数学北师大版八年级下册因式分解复习课
北师大版数学八年级下第二章、因式分解复习讲义(三)分组分解法

2013年八年级下第二章、因式分解复习讲义(三)1.5、分组分解法第一部分、知识要点【知识精读】分组分解法的原则是分组后可以直接提公因式,或者可以直接运用公式。
使用这种方法的关键在于分组适当,而在分组时,必须有预见性。
能预见到下一步能继续分解。
而“预见”源于细致的“观察”,分析多项式的特点,恰当的分组是分组分解法的关键。
应用分组分解法因式分解,不仅可以考察提公因式法,公式法,同时它在代数式的化简,求值及一元二次方程,函数等学习中也有重要作用。
下面我们就来学习用分组分解法进行因式分解。
第二部分、典例分析例1:分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
解:原式=)()(bn bm an am +++=)()(n m b n m a +++ 每组之间还有公因式!=))((b a n m ++变式训练1-1:选择题:对n np mp m 22+++运用分组分解法分解因式,分组正确的是()(A )mp np n m +++)22( (B ))2()2(mp n np m +++(C ))()22(np mp n m +++ (D )np mp n m +++)22(变式训练1-2:分解因式:(1)x xy y x 21372-+- (2))15)(3()3()3(531552223--=---=+--x x x x x x x x例2:(1)分解因式:ay ax y x ++-22分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。
解:原式=)()(22ay ax y x ++- =)())((y x a y x y x ++-+=))((a y x y x +-+(2)分解因式:2222c b ab a -+-解:原式=222)2(c b ab a -+-=22)(c b a --=))((c b a c b a +---变式训练2-1:分解因式(1)y y x x 3922--- (2)yz z y x 2222---变式训练2-2:分解因式:m n m nn 222141()-+-+ 解:m n m nn 222141()-+-+ =-+-+=++---=+--=-+++-+m n m m n n m n m n m m n n m n m n m n m n m n m n 222222222241212111()()()()()()例3:把多项式211242a a a a a ()+++++分解因式,所得的结果为( )A a aB a aC a aD a a .().().().()222222221111+--+++-- 分析:先去括号,合并同类项,然后分组搭配,继续用公式法分解彻底。
专题14 因式分解(2)八年级数学下册强化巩固专题知识(北师大版)

