2013-2022北京中考真题数学汇编:填空压轴

合集下载

【中考真题】2022年北京市中考数学试卷(附答案)

【中考真题】2022年北京市中考数学试卷(附答案)

2022年北京市中考数学真题学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.下面几何体中,是圆锥的为( )A .B .C .D .2.截至2021年12月31日,长江干流六座梯级水电站全年累计发电量达2628.83亿千瓦时,相当于减排二氧化碳约2.2亿吨.将262 883 000 000用科学计数法表示应为( ) A .1026.288310⨯B .112.6288310⨯C .122.6288310⨯D .120.26288310⨯3.如图,利用工具测量角,则1∠的大小为( )A .30°B .60°C .120°D .150°4.实数a b ,在数轴上的对应点的位置如图所示,下列结论中正确的是( )A . 2a -<B .1b <C .a b >D .a b ->5.不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是( )A .14B .13C .12D .346.若关于x 的一元二次方程20x x m ++=有两个相等的实数根,则实数m 的值为( ) A .4-B .14-C .14D .47.图中的图形为轴对称图形,该图形的对称轴的条数为( )A .1B .2C .3D .58.下面的三个问题中都有两个变量:①汽车从A 地匀速行驶到B 地,汽车的剩余路程y 与行驶时间x ; ①将水箱中的水匀速放出,直至放完,水箱中的剩余水量y 与放水时间x ;①用长度一定的绳子围成一个矩形,矩形的面积y 与一边长x ,其中,变量y 与变量x 之间的函数关系可以利用如图所示的图象表示的是( )A .①①B .①①C .①①D .①①①二、填空题9在实数范围内有意义,则实数x 的取值范围是___________. 10.分解因式:2xy x -=______. 11.方程215x x=+的解为___________. 12.在平面直角坐标系xOy 中,若点12(2,),(5,)A y B y 在反比例函数(0)ky k x=>的图象上,则1y ______2y (填“>”“=”或“<”)13.某商场准备进400双滑冰鞋,了解了某段时间内销售的40双滑冰鞋的鞋号,数据如下:根据以上数据,估计该商场进鞋号需求最多的滑冰鞋的数量为________双. 14.如图,在ABC ∆中,AD 平分,.BAC DE AB ∠⊥若2,1,AC DE ==则ACD S ∆=____.15.如图,在矩形ABCD 中,若13,5,4AF AB AC FC ===,则AE 的长为_______.16.甲工厂将生产的I 号、II 号两种产品共打包成5个不同的包裹,编号分别为A ,B ,C ,D ,E ,每个包裹的重量及包裹中I 号、II 号产品的重量如下:甲工厂准备用一辆载重不超过19.5吨的货车将部分包裹一次运送到乙工厂. (1)如果装运的I 号产品不少于9吨,且不多于11吨,写出一中满足条件的装运方案________(写出要装运包裹的编号);(2)如果装运的I 号产品不少于9吨,且不多于11吨,同时装运的II 号产品最多,写出满足条件的装运方案________(写出要装运包裹的编号). 三、解答题17.计算:0(1)4sin 458 3.π-+-+- 18.解不等式组:274,4.2x x x x +>-⎧⎪⎨+<⎪⎩19.已知2220x x +-=,求代数式2(2)(1)x x x +++的值.20.下面是证明三角形内角和定理的两种添加辅助线的方法,选择其中一种,完成证明.三角形内角和定理:三角形三个内角和等于180°,已知:如图,ABC∆, 求证:180.A B C ∠+∠+∠= 方法一证明:如图,过点A 作.DE BC ∥方法二证明:如图,过点C 作.CD AB ∥21.如图,在ABCD 中,AC BD ,交于点O ,点E F ,在AC 上,AE CF =.(1)求证:四边形EBFD 是平行四边形;(2)若,BAC DAC ∠=∠求证:四边形EBFD 是菱形.22.在平面直角坐标系xOy 中,函数(0)y kx b k =+≠的图象经过点(4,3),(2,0)-,且与y 轴交于点A .(1)求该函数的解析式及点A 的坐标;(2)当0x >时,对于x 的每一个值,函数y x n =+的值大于函数(0)y kx b k =+≠的值,直接写出n 的取值范围.23.某校举办“歌唱祖国”演唱比赛,十位评委对每位同学的演唱进行现场打分,对参加比赛的甲、乙、丙三位同学得分的数据进行整理、描述和分析,下面给出了部分信息.a .甲、乙两位同学得分的折线图:b .丙同学得分:10,10,10,9,9,8,3,9,8,10 c .甲、乙、丙三位同学得分的平均数:根据以上信息,回答下列问题: (1)求表中m 的值;(2)在参加比赛的同学中,如果某同学得分的10个数据的方差越小,则认为评委对该同学演唱的评价越一致.据此推断:甲、乙两位同学中,评委对_________的评价更一致(填“甲”或“乙”);(3)如果每位同学的最后得分为去掉十位评委打分中的一个最高分和一个最低分后的平均分,最后得分越高,则认为该同学表现越优秀.据此推断:在甲、乙、丙三位同学中,表现最优秀的是_________(填“甲”“乙”或“丙”).24.如图,AB 是O 的直径,CD 是O 的一条弦,,AB CD ⊥连接,.AC OD(1)求证:2;BOD A ∠=∠(2)连接DB ,过点C 作,CE DB ⊥交DB 的延长线于点E ,延长,DO 交AC 于点F ,若F为AC 的中点,求证:直线CE 为O 的切线.25.单板滑雪大跳台是北京冬奥会比赛项目之一,举办场地为首钢滑雪大跳台,运动员起跳后的飞行路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系2()(0)y a x h k a =-+<.某运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x 与竖直高度y 的几组数据如下:根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系2()(0);y a x h k a =-+<(2)第二次训练时,该运动员的竖直高度y 与水平距离x 近似满足函数关系20.04(9)23.24.y x =--+记该运动员第一次训练的着陆点的水平距离为d 1,第二次训练的着陆点的水平距离为2d ,则1d ______2d (填“>”“=”或“<”).26.在平面直角坐标系xOy 中,点(1,),(3,)m n 在抛物线2(0)y ax bx c a =++>上,设抛物线的对称轴为.x t =(1)当2,c m n ==时,求抛物线与y 轴交点的坐标及t 的值;(2)点00(,)(1)x m x ≠在抛物线上,若,m n c <<求t 的取值范围及0x 的取值范围. 27.在ABC ∆中,90ACB ∠=,D 为ABC ∆内一点,连接BD ,DC 延长DC 到点E ,使得.CE DC =(1)如图1,延长BC 到点F ,使得CF BC =,连接AF ,EF 若AF EF ⊥,求证:BD AF ⊥;(2)连接AE ,交BD 的延长线于点H ,连接CH ,依题意补全图2,若222AB AE BD =+,用等式表示线段CD 与CH 的数量关系,并证明.28.在平面直角坐标系xOy 中,已知点(,),.M a b N 对于点P 给出如下定义:将点P 向右(0)a ≥或向左(0)a <平移a 个单位长度,再向上(0)b ≥或向下(0)b <平移b 个单位长度,得到点P',点P'关于点N 的对称点为Q ,称点Q 为点P 的“对应点”. (1)如图,点(1,1),M 点N 在线段OM 的延长线上,若点(2,0),P -点Q 为点P 的“对应点”.①在图中画出点Q ;①连接,PQ 交线段ON 于点.T 求证:1;2NT OM =(2)O 的半径为1,M 是O 上一点,点N 在线段OM 上,且1(1)2ON t t =<<,若P为O 外一点,点Q 为点P 的“对应点”,连接.PQ 当点M 在O 上运动时直接写出PQ 长的最大值与最小值的差(用含t 的式子表示)参考答案:1.B 【解析】 【分析】观察所给几何体,可以直接得出答案. 【详解】解:A 选项为圆柱,不合题意; B 选项为圆锥,符合题意; C 选项为三棱柱,不合题意; D 选项为球,不合题意; 故选B . 【点睛】本题考查常见几何体的识别,熟练掌握常见几何体的特征是解题的关键.圆锥面和一个截它的平面,组成的空间几何图形叫圆锥. 2.B 【解析】 【分析】将262 883 000 000写成()11100≤⨯<na a ,n 为正整数的形式即可.【详解】解:将262 883 000 000保留1位整数是2.62883,小数点向左移动了11位, ①262 883 000 000112.6288310=⨯, 故选B . 【点睛】本题考查用科学计数法表示绝对值大于1的数,掌握()11100≤⨯<na a 中n 的取值方法是解题的关键. 3.A 【解析】 【分析】利用对顶角相等求解.【详解】解:量角器测量的度数为30°,∠=︒.由对顶角相等可得,130故选A.【点睛】本题考查量角器的使用和对顶角的性质,掌握对顶角相等是解题的关键.4.D【解析】【分析】根据数轴上的点的特征即可判断.【详解】解:点a在-2的右边,故a>-2,故A选项错误;点b在1的右边,故b>1,故B选项错误;b在a的右边,故b>a,故C选项错误;->,故D选项正确,由数轴得:-2<a<-1.5,则1.5<-a<2,1<b<1.5,则a b故选:D.【点睛】本题考查了数轴上的点,熟练掌握数轴上点的特征是解题的关键.5.A【解析】【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与第一次摸到红球,第二次摸到绿球的情况,然后利用概率公式求解即可求得答案.【详解】解:画树状图得:①共有4种等可能的结果,第一次摸到红球,第二次摸到绿球有1种情况,①第一次摸到红球,第二次摸到绿球的概率为14,故选:A.【点睛】本题考查了画树状法或列表法求概率,列出所有等可能的结果是解决本题的关键.6.C【解析】【分析】利用方程有两个相等的实数根,得到∆=0,建立关于m的方程,解答即可.【详解】①一元二次方程20x x m++=有两个相等的实数根,①∆=0,①2140m-=,解得14m=,故C正确.故选:C.【点睛】此题考查利用一元二次方程的根的情况求参数,一元二次方程的根有三种情况:有两个不等的实数根时∆>0;当一元二次方程有两个相等的实数根时,∆=0;当方程没有实数根时,∆<0,正确掌握此三种情况是正确解题的关键.7.D【解析】【分析】根据题意,画出该图形的对称轴,即可求解.【详解】解①如图,一共有5条对称轴.故选:D【点睛】本题主要考查了轴对称图形,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.8.A【解析】【分析】由图象可知:当y 最大时,x 为0,当x 最大时,y 为零,即y 随x 的增大而减小,再结合题意即可判定.【详解】解:①汽车从A 地匀速行驶到B 地,汽车的剩余路程y 随行驶时间x 的增大而减小,故①可以利用该图象表示;①将水箱中的水匀速放出,直至放完,水箱中的剩余水量y 随放水时间x 的增大而减小,故①可以利用该图象表示;①设绳子的长为L ,一边长x ,则另一边长为12L x -, 则矩形的面积为:21122y L x x x Lx ⎛⎫=-⋅=-+ ⎪⎝⎭, 故①不可以利用该图象表示;故可以利用该图象表示的有:①①,故选:A .【点睛】本题考查了函数图象与函数的关系,采用数形结合的思想是解决本题的关键.9.x ≥8##8x【解析】【分析】根据二次根式有意义的条件,可得x -8≥0,然后进行计算即可解答.【详解】解:由题意得:x -8≥0,解得:x ≥8.故答案为:x ≥8.【点睛】0)a ≥是解题的关键. 10.()()11x y y +-【解析】【分析】首先提取公因式,再根据平方差公式计算,即可得到答案.【详解】2xy x -()21x y =-()()11x y y =+-故答案为:()()11x y y +-.【点睛】本题考查了因式分解的知识;解题的关键是熟练掌握平方差公式的性质,从而完成求解. 11.x =5【解析】【分析】观察可得最简公分母是x (x +5),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,再进行检验即可得解.【详解】 解:215x x=+ 方程的两边同乘x (x +5),得:2x =x +5, 解得:x =5, 经检验:把x =5代入x (x +5)=50≠0. 故原方程的解为:x =5【点睛】此题考查了分式方程的求解方法,注意掌握转化思想的应用,注意解分式方程一定要验根,12.>【解析】【分析】根据反比例函数的性质,k >0,在每个象限内,y 随x 的增大而减小,进行判断即可.【详解】解:①k >0,①在每个象限内,y 随x 的增大而减小,25<,①1y >2y .故答案为:>.【点睛】本题考查了反比例函数的性质,熟练掌握函数的性质是解决问题的关键.13.120【解析】【分析】根据题意得:39码的鞋销售量为12双,再用400乘以其所占的百分比,即可求解.【详解】解:根据题意得:39码的鞋销售量为12双,销售量最高,①该商场进鞋号需求最多的滑冰鞋的数量为1240012040⨯=双. 故答案为:120【点睛】本题主要考查了用样本估计总体,根据题意得到39码的鞋销售量为12双,销售量最高是解题的关键.14.1【解析】【分析】作DF AC ⊥于点F ,由角平分线的性质推出1DF DE ==,再利用三角形面积公式求解即可.【详解】解:如图,作DF AC ⊥于点F ,①AD 平分BAC ∠,DE AB ⊥,DF AC ⊥,①1DF DE ==, ①1121122ACD S AC DF ∆=⋅=⨯⨯=. 故答案为:1.【点睛】本题考查角平分线的性质,通过作辅助线求出三角形ACD 中AC 边的高是解题的关键. 15.1【解析】【分析】根据勾股定理求出BC ,以及平行线分线段成比例进行解答即可.【详解】解:在矩形ABCD 中:AD BC ∥,90ABC ∠=︒,①14AE AF BC FC ==,4BC =, ①144AE =, ①1AE =,故答案为:1.【点睛】此题考查了勾股定理以及平行线分线段成比例,掌握平行线分线段成比例是解题的关键. 16. ABC (或ABE 或AD 或ACD 或BCD ) ABE 或BCD【解析】【分析】(1)从A ,B ,C ,D ,E 中选出2个或3个,同时满足I 号产品不少于9吨,且不多于11吨,总重不超过19.5吨即可;(2)从(1)中符合条件的方案中选出装运II 号产品最多的方案即可.【详解】解:(1)根据题意,选择ABC 时,装运的I 号产品重量为:53210++=(吨),总重6551619.5++=<(吨),符合要求;选择ABE 时,装运的I 号产品重量为:53311++=(吨),总重6581919.5++=<(吨),符合要求;选择AD 时,装运的I 号产品重量为:549+=(吨),总重671319.5+=<(吨),符合要求;选择ACD 时,装运的I 号产品重量为:52411++=(吨),总重6571819.5++=<(吨),符合要求;选择BCD 时,装运的I 号产品重量为:3249++=(吨),总重5571719.5++=<(吨),符合要求;选择DCE 时,装运的I 号产品重量为:4239++=(吨),总重7582019.5++=>(吨),不符合要求;选择BDE 时,装运的I 号产品重量为:34310++=(吨),总重5782019.5++=>(吨),不符合要求;综上,满足条件的装运方案有ABC 或ABE 或AD 或ACD 或BCD .故答案为:ABC (或ABE 或AD 或ACD 或BCD ).(2)选择ABC 时,装运的II 号产品重量为:1236++=(吨);选择ABE 时,装运的II 号产品重量为:1258++=(吨);选择AD 时,装运的II 号产品重量为:134+=(吨);选择ACD 时,装运的II 号产品重量为:1337++=(吨);选择BCD 时,装运的II 号产品重量为:2338++=(吨);故答案为:ABE 或BCD .【点睛】本题考查方案的选择,读懂题意,尝试不同组合时能否同时满足题目要求的条件是解题的关键.17.4【解析】【分析】根据零次幂、特殊角的正弦值、二次根式和去绝对值即可求解.【详解】 解:0(1)4sin 458 3.π-+-+-=143+ =4.【点睛】本题考查了实数的混合运算,掌握零次幂、特殊角的正弦值、二次根式的化简及去绝对值是解题的关键.18.14x <<【解析】【分析】分别解两个一元一次不等式,再求交集即可.【详解】解:274? 4 2x x x x +>-⎧⎪⎨+<⎪⎩①② 解不等式①得1x >,解不等式①得4x <,故所给不等式组的解集为:14x <<.【点睛】本题考查解一元一次不等式组,属于基础题,正确计算是解题的关键.19.5【解析】【分析】先根据2220x x +-=,得出222x x +=,将2(2)(1)x x x +++变形为()2221x x ++,最后代入求值即可.【详解】解:①2220x x +-=,①222x x +=,①2(2)(1)x x x +++22221x x x x =++++2241x x =++()2221x x =++221=⨯+5=【点睛】本题主要考查了代数式求值,完全平方公式,单项式乘多项式,将2(2)(1)x x x +++变形为()2221x x ++,是解题的关键.20.答案见解析【解析】【分析】选择方法一,过点A 作//DE BC ,依据平行线的性质,即可得到B BAD ∠=∠,C EAC ∠=∠,再根据平角的定义,即可得到三角形的内角和为180︒.【详解】证明:过点A 作//DE BC ,则B BAD ∠=∠,C EAC ∠=∠.( 两直线平行,内错角相等)点D ,A ,E 在同一条直线上,180DAB BAC C ∴∠+∠+∠=︒.(平角的定义)180B BAC C ∴∠+∠+∠=︒.即三角形的内角和为180︒.【点睛】本题主要考查了平行线的性质以及三角形内角和定理的运用,熟练掌握平行线的性质是解题的关键.21.(1)见解析(2)见解析【解析】【分析】(1)先根据四边形ABCD 为平行四边形,得出AO CO =,BO DO =,再根据AE CF =,得出EO FO =,即可证明结论;(2)先证明DCA DAC ∠=∠,得出DA DC =,证明四边形ABCD 为菱形,得出AC BD ⊥,即可证明结论.(1)证明:①四边形ABCD 为平行四边形,①AO CO =,BO DO =,①AE CF =,①AO AE CO CF -=-,即EO FO =,①四边形EBFD 是平行四边形.(2)①四边形ABCD 为平行四边形,①AB CD ,①DCA BAC ∠=∠,①,BAC DAC ∠=∠①DCA DAC ∠=∠,①DA DC =,①四边形ABCD 为菱形,①AC BD ⊥,即EF BD ⊥,①四边形EBFD 是平行四边形,①四边形EBFD 是菱形.【点睛】本题主要考查了平行四边形的性质和性质,菱形的判定和性质,平行线的性质,熟练掌握菱形和平行四边形的判定方法,是解题的关键.22.(1)112y x =+,(0,1) (2)1n ≥【解析】【分析】(1)利用待定系数法即可求得函数解析式,当0x =时,求出y 即可求解.(2)根据题意112x n x +>+结合0x >解出不等式即可求解. (1)解:将(4,3),(2,0)-代入函数解析式得, 3=402k b k b +⎧⎨=-+⎩,解得121k b ⎧=⎪⎨⎪=⎩, ①函数的解析式为:112y x =+, 当0x =时,得1y =,①点A 的坐标为(0,1).(2)由题意得,112x n x +>+,即22x n >-, 又由0x >,得220n -≤,解得1n ≥,①n 的取值范围为1n ≥.【点睛】本题考查了待定系数法求函数解析式及解不等式,熟练掌握待定系数法求函数解析式及函数的性质是解题的关系.23.(1)8.6(2)甲(3)乙【解析】【分析】(1)根据平均数的定义求出丙的平均数即可求解.(2)根据方差的计算方法先算出甲乙的方差,再进行比较即可求解.(3)按去掉一个最高分和一个最低分后分别计算出甲乙丙的平均分,再进行比较即可求解.(1)解:丙的平均数:101010998398108.610+++++++++=, 则8.6m =.(2)2222212(8.68)4(8.69)2(8.67)2(8.610) 1.0410S ⎡⎤=⨯-+⨯-+⨯-+⨯-=⎣⎦甲, 222214(8.67)4(8.610)2(8.69) 1.8410S ⎡⎤=⨯-+⨯-+⨯-=⎣⎦乙, 22S S <甲乙,①甲、乙两位同学中,评委对甲的评价更一致,故答案为:甲.(3)由题意得,去掉一个最高分和一个最低分后的平均分为: 甲:889799910=8.6258+++++++, 乙:77799101010=9.758+++++++, 丙:10109989810=9.1258+++++++, ①去掉一个最高分和一个最低分后乙的平均分最高,因此最优秀的是乙,故答案为:乙.【点睛】本题考查了折线统计图、中位数、方差及平均数,理解折线统计图,从图中获取信息,掌握中位数、方差及去掉一个最高分和一个最低分后的平均分的求法是解题的关键. 24.(1)答案见解析(2)答案见解析【解析】【分析】(1)设AB 交CD 于点H ,连接OC ,证明Rt COH Rt DOH ∆≅∆ ,故可得COH DOH ∠=∠ ,于是BC BD = ,即可得到2BOD A ∠=∠;(2)连接,解出60COB ∠=︒,根据AB 为直径得到90ADB ∠=︒,进而得到60ABD ∠=︒,即可证明//OC DB ,故可证明直线CE 为O 的切线.(1)证明:设AB交CD于点H,连接OC,由题可知,∴=,90OC OD∠=∠=︒,OHC OHD=,OH OH()∴∆≅∆,Rt COH Rt DOH HLCOH DOH∴∠=∠,∴=,BC BDCOB BOD∴∠=∠,∠=∠,2COB A∴∠=∠;BOD A2(2)证明:连接AD,=,OA ODOAD ODA ∠=∠∴,同理可得:OAC OCA ∠=∠,OCD ODC ∠=∠,①点H 是CD 的中点,点F 是AC 的中点,OAD ODA OAC OCA OCD ODC ∴∠=∠=∠=∠=∠=∠,180OAD ODA OAC OCA OCD ODC ∠+∠+∠+∠+∠+∠=︒,30OAD ODA OAC OCA OCD ODC ∴∠=∠=∠=∠=∠=∠=︒,223060COB CAO ∴∠=∠=⨯︒=︒, AB 为O 的直径,90ADB ∴∠=︒,90903060ABD DAO ∴∠=-∠=︒-︒=︒,60ABD COB ∴∠=∠=︒,//OC DE ∴,CE BE ⊥,CE OC ∴⊥,∴直线CE 为O 的切线.【点睛】本题主要考查三角形全等的判定与性质,同弧所对的圆周角相等,圆周角定理,直线平行的判定与性质,三角形的内角和公式,证明三角形全等以及证明平行线是解题的关键. 25.(1)23.20m ;()20.05823.20y x =--+(2)<【解析】【分析】(1)先根据表格中的数据找到顶点坐标,即可得出h 、k 的值,运动员竖直高度的最大值;将表格中除顶点坐标之外的一组数据代入函数关系式即可求出a 的值,得出函数解析式;(2)着陆点的纵坐标为t ,分别代入第一次和第二次的函数关系式,求出着陆点的横坐标,用t 表示出1d 和2d ,然后进行比较即可.(1)解:根据表格中的数据可知,抛物线的顶点坐标为:()8,23.20,①8h =,23.20k =,即该运动员竖直高度的最大值为23.20m ,根据表格中的数据可知,当0x =时,20.00y =,代入()2823.20y a x =-+得: ()220.000823.20a =-+,解得:0.05a =-,①函数关系关系式为:()20.05823.20y x =--+.(2)设着陆点的纵坐标为t ,则第一次训练时,()20.05823.20t x =--+,解得:8x =8x =①根据图象可知,第一次训练时着陆点的水平距离18d =第二次训练时,()20.04923.24t x =--+,解得:9x =9x =①根据图象可知,第二次训练时着陆点的水平距离29d =①()()2023.202523.24t t --<,,①12d d <.故答案为:<.【点睛】本题主要考查了二次函数的应用,待定系数法求函数关系式,设着陆点的纵坐标为t ,用t 表示出1d 和2d ,是解题的关键.26.(1)(0,2);2(2)t 的取值范围为322t <<,0x 的取值范围为023x << 【解析】【分析】(1)当x =0时,y =2,可得抛物线与y 轴交点的坐标;再根据题意可得点(1,),(3,)m n 关于对称轴为x t =对称,可得t 的值,即可求解;(2)抛物线与y 轴交点关于对称轴x t =的对称点坐标为(2t ,c ),根据抛物线的图象和性质可得当x t ≤时,y 随x 的增大而减小,当x t >时,y 随x 的增大而增大,然后分两种情况讨论:当点(1,)m ,点(3,)n ,(2t ,c )均在对称轴的右侧时;当点(1,)m 在对称轴的左侧,点(3,)n ,(2t ,c )均在对称轴的右侧时,即可求解.(1)解:当2c =时,22y ax bx =++,①当x =0时,y =2,①抛物线与y 轴交点的坐标为(0,2);①m n =,①点(1,),(3,)m n 关于对称轴为x t =对称, ①1322t +==; (2)解:当x =0时,y =c ,①抛物线与y 轴交点坐标为(0,c ),①抛物线与y 轴交点关于对称轴x t =的对称点坐标为(2t ,c ),①0a >,①当x t ≤时,y 随x 的增大而减小,当x t >时,y 随x 的增大而增大,当点(1,)m ,点(3,)n ,(2t ,c )均在对称轴的右侧时, 1t <,①,m n c <<1<3,①2t >3,即32t >(不合题意,舍去), 当点(1,)m 在对称轴的左侧,点(3,)n ,(2t ,c )均在对称轴的右侧时,点0(,)x m 在对称轴的右侧,13t <<,此时点(3,)n 到对称轴x t =的距离大于点(1,)m 到对称轴x t =的距离,①13t t -<-,解得:2t <,①,m n c <<1<3,①2t >3,即32t >, ①322t <<, ①0(,)x m ,(1,)m ,对称轴为x t =,①012x t +=, ①013222x +<<,解得:023x <<, ①t 的取值范围为322t <<,0x 的取值范围为023x <<. 【点睛】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键. 27.(1)见解析(2)CD CH =;证明见解析【解析】【分析】(1)先利用已知条件证明SAS FCE BCD ∆∆,得出CFE CBD ,推出EF BD ∥,再由AF EF ⊥即可证明BD AF ⊥;(2)延长BC 到点M ,使CM =CB ,连接EM ,AM ,先证SAS MEC BDC ∆∆,推出ME BD =,通过等量代换得到222AM AE ME =+,利用平行线的性质得出90BHE AEM ,利用直角三角形斜边中线等于斜边一半即可得到CD CH =.(1)证明:在FCE ∆和BCD ∆中, CE CD FCE BCD CF CB =⎧⎪∠=∠⎨⎪=⎩,① SAS FCEBCD ∆∆, ① CFE CBD ,① EF BD ∥,①AF EF ⊥,①BD AF ⊥.(2)解:补全后的图形如图所示,CD CH =,证明如下:延长BC 到点M ,使CM =CB ,连接EM ,AM ,①90ACB ∠=,CM =CB ,① AC 垂直平分BM ,①AB AM =,在MEC ∆和BDC ∆中,CM CB MCE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,① SAS MEC BDC ∆∆,① ME BD =,CME CBD , ①222AB AE BD =+,① 222AM AE ME =+,① 90AEM ∠=︒,①CME CBD ,① BH EM ∥,① 90BHE AEM ,即90DHE ∠=︒, ①12CECD DE , ① 12CH DE , ① CD CH =.【点睛】本题考查全等三角形的判定与性质,垂直平分线的性质,平行线的判定与性质,勾股定理的逆用,直角三角形斜边中线的性质等,第二问有一定难度,正确作辅助线,证明90DHE ∠=︒是解题的关键.28.(1)见解析(2)42t -【解析】【分析】(1)①先根据定义和(1,1)M 求出点P'的坐标,再根据点P'关于点N 的对称点为Q 求出点Q 的坐标;①延长ON 至点()3,3A ,连接AQ ,利用AAS 证明ΔΔAQT OPT ≅,得到12TA TO OA ==,再计算出OA ,OM ,ON ,即可求出12NT ON OT OM =-==; (2)连接PO 并延长至S ,使OP OS =,延长SQ 至T ,使ST OM =,结合对称的性质得出NM 为Δ'P QT 的中位线,推出1=2NM QT ,得出()12221SQ ST TQ t t =-=--=-,则()()max min 2PQ PQ PS QS PS QS QS -=+--=.(1)解:①点Q 如下图所示.①点(1,1)M ,①点(2,0)P -向右平移1个单位长度,再向上平移1个单位长度,得到点P',①()'1,1P -,①点P'关于点N 的对称点为Q ,()2,2N ,①点Q 的横坐标为:()2215⨯--=,纵坐标为:2213⨯-=,①点()5,3Q ,在坐标系内找出该点即可;①证明:如图延长ON 至点()3,3A ,连接AQ ,① //AQ OP ,①AQT OPT ∠=∠,在ΔAQT 与ΔOPT ∠中,AQT OPT ATQ OTP AQ OP ∠=∠⎧⎪∠=∠⎨⎪=⎩,①()ΔΔAQT OPT AAS ≅, ①12TA TO OA ==, ① ()3,3A ,(1,1)M ,(2,2)N ,①OA =OM =ON =①12TO OA ==①NT ON OT =-= ①12NT OM =; (2)解:如图所示,连接PO 并延长至S ,使OP OS =,延长SQ 至T ,使ST OM =,①(,)M a b ,点P 向右(0)a ≥或向左(0)a <平移a 个单位长度,再向上(0)b ≥或向下(0)b <平移b 个单位长度,得到点P',①'1PP OM ==,①点P'关于点N 的对称点为Q ,①'NP NQ =,又①OP OS =,①OM ①ST ,①NM 为Δ'P QT 的中位线,①//NM QT ,1=2NM QT , ①1NM OM ON t =-=-,①222TQ NM t ==-,①()12221SQ ST TQ t t =-=--=-,在ΔPQS 中,PS QS PQ PS QS -<<+,结合题意,max PQ PS QS =+,min PQ PS QS =-,①()()max min 242PQ PQ PS QS PS QS QS t -=+--==-,即PQ 长的最大值与最小值的差为42t -.【点睛】本题考查点的平移,对称的性质,全等三角形的判定,两点间距离,中位线的性质及线段的最值问题,第2问难度较大,根据题意,画出点Q 和点P'的轨迹是解题的关键.。

