ( z )
p
于是:

如果取 |c|2 (2π)3=1 则 ψp(r) 就可 归一化为 δ-函数。


* ( r ) p ( r )d p



e
i
px
i
( x )
px x
py
i
( y )
py y
pz
转置算符 的定义

ˆ d (O ) *
ˆ d * O

ˆ d ( O ) *
ˆ [ d * (O )] * ˆ dO * *
厄密共轭 算符亦可 写成:
~ ˆ d * O *
可以证明: (Ô Â )+ = Â + Ô + (Ô Â Û...)+ = ... Û+ Â + Ô +
i
(z)
pz z
| c | | c |
2



e e
i p r
p r
d
c1e ce
i
c2e
c3 e
2
i (
p p ) r
2 3 | c | ( 2 ) ( p p )

d
p r
例1 :
证:
x
dx *
x ~ x

和 是两个任意函数。



利用波函数标准条件: 当|x|→∞ 时ψ,→ 0。






dx
* * |

第三章量子力学中的力学量5

算符对易关系、 §3.7 算符对易关系、两算符同时具有确定值的 条件、 条件、测不准关系
(一)两算符对易的物理含义 前面我们已经提到了一些常见算符的对易关系,这些对易关系 前面我们已经提到了一些常见算符的对易关系,这些对易关系 到底有什么物理意义 物理意义? 到底有什么物理意义?这个问题将在这节课得到阐明 下面给出了一些常见力学量算符之间的对易关系。 下面给出了一些常见力学量算符之间的对易关系。这些对易关 系需要牢记并能够证明。 系需要牢记并能够证明。
px , p y , pz
ˆ ˆ ˆ H , L2 , Lz
两两对易
r 具有完备的共同本征函数系: 具有完备的共同本征函数系: ψ nlm (r ) = Rnl (r )Ylm (θ , ϕ )
同时具有确定值
En , l (l + 1)h 2 , mh
例 3:
ˆ L2 ˆ ˆ = z ,L 定轴转子: 定轴转子: H z 2I
由上面的结论可以看出,算符之间的对易关系可分为两种: 由上面的结论可以看出,算符之间的对易关系可分为两种:相 互对易和不对易。下面我们将看到算符间的对易关系关系直接 互对易和不对易。下面我们将看到算符间的对易关系关系直接 关系到算符表示的力学量是否有可能同时具有确定值。 有可能同时具有确定值 关系到算符表示的力学量是否有可能同时具有确定值。 ˆ ˆ 前面我们已经知道如果某波函数 ψ 是算符 F 和算符 G的共同本 征函数, 同时具有确定的观测值。 征函数,那么力学量 F 和 G 同时具有确定的观测值。确定值就 是它们的本征值 λ 和 µ ,即: ˆ ˆψ Fψ = λψ G = µψ 以上说法的逆也是正确的:如果在状态 ψ 中,力学量 F 有确 以上说法的逆也是正确的: 说法的逆也是正确的 ˆ 的本征函数, 定值, 定值,那么 ψ 必为算符 F 的本征函数,如果同时力学量 G 也 ˆ 的本征函数。 有确定值, 是它们的共 有确定值,那么ψ 也是算符 G 的本征函数。即 ψ 是它们的共 同本征函数。 同本征函数。 结论 两个算符具有共同本征函数和两个算符对应的力学量能够同时 取确定值是等价的。但是需要注意的是, 取确定值是等价的。但是需要注意的是,这并不意味着在任何 状态下两个力学量都能取确定值。 状态下两个力学量都能取确定值。

算符对易关系_第三章教材


测不准关系(续6)
2.力学量同时有确定值的条件(对易的物理意义)
ˆ 具有共同的本征函数完全 ˆ 和G 若算符F 定 理 ˆ 必对易。 ˆ 和G 系,则 F ˆ 和G ˆ 的共同本征函数完全系,则 prove: 设 n 是 F