专题14 因式分解(2)教师讲义64x6-1=(8x3)2-1=(8x3+1)(8x3-1)=[(2x)3+1][(2x)3-1]=(2x+1)(4x2-2x+1)(2x-1)(4x2+2x+1) 方法二64x6-1=(4x2)3-1=(4x2-1)(16x4+4x2+1)=(2x+1)(2x-1)(16x4+8x2+1-4x2)=(2x+1)(2x-1)[(4x2+1)2-(2x)2]=(2x+1)(2x-1)(4x2+2x+1)(4x2-2x+1)例5 解 (x+y)2-6(x+y)+9=(x+y)2-2×3×(x+y)+32=(x+y-3)2.例6 解方法一x2+6x-7=x2+6x+9-9-7=(x+3)2-16=(x+3+4)(x+3-4)=(x+7)(x-1)方法二 x2+6x-7=(x+7)(x-1)例7 解方法一方法二 3x2-7x-6=(3x+2)(x-3).例8 解 2ax-10ay+5by-bx=2ax-10ay-bx+5by=(2ax-10ay)-(bx-5by)=2a(x-5y)-b(x-5y)=(x-5y)(2a-b).例9 解(1)x2-2xy+y2-1=(x2-2xy+y2)-1=(x-y)2-1=(x-y+1)(x-y-1)(2)x2-2y-y2-1=x2-y2-2y-1=x2-(y2+2y+1)=x2-(y+1)2=(x+y+1)(x-y-1)例10 解 x2+4xy+3y2+x+3y=(x2+4xy+3y2)+(x+3y)=(x+y)(x+3y)+(x+3y)=(x+3y)(x+y+1).例11 解(1)a2+2ab+b2+2a+2b+1=(a2+2ab+b2)+(2a+2b)+1=(a+b)2+2(a+b)+1=(a+b+1)2.(2)a2+2ab+b2+2a+2b-3=(a2+2ab+b2)+(2a+2b)-3=(a+b)2+2(a+b)-3=(a+b+3)(a+b-1).(3)a2+3ab+2b2+2a+b-3=(a2+3ab+2b2)+(2a+b)-3=(a+b)(a+2b)+(2a+b)-3=(a+b-1)(a+2b+3).例12 证明因为4x2+4xy+y2-4x-2y+1=0,所以(2x+y)2-2(2x+y)+1=0,(2x+y-1)2=0.所以2x+y-1=0.又因为2x2+3xy+y2-x-y=(x+y)(2x+y-1).而2x+y-1=0,所以2x2+3xy+y2-x-y=0.例13 解设3x2-4xy-7y2+13x-37y+m=[(3x-7y)+a][(x+y)+b]=3x2-4xy-7y2+(a+3b)x+(a-7b)y+ab.对应项系数相等,所以由(1)(2)解得a=-2,b=5.将a=-2,b=5代入(3),得m=-10,所以 3x2-4xy-7y2+13x-37y+m=3x2-4xy-7y2+13x-37y-10=(3x-7y+a)(x+y+b)=(3x-7y-2)(x+y+5).例14 解因为|x-3y-1|+x2+4y2=4xy,所以|x-3y-1|+x2-4xy+4y2=0即|x-3y-1|+(x-2y)2=0所以解这个方程组,得x=-2,y=-1.例15 解(1)x4+4y4=x4+4x2y2+4y4-4x2y2=(x2+2y2)2-(2xy)2=(x2+2xy+2y2)(x2-2xy+2y2).(2)x3+5x-6=x3-x+6x-6=(x3-x)+(6x-6)=x(x+1)(x-1)+6(x-1)=(x-1)(x2+x+6)例16 解因为x2-2xy-3y2=5,所以(x-3y)(x+y)=5.依题意x,y为整数,所以x-3y和x+y都是整数,于是有:解上述方程组得:例17 证明因为A=(x+2)(x-3)(x+4)(x-5)+49=(x2-x-6)(x2-x-20)+49=(x2-x)2-26(x2-x)+169=(x2-x-13)2所以A是一个完全平方数.五、课堂练习A卷:基础题A、选择题1.下列各式从左到右的变形是分解因式的是()A.a(a-b)=a2-ab B.a2-2a+1=a(a-2)+1C.x2-x=x(x-1) D.xy2-x2y=x(y2-xy)2.(x-5)(x-3)是多项式x2-px+15分解因式的结果,则p的值是()1-2004 = 100123456689。
八年级数学北师大版初二下册--第四单元 4.1《因式分解》课件

1 知识小结
1.因式分解的定义: 把一个多项式化成几个整式的积的形式,这种变形 叫做因式分解,也可称为分解因式.
2. 因式分解与整式乘法是一个互逆过程,
即:几个整式相乘 噲垐因整垐式式垐分乘解法垎垐 一个多项式
请完成《典中点》 Ⅱ 、 Ⅲ板块 对应习题!
C.x2(1-3xy2)
D.x(x-3y2)
导引:把各选项进行整式乘法的运算,将所得的积与 x2-3xy2对照,能够与x2-3xy2相等的选项必是 正确答案.
总结
知2-讲
四个选项都是乘积的形式,可以利用因式分解 和整式乘法的互逆关系检验所得结果的正确性.
知2-讲
例3 20162-2016不能被下列哪个数整除?( B )
因此是因式分解,D正确.
知1-练
1 下列由左边到右边的变形,哪些是因式分解?为 什么? (1) (a+3)(a-3)=a2-9 ; (2) m2-4=(m+2)(m-2); (3) a2-b2+1=(a+b)(a-b)+1; (4) 2mR+2mr=2m(R+r).
解:(2)(4)是因式分解.理由:只有(2)(4)是把一个多项 式化成几个整式的积
知1-导
把一个多项式化成几个整式的积的形式,这种 变形叫做因式分解. 例如,a3-a= a (a+1)(a-1), am+bm+cm=m(a+b+c),x2+2x+l=(x+1)2都 是因式分解. 因式分解也可称为分解因式.
(来自《教材》)
知1-讲
例1 下列各式从左到右的变形属于因式分解的是( D ) A.a2+1=a(a+ 1 ) a B.(x+1)(x-1)=x2-1 C.a2+a-5=(a-2)(a+3)+1 D.x2y+xy2=xy(x+y)
A.9a2+y2
北师大版八年级数学下册《因式分解——提公因式法》教学PPT课件(3篇)