2013年北京市中考数学试卷-答案

2013年北京市中考数学试卷-答案

2140(24OC AP x x =-≤
111240(x x -
)在ABCD中,
2
=,且
DF CE
在ABCD中,∵
在CEDF中,

∴在Rt DHE
20.【答案】(1)见解析
(2)
与O分别相切于点
∠=︒∴
E
90
=,∵tan
6
21124
a a a =
22
1tan 302MF ︒=
33612a a =1sin302AD ︒=21133224
SD AN x x x ==
2
∵O 的半径为根据切线长定理得出O 的左侧还有一个切点,使得组成的角等于点是O 的关联点,11,22D ⎛⎫ ⎪⎝⎭
,2),(23,0F 点一定是O 的关联点,而在O 上不的连线的夹角等于中,O 的关联点是,D E ;
要刚好是C 的关联点,需要点到C 的两条切线P A 和30CPB ∠=︒sin BC PC CPB
=∠C 的关联点,则需点d 满足0≤由上述证明可知,考虑临界点位置的垂线OH ,垂足为为O 的关联点,则点为K 的关联时,则上的所有点都是某个圆的关联点,这个圆的半径
点是O的关联点,进而得出,与O的关系;
到C的两条切线之间所夹的角为60︒,进而得出
2
≤,再考虑临界点位置的进而得出m
d r
上的所有点都是某个圆的关联点,欲使这个圆的半径最小,则这个圆的圆心应在线段
K的关联时,则。

2013年北京市中考数学试卷-答案

2013年北京市中考数学试卷-答案
【提示】(1)令 求出y的值,即可得到点A的坐标,求出对称轴解析式,即可得到点B的坐标;
(2)求出点A关于对称轴的对称点 ,然后设直线l的解析式为 ,利用待定系数法求一次函数解析式解答即可;
(3)根据二次函数的对称性判断在 这一段与在 这一段关于对称轴对称,然后判断出抛物线与直线l的交点的横坐标为 ,代入直线l求出交点坐标,然后代入抛物线求出m的值即可得到抛物线解析式.
【考点】整式的混合运算—化简求值.
17.【答案】2.5平方米
【解析】解:设每人每小时的绿化面积x平方米,由题意,得
,解得:
经检验, 是原方程的解,且符合题意.
答:每人每小时的绿化面积2.5平方米.
【提示】设每人每小时的绿化面积x平方米,根据增加2人后完成的时间比原来的时间少3小时为等量关系建立方程求出其解即可.
(2)找出k范围中的整数解确定出k的值,经检验即可得到满足题意k的值.
【考点】根的判别式,一元二次方程的解,解一元二次方程—公式法.
四、解答题
19.【答案】(1)见解析
(2)
【解析】证明:(1)在 中, ,且 .
∵F是AD的中点,∴ .
又∵ ,∴ ,且 ,
∴四边形CEDF是平行四边形;
(2)解:如图,过点D作 于点H.
(3)求出 , 为等腰直角三角形,推出 ,求出 ,
得出方程 ,求出即可.
【考点】全等三角形的判定与性质,等边三角形的性质,等腰直角三角形,旋转的性质.
25.【答案】(1)①

(2)
【解析】解:(1)①如图1所示,过点E作 的切线设切点为R,
∵ 的半径为1,∴ ,∵ ,∴∠ ,
根据切线长定理得出 的左侧还有一个切点,使得组成的角等于 ,∴E点是 的关联点,

2024北京中考数学一模分类——填空压轴题(原卷版)

2024北京中考数学一模分类——填空压轴题(原卷版)