ˆ ˆ , G F n n n n n n
11
Ex.5
可能同时有确定值。
3.7 算符对易关系 两力学量同时可测的条件
测不准关系(续11)
3. 力学量完全集合 (1)定义:为完全确定状态所需要的一组两两对易的 力学量算符的最小(数目)集合称为力学量完全集。 Ex.1 三维空间中自由粒子,完全确 ˆ ˆ ˆ p , p , p x y z. 定其状态需要三个两两对易的 力学量: ˆ ,L ˆ2 , L ˆ . Ex.2 氢原子,完全确定其状态也需 H z 要三个两两对易的力学量: 一维谐振子,只需要一个力学 ˆ Ex.3 H 量就可完全确定其状态: (2)力学量完全集中力学量的数目一般与体系自由度 数相同。 (3)由力学量完全集所确定的本征函数系,构成该体 系态空间的一组完备的本征函数,即体系的任何状态 均可用它展开。
ˆ ˆ G ˆF ˆG ˆ ik F 2 ˆ ) d ˆ iG 考虑积分: I ( ) (F ˆ )* ][F ˆ ]d ˆ )* i (G ˆ iG [(F

* ˆ ) (G )* F ˆ ˆ )d i [(F ˆ )* (G ˆ ]d (F ) (F 2
(2 ) 为简单起见,先考虑非简并情况。由( 1 )、( 2 ) ˆ 都是 F ˆ 属于本征值 的本征函数,它 式知,n 和 G n n 们最多相差一个常数因子 n ,即
ˆ ˆ G ˆ ˆ ˆ GF FG n n n n

量子力学第三章算符

第三章算符和力学量算符之宇文皓月创作3.1 算符概述设某种运算把函数u变成函数v,用算符暗示为:3.1-1)u与v中的变量可能相同,也可能分歧。

例如,x,1.算符的一般运算(1)算符的相等:对于任意函数u(2)算符的相加:对于任意函数u,若,则(3)算符的相乘:对于任意函数u2.几种特殊算符(1)单位算符对于任意涵数u1是等价的。

(2)线性算符对于任意函数u与v算符。

(3)逆算符对于任意函数u并不是所有的算符都有逆算符,例如把零作为算符时,称之为零算符,零算符就没有逆算符。

的线性算符,a为常数。

其解u可暗示为对应齐次方程的通解u。

与分,但如果当a=0述分析可知,是否存在逆算符还与算符所作用的函数有关。

(4)转置算符函数的转置就等于它自己。

3.1-2)也应满足连续性条件:可都等于零](5)转置共轭算符(也称为厄密共轭算符)与厄密算符转置共轭算符通常也是向左作用的算符,同时算符自己要取共义为:3.1-3)可以证明,位置算符与动量算符都是厄密算符。

因x是实数,而,所以。

在任意标积中,因,所以3.1-3)出发,来证(6)幺正算符(7)算符的函数设函数F(A F为:(3.1-4)n3.2算符的对易关系定义算符的泊松(Poisson)括号为:(3.2-1)的。

1.量子力学中基本对易关系在位置表象中,,即在动量表象中可见在位置表象中与动量表象中都得:(3.2-2)如果两个算符所含的独立变量分歧,则这两个算符是对易的。

例yx。

又如,在有心力场中,U(x)所含的变量是rx,y,z(3.2-3)(3.2-4)式就是量子力学中的基本对易关系式。

2.线性算符泊松括号的性质根据量子泊松括号的定义式以及线性算符的定义式不难证明下关系式:(其证明供练习)3.2-5)为常数(3.2-6)为常数(3.2-7)3.其他对易关系(1)角动量算符与位置算符之间的对易关系采取爱因斯坦记号,则上式可写为:3.2-11)Levi-Civita所有角标都是反对称的,即交换任意两个角标,其值反号,例如,数学性质:3.2-12)i ,j 反对称之故。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档