2024北京中考数学一模分类——填空压轴题1.(2024•海淀区一模)2019年11月,联合国教科文组织将每年的3月14日定为“国际数学日”,也被许多人称为“π节”.某校今年“π节”策划了五个活动,规则见图:小云参与了所有活动.(1)若小云只挑战成功一个,则挑战成功的活动名称为;(2)若小云共挑战成功两个,且她参与的第四个活动成功,则小云最终剩下的“π币”数量的所有可能取值为.2.(2024•西城区一模)将1,2,3,4,5,…,37这37个连续整数不重不漏地填入37个空格中.要求:从左至右,第1个数是第2个数的倍数,第1个数与第2个数之和是第3个数的倍数,第1,2,3个数之和是第4个数的倍数,…,前36个数的和是第37个数的倍数.若第1个空格填入37,则第2个空格所填入的数为,第37个空格所填入的数为.37…3.(2024•东城区一模)简单多面体的顶点数(V)、面数(F)、棱数(E)之间存在一定的数量关系,称为欧拉公式.(1)四种简单多面体的顶点数、面数、棱数如表:名称图形顶点数(V)面数(F)棱数(E)三棱锥446长方体8612五棱柱10715正八面体6812在简单多面体中,V,F,E之间的数量关系是;(2)数学节期间,老师布置了让同学们自制手工艺品进行展示的任务,小张同学计划做一个如图所示的简单多面体作品.该多面体满足以下两个条件:①每个面的形状是正三角形或正五边形;②每条棱都是正三角形和正五边形的公共边.小张同学需要准备正三角形和正五边形的材料共个.4.(2024•朝阳区一模)甲、乙两位同学合作为班级联欢会制作A、B、C、D四个游戏道具,每个道具的制作都需要拼装和上色两道工序,先由甲同学进行拼装,拼装完成后再由乙同学上色.两位同学完成每个道具各自的工序需要的时间(单位:分钟)如表所示:A B C D甲9568乙7793(1)如果按照A→B→C→D的顺序制作,两位同学合作完成这四个道具的总时长最少为分钟;(2)两位同学想用最短的时间完成这四个道具的制作,他们制作的顺序应该是.5.(2024•丰台区一模)车间里有五台车床同时出现故障.已知第一台至第五台修复的时间如表:车床代号A B C D E15829710修复时间(分钟)若每台车床停产一分钟造成经济损失10元,修复后即可投入生产.(1)若只有一名修理工,且每次只能修理一台车床,则下列三个修复车床的顺序:①D→B→E→A→C;②D→A→C→E→B;③C→A→E→B→D中,经济损失最少的是(填序号);(2)若由两名修理工同时修理车床,且每台车床只由一名修理工修理,则最少经济损失为元.6.(2024•石景山区一模)某酒店在客人退房后清洁客房需打扫卫生、整理床铺、更换客用物品、检查设备共四个步骤.某清洁小组有甲、乙、丙三名工作人员,工作要求如下:①“打扫卫生”只能由甲完成;每间客房“打扫卫生”完成后,才能进行该客房的其他三个步骤,这三个步骤可由任意工作人员完成并可同时进行;②一个步骤只能由一名工作人员完成,此步骤完成后该工作人员才能进行其他步骤;③每个步骤所需时间如表所示:步骤打扫卫生整理床铺更换客用物品检查设备所需时间/分钟9764在不考虑其他因素的前提下,若由甲单独完成一间客房的清洁工作,需要分钟;若由甲、乙、丙合作完成四间客房的清洁工作,则最少需要分钟.7.(2024•通州区一模)某公司筹备一场展览会,现列出筹备展览会的各项工作.具体筹备工作包含以下内容(见表).其中,“前期工作”是指相对于某项工作,排在该工作之前需完成的工作称为该工作的前期工作.工作代码工作名称持续时间(天)前期工作A张贴海报、收集作品7无B购买展览用品3无C打扫展厅1无D展厅装饰3CE展位设计与布置3ABDF展品布置2EG宣传语与环境布置2ABDH展前检查1FG(1)在前期工作结束后,完成“展厅装饰”最短需要天;(2)完成本次展览会所有筹备工作的最短总工期需要天.8.(2024•大兴区一模)某公园门票价格如下表:购票人数1~4041~8080以上门票价格20元/人16元/人13元/人某学校组织摄影、美术两个社团的学生游览该公园,两社团的人数分别为a和b(a>b).若两社团分别以各自社团为单位购票,共需1560元;若两社团作为一个团体合在一起购票,共需1170元,那么这两个社团的人数为a=,b=.9.(2024•房山区一模)在一次综合实践活动中,某小组用Ⅰ号、Ⅱ号两种零件可以组装出五款不同的成品,编号分别为A,B,C,D,E,每个成品的总零件个数及所需的Ⅰ号、Ⅱ号零件个数如下:成品编号Ⅰ号零件个数Ⅱ号零件个数总零件个数A347B549C4610D437E628选用两种零件总数不超过25个,每款成品最多组装一个.(1)如果Ⅰ号零件个数不少于11个,且不多于13个,写出一种满足条件的组装方案(写出要组装成品的编号);(2)如果Ⅰ号零件个数不少于11个,且不多于13个,同时所需的Ⅱ号零件最多,写出满足条件的组装方案(写出要组装成品的编号).10.(2024•平谷区一模)某工艺坊加工一件艺术品,完成该任务共需A,B,C,D,E,F六道工序,其中A,B是前期准备阶段,C,D,E是中期制作阶段,F为最后的扫尾阶段,三个阶段不能改变顺序,也不能同时进行,但各阶段内的几个工序可以同时进行,完成各道工序所需时间如表所示:阶段准备阶段中期制作阶段扫尾阶段工序A B C D E F 所需时间/分钟1115201763100701008050不能缩短加工时间每缩短一分钟需要增加投入费用/元在不考虑其它因素的前提下,加工该件艺术品最少需要分钟;现因情况有变,需将加工时间缩短到30分钟.每道工序加工时间每缩短一分钟需要增加投入费用如表,则所增加的投入最少是元.11.(2024•延庆区一模)小明是某蛋糕店的会员,他有一张会员卡,在该店购买的商品均按定价打八五折.周末他去蛋糕店,发现店内正在举办特惠活动:任选两件商品,第二件打七折,如果两件商品不同价,则按照低价商品的价格打折,并且特惠活动不能使用会员卡.小明打算在该店购买两个面包,他计算后发现,使用会员卡与参加特惠活动两者的花费相差0.9元,则花费较少(直接填写序号:①使用会员卡;②参加特惠活动);两个面包的定价相差元.12.(2024•门头沟区一模)5月20日是中国学生营养日,青少年合理膳食是社会公共卫生关注的问题之一,某食堂为了均衡学生的营养,特设置如下菜单,每种菜品所含的热量,脂肪和蛋白质如下:编号菜名类别热量/千焦脂肪/g蛋白质/g1宫保鸡丁荤菜10331872炸鸡排荤菜125419203糖醋鱼块荤菜211218144土豆炖牛肉荤菜109523165香菇油菜素菜9111176家常豆腐素菜102016137清炒冬瓜素菜564718韭菜炒豆芽素菜491239米饭主食3601810紫菜鸡蛋汤汤10058学校规定每份午餐由1份荤菜,2份素菜,1份汤和1碗米饭搭配.小明想要搭配一份营养午餐,那么他摄入的脂肪最低量是g.(12岁﹣14岁的青少年男生午餐营养标准:摄入热量为2450千焦,摄入蛋白质为65g,蛋白质越接近标准越营养).13.(2024•顺义区一模)小明观看了纸牌魔术表演,非常感兴趣,并做了如下实验和探究:将几张纸牌摞起来(从上面分别记为第1张,第2张,第3张…),先将第1张牌放到整摞牌的下面,再去掉第2张牌;继续将第3张牌放在整摞牌的下面,再去掉第4张牌…如此循环往复,最终到只留下一张纸牌为止.例如,若将4张纸牌摞起来,按上述规则操作,陆续去掉第2张,第4张,第3张,最终留下第1张纸牌.将8张纸牌摞起来,按上述规则操作,最终留下的是第张纸牌;将m张纸牌摞起来,按上述规则操作,若最终留下的是第1张纸牌,则m=(用含n的代数式表示,其中n为自然数).14.(2024•燕山一模)学校组织学生到某工艺品加工厂参加劳动实践活动.用甲、乙两台设备加工三件工艺品,编号分别为A,B,C,加工要求如下:①每台设备同一时间只能加工一件工艺品;②每件工艺品须先在设备甲上加工完成后,才能进入设备乙加工;③每件工艺品在每台设备上所需要的加工时间(单位:min)如表所示:A B C加工时间工艺品编号设备甲724乙256(1)若要求A,B,C三件工艺品全部加工完成的总时长不超过20min,请写出一种满足条件的加工方案(按顺序写出工艺品的编号);(2)A,B,C三件工艺品全部加工完成,至少需要min.。

[中考专题]2022年北京市中考数学历年真题汇总 卷(Ⅲ)(含答案及详解)

[中考专题]2022年北京市中考数学历年真题汇总 卷(Ⅲ)(含答案及详解)

2022年北京市中考数学历年真题汇总 卷(Ⅲ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、若()()2105x mx x x n +-=-+,则m n 的值为( ) A .6- B .8 C .16- D .18 2、质检部门从同一批次1000件产品中随机抽取100件进行检测,检测出次品3件,由此估计这一批次产品中次品件数是( )A .60B .30C .600D .3003、定义一种新运算:2a b a b ⊕=+,2a b a b =※,则方程()()1232x x +=⊕-※的解是( ) A .112x =,22x =- B .11x =-,212x = C .112x =-,22x = D .11x =,212x =-4、如图,点P 是▱ABCD 边AD 上的一点,E ,F 分别是BP ,CP 的中点,已知▱ABCD 面积为16,那么△PEF 的面积为( )·线○封○密○外A .8B .6C .4D .25、多项式()22x --去括号,得( )A .22x --B .22x -+C .24x --D .24x -+6、下列说法中错误的是( )A .若a b <,则11+<+a bB .若22a b ->-,则a b <C .若a b <,则ac bc <D .若()()2211a c b c +<+,则a b <7、人类的遗传物质是DNA ,其中最短的22号染色体含 30000000个核苷酸,30000000用科学记数法表示为( )A .3×106B .3×107C .3×108D .0.3×1088、如图所示,BE ⊥AC 于点D ,且AD =CD ,BD =ED ,若∠ABC =54°,则∠E =( )A .25°B .27°C .30°D .45° 9、若a b ,则下列分式化简正确的是( )A .22a a b b +=+B .22a a b b -=-C .22a a b b =D .22a a b b= 10、下列说法正确的是( )A .2mn π的系数是2πB .28ab 2-的次数是5次C .3234xy x y +-的常数项为4D .21165x x -+是三次三项式 第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分)1、如图,点A 在第二象限内,AC ⊥OB 于点C ,B (-6,0),OA =4,∠AOB =60°,则△AOC 的面积是______.2、点P 为边长为2的正方形ABCD 内一点,PBC 是等边三角形,点M 为BC 中点,N 是线段BP 上一动点,将线段MN 绕点M 顺时针旋转60°得到线段MQ ,连接AQ 、PQ ,则AQ PQ+的最小值为______.3、2.25的倒数是__________.4、多项式2a 2b -abc 的次数是______.5、如图,B 、C 、D 在同一直线上,90B D ∠=∠=︒,2AB CD ==,6BC DE ==,则ACE 的面积为_______. ·线○封○密○外三、解答题(5小题,每小题10分,共计50分)1、计算:201122π-⎛⎫⎫-⎪⎪⎝⎭⎭2、解方程(组)(1)3122123m m-+-=;(2)323123m n m nm n m n+-⎧+=⎪⎪⎨+-⎪-=-⎪⎩.3、一艘轮船在相距120千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,从乙地到甲地逆流航行用10小时.(请列方程或方程组解答)(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间的丙地新建一个码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少千米?4、某中学九年级学生共进行了五次体育模拟测试,已知甲、乙两位同学五次模拟测试成绩的均分相同,小明根据甲同学的五次测试成绩绘制了尚不完整的统计表,并给出了乙同学五次测试成绩的方差的计算过程.甲同学五次体育模拟测试成绩统计表:小明将乙同学五次模拟测试成绩直接代入方差公式,计算过程如下:2222221(2628)(2828)(2728)(2928)(3028)25S ⎡⎤=-+-+-+-+-=⎣⎦乙(分2) 根据上述信息,完成下列问题: (1)a 的值是______; (2)根据甲、乙两位同学这五次模拟测试成绩,你认为谁的体育成绩更好?并说明理由; (3)如果甲再测试1次,第六次模拟测试成绩为28分,与前5次相比,甲6次模拟测试成绩的方差将______.(填“变大”“变小”或“不变”) 5、(1)计算:011)()sin 452π--︒. (2)用适当的方法解一元二次方程:2760x x ++=. -参考答案-一、单选题1、D【分析】根据多项式乘以多项式展开,根据多项式相等即可求得对应字母的值,进而代入代数式求解即可.【详解】 解:()()2555x x n x nx x n -+=+--, ()()2105x mx x x n +-=-+, 5nx x mx ∴-=,510n -=-,5n m ∴-=,2n =,解得:3m =-,2n =,·线○封○密○外3128m n -∴==. 故选:D .【点睛】本题考查了多项式乘以多项式,负整数指数幂,掌握以上知识是解题的关键.2、B【分析】根据样本的百分比为3%,用1000乘以3%即可求得答案.【详解】解:∵随机抽取100件进行检测,检测出次品3件,∴估计1000件产品中次品件数是3100030100⨯= 故选B【点睛】本题考查了根据样本求总体,掌握利用样本估计总体是解题的关键.3、A【分析】根据新定义列出关于x 的方程,解方程即可.【详解】解:由题意得,方程()()1232x x +=⊕-※,化为22(1)62x x +=+-,整理得,22320x x +-=,2,3,2a b c ===-,∴354x -±==,解得:112x =,22x =-, 故选A .【点睛】本题考查了公式法解一元二次方程,正确理解新运算、掌握公式法解一元二次方程的一般步骤是解题的关键. 4、D 【分析】 根据平行线间的距离处处相等,得到=8PBC S △,根据EF 是△PBC 的中位线,得到△PEF ∽△PBC ,EF =12BC ,得到1=4PEF PBC S S △△计算即可. 【详解】 ∵点P 是▱ABCD 边AD 上的一点,且 ▱ABCD 面积为16, ∴1==82PBC ABCD S S △平行四边形; ∵E ,F 分别是BP ,CP 的中点, ∴EF ∥BC ,EF =12BC , ∴△PEF ∽△PBC , ∴21=()4PEF PBC PBC EF S S S BC =△△△, ∴1=824PEF S ⨯=△, 故选D . 【点睛】 本题考查了平行四边形的性质,三角形中位线定理,三角形相似的判定和性质,熟练掌握中位线定理,灵活运用三角形相似的性质是解题的关键. ·线○封○密○外5、D【分析】利用去括号法则变形即可得到结果.【详解】解:−2(x −2)=-2x +4,故选:D .【点睛】本题考查了去括号与添括号,掌握如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反是解题的关键.6、C【分析】根据不等式的性质进行分析判断.【详解】解:A 、若a b <,则11+<+a b ,故选项正确,不合题意;B 、若22a b ->-,则a b <,故选项正确,不合题意;C 、若a b <,若c =0,则ac bc =,故选项错误,符合题意;D 、若()()2211a c b c +<+,则a b <,故选项正确,不合题意;故选C .【点睛】本题考查了不等式的性质.解题的关键是掌握不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.7、B【分析】用科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a |<10,n 为整数,据此判断即可.【详解】解:30000000=3×107.故选:B .【点睛】 本题主要考查了用科学记数法表示较大的数,一般形式为a ×10n ,其中1≤|a |<10,确定a 与n 的值是解题的关键. 8、B 【分析】 根据BE ⊥AC ,AD =CD ,得到AB=BC ,12ABE ∠=∠ABC ,证明△ABD ≌△CED ,求出∠E =∠ABE =27°. 【详解】 解:∵BE ⊥AC ,AD =CD , ∴BE 是AC 的垂直平分线, ∴AB=BC , ∴12ABE ∠=∠ABC =27°, ∵AD =CD ,BD =ED ,∠ADB =∠CDE , ∴△ABD ≌△CED , ∴∠E =∠ABE =27°, 故选:B . 【点睛】 ·线○封○密○外此题考查了线段垂直平分线的性质,全等三角形的判定及性质,熟记线段垂直平分线的性质是解题的关键.9、C【分析】由a b ,令3a =,4b =再逐一通过计算判断各选项,从而可得答案.【详解】解:当3a =,4b =时,34a b =,2526a b +=+,故A 不符合题意; 2122a b -=-,故B 不符合题意; 而2,2a a b b= 故C 符合题意; 22916a b =.故D 不符合题意 故选:C .【点睛】本题考查的是利用特值法判断分式的变形,同时考查分式的基本性质,掌握“利用特值法解决选择题或填空题”是解本题的关键.10、A【分析】根据单项式的系数、次数的定义以及多项式次数、项数、常数项的定义可解决此题.【详解】解:A 、2mn π的系数是2π,故选项正确;B 、28ab 2-的次数是3次,故选项错误;C 、3234xy x y +-的常数项为-4,故选项错误;D 、21165x x -+是二次三项式,故选项错误; 故选A . 【点睛】 本题主要考查单项式的系数、次数的定义以及多项式次数、项数、常数项的定义,熟练掌握单项式的系数、次数的定义以及多项式次数、项数、常数项的定义是解决本题的关键. 二、填空题 1、【分析】 利用直角三角形的性质和勾股定理求出OC 和AC 的长,再运用三角形面积公式求出即可. 【详解】 解:∵AC ⊥OB , ∴90ACO ∠=︒ ∵∠AOB =60°, ∴30CAO ∠=︒∵OA =4, ∴122OC CA == 在Rt △ACO中,AC =∴11222AOC S AC CO ∆==⨯=故答案为:·线○封○密·○外【点睛】本题主要考查了坐标与图形的性质,直角三角形的性质,勾股定理以及三角形的面积等知识,求出OC 和AC 的长是解答本题的关键.2【分析】如图,取,BP PC 的中点,E F ,连接EF ,,EM AM ,PM ,证明BMN EMQ ≌,进而证明Q 在EF 上运动, 且EF 垂直平分PM ,根据AQ PQ AQ MQ AM +=+≥,求得最值,根据正方形的性质和勾股定理求得AM 的长即可求得AQ PQ +的最小值.【详解】解:如图,取,BP PC 的中点,E F ,连接EF ,,EM AM ,PM ,将线段MN 绕点M 顺时针旋转60°得到线段MQ ,MN MQ ∴=,60NMQ ∠=︒ PBC 是等边三角形,PB BC ∴=,60PBC ∠=︒,E F 是,BP PC 的中点,M 是BC 的中点BM BE ∴=BEM ∴是等边三角形BME ∴∠60=︒,BM BE =NMQ BME ∴∠=∠BME NME NMQ NME ∴∠-∠=∠-∠ 即BMB EMQ ∠=∠ 在BMN △和EMQ 中, BM EM BMN EMQ MN MQ =⎧⎪∠-⎨⎪=⎩ ∴BMN EMQ ≌ 60MEQ MBN ∴∠=∠=︒ 又60EMB ∠=︒ MEQ EMB ∴∠=∠ EQ BC ∴∥,E F 是,BP PC 的中点 EF BC ∴∥ Q ∴点在EF 上 M 是BC 的中点,PBC 是等边三角,PM BC ∴⊥ EF PM ∴⊥ 又11,22EP PB EM EB PB === EP EM ∴= EF ∴垂直平分PM QP QM ∴= ·线○封○密·○外AQ PQ AQ MQ AM∴+=+≥即AQ PQ+的最小值为AM四边形ABCD是正方形,且2AB=AM∴==∴AQ PQ+【点睛】本题考查了正方形的性质等边三角形的性质,旋转的性质,全等三角形的性质与判定,勾股定理,垂直平分线的性质与判定,根据以上知识转化线段是解题的关键.3、4 9【分析】2.25的倒数为12.25,计算求解即可.【详解】解:由题意知,2.25的倒数为14 2.259=故答案为:49.【点睛】本题考查了倒数.解题的关键在于理解倒数的定义.4、3【分析】利用几个单项式的和叫做多项式,每个单项式叫做多项式的项,多项式中次数最高的项的次数叫做多项式的次数,据此求解即可.【详解】解:多项式2a 2b -abc 的次数是3.故答案为:3.【点睛】本题主要考查了多项式,正确把握多项式的项数和次数确定方法是解题关键.5、20【分析】根据题意由“SAS ”可证△ABC ≌△CDE ,得AC =CE ,∠ACB =∠CED ,再证∠ACE =90°,然后由勾股定理可求AC 的长,进而利用三角形面积公式即可求解. 【详解】 解:在△ABC 和△CDE 中, AB CD B D BC DE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△CDE (SAS ), ∴AC =CE ,∠ACB =∠CED ,∵∠CED +∠ECD =90°,∴∠ACB +∠ECD =90°,∴∠ACE =90°,∵∠B =90°,AB =2,BC =6,∴AC∴CE=·线○封○密○外∴S △ACE =12AC ×CE =12×,故答案为:20.【点睛】本题考查全等三角形的判定和性质,勾股定理,等腰直角三角形的性质等知识,证明△ABC ≌△CDE 是解题的关键.三、解答题1、4【分析】先根据绝对值的意义、负整数指数幂的性质、二次根式的化简和零指数幂分别化简,再计算即可.【详解】解:原式1414=+-=【点睛】此题考查了实数的混合运算,掌握相应的运算性质和运算法则是解答此题的关键.2、(1)135=m (2)42m n =⎧⎨=-⎩ 【分析】(1)方程去分母,去括号,移项合并,把m 系数化为1,即可求出解;(2)把原方程组整理后,再利用加减消元法解答即可.【小题1】解:3122123m m -+-=, 去分母得:()()3316222m m --=+, 去括号得:93644m m --=+, 移项合并得:513m = 解得:135=m ; 【小题2】 方程组整理得:51856m n m n +=⎧⎨+=-⎩①②, ①×5-②得:2496m =, 解得:4m =,代入①中, 解得:2n =-,所以原方程组的解为:42m n =⎧⎨=-⎩. 【点睛】 此题考查了解一元一次方程以及解二元一次方程组,掌握消元的思想和消元的方法是解题的关键,消元的方法有:代入消元法与加减消元法.3、(1)静水中的速度是16千米/小时,水流速度是4千米/小时(2)75千米【分析】(1)设该轮船在静水中的速度是x 千米/小时,水流速度是y 千米/小时,根据路程=速度×时间,即可得出关于x ,y 的二元一次方程组,解之即可得出结论; ·线○封○密○外(2)设甲、丙两地相距a千米,则乙、丙两地相距(120-a)千米,根据时间=路程÷速度,即可得出关于a的一元一次方程,解之即可得出结论.【小题1】解:设该轮船在静水中的速度是x千米/小时,水流速度是y千米/小时,依题意,得:()()6120 10120x yx y⎧+=⎪⎨-=⎪⎩,解得:164xy=⎧⎨=⎩,答:该轮船在静水中的速度是16千米/小时,水流速度是4千米/小时.【小题2】设甲、丙两地相距a千米,则乙、丙两地相距(120-a)千米,依题意,得:120 164164a a-=+-,解得:a=75,答:甲、丙两地相距75千米.【点睛】本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程.4、(1)29(2)乙的体育成绩更好,理由见解析(3)变小【分析】(1)根据平均分相同,根据乙的方差公式可得乙的平均分为28,则甲的平均分也为28,进而求得a的值;(2)根据甲的成绩计算甲的方差,比较甲乙的方差,方差小的体育成绩更好;(3)根据第六次的成绩等于平均数,根据方差公式可知方差将变小.(1) 解:甲、乙两位同学五次模拟测试成绩的均分相同, 乙的方差为:2222221(2628)(2828)(2728)(2928)(3028)25S ⎡⎤=-+-+-+-+-=⎣⎦乙 则平均分为28 所以甲的平均分为28 则25292730528a ++++=⨯ 解得29a = 故答案为:29 (2) 乙的成绩更好,理由如下, 2222221(2528)(2928)(2728)(2928)(3028) 3.25S ⎡⎤=-+-+-+-+-=⎣⎦甲 ∴2S 乙<2S 甲 ∴乙的成绩较稳定,则乙的体育成绩更好 (3) 222222218(2528)(2928)(2728)(2928)(3028)(2828) 2.763S +⎡⎤=-+-+-+-+--=≈⎣⎦甲 2.7 3.2< ∴甲6次模拟测试成绩的方差将变小故答案为:变小【点睛】·线○封○密○外本题考查了求方差,平均数,根据方差判断稳定性,掌握求方差的公式是解题的关键.5、(1);(2)11x =-,26x =- 【分析】(1)先计算零指数幂,分母有理化,负指数幂,特殊三角函数值,再合并同类项即可;(2)因式分解法解一元二次方程.【详解】(1)解:011)()sin 452π--︒,=12,=112+-=2; (2)解:原方程分解因式得(1)(6)0x x ++=,∴ 10x +=或60x +=,解得11x =-,26x =-.【点睛】本题考查含有锐角三角函数的实数混合运算,零指数幂,负指数幂,二次根式分母有理化,一元二次方程的解法,掌握含有锐角三角函数的实数混合运算,零指数幂,负指数幂,二次根式分母有理化,一元二次方程的解法.。

中考数学:以三角形为载体的几何压轴问题真题+模拟(原卷版北京专用)

中考数学:以三角形为载体的几何压轴问题真题+模拟(原卷版北京专用)

中考数学以三角形为载体的几何压轴问题【方法归纳】北京市中考的倒数第二道大题多数是已三角形为载体的几何综合问题,主要涉及特殊的三角形及相似三角形,这类问题的解决要熟知知各种图形的性质与判定,并且这类题目的解决有时还需要全等三角形和相似三角形、勾股定理、方程思想与分类讨论的相关知识,因此能熟练应用各种知识是解决此类问题的关键.常用到的三角形的知识有:(1)涉及全等问题解题要领:①探求两个三角形全等的条件:SSS,SAS,ASA,AAS及HL,注意挖掘问题中的隐含等量关系,防止误用“SSA”;②掌握并记忆一些基本构成图形中的等量关系;③把握问题中的关键,通过关键条件,发现并添加辅助线.(2)涉及到计算边的关系解题要领:①线段的垂直平分线常常用于构造等腰三角形;②在直角三角形中求边的长度,常常要用到勾股定理;③根据三角形的三边长度,利用勾股定理的逆定理可判断其为直角三角形;④已知直角三角形斜边的中点,考虑运用直角三角形斜边上中线的性质;⑤直角三角形斜边上中线的性质存在逆定理.(3)涉及角平分线问题的解题要领:①已知角的平分线及角平分线上的点到角一边的垂线段,考虑用角平分线的性质;②角平分线的性质常常与三角形的面积相结合.解题要领:(4)涉及到直角三角形方面的解题要领:①已知直角三角形及其锐角求线段长度时,运用锐角三角函数是最常用的方法;②通过等腰三角形的性质,特殊平行四边形的性质及圆的性质构建直角三角形,再运用锐角三角函数求解;③熟记特殊直角三角形的三边关系:30°角的直角三角形的三边的比为1∶∶2,等腰直角三角形的三边关系为1∶1∶;④锐角三角函数也常常作为相似三角形中,求对应边的比值的补充.【典例剖析】【例1】(2021·北京·中考真题)如图,在△ABC中,AB=AC,∠BAC=α,M为BC的中点,点D在MC上,以点A为中心,将线段AD顺时针旋转α得到线段AE,连接BE,DE.(1)比较∠BAE与∠CAD的大小;用等式表示线段BE,BM,MD之间的数量关系,并证明;(2)过点M作AB的垂线,交DE于点N,用等式表示线段NE与ND的数量关系,并证明.6.(2022·北京·中考真题)在△ABC中,∠ACB=90∘,D为△ABC内一点,连接BD,DC,延长DC到点E,使得CE=DC.(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF,若AF⊥EF,求证:BD⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2,若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.【真题再现】1.(2013·北京·中考真题)在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.2.(2017·北京·中考真题)在等腰直角△ABC中,∠ACB=90°,P是线段BC上一动点(与点B、C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.(1)若∠P AC=α,求∠AMQ的大小(用含α的式子表示).(2)用等式表示线段MB与PQ之间的数量关系,并证明.3.(2019·北京·中考真题)已知∠AOB=30°,H为射线OA上一定点,OH=√3+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M总有ON=QP,并证明.4.(2020·北京·中考真题)在△ABC中,∠C=90°,AC>BC,D是AB的中点.E为直线上一动点,连接DE,过点D作DF⊥DE,交直线BC于点F,连接EF.(1)如图1,当E是线段AC的中点时,设AE=a,BF=b,求EF的长(用含a,b的式子表示);(2)当点E在线段CA的延长线上时,依题意补全图2,用等式表示线段AE,EF,BF之间的数量关系,并证明.【模拟精练】一、解答题1.(2022·北京市广渠门中学模拟预测)如图,等腰Rt△ABC中,∠BAC=90°,AB=AC,点P为射线BC上一动点(不与点B、C重合),以点P为中心,将线段PC逆时针旋转α角,得到线段PQ,连接AP、BQ、M为线段BQ的中点.(1)若点P在线段BC上,且M恰好也为AP的中点,的值;①依题意在图1中补全图形:②求出此时α的值和BPPC(2)写出一个α的值,使得对于任意线段BC延长线上的点P,总有AP的值为定值,并证明;PM2.(2022·北京房山·二模)如图1,在四边形ABCD中,∠ABC=∠BCD,过点A作AE∥DC交BC边于点E,过点E作EF∥AB交CD边于点F,连接AF,过点C作CH∥AF交AE于点H,连接BH.(1)求证:△ABH≌△EAF;(2)如图2,若BH的延长线经过AF的中点M,求BE的值.EC3.(2022·北京东城·二模)如图,在△ABC中,AB=AC,∠CAB=2α,在△ABC的外侧作直线AP(90°−a<∠PAC<180°−2a),作点C关于直线AP的对称点D,连接AD,BD,BD交直线AP于点E.(1)依题意补全图形;(2)连接CE,求证:∠ACE=∠ABE;(3)过点A作AF⊥CE于点F,用等式表示线段BE,2EF,DE之间的数量关系,并证明.4.(2022·北京·二模)在Rt△ABC中,∠ACB=90°,CD是AB边的中线,DE⊥BC于E,连接CD,点P在射线CB上(与B,C不重合)(1)如果∠A=30°①如图1,DE与BE之间的数量关系是______②如图2,点P在线段CB上,连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论.(2)如图3,若点P在线段CB的延长线上,且∠A=α(0°<α<90°),连接DP,将线段DP 绕点逆时针旋转2α得到线段DF,连接BF,请直接写出DE、BF、BP三者的数量关系(不需证明).5.(2022·北京密云·二模)如图,在等边△ABC中,点D在BA的延长线上,点P是BC边上的一个动点(点P不与点B重合),将线段PD绕点P逆时针旋转60°得到线段PE,连接BE和DE.(1)依据题意,补全图形;(2)比较∠BDE与∠BPE的大小,并证明;(3)用等式表示线段BE、BP与BD之间的数量关系,并证明.6.(2022·北京西城·二模)在△ABC中,AB=AC,过点C作射线CB′,使∠ACB′=∠ACB(点B′与点B在直线AC的异侧)点D是射线CB′上一动点(不与点C重合),点E在线段BC上,且∠DAE+∠ACD=90°.(1)如图1,当点E与点C重合时,AD 与CB′的位置关系是______,若BC=a,则CD的长为______;(用含a的式子表示)(2)如图2,当点E与点C不重合时,连接DE.①用等式表示∠BAC与∠DAE之间的数量关系,并证明;②用等式表示线段BE,CD,DE之间的数量关系,并证明.7.(2022·北京门头沟·二模)如图,在△ABC中,∠ACB = 90°,D是BC的中点,过点C作CE⊥AD,交AD于点E,交AB于点F,作点E关于直线AC的对称点G,连接AG和GC,过点B作BM⊥GC交GC的延长线于点M.(1)①根据题意,补全图形;②比较∠BCF与∠BCM的大小,并证明.(2)过点B作BN⊥CF交CF的延长线于点N,用等式表示线段AG,EN与BM的数量关系,并证明.8.(2022·北京顺义·二模)如图,在△ABC中,∠ACB=90°,AC=BC,P,D为射线AB上两点(点D在点P的左侧),且PD=BC,连接CP.以P为中心,将线段PD逆时针旋转n°(0<n<180)得线段PE.(1)如图1,当四边形ACPE是平行四边形时,画出图形,并直接写出n的值;(2)当n=135°时,M为线段AE的中点,连接PM.①在图2中依题意补全图形;②用等式表示线段CP与PM之间的数量关系,并证明.9.(2022·北京北京·二模)在△ABC中,∠ACB=90°,CA=CB,D是AB的中点,E为边AC上一动点(不与点A,C重合),连接DE,将线段BA绕点B逆时针旋转90°得到线段BF,过点F作FH⊥DE于点H,交射线BC于点G.(1)如图1,当AE<EC时,比较∠ADE与∠BFG的大小;用等式表示线段BG与AE的数量关系,并证明;(2)如图2,当AE>EC时,依题意补全图2,用等式表示线段DE,CG,AC之间的数量关系.10.(2022·北京四中模拟预测)已知,点B是射线AP上一动点,以AB为边作△ABC,∠BCA= 90°,∠A=60°,将射线BC绕点B顺时针旋转120°,得到射线BD,点E在射线BD上,BE+BC= m.(1)如图1,若BE=BC,求CE的长(用含m的式子表示);(2)如图2,点F在线段AB上,连接CF、EF.添加一个条件:AF、BC、BE满足的等量关系为______,使得EF=CF成立,补全图形并证明.11.(2022·北京昌平·二模)如图,已知∠MON=α(0°<α<90°),OP是∠MON的平分线,点A是射线OM上一点,点A关于OP对称点B在射线ON上,连接AB交OP于点C,过点A作ON 的垂线,分别交OP,ON于点D,E,作∠OAE的平分线AQ,射线AQ与OP,ON分别交于点F,G.(1)①依题意补全图形;②求∠BAE度数;(用含α的式子表示)(2)写出一个α的值,使得对于射线OM上任意的点A总有OD=√2AF(点A不与点O重合),并证明.12.(2022·北京海淀·二模)已知AB = BC,∠ABC = 90°,直线l是过点B的一条动直线(不与直线AB,BC重合),分别过点A,C作直线l的垂线,垂足为D,E.(1)如图1,当45°<∠ABD<90°时,①求证:CE +DE =AD;②连接AE,过点D作DH⊥AE于H,过点A作AF∥BC交DH的延长线于点F.依题意补全图形,用等式表示线段DF,BE,DE的数量关系,并证明;(2)在直线l运动的过程中,若DE的最大值为3,直接写出AB的长.13.(2022·北京市十一学校二模)如图,已知∠AOB=60°,点P为射线OA上的一个动点,过点P作PE⊥OB,交OB于点E,点D在∠AOB内,且满足∠DP A=∠OPE,DP+PE=5.(1)当DP=PE时,求DE的长;(2)在点P的运动过程中,请判断射线OA上是否存在一个定点M,使得DM的值不变?并证ME明你的判断.14.(2022·北京平谷·一模)如图,在△ABC中,∠ACB=90°,AC=BC,点D为AB边上一点(不与点A,B重合),作射线CD,过点A作AE⊥CD于E,在线段AE上截取EF=EC,连接BF交CD于G.(1)依题意补全图形;(2)求证:∠CAE=∠BCD;(3)判断线段BG与GF之间的数量关系,并证明.15.(2022·北京房山·一模)已知:等边△ABC,过点B作AC的平行线l.点P为射线AB上一个动点(不与点A,B重合),将射线PC绕点P顺时针旋转60°交直线l于点D.(1)如图1,点P在线段AB上时,依题意补全图形;①求证:∠BDP=∠PCB;②用等式表示线段BC,BD,BP之间的数里关系,并证明;(2)点P在线段AB的延长线上,直接写出线段BC,BD,BP之间的数量关系.16.(2022·北京市第一六一中学分校一模)已知点P为线段AB上一点,将线段AP绕点A 逆时针旋转60°,得到线段AC;再将线段BP绕点B逆时针旋转120°,得到线段BD;连接AD,取AD中点M,连接BM,CM.(1)如图1,当点P在线段CM上时,求证:PM//BD;(2)如图2,当点P不在线段CM上,写出线段BM与CM的数量关系与位置关系,并证明.17.(2022·北京·二模)如图,在等边ΔABC中,点D是边BC的中点,点E是直线BC上一动点,将线段AE绕点E逆时针旋转60°,得到线段EG,连接AG,BG.(1)如图1,当点E与点D重合时.①依题意补全图形;②判断AB与EG的位置关系;(2)如图2,取EG的中点F,写出直线DF与AB夹角的度数以及FD与EC的数量关系,并证明.18.(2022·北京朝阳·一模)在△ABC中,D是BC的中点,且∠BAD≠90°,将线段AB沿AD所在直线翻折,得到线段AB′,作CE∥AB交直线AB′于点E.(1)如图,若AB>AC,①依题意补全图形;②用等式表示线段AB,AE,CE之间的数量关系,并证明;(2)若AB<AC,上述结论是否仍然成立?若成立,简述理由:若不成立,直接用等式表示线段AB,AE,CE之间新的数量关系(不需证明).19.(2022·北京·中国人民大学附属中学分校一模)如图,正方形ABCD中,P为BD上一动点,过点P作PQ⊥AP交CD边于点Q.(1)求证:PA=PQ;(2)用等式表示PB、PD、AQ之间的数量关系,并证明;(3)点P从点B出发,沿BD方向移动,若移动的路径长为4,则AQ的中点M移动的路径长为(直接写出答案).20.(2022·北京·东直门中学模拟预测)在Rt△ABC中,∠ABC=90°,∠BAC=30°.D为边BC上一动点,点E在边AC上,CE=CD.点D关于点B的对称点为点F,连接AD,P 为AD的中点,连接PE,PF,EF.(1)如图1,当点D与点B重合时,写出线段PE与PF之间的位置关系与数量关系;(2)如图2,当点D与点B,C不重合时,判断(1)中所得的关系是否仍然成立?若成立,请给出证明,若不成立,请举出反例.21.(2022·北京西城·一模)已知正方形ABCD,将线段BA绕点B旋转α(0°<α<90°),得到线段BE,连接EA,EC.(1)如图1,当点E在正方形ABCD的内部时,若BE平分∠ABC,AB=4,则∠AEC=______°,四边形ABCE的面积为______;(2)当点E在正方形ABCD的外部时,①在图2中依题意补全图形,并求∠AEC的度数;②作∠EBC的平分线BF交EC于点G,交EA的延长线于点F,连接CF.用等式表示线段AE,FB,FC之间的数量关系,并证明.22.(2022·北京市三帆中学模拟预测)已知:如图所示△ABC绕点A逆时针旋转α得到△ADE (其中点B与点D对应).(1)如图1,点B关于直线AC的对称点为B′,求线段B′E与CD的数量关系;(2)当α=32°时,射线CB与射线ED交于点F,补全图2并求∠AFD.23.(2022·北京市第五中学分校模拟预测)如图,在△ABC中,AB=AC,∠BAC=40°,作射线CM,∠ACM=80°.D上,连接AD,E是AD的中点,C关于点E的对称点为F,连接DF.(1)依题意补全图形;(2)判断AB与DF的数量关系并证明;(3)平面内一点G,使得DG=DC,FG=FB,求∠CDG的值.24.(2022·北京朝阳·模拟预测)如图①,Rt△ABC和Rt△BDE重叠放置在一起,∠ABC=∠DBE=90°,且AB=2BC,BD=2BE.(1)观察猜想:图①中线段AD与CE的数量关系是,位置关系是;(2)探究证明:把△BDE绕点B顺时针旋转到图②的位置,连接AD,CE,判断线段AD与CE的数量关系和位置关系如何,并说明理由;(3)拓展延伸:若BC=√5,BE=1,当旋转角α=∠ACB时,请直接写出线段AD的长度.25.(2022·北京市师达中学模拟预测)四边形ABCD是正方形,将线段CD绕点C逆时针旋转2α(0°<α<45°),得到线段CE,连接DE,过点B作BF⊥DE交DE的延长线于F,连接BE.(1)依题意补全图1;(2)直接写出∠FBE的度数;(3)连接AF,用等式表示线段AF与DE的数量关系,并证明.26.(2012·北京顺义·中考模拟)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°.①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为,线段CF、BD的数量关系为.②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立?并说明理由;(2)如图4,如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.27.(2015·北京·模拟预测)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=√2,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.28.(2021·北京·二模)在等腰三角形ABC中,AB=AC,∠BAC=α (0°<α<60°).点P是△ABC内一动点,连接AP,BP,将△APB绕点A逆时针旋转α,使AB边与AC重合,得到△ADC,射线BP与CD或CD延长线交于点M(点M与点D不重合).(1)依题意补全图1和图2;由作图知,∠BAP与∠CAD的数量关系为;(2)探究∠ADM与∠APM的数量关系为;(3)如图1,若DP平分∠ADC,用等式表示线段BM,AP,CD之间的数量关系,并证明.。

中考数学:新定义创新型综合压轴问题真题+模拟(原卷版北京专用)

中考数学新定义创新型综合压轴问题【方法归纳】新定义"型问题是指在问题中定义了初中数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识进行理解,而后根据新定义进行运算、推理、迁移的一种题型。

它一般分为三种类型:(1)定义新运算;(2)定义初、高中知识衔接"新知识";(3)定义新概念.这类试题考查考生对"新定义"的理解和认识,以及灵活运用知识的能力,解题时需要将"新定义"的知识与已学知识联系起来,利用已有的知识经验来解决问题。

解决此类题的关键是(1)深刻理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论;(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的做题方法;归纳“举例”提供的分类情况;(3)依据新定义,运用类比、归纳、联想、分类讨论以及数形结合的数学思想方法解决题目中需要解决的问题。

北京中考最后一题的新定义主要涉及函数与圆的有关新定义问题,属于函数的范畴,已经考过“对应点”、“关联线段”、“平移距离”“闭距离”、“相关矩形”、“反称点”、“有界函数”、“关联点”等新定义。

在平时的教学过程中要从细节中挖掘出数学的本质特征,引领学生找到解决问题的思想方法。

解答这类问题的关键是要读懂题目提供的新知识,理解其本质,把它与已学的知识联系起来,把新的问题转化为已学的知识进行解决。

【典例剖析】【例1】(2022·北京·中考真题)在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P向右(a≥0)或向左(a<0)平移|a|个单位长度,再向上(b≥0)或向下(b<0)平移|b|个单位长度,得到点P′关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图,点M(1,1),点N在线段OM的延长线上,若点P(−2,0),点Q为点P的“对应点”.①在图中画出点Q;OM;②连接PQ,交线段ON于点T.求证:NT=12(2)⊙O的半径为1,M是⊙O上一点,点N在线段OM上,且ON=t(1<t<1),若P为⊙O外2一点,点Q为点P的“对应点”,连接PQ.当点M在⊙O上运动时直接写出PQ长的最大值与最小值的差(用含t的式子表示)【例2】(2021·北京·中考真题)在平面直角坐标系xOy中,⊙O的半径为1,对于点A和线段BC,给出如下定义:若将线段BC绕点A旋转可以得到⊙O的弦B′C′(B′,C′分别是B,C的对应点),则称线段BC是⊙O的以点A为中心的“关联线段”.(1)如图,点A,B1,C1,B2,C2,B3,的横、纵坐标都是整数.在线段B1C1,B2C2,B3C3中,⊙O 的以点A为中心的“关联线段”是______________;(2)△ABC是边长为1的等边三角形,点A(0,t),其中t≠0.若BC是⊙O的以点A为中心的“关联线段”,求t的值;(3)在△ABC中,AB=1,AC=2.若BC是⊙O的以点A为中心的“关联线段”,直接写出OA 的最小值和最大值,以及相应的BC长.【真题再现】1.(2020·北京·中考真题)在平面直角坐标系xOy中,⊙O的半径为1,A,B为⊙O外两点,AB=1.给出如下定义:平移线段AB,得到⊙O的弦A′B′(A′,B′分别为点A,B的对应点),线段AA′长度的最小值称为线段AB到⊙O的“平移距离”.(1)如图,平移线段AB 到⊙O 的长度为1的弦P 1P 2和P 3P 4,则这两条弦的位置关系是 ;在点P 1,P 2,P 3,P 4中,连接点A 与点 的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线y =√3x +2√3上,记线段AB 到⊙O 的“平移距离”为d 1,求d 1的最小值;(3)若点A 的坐标为(2,32),记线段AB 到⊙O 的“平移距离”为d 2,直接写出d 2的取值范围.2(2019·北京·中考真题)在△ABC 中,D ,E 分别是△ABC 两边的中点,如果DE⌢上的所有点都在△ABC 的内部或边上,则称DE⌢为△ABC 的中内弧.例如,下图中DE ⌢是△ABC 的一条中内弧.(1)如图,在Rt △ABC 中,AB =AC =2√2,D ,E 分别是AB ,AC 的中点.画出△ABC 的最长的中内弧DE⌢,并直接写出此时DE ⌢的长;(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t >0),在△ABC 中,D ,E 分别是AB ,AC 的中点.①若t =12,求△ABC 的中内弧DE⌢所在圆的圆心P 的纵坐标的取值范围;②若在△ABC 中存在一条中内弧DE⌢,使得DE ⌢所在圆的圆心P 在△ABC 的内部或边上,直接写出t 的取值范围.3.(2018·北京·中考真题)对于平面直角坐标系xOy 中的图形M ,N ,给出如下定义:P 为图形M 上任意一点,Q 为图形N 上任意一点,如果P ,Q 两点间的距离有最小值,那么称这个最小值为图形M ,N 间的“闭距离”,记作d (M ,N ).已知点A (−2,6),B (−2,−2),C (6,−2).(1)求d (点O ,△ABC );(2)记函数y =kx (−1≤x ≤1,k ≠0)的图象为图形G ,若d (G ,△ABC )=1,直接写出k 的取值范围;(3)⊙T 的圆心为T (t ,0),半径为1.若d (⊙T ,△ABC )=1,直接写出t 的取值范围. 4.(2017·北京·中考真题)在平面直角坐标系xOy 中的点P 和图形M ,给出如下的定义:若在图形M 存在一点Q ,使得P 、Q 两点间的距离小于或等于1,则称P 为图形M 的关联点.(1)当⊙O 的半径为2时,①在点P 1(12,0),P 2(12,√32),P 3(52,0) 中,⊙O 的关联点是_______________. ②点P 在直线y=-x 上,若P 为⊙O 的关联点,求点P 的横坐标的取值范围.(2)⊙C 的圆心在x 轴上,半径为2,直线y=-x+1与x 轴、y 轴交于点A 、B .若线段AB 上的所有点都是⊙C 的关联点,直接写出圆心C 的横坐标的取值范围.5.(2016·北京·中考真题)在平面直角坐标系xOy 中,点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2),且x 1≠x 2,y 1≠y 2,若P ,Q 为某个矩形的两个顶点,且该矩形的边均与,Q 的“相关矩形”.下图为点P ,Q 的“相关矩形”的示意图.(1)已知点A 的坐标为(1,0).①若点B 的坐标为(3,1)求点A ,B 的“相关矩形”的面积;②点C 在直线x=3上,若点A ,C 的“相关矩形”为正方形,求直线AC 的表达式;(2)⊙O 的半径为,点M 的坐标为(m ,3).若在⊙O 上存在一点N ,使得点M ,N 的“相关矩形”为正方形,求m 的取值范围.6.(2015·北京·中考真题)在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P关于⊙C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r,则称P′为点P关于⊙C的反称点,如图为点P及其关于⊙C的反称点P′的示意图.特别地,当点P′与圆心C重合时,规定CP′=0.(1)当⊙O的半径为1时.,0),T(1,√3)关于⊙O的反称点是否存在?若存在,求①分别判断点M(2,1),N(32其坐标;②点P在直线y=﹣x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P的横坐标的取值范围;x+2√3与x轴、y轴分别交于点A,B,若(2)⊙C的圆心在x轴上,半径为1,直线y=﹣√33线段AB上存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C的横坐标的取值范围.7.(2014·北京·中考真题)对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足−M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.(x>0)和y=x+1(−4<x≤2)是不是有界函数?若是有界函数,(1)分别判断函数y=1x求其边界值;(2)若函数y=−x+1(a⩽x⩽b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(−1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值≤t≤1?是t,当m在什么范围时,满足348.(2013·北京·中考真题)对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:若⊙C 上存在两个点A ,B ,使得∠APB=60°,则称P 为⊙C 的关联点.已知点D (,),E (0,-2),F (,0)(1)当⊙O 的半径为1时,①在点D ,E ,F 中,⊙O 的关联点是 ;②过点F 作直线交y 轴正半轴于点G ,使∠GFO=30°,若直线上的点P (m ,n )是⊙O 的关联点,求m 的取值范围;(2)若线段EF 上的所有点都是某个圆的关联点,求这个圆的半径r 的取值范围.【模拟精练】一、解答题1.(2022·北京朝阳二模)在平面直角坐标系xOy 中,⊙O 的半径为1,AB =1,且A ,B 两点中至少有一点在⊙O 外.给出如下定义:平移线段AB ,得到线段A ′B ′(A ′,B ′分别为点A ,B 的对应点),若线段A ′B ′上所有的点都在⊙O 的内部或⊙O 上,则线段AA ′长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图1,点A 1,B 1的坐标分别为(-3,0),(-2,0),线段A 1B 1到⊙O 的“平移距离”为___,点A 2,B 2的坐标分别为(-12,√3),(12,√3),线段A 2B 2到⊙O 的“平移距离”为___;(2)若点A,B都在直线y=√3x+2√3上,记线段AB到⊙O的“平移距离”为d,求d的最小值;(3)如图2,若点A坐标为(1,√3),线段AB到⊙O的“平移距离”为1,画图并说明所有满足条件的点B形成的图形(不需证明).2.(2022·北京北京·二模)在平面直角坐标系xOy中,⊙O的半径为1.对于线段PQ给出如下定义:若线段PQ与⊙O有两个交点M,N,且PM=MN=NQ,则称线段PQ是⊙O的“倍弦线”.(1)如图,点A,B,C,D的横、纵坐标都是整数.在线段AB,AD,CB,CD中,⊙O的“倍弦线”是_____________;(2)⊙O的“倍弦线”PQ与直线x=2交于点E,求点E纵坐标y E的取值范围;(3)若⊙O的“倍弦线”PQ过点(1,0),直线y=x+b与线段PQ有公共点,直接写出b的取值范围.3.(2022·北京大兴·二模)在平面直角坐标系xOy中,对于点P和直线y=1,给出如下定义:若点P在直线y=1上,且以点P为顶点的角是45°,则称点P为直线y=1的“关联点”.(1)若在直线x=1上存在直线y=1的“关联点”P.则点P的坐标为_____;(2)过点P(2,1)作两条射线,一条射线垂直于x轴,垂足为A;另一条射线、交x轴于点B,若点P为直线y=1的“关联点”.求点B的坐标;(3)以点O为圆心,1为半径作圆,若在⊙O上存在点N,使得∠OPN的顶点P为直线y=1的“关联点”.则点P的横坐标a的取值范围是________.4.(2022·北京东城·二模)在平面直角坐标系xOy中,对于图形G及过定点P(3,0)的直线l,有如下定义:过图形G上任意一点Q作QH⊥l于点H,若QH+PH有最大值,那么称这个最大值为图形G关于直线l的最佳射影距离,记作d(G,l),此时点Q称为图形G关于直线l的最佳射影点.(1)如图1,已知A(2,2),B(3,3),写出线段AB关于x轴的最佳射影距离d(AB,x轴)=____________;(2)已知点C(3,2),⊙C的半径为√2,求⊙C关于x轴的最佳射影距离d(⊙C,x轴),并写出此时⊙C关于x轴的最佳射影点Q的坐标;(3)直接写出点D(0,√3)关于直线l的最佳射影距离d(点D,l)的最大值.5.(2022·北京·清华附中一模)在平面直角坐标系xOy中,对于两个点P,Q和图形W,如果在图形W上存在点M,N(M,N可以重合)使得PM=QN,那么称点P与点Q是图形W的一对平衡点.(1)如图1,已知点A(0,3),B(2,3);①设点O与线段AB上一点的距离为d,则d的最小值是______,最大值是______;,0),P2(1,4),P3(−3,0)这三个点中,与点O是线段AB的一对平衡点的是______.②在P1(32(2)如图2,已知⊙O的半径为1,点D的坐标为(5,0).若点E(x,2)在第一象限,且点D 与点E是⊙O的一对平衡点,求x的取值范围;(3)如图3,已知点H(−3,0),以点O为圆心,OH长为半径画弧交x的正半轴于点K.点C(a,b)(其中b≥0)是坐标平面内一个动点,且OC=5,⊙C是以点C为圆心,半径为2的圆,若HK上的任意两个点都是⊙C的一对平衡点,直接写出b的取值范围.6.(2022·北京丰台·一模)在平面直角坐标系xOy中,⊙O的半径为1,T(0,t)为y轴上一点,P为平面上一点.给出如下定义:若在⊙O上存在一点Q,使得△TQP是等腰直角三角形,且∠TQP=90°,则称点P为⊙O的“等直点”,△TQP为⊙O的“等直三角形”.如图,点A,B,C,D的横、纵坐标都是整数.(1)当t=2时,在点A,B,C,D中,⊙O的“等直点”是;(2)当t=3时,若△TQP是⊙O“等直三角形”,且点P,Q都在第一象限,求CP的值.OQ 7.(2022·北京市第一六一中学分校一模)在平面直角坐标系xOy中,对于点P和图形W,如果线段OP与图形W无公共点,则称点P为关于图形W的“阳光点”;如果线段OP与图形W有公共点,则称点P为关于图形W的“阴影点”.(1)如图1,已知点A(1,3),B(1,1),连接AB.①在P1(1,4),P2(1,2),P3(2,3),P4(2,1)这四个点中,关于线段AB的“阳光点”是;②线段A1B1∥AB,A1B1上的所有点都是关于线段AB的“阴影点”,且当线段A1B1向上或向下平移时,都会有A1B1上的点成为关于线段AB的“阳光点”,若,A1B1的长为4,且点A1在B1的上方,则点A1的坐标为.(2)如图2,已知点C(1,√3),⊙C与y轴相切于点D,若⊙E的半径为3,圆心E在直线2l:y=−√3x+4√3上,且⊙E的所有点都是关于⊙C的“阴影点”,求点E的横坐标的取值范围;(3)如图3,⊙M的半径为3,点M到原点的距离为5,点N是⊙M上到原点距离最近的点,点Q和T是坐标平面的两个动点,且⊙M上的所有点都是关于△NQT的“阴影点”直接写出△NQT的周长的最小值.8.(2022·北京市第五中学分校模拟预测)定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段a与线段b的“冰雪距离”,已知O(0,0),A(1,√2),B (m,n),C(m,n+2)是平面直角坐标系中四点.(1)根据上述定义,完成下面的问题:①当m=2√2,n=√2时,如图1,线段BC与线段OA的“冰雪距离”是;②当m=2√2时,线段BC与线段OA的“冰雪距离”是√2,则n的取值范围是;(2)如图2,若点B落在圆心为A,半径为√2的圆上,当n≥√2时,线段BC与线段OA的“冰雪距离”记为d,结合图象,求d的最小值;(3)当m的值变化时,动线段BC与线段OA的“冰雪距离”始终为√2,线段BC的中点为M.直接写出点M随线段BC运动所走过的路径长.9.(2022·北京市师达中学模拟预测)如果一个圆上所有的点都在一个角的内部或边上,那么称这个圆为该角的角内圆.特别地,当这个圆与角的至少..一边相切时,称这个圆为该角的角内相切圆.在平面直角坐标系xOy中,点E,F分别在x轴的正半轴和y轴的正半轴上.(1)分别以点A(1,0),B(1,1),C(3,2)为圆心,1为半径作圆,得到⊙A,⊙B和⊙C,其中是∠EOF的角内圆的是;(2)如果以点D(t,2)为圆心,以1为半径的⊙D为∠EOF的角内圆,且与直线y=x有公共点,求t的取值范围;(3)点M在第一象限内,如果存在一个半径为1且过点P(2,2√3)的圆为∠EMO的角内相切圆,直接写出∠EOM的取值范围.10.(2021·北京朝阳·二模)在平面直角坐标系xOy中,对于图形Q和∠P,给出如下定义:若图形Q上的所有的点都在∠P的内部或∠P的边上,则∠P的最小值称为点P对图形Q的可视度.如图1,∠AOB的度数为点O对线段AB的可视度.(1)已知点N(2,0),在点M1(0,2√3),M2(1,√3),M3(2,3)中,对线段ON的可视度为360º的点是______.(2)如图2,已知点A(-2,2),B(-2,-2),C(2,-2),D(2,2),E(0,4).①直接写出点E对四边形ABCD的可视度为______°;②已知点F(a,4),若点F对四边形ABCD的可视度为45°,求a的值.11.(2022·北京四中模拟预测)在平面内,对点组A1,A2,...,An和点P给出如下定义:点P与点A1,A2,...,An的距离分别记作d1,d2,...,dn,数组d1,d2,...,dn的中位数称为点P对点组A1,A2,...,An的中位距离.例如,对点组A1(0,0),A2(0,3),A3(4,1)和点P(4,3),有d1=5,d2=4,d3=2,故点P对点组A1,A2,A3的中位距离为4.(1)设Z1(0,0),Z2(4,0),Z304),Y(0,3),直接写出点Y对点组Z1,Z2,Z3的中位距离;(2)设C1(0,0),C2(8,0),C3(6,6),则点Q1(7,3),Q2(3,3),Q3(4,0),Q4(4,2)中,对点组C1,C2,C3的中位距离最小的点是,该点对点组C1,C2,C3的中位距离为;(3)设M(1,0),N(0,√3),T1(t,0),T2(t+2,0),T3(t,2),若线段MN上任意一点对点组T1,T2,T3的中位距离都不超过2,直接写出实数t的取值范围.12.(2020·北京·人大附中模拟预测)在平面直角坐标系xOy中,对于平面中的点P,Q和图形M,若图形M上存在一点C,使∠PQC=90°,则称点Q为点P关于图形M的“折转点”,称△PCQ为点P关于图形M的“折转三角形”(1)已知点A(4,0),B(2,0)①在点Q1(2,2),Q2(1,−√3),Q3(4,−1)中,点O关于点A的“折转点”是______;②点D在直线y=−x上,若点D是点O关于线段AB的“折转点”,求点D的横坐标x D的取值范围;(2)⊙T的圆心为(t,0),半径为3,直线y=x+2与x,y轴分别交于E,F两点,点P为⊙T 上一点,若线段EF上存在点P关于⊙T的“折转点”,且对应的“折转三角形”是底边长为2的等腰三角形,直接写出t的取值范围.13.(2020·北京市陈经纶中学分校三模)平面直角坐标系xOy中,对于点M和图形W,若图形W上存在一点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称点M与图形W是“中心轴对称”的对于图形W1和图形W2,若图形W1和图形W2分别存在点M和点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称图形W1和图形W2是“中心轴对称”的.特别地,对于点M和点N,若存在一条经过原点的直线l,使得点M与点N关于直线l对称,则称点M和点N是“中心轴对称”的.(1)如图1,在正方形ABCD中,点A(1,0),点C(2,1),①下列四个点P1(0,1),P2(2,2),P3(−12,0),P4(−12,−√32)中,与点A是“中心轴对称”的是________;②点E在射线OB上,若点E与正方形ABC D是“中心轴对称”的,求点E的横坐标x E的取值范围;(2)四边形GHJK的四个顶点的坐标分别为G(−2,2),H(2,2),J(2,−2),K(−2,−2),一次函数y=√3x+b图象与x轴交于点M,与y轴交于点N,若线段与四边形GHJK是“中心轴对称”的,直接写出b的取值范围.14.(2022·北京房山·二模)对于平面直角坐标系xOy中的图形G和点Q,给出如下定义:将图形G绕点Q顺时针旋转90°得到图形N,图形N称为图形G关于点Q的“垂直图形”,例如,图1中线段OD为线段OC关于点O的“垂直图形”.(1)线段MN关于点M(1,1)的“垂直图形”为线段MP.①若点N的坐标为(1,2),则点P的坐标为__________;②若点P的坐标为(4,1),则点N的坐标为__________;(2)E(−3,3),F(−2,3),H(a,0).线段EF关于点H的“垂直图形”记为E′F′,点E的对应点为E′,点的对应点为F′.①求点E′的坐标(用含a的式子表示);②若⊙O的半径为2,E′F′上任意一点都在⊙O内部或圆上,直接写出满足条件的EE′的长度的最大值.15.(2022·北京丰台·xOy中,⊙O的半径为1,A为任意一点,B 为⊙O上任意一点,给出如下定义:记A,B两点间的距离的最小值为p(规定:点A在⊙O上时,p=0),最大值为q,那么把p+q的值称为点A与⊙O的“关联距离”,记作d(A,2⊙O)(1)如图,点D,E,F的横、纵坐标都是整数①d(D,⊙O)=__________;②若点M在线段EF上,求d(M,⊙O)的取值范围;(2)若点N在直线y=√3x+2√3上,直接写出d(N,⊙O)的取值范围;(3)正方形的边长为m,若点P在该正方形的边上运动时,满足d(P,⊙O)的最小值为1,最大值为√10,直接写出m的最小值和最大值.16.(2022·北京平谷·二模)对于平面直角坐标系xOy中的图形P,Q,给出如下定义:M为图形P上任意一点,N为图形Q上任意一点,如果M,N两点间的距离有最小值,那么称这个最小值为图形P,Q间的“非常距离”,记作d(P,Q).已知点A(−2,2),B(2,2),连接AB.(1)d(点O,AB)=;(2)⊙O半径为r,若d(⊙O,AB)=0,直接写出r的取值范围;(3)⊙O半径为r,若将点A绕点B逆时针旋转α°(0°<α<180°),得到点A′.①当α=30°时d(⊙O,A′)=0,求出此时r的值;②对于取定的r值,若存在两个α使d(⊙O,A′)=0,直接写出r的范围.17.(2022·北京密云·二模)对于平面直角坐标系xOy中的点P(2,3)与图形T,给出如下定义:在点P与图形T上各点连接的所有线段中,线段长度的最大值与最小值的差,称为图形T关于点P的“宽距”.(1)如图,⊙O的半径为2,且与x轴分别交于A,B两点.①线段AB关于点P的“宽距”为______;⊙O关于点P的“宽距”为______.②点M(m,0)为x轴正半轴上的一点,当线段AM关于点P的“宽距”为2时,求m的取值范围.(2)已知一次函数y=x+1的图象分别与x轴、y轴交于D、E两点,⊙C的圆心在x轴上,且⊙C的半径为1.若线段DE上的任意一点K都能使得⊙C关于点K的“宽距”为2,直接写出圆心C的横坐标x C的取值范围.18.(2022·北京门头沟·二模)我们规定:如图,点H在直线MN上,点P和点P′均在直线MN的上方,如果HP=HP′,∠PHM=∠P′HN,点P′就是点P关于直线MN的“反射点”,其中点H为“V点”,射线HP与射线HP′组成的图形为“V形”.在平面直角坐标系xOy中,(1)如果点P(0,3) ,H(1.5,0),那么点P关于x轴的反射点P′的坐标为;(2)已知点A(0,a) ,过点A作平行于x轴的直线l.①如果点B(5,3) 关于直线l的反射点B′和“V点”都在直线y=−x+4上,求点B′的坐标和a的值;②⊙W是以(3,2) 为圆心,1为半径的圆,如果某点关于直线l的反射点和“V点”都在直线y=−x+4上,且形成的“V形”恰好与⊙W有且只有两个交点,求a的取值范围.19.(2022·北京东城·一模)对于平面直角坐标系xOy中的点C及图形G,有如下定义:若图形G上存在A,B两点,使得△ABC为等腰直角三角形,且∠ABC=90°,则称点C为图形G的“友好点”.(1)已知点O(0,0),M(4,0),在点C1(0,4),C2(1,4),C3(2,−1)中,线段OM的“友好点”是_______;(2)直线y=−x+b分别交x轴、y轴于P,Q两点,若点C(2,1)为线段PQ的“友好点”,求b 的取值范围;(3)已知直线y=x+d(d>0)分别交x轴、y轴于E,F两点,若线段EF上的所有点都是半径为2的⊙O的“友好点”,直接写出d的取值范围.20.(2022·北京顺义·二模)在平面直角坐标系xOy中,对于点R和线段PQ,给出如下定义:M为线段PQ上任意一点,如果R,M两点间的距离的最小值恰好等于线段PQ的长,则称点R为线段PQ的“等距点”.(1)已知点A(5,0).①在点B1(−3,4),B2(1,5),B3(4,−3),B4(3,6)中,线段OA的“等距点”是______;②若点C在直线y=2x+5上,并且点C是线段OA的“等距点”,求点C的坐标;(2)已知点D(1,0),点E(0,−1),图形W是以点T(t,0)为圆心,1为半径的⊙T位于x轴及x 轴上方的部分.若图形W上存在线段DE的“等距点”,直接写出t的取值范围.21.(2022·北京市十一学校模拟预测)在平面直角坐标系xOy中,给出如下定义:点P为图形G上任意一点,将点P到原点O的最大距离与最小距离之差定义为图形G的“全距”.特别地,点P到原点O的最大距离与最小距离相等时,规定图形G的“全距”为0.(1)已知,点A(−4√2,2),B(2√2,2).①原点O到线段AB上一点的最大距离为_______,最小距离为_______;②当点C的坐标为(0,m)时,且△ABC的“全距”为4,求m的取值范围;(2)已知OM=7,等边△DEF的三个顶点均在半径为3的⊙M上.求△DEF的“全距”d的取值范围.22.(2022·北京房山·二模)对于平面直角坐标系xOy中的图形W1和图形W2.给出如下定义:在图形W1上存在两点A,B(点A,B可以重合),在图形W2上存在两点M,N,(点M、N 可以重合)使得AM=2BN,则称图形W1和图形W2满足限距关系(1)如图1,点C(√3,0),D(0,−1),E(0,1),点P在线段CE上运动(点P可以与点C,E重合),连接OP,DP.①线段OP的最小值为__________,最大值为__________;线段DP的取值范围是__________;②在点O,点D中,点__________与线段EC满足限距关系;(2)在(1)的条件下,如图2,⊙O的半径为1,线段FG与x轴、y轴正半轴分别交于点F,G,且FG∥EC,若线段FG与⊙O满足限距关系,求点F横坐标的取值范围;(3)⊙O的半径为r(r>0),点H,K是⊙O上的两个点,分别以H,K为圆心,2为半径作圆得到⊙H和⊙K,若对于任意点H,K,⊙H和⊙K都满足限距关系,直接写出r的取值范围.23.(2022·北京昌平·二模)在平面直角坐标系xOy中,⊙O的半径为1,对于△ABC和直线l给出如下定义:若△ABC的一条边关于直线l的对称线段PQ是⊙O的弦,则称△ABC是⊙O 的关于直线l的“关联三角形”“关联轴”.(1)如图1,若△ABC是⊙O的关于直线l的“关联三角形”,请画出△ABC与⊙O的“关联轴”(至少画两条);(2)若△ABC中,点A坐标为(2,3),点B坐标为(4,1),点C在直线y=−x+3的图像上,存在“关联轴l”使△ABC是⊙O的关联三角形,求点C横坐标的取值范围;(3)已知A(√3,1),将点A向上平移2个单位得到点M,以M为圆心MA为半径画圆,B,C为⊙M 上的两点,且AB=2(点B在点A右侧),若△ABC与⊙O的关联轴至少有两条,直接写出OC 的最小值和最大值,以及OC最大时AC的长.24.(2022·北京市十一学校二模)对于平面直角坐标系xOy中的图形W,给出如下定义:点P是图形W上任意一点,若存在点Q,使得∠OQP是直角,则称点Q是图形W的“直角点”.(1)已知点A(6,8),在点Q1(5,0),Q2(−2,4),Q3(9,5)中,________是点A的“直角点”;(2)已知点B(-4,4),C(3,4),若点Q是线段BC的“直角点”,求点Q的横坐标n的取值范围;(3)在(2)的条件下,已知点D(m-1,0),E(m,0),以线段DE为边在x轴上方作正方形DEFG.若正方形DEFG上的所有点均为线段BC的“直角点”,求m的取值范围.25.(2022·北京通州·一模)在平面直角坐标系xOy中,给出如下定义:点P为图形G上任意―点,将点P到原点O的最大距离与最小距离之差定义为图形G的“全距”.特别地,点P 到原点O的最大距离与最小距离相等时,规定图形G的“全距”为0.(1)如图,点A(−√3,1),B(√3,1).①原点O到线段AB上一点的最大距离为______,最小距离为______;②当点C的坐标为(0,m)时,且△ABC的“全距”为1,求m的取值范围;(2)已知OM=2,等边△DEF的三个顶点均在半径为1的⊙M上.请直接写出△DEF的“全距”d 的取值范围.26.(2022·北京石景山·一模)在平面直角坐标系xOy中,点P不在坐标轴上,点P关于x 轴的对称点为P1,点P关于y轴的对称点为P2,称△P1PP2为点P的“关联三角形”.(1)已知点A(1,2),求点A的“关联三角形”的面积;(2)如图,已知点B(m,n),⊙T的圆心为T(2,2),半径为2.若点B的“关联三角形”与⊙T 有公共点,直接写出m的取值范围;(3)已知⊙O的半径为r,OP=2r,若点P的“关联三角形”与⊙O有四个公共点,直接写出∠PP1P2的取值范围.27.(2022·北京一七一中一模)已知平面直角坐标系xOy中,对于线段MN及P、Q,若∠MPN= 45°且线段MN关于点P的中心对称线段M′N′恰好经过点Q,则称Q是点P的线段MN−45°对经点.(1)设点A(0,2),①Q1(4,0),Q2(2,2),Q3(2+√7,1),其中为某点P的线段OA−45°对经点的是___________.②选出①中一个符合题意的点Q,则此时所对应的对称中心P的坐标为.③已知B(0,1),设⊙B的半径是r,若⊙B上存在某点P的线段OA−45°对经点,求r的取值范围.(2)已知C(0,t),D(0,−t)(t>0),若点Q(4,0)同时是相异两点P1,P2的线段CD−45°对经点,直接写出t的取值范围.28.(2022·北京大兴·一模)在平面直角坐标系xOy中,⊙O的半径为1,已知点A,过点A 作直线MN.对于点A和直线MN,给出如下定义:若将直线MN绕点A顺时针旋转,直线MN与⊙O有两个交点时,则称MN是⊙O的“双关联直线”,与⊙O有一个交点P时,则称MN是⊙O的“单关联直线”,AP⊙O的“单关联线段”.(1)如图1,A(0,4),当MN与y轴重合时,设MN与⊙O交于C,D两点.则MN是⊙O的“______的值为______;关联直线”(填“双”或“单”);ACAD(2)如图2,点A为直线y=−3x+4上一动点,AP是⊙O的“单关联线段”.①求OA的最小值;②直接写出△APO面积的最小值.29.(2022·北京市燕山教研中心一模)对于平面直角坐标系xOy中的线段PQ,给出如下定义:若存在△PQR使得S△PQR=PQ2,则称△PQR为线段PQ的“等幂三角形”,点R称为线段PQ 的“等幂点”.(1)已知A(2,0).①在点P1(2,4),P2(1,2),P3(−4,1),P4(1,−4)中,线段OA的“等幂点”是____________;②若存在等腰△OAB是线段OA的“等幂三角形”,求点B的坐标;(2)已知点C的坐标为C(2,−1),点D在直线y=x−3上,记图形M为以点T(1,0)为圆心,2为半径的⊙T位于x轴上方的部分.若图形M上存在点E,使得线段CD的“等幂三角形”△CDE 为锐角三角形,直接写出点D的横坐标x D的取值范围.30.(2022·北京平谷·一模)在平面直角坐标系xOy中,⊙O的半径为r,对于平面上任一点P,我们定义:若在⊙O上存在一点A,使得点P关于点A的对称点点B在⊙O内,我们就称点P为⊙O的友好点.(1)如图1,若r为1.①已知点P1(0,0),P2(﹣1,1),P3(2,0)中,是⊙O的友好点的是;②若点P(t,0)为⊙O的友好点,求t的取值范围;(2)已知M(0,3),N(3,0),线段MN上所有的点都是⊙O的友好点,求r取值范围.。

[中考专题]2022年北京市中考数学历年真题汇总 卷(Ⅲ)(含答案解析)

2022年北京市中考数学历年真题汇总 卷(Ⅲ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、如图所示,由A 到B 有①、②、③三条路线,最短的路线选①的理由是( ) A .两点确定一条直线 B .经过一点有无数条直线 C .两点之间,线段最短 D .一条线段等于已知线段2、如图,DE 是ABC 的中位线,若4DE ,则BC 的长为( ) A .8 B .7 C .6 D .7.5 ·线○封○密○外3、已知有理数,,a b c 在数轴上的位置如图所示,且||||a b =,则代数式||||||||a c a c b b --+---的值为( ).A .2aB .0C .2c -D .222a b c -+4、文博会期间,某公司调查一种工艺品的销售情况,下面是两位调查员和经理的对话.小张:该工艺品的进价是每个22元;小李:当销售价为每个38元时,每天可售出160个;当销售价降低3元时,平均每天将能多售出120个.经理:为了实现平均每天3640元的销售利润,这种工艺品的销售价应降低多少元?设这种工艺品的销售价每个应降低x 元,由题意可列方程为( )A .(38﹣x )(160+3x ×120)=3640B .(38﹣x ﹣22)(160+120x )=3640C .(38﹣x ﹣22)(160+3x ×120)=3640D .(38﹣x ﹣22)(160+3x ×120)=36405ABCD 中,点E 是对角线AC 上一点,且EF AB ⊥于点F ,连接DE ,当22.5ADE ∠=︒时,EF =( )A .1B.2 C1 D .14 6、二次函数2y ax bx c =++(0a ≠)的图象如图,给出下列四个结论:①240ac b -<;②320b c +<;③42a c b +<;④对于任意不等于-1的m 的值()m am b b a ++<一定成立.其中结论正确的个数是( ) A .1 B .2 C .3 D .4 7、已知二次函数y =ax 2+bx +c 的部分图象如图,则关于x 的一元二次方程ax 2+bx +c =0的解为( )A .x 1=﹣4,x 2=2B .x 1=﹣3,x 2=﹣1C .x 1=﹣4,x 2=﹣2D .x 1=﹣2,x 2=2 8、为保护人民群众生命安全,减少交通事故,自2020年7月1日起,我市市民骑车出行必须严格遵守“一盔一带”规定,某头盔经销商经过统计发现:某品牌头盔从5月份到7月份销售量的月增长率相同,若5月份销售200个,7月份销售288个,设月增长率为x 则可列出方程( ) A .200(+x )=288B .200(1+2x )=288 ·线○封○密○外C .200(1+x )²=288D .200(1+x ²)=2889、已知关于x ,y 的方程组3424x y ax by -=⎧⎨-=-⎩和2593x y bx ay +=⎧⎨+=⎩的解相同,则()20213a b +的值为( ) A .1 B .﹣1 C .0 D .202110、若x =1是关于x 的一元二次方程x 2+ax ﹣2b =0的解,则4b ﹣2a 的值为( )A .﹣2B .﹣1C .1D .2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、多项式x 3-4x 2y 3+26的次数是_______.2、将115(1)12(3)5x x -=--去括号后,方程转化为_______.3、如图,在Rt △ABC 中,∠ACB =90°,点D 是边AB 的中点,连接CD ,将△BCD 沿直线CD 翻折得到△ECD ,连接AE .若AC =6,BC =8,则△ADE 的面积为____.4、如图,在ABC 中,90C ∠=︒,AD 平分CAB ∠,2BD CD =,点D 到AB 的距离为5.6,则BC =___cm .5、如图,已知正方形ABCD 的边长为5,点E ,F 分别是AB ,BC 边上的点,且∠EDF =45°,将△ADE 绕点D 逆时针旋转90°得到△CDM .若AE =2,则MF 的长为_______.三、解答题(5小题,每小题10分,共计50分) 1、计算: (1)()2243632314a a a a ⋅+-; (2)()()()2232321x x x -+--.2、先化简,再求值:a 2b -[3ab 2-2(-3a 2b +ab 2)],其中a =1,b =-12.3、解方程:3471168x x +=+.4、如图,点O 和ABC 的三个顶点正好在正方形网格的格点上,按要求完成下列问题: (1)画出ABC 绕点O 顺时针旋转90︒后的111A B C △;(2)画出ABC 绕点O 旋转180︒后的222A B C △.5、如图,点E 是矩形ABCD 的边BA 延长线上一点,连接ED ,EC ,EC 交AD 于点G ,作CF ∥ED 交AB 于点F ,DC =DE .·线○封○密·○外(1)求证:四边形CDEF是菱形;(2)若BC=3,CD=5,求AG的长.-参考答案-一、单选题1、C【分析】根据线段的性质进行解答即可.【详解】解:最短的路线选①的理由是两点之间,线段最短,故选:C.【点睛】本题主要考查了线段的性质,解题的关键是掌握两点之间,线段最短.2、A【分析】已知DE是ABC的中位线,4DE=,根据中位线定理即可求得BC的长.【详解】DE=,DE是ABC的中位线,4∴==,28BC DE故选:A .【点睛】此题主要考查三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半;掌握中位线定理是解题的关键. 3、C【分析】首先根据数轴的信息判断出有理数,,a b c 的大小关系,然后确定各绝对值中代数式的符号,即可根据绝对值的性质化简求解.【详解】解:由图可知:0a c b <<<,∴0a <,0c a ->,0c b -<,0b -<, ∴()()2a c a c b b a c a b c b c --+---=---+--=-, 故选:C . 【点睛】 本题考查数轴与有理数,以及化简绝对值,整式的加减运算等,理解数轴上表示的有理数的性质,掌握化简绝对值的方法以及整式的加减运算法则是解题关键. 4、D 【分析】 由这种工艺品的销售价每个降低x 元,可得出每个工艺品的销售利润为(38-x -22)元,销售量为(160+3x ×120)个,利用销售总利润=每个的销售利润×销售量,即可得出关于x 的一元二次方程,此题得解. 【详解】 解:∵这种工艺品的销售价每个降低x 元, ·线○封○密·○外∴每个工艺品的销售利润为(38-x -22)元,销售量为(160+3x ×120)个.依题意得:(38-x -22)(160+3x×120)=3640.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.5、C【分析】证明67.5CDE CED ∠=∠=︒,则CD CE =AC 的长,得2AE =,证明AFE ∆是等腰直角三角形,可得EF 的长.【详解】 解:四边形ABCD 是正方形,AB CD BC ∴==90B ADC ∠=∠=︒,45BAC CAD ∠=∠=︒, 22AC AB ,22.5ADE ∠=︒,9022.567.5CDE ∴∠=︒-︒=︒,4522.567.5CED CAD ADE ∠=∠+∠=︒+︒=︒,CDE CED ∴∠=∠,CD CE ∴==2AE ∴=EF AB ⊥,90AFE ∴∠=︒,AFE ∴∆是等腰直角三角形,1EF∴,故选:C.【点睛】本题考查正方形的性质,勾股定理,等腰直角三角形,三角形的外角的性质等知识,解题的关键是在正方形中学会利用等腰直角三角形的性质解决问题,属于中考常考题型.6、C【分析】由抛物线与x轴有两个交点得到b2﹣4ac>0,可判断①;根据对称轴是x=﹣1,可得x=﹣2、0时,y的值相等,所以4a﹣2b+c>0,可判断③;根据2ba-=-1,得出b=2a,再根据a+b+c<0,可得12b+b+c<0,所以3b+2c<0,可判断②;x=﹣1时该二次函数取得最大值,据此可判断④.【详解】解:∵图象与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴b2﹣4ac>0,∴4ac﹣b2<0,①正确;∵2ba-=-1,∴b=2a,∵a+b+c<0,∴12b+b+c<0,∴3b+2c<0,·线○封○密·○外∴②正确;∵当x =﹣2时,y >0,∴4a ﹣2b +c >0,∴4a +c >2b ,③错误;∵由图象可知x =﹣1时该二次函数取得最大值,∴a ﹣b +c >am 2+bm +c (m ≠﹣1).∴m (am +b )<a ﹣b .故④正确∴正确的有①②④三个,故选:C .【点睛】本题考查二次函数图象与系数的关系,看懂图象,利用数形结合解题是关键.7、A【分析】关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的根即为二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴的交点的横坐标.【详解】解:根据图象知,抛物线y =ax 2+bx +c (a ≠0)与x 轴的一个交点是(2,0),对称轴是直线x =−1.设该抛物线与x 轴的另一个交点是(x ,0). 则212x +=-, 解得,x =-4 ,·线即该抛物线与x轴的另一个交点是(-4,0).所以关于x的一元二次方程ax2+bx+c=0(a≠0)的根为x1=−4,x2=2.故选:A.【点睛】本题考查了抛物线与x轴的交点.解题时,注意抛物线y=ax2+bx+c(a≠0)与关于x的一元二次方程ax2+bx+c=0(a≠0)间的转换.8、C【分析】设月增长率为x,根据等量关系用增长率表示7月份的销售量与销售288相等,可列出方程200(1+x)²=288即可.【详解】解:设月增长率为x,则可列出方程200(1+x)²=288.故选C.【点睛】本题考查列一元二次方程解增长率问题应用题,掌握列一元二次方程解增长率问题应用题方法与步骤,抓住等量关系列方程是解题关键.9、B【分析】联立不含a与b的方程组成方程组,求出方程组的解得到x与y的值,进而求出a与b的值,即可求出所求.【详解】解:联立得:342 259x yx y-=⎧⎨+=⎩,解得:21x y =⎧⎨=⎩, 则有2423a b b a -=-⎧⎨+=⎩, 解得:12a b =-⎧⎨=⎩, ∴()()2021202113312a b +⨯-+=⎡⎤⎣=-⎦,故选:B .【点睛】此题考查了二元一次方程组的解,以及解二元一次方程组,方程组的解即为能使方程组中两方程都成立的未知数的值.10、D【分析】将x =1代入原方程即可求出答案.【详解】解:将x =1代入原方程可得:1+a -2b =0,∴a -2b =-1,∴原式=-2(a -2b )=2,故选:D .【点睛】本题考查一元二次方程,解题的关键是正确理解一元二次方程的解的概念,本题属于基础题型.二、填空题1、5【分析】根据多项式次数的定义解答.【详解】解:多项式各项的次数分别为:3、5、0,故答案为:5.【点睛】此题考查了多项式次数的定义:多项式中次数最高项的次数是多项式的次数,熟记定义是解题的关键. 2、315126x x -=-+ 【分析】 根据去括号法则解答即可. 【详解】 解:原方程去括号,得:315126x x -=-+. 故答案为:315126x x -=-+. 【点睛】 本题考查了一元一次方程的解法,熟练掌握一元一次方程的解题步骤是解答本题的关键.去括号时,一是注意不要漏乘括号内的项,二是明确括号前的符号.3、6.72 【分析】 连接BE ,延长CD 交BE 与点H ,作CF ⊥AB ,垂足为F .首先证明DC 垂直平分线段BE ,△ABE 是直角三角形,利用三角形的面积求出EH ,得到BE 的长,在Rt △ABE 中,利用勾股定理即可解决问题. 【详解】 ·线○封○密·○外解:如图,连接BE,延长CD交BE与点H,作CF⊥AB,垂足为F.∵∠ACB=90°,AC=6,BC=8.∴AB,∵D是AB的中点,∴AD=BD=CD=5,∵S△ABC=12AC•BC=12AB•CF,∴12×6×8=12×10×CF,解得CF=4.8.∵将△BCD沿直线CD翻折得到△ECD,∴BC=CE,BD=DE,∴CH⊥BE,BH=HE.∵AD=DB=DE,∴△ABE为直角三角形,∠AEB=90°,∴S△ECD=S△ACD,∴12DC•HE=12AD•CF,∵DC=AD,∴HE=CF=4.8.∴BE=2EH=9.6.∵∠AEB =90°,∴AE. ∴S △ADE =12EH •AE =12×2.8×4.8=6.72. 故答案为:6.72.【点睛】本题考查了翻折变换(折叠问题),直角三角形斜边上的中线的性质,勾股定理,三角形的面积等知识,解题的关键是学会利用面积法求高,属于中考常考题型. 4、16.8 【分析】 过D 作DE ⊥AB 于E ,根据角平分线性质得出CD =DE ,再求出BD 长,即可得出BC 的长. 【详解】 解:如图,过D 作DE ⊥AB 于E ,∵∠C =90°, ∴CD ⊥AC , ∵AD 平分∠BAC ,∴CD =DE , ∵D 到AB 的距离等于5.6cm , ·线○封○密○外∴CD=DE=5.6cm,又∵BD=2CD,∴BD=11.2cm,∴BC=5.6+11.2=16.8cm,故答案为:16.8.【点睛】本题主要考查了角平分线性质的应用,解题时注意:角平分线上的点到角两边的距离相等.5、297##【分析】由旋转可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF为45°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;则可得到AE=CM=2,正方形的边长为5,用AB-AE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BM-FM=BM-EF=7-x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为MF的长.【详解】解:∵△ADE逆时针旋转90°得到△CDM,∴∠A=∠DCM=90°,DE=DM,∴∠FCM=∠FCD+∠DCM=180°,∴F、C、M三点共线,∵∠EDM=∠EDC+∠CDM=∠EDC+∠ADE=90°,∴∠EDF+∠FDM=90°,∵∠EDF=45°,∴∠FDM=∠EDF=45°,在△DEF 和△DMF 中,DE DMEDF FDM DF DF =⎧⎪∠=∠⎨⎪=⎩, ∴△DEF ≌△DMF (SAS ), ∴EF =MF , 设EF =MF =x , ∵AE =CM =2,且BC =5, ∴BM =BC +CM =5+2=7, ∴BF =BM -MF =BM -EF =7-x , ∵EB =AB -AE =5-2=3, 在Rt △EBF 中,由勾股定理得EB 2+BF 2=EF 2,即32+(7-x )2=x 2, 解得:297x, ∴MF =297. 故答案为:297. 【点睛】此题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,以及勾股定理.此题难度适中,注意掌握旋转前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.三、解答题1、(1)6a·线○封○密·○外(2)410x -【分析】(1)先计算单项式乘单项式,积的乘方,再合并同类项即可;(2)利用平方差公式与完全平方公式计算,在合并同类项即可.(1)解:()2243632314a a a a ⋅+-, 6666914a a a =+-,6a =;(2)解:()()()2232321x x x -+--,2249441x x x =--+-, 410x =-.【点睛】本题考查单项式乘单项式,积的乘方混合运算,乘法公式的混合计算,掌握单项式乘单项式,积的乘方混合运算,熟记乘法公式是解题关键.2、225a b ab --,94【分析】先去括号,然后根据整式的加减计算法则化简,最后代值计算即可.【详解】解:()2222323a b ab a b ab ⎡⎤---+⎣⎦ ()2222362a b ab a b ab =-+-2222362a b ab a b ab =--+225a b ab =--,当1a =,12b =-时,原式221151*********⎛⎫⎛⎫=-⨯⨯--⨯-=-= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查了整式的化简求值,去括号,含乘方的有理数混合计算,熟知相关计算法则是解题的关键. 3、6x =- 【分析】 先去分母,去括号,再移项、合并同类项,最后系数化为1即可得答案. 【详解】 去分母得:32(47)16x x =++, 去括号得:381416x x =++,移项得:381416x x -=+,合并同类项得:530x -=,系数化1得:6x =-.【点睛】本题考查解一元一次方程,熟练掌握解一元一次方程的一般步骤是解题关键. 4、(1)见解析(2)见解析【分析】把各点连接至点O ,再把每根连线旋转要求的度数即可得到旋转后的各个点,再连接这些点即可得到·线○封○密○外旋转后的图像.(1)把各点连接至点O ,再把每根连线顺时针旋转90°即可得到旋转后的各个点,再连接这些点即可得到旋转后的111A B C △(2)把各点连接至点O ,再把每根连线顺时针旋转180°即可得到旋转后的各个点,再连接这些点即可得到旋转后的222A B C △,由于顺时针旋转180°和逆时针旋转180°效果相同,故该题只存在一种可能:【点睛】本题考查图形的旋转的作图,掌握连接旋转中心和图片中的点是本题关键.5、(1)见解析(2)43【分析】(1)根据矩形性质先证明四边形CDEF 是平行四边形,再根据有一组邻边相等的平行四边形是菱形即可解决问题;(2)连接GF ,根据菱形的性质证明△CDG ≌△CFG ,然后根据勾股定理即可解决问题.【小题1】解:证明:∵四边形ABCD 是矩形,∴AB ∥CD ,AB =CD ,∵CF ∥ED ,∴四边形CDEF 是平行四边形,∵DC =DE .∴四边形CDEF 是菱形;【小题2】 如图,连接GF ,∵四边形CDEF 是菱形, ∴CF =CD =5, ∵BC =3, ∴BF4, ∴AF =AB -BF =5-4=1,在△CDG 和△CFG 中, CD CF DCG FCG CG CG =⎧⎪∠=∠⎨⎪=⎩, ·线○封○密○外∴△CDG≌△CFG(SAS),∴FG=GD,∴FG=GD=AD-AG=3-AG,在Rt△FGA中,根据勾股定理,得FG2=AF2+AG2,∴(3-AG)2=12+AG2,解得AG=43.【点睛】本题考查了矩形的性质,菱形的判定与性质,全等三角形的判定与性质,勾股定理,解决本题的关键是掌握菱形的判定与性质.。

2019-2023北京中考真题数学汇编:填空压轴(第16题)

2019-2023北京中考真题数学汇编填空压轴(第16题)生合作完成此木艺艺术品的加工,则最少需要分钟.4.(2020·北京·统考中考真题)如图是某剧场第一排座位分布图:甲、乙、丙、丁四人购票,所购票分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序.5.(2019·北京·中考真题)在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是.++=(吨);(2)选择ABC时,装运的II号产品重量为:1236++=(吨);选择ABE时,装运的II号产品重量为:1258+=(吨);选择AD时,装运的II号产品重量为:134++=(吨);选择ACD时,装运的II号产品重量为:1337++=(吨);选择BCD时,装运的II号产品重量为:2338++=(吨).选择ACE时,装运的II号产品重量为:1359故答案为:ACE.【点睛】本题考查方案的选择,读懂题意,尝试不同组合时能否同时满足题目要求的条件是解题的关键.3. 53 28【分析】将所有工序需要的时间相加即可得出由一名学生单独完成需要的时间;假设这两名学生为甲、乙,根据加工要求可知甲学生做工序A,乙学生同时做工序B;然后甲学生做工序D,乙学生同时做工序C,乙学生工序C完成后接着做工序G;最后甲学生做工序E,乙学生同时做工序F,然后可得答案.++++++=(分钟),【详解】解:由题意得:9979710253即由一名学生单独完成此木艺艺术品的加工,需要53分钟;假设这两名学生为甲、乙,∵工序C,D须在工序A完成后进行,工序E须在工序B,D都完成后进行,且工序A,B都需要9分钟完成,∴甲学生做工序A,乙学生同时做工序B,需要9分钟,然后甲学生做工序D,乙学生同时做工序C,乙学生工序C完成后接着做工序G,需要9分钟,最后甲学生做工序E,乙学生同时做工序F,需要10分钟,++=(分钟),∴若由两名学生合作完成此木艺艺术品的加工,最少需要991028故答案为:53,28;【点睛】本题考查了逻辑推理与时间统筹,根据加工要求得出加工顺序是解题的关键.4.丙,丁,甲,乙【分析】根据甲、乙、丙、丁四人购票,所购票数量分别为2,3,4,5可得若丙第一购票,要使其他三人都能购买到第一排座位的票,那么丙选座要尽可能得小,因此丙先选择:1,2,3,4.丁所购票数最多,因此应让丁第二购票,据此判断即可.【详解】解:丙先选择:1,2,3,4.丁选:5,7,9,11,13.甲选:6,8.乙选:10,12,14.∴顺序为丙,丁,甲,乙.(答案不唯一)【点睛】本题考查有理数的加法,认真审题,理解题意是解题的关键.5.①②③【分析】根据矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理即可得到结论.【详解】解:①如图,∵四边形ABCD是矩形,连接AC,BD交于O,∴OA=OB=OC=OD,AB∥CD,AD∥BC,∴∠OBM=∠ODP,∠OAQ=∠OCN,过点O的直线MP和QN,分别交AB,BC,CD,AD于M,N,P,Q,∴∠BOM=∠DOP,∠AOQ=∠CON,所以△BOM≌△DOP(ASA),△AOQ≌△CON(ASA),所以OM=OP,OQ=ON,则四边形MNPQ是平行四边形,故存在无数个四边形MNPQ是平行四边形;故正确;②如图,当PM=QN时,四边形MNPQ是矩形,故存在无数个四边形MNPQ是矩形;故正确;③如图,当PM⊥QN时,存在无数个四边形MNPQ是菱形;故正确;④当四边形MNPQ是正方形时,MQ=PQ,则△AMQ≌△DQP,∴AM=QD,AQ=PD,∵PD=BM,∴AB=AD,∴四边形ABCD是正方形,当四边形ABCD为正方形时,四边形MNPQ是正方形,故错误;故正确结论的序号是①②③.故答案为:①②③.【点睛】本题考查了矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理,熟记各定理是解题的关键.。

2013北京中考数学试题及答案

2013北京中考数学试题答案一、选择题(共32分,每题4分)1-8 BD CC BA BA二、填空题(共16分,每题4分)9.()22a b - 10.答案不唯一 ()210,1x a c +>= 11.20 12.31,,0123---和三、解答题(共30分,每题5分)13.证:因为ADE △≌BAC △()ASA ,所以BC AE =(全等三角形对应边相等)14.解:原式1245=+=15.解:不等式组的解集为115x -<<16.解:原式23129x x =-+, 当241x x -=时,原式12=17.解:设每人每小时的绿化面积为x 平方米 依题有180180368x x =+ 解得52x =经检验52x =是原方程的解 答:每人每小时的绿化面积为52平方米18.解:(1)0∆>,52k <(2)2k =四、解答题(共20分,每题5分)19.证:(1)利用CE FD ∥,CE FD =得出四边形CEDF 是平行四边形解:(2)DE =20. 证:(1)因为EDO APO =∠∠,APO CPO =∠∠所以EPD EDO =∠∠解:(2)OE =21. 解:(1)00.3(2)第九届陆地面积3.6平方千米,水面面积1.5平方千米 (3)33.710⨯22. 解:(1)a ;(2)2 ;23五、解答题(共22分,23题7分,24题7分,28题8分)23.解:(1)易得()0,2A -、()1,0B ; (2)设直线l 解析式为y kx b =+,根据对称,易得直线l 与直线AB 关于x 轴对称,∴直线l 过()0,2, 又∵()1,0B ,∴20b k b =⎧⎨+=⎩,得22k b =-⎧⎨=⎩,∴直线l 解析式为22y x =-+;(3)根据对称,抛物线在21x -<<-这一段位于直线l 的上方,相当于抛物线在34x <<这一段位于直线AB 的上方,又∵在23x <<这一段位于直线AB 的下方,∴抛物线过点()3,4,∴抛物线解析式为2242y x x =--. 24.(1)302ABD α∠=︒-;(2)等边三角形;连接AD 、CD ,可得△BCD 为等边三角形, 在△ABD 和△ACD 中, ∵AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD (SSS ) ∴150ADB ∠=︒,在△ABD 和△EBC 中, ∵ABD EBC BD BC BDA BCA ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABD ≌△EBC (ASA )∴BA BE =,又∵60ABE ∠=︒,∴△ABE 为等边三角形.(3)由(2)得,90DCE ∠=︒,又∵45DEC ∠=︒,∴△DCE 为等腰直角三角形, ∴CD CE CB ==,∴DA DB =,∴15DAB ∠=︒,∴30α=︒.25、解:(1)①D 、E②0m ≤≤P 以及圆心组成的角<30︒,就不可能是关联点,相切如果正好是30︒,则意味着点到圆心的距离等于2,2224m ⎛⎫++= ⎪ ⎪⎝⎭,0m =2的均可以是关联点 (2)1r ≥,线段的中点在圆心,此时圆的最小半径为1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013-2022北京中考真题数学汇编填空压轴一、填空题1.(2022·北京·中考真题)甲工厂将生产的I 号、II 号两种产品共打包成5个不同的包裹,编号分别为A ,B ,C ,D ,E ,每个包裹的重量及包裹中I 号、II 号产品的重量如下:(1)如果装运的I 号产品不少于9吨,且不多于11吨,写出一种满足条件的装运方案________(写出要装运包裹的编号);(2)如果装运的I 号产品不少于9吨,且不多于11吨,同时装运的II 号产品最多,写出满足条件的装运方案________(写出要装运包裹的编号)。

2.(2021·北京·中考真题)某企业有,A B 两条加工相同原材料的生产线.在一天内,A 生产线共加工a 吨原材料,加工时间为()41a +小时;在一天内,B 生产线共加工b 吨原材料,加工时间为()23b +小时.第一天,该企业将5吨原材料分配到,A B 两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到A 生产线的吨数与分配到B 生产线的吨数的比为______________.第二天开工前,该企业按第一天的分配结果分配了5吨原材料后,又给A 生产线分配了m 吨原材料,给B 生产线分配了n 吨原材料.若两条生产线都能在一天内加工完各自分配到的所有原材料,且加工时间相同,则mn的值为______________。

3.(2020·北京·中考真题)如图是某剧场第一排座位分布图:甲、乙、丙、丁四人购票,所购票分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序______。

4.(2019·北京·中考真题)在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合),对于任意矩形ABCD ,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形。

所有正确结论的序号是______。

5.(2018·北京·中考真题)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第________。

6.(2017·北京·中考真题)下图是“作已知直角三角形的外接圆”的尺规作图过程已知:Rt△ABC ,∠C=90°,求作Rt△ABC 的外接圆.作法:如图AB的长为半径作弧,两弧相交于P,Q两点;(1)分别以点A和点B为圆心,大于12(2)作直线PQ,交AB于点O;(3)以O为圆心,OA为半径作⊙O.⊙O 即为所求作的圆.请回答:该尺规作图的依据是__________。

7.(2016·北京·中考真题)下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程。

请回答:该作图的依据是_______________________________________________________。

8.(2015·北京·中考真题)阅读下面材料:在教学课上,老师提出如下问题:尺规作图:作一条线段的垂直平分线.已知:线段AB 。

求作:线段AB 的垂直平分线.小芸的作法如下:如图,(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于C ,D 两点;(2)作直线CD .所以直线CD 就是所求作的垂直平分线.老师说:“小芸的作法正确.”请回答:小芸的作图依据是____________________,9.(2014·北京·中考真题)在平面直角坐标系xOy 中,对于点()P x y ,,我们把点(1,1)r P y x -++叫做点P 的伴随点,已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得到点1A ,2A ,3A ,…,n A ,….若点1A 的坐标为(3,1),则点3A 的坐标为 ,点2014A 的坐标为 ;若点1A 的坐标为(a ,b ),对于任意的正整数n ,点n A 均在x 轴上方,则a ,b 应满足的条件为 .10.(2013·北京·中考真题)如图,在平面直角坐标系xOy 中,已知直线l :1y x =--,双曲线1y x=.在l 上取点A 1,过点A 1作x 轴的垂线交双曲线于点B 1,过点B 1作y 轴的垂线交l 于点A 2,请继续操作并探究:过点A 2作x 轴的垂线交双曲线于点B 2,过点B 2作y 轴的垂线交l 于点A 3,…,这样依次得到l 上的点A 1,A 2,A 3,…,An ,….记点An 的横坐标为n a ,若12a =,则2a =_______,2013a =_______;若要将上述操作无限次地进行下去,则1a 不能取的值是__________参考答案1. ABC (或ABE 或AD 或ACE 或ACD 或BCD ) ACE【分析】(1)从A ,B ,C ,D ,E 中选出2个或3个,同时满足I 号产品不少于9吨,且不多于11吨,总重不超过19.5吨即可;(2)从(1)中符合条件的方案中选出装运II 号产品最多的方案即可。

【详解】解:(1)根据题意,选择ABC 时,装运的I 号产品重量为:53210++=(吨),总重6551619.5++=<(吨),符合要求; 选择ABE 时,装运的I 号产品重量为:53311++=(吨),总重6581919.5++=<(吨),符合要求; 选择AD 时,装运的I 号产品重量为:549+=(吨),总重671319.5+=<(吨),符合要求; 选择ACD 时,装运的I 号产品重量为:52411++=(吨),总重6571819.5++=<(吨),符合要求; 选择BCD 时,装运的I 号产品重量为:3249++=(吨),总重5571719.5++=<(吨),符合要求; 选择DCE 时,装运的I 号产品重量为:4239++=(吨),总重7582019.5++=>(吨),不符合要求; 选择BDE 时,装运的I 号产品重量为:34310++=(吨),总重5782019.5++=>(吨),不符合要求; 选择ACE 时,装运的I 号产品重量为:52310++= (吨),总重6581919.5++=< (吨),符合要求; 综上,满足条件的装运方案有ABC 或ABE 或ACE 或AD 或ACD 或BCD . 故答案为:ABC (或ABE 或ACE 或AD 或ACD 或BCD )。

(2)选择ABC 时,装运的II 号产品重量为:1236++=(吨); 选择ABE 时,装运的II 号产品重量为:1258++=(吨); 选择AD 时,装运的II 号产品重量为:134+=(吨); 选择ACD 时,装运的II 号产品重量为:1337++=(吨); 选择BCD 时,装运的II 号产品重量为:2338++=(吨); 选择ACE 时,装运的II 号产品重量为:1359++= (吨). 故答案为:ACE 。

【点睛】本题考查方案的选择,读懂题意,尝试不同组合时能否同时满足题目要求的条件是解题的关键。

2. 2∶3 12【分析】设分配到A 生产线的吨数为x 吨,则分配到B 生产线的吨数为(5-x )吨,依题意可得()41253x x +=-+,然后求解即可,由题意可得第二天开工时,由上一问可得方程为()()421233m n ++=++,进而求解即可得出答案。

【详解】解:设分配到A 生产线的吨数为x 吨,则分配到B 生产线的吨数为(5-x )吨,依题意可得:()41253x x +=-+,解得:2x =, ∴分配到B 生产线的吨数为5-2=3(吨),∴分配到A 生产线的吨数与分配到B 生产线的吨数的比为2∶3;∴第二天开工时,给A 生产线分配了()2m +吨原材料,给B 生产线分配了()3n +吨原材料, ∵加工时间相同,∴()()421233m n ++=++,解得:12m n =,∴12mn=;故答案为2:3,12。

【点睛】本题主要考查一元一次方程、二元一次方程的应用及比例的基本性质,熟练掌握一元一次方程的应用及比例的基本性质是解题的关键。

3.丙,丁,甲,乙【分析】根据甲、乙、丙、丁四人购票,所购票数量分别为2,3,4,5可得若丙第一购票,要使其他三人都能购买到第一排座位的票,那么丙选座要尽可能得小,因此丙先选择:1,2,3,4.丁所购票数最多,因此应让丁第二购票,据此判断即可。

【详解】解:丙先选择:1,2,3,4。

丁选:5,7,9,11,13。

甲选:6,8。

乙选:10,12,14。

∴顺序为丙,丁,甲,乙。

(答案不唯一)【点睛】本题考查有理数的加法,认真审题,理解题意是解题的关键。

4.①②③【分析】根据矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理即可得到结论。

【详解】解:①如图,∵四边形ABCD是矩形,连接AC,BD交于O,∴OA=OB=OC=OD,AB∥CD,AD∥BC,∴∠OBM=∠ODP,∠OAQ=∠OCN,过点O的直线MP和QN,分别交AB,BC,CD,AD于M,N,P,Q,∴∠BOM=∠DOP,∠AOQ=∠CON,所以△BOM≌△DOP(ASA),△AOQ≌△CON(ASA),所以OM=OP,OQ=ON,则四边形MNPQ是平行四边形,故存在无数个四边形MNPQ是平行四边形;故正确;②如图,当PM=QN时,四边形MNPQ是矩形,故存在无数个四边形MNPQ是矩形;故正确;③如图,当PM⊥QN时,存在无数个四边形MNPQ是菱形;故正确;④当四边形MNPQ是正方形时,MQ=PQ,则△AMQ≌△DQP,∴AM=QD,AQ=PD,∵PD=BM,∴AB=AD,∴四边形ABCD是正方形,当四边形ABCD为正方形时,四边形MNPQ是正方形,故错误;故正确结论的序号是①②③。

故答案为:①②③。

【点睛】本题考查了矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理,熟记各定理是解题的关键。

5.3【分析】左边图中,根据中国创新综合排名全球第22,找出对应创新产出排名,再从右图进行分析即可.【详解】详解:从左图可知,创新综合排名全球第22,对应创新产出排名全球第11;从右图可知,创新产出排名全球第11,对应创新效率排名全球第3。

相关文档
最新文档