= −(4 ∙ 6 2 − 4 ∙ 3 + 4 ∙ 7)
= −4(6 2 − 3 + 7).
易错注意:1.公因式要提尽;
2.公因式是某项时剩余的系数1别忘;
错误
提公因式后括号里少了一项.
正确解:原式=3x·
x-6y·
x+1·x
=x(3x-6y+1)
请你判断小明的解法有误吗?
因式分解: - x2+xy-xz.
解:原式= - x(x+y-z).
错误
提出负号时括号里的项
没变号
正确解:原式= - (x2-xy+xz)
=- x(x-y+z)
探索新知
巩固练习 将下列各式分解因式
项式的各项变号;
2.公因式的系数是多项式各项__________________;
系数的最大公约数
相同的字母
3.字母取多项式各项中都含有的____________;
4.相同字母的指数取各项中最小的一个,即 最低次幂
_________.
合作探究
因式分解:a(x-3)+2b(x-3)
(1)多项式的公因式是什么?
B.6(p+q)2-2(p+q)=2(p+q)(3p+q-1)
C.3(y-x)2+2(x-y)=(y-x)(3y-3x+2)
D.3x(x+y)-(x+y)2=(x+y)(2x+y)
4.用提公因式法因式分解:
(1)6p(p+q)-4q(p+q);
解:6p(p+q)-4q(p+q)
=2(p+q)(3p-2q).
A.x4
B.x3+1
C.x4+1
D.x3-1
北师大版八年级下册数学《因式分解》PPT教学课件

合作探究
探究点三 问题1:因式分解:把一个多项式化成几个 整式 的 积 的形式,这种变形叫 做因式分解.因式分解也可称为 分解因式 . 问题2:你能说明因式分解与整式的乘法有什么关系吗? 多项式的因式分解与整式的乘法互为逆变形过程. 因此可以用整式的乘法来检验分解因式是否正确.
合作探究
探究点四 例1:已知多项式x2-4x+m因式分解的结果为(x+a)(x-6),求2a-m的值 解:(x+a)(x-6)
课程讲授
1 因式分解的定义
问题1:
完成下列题目: x(x-2)=__x_2_-_2_x_ (x+y)(x-y)=__x_2-_y_2__ (x+1)2=_x_2_+_2_x_+_1_
根据左空,解决下列问题: x2-2x=( x )( x-2 ) x2-y2=( x+y )( x-y ) x2+2x+1=( x+1 )2
4.1 因式分解
八年级下册
学习目标
1 经历从分解因数到分解因式的类比过程. 2 了解因式分解的意义,以及它与整式乘法的相互关系. 3 感受因式分解在解决相关问题中的作用.
前置学习
1.下列等式从左到右的变形,属于因式分解的是( D )
A.a(x-y)=ax-ay
B.x²+2x+1=x(x+2)+1
整式乘法
(x+1)(x-1)
课程讲授
1 因式分解的定义
归纳:因式分解与整式乘法是互逆运算,二者是一个 式子的两种不同表现形式.因式分解的等号右边是两个 或几个因式积的形式,整式乘法的等号右边是多项式的 形式.
随堂练习
1. 下列各式中从左到右的变形属于分解因式的是( C ) A. a(a+b-1)=a2+ab-a B. a2-a-2=a(a-1)-2 C. -4a2+9b2=(-2a+3b)(2a+3b) D.2x +1=x(2+ 1 )
4-1 因式分解(课件)八年级数学下册(北师大版)

C.10x2-5x=5x(2x-1)
D.x2-16+6x=(x+4)(x-4)+6x
随堂练习
3.把x2-3xy2分解因式,结果正确的是( D )
A.(x+3xy)(x-3xy)
பைடு நூலகம்
B.x(x-3xy)
C.x2(1-3xy2)
D.x(x-3y2)
4. 20162-2016不能被下列哪个数整除?( B )
A.a2+1=a(a+
1
)
a
B.(x+1)(x-1)=x2-1
C.a2+a-5=(a-2)(a+3)+1
D.x2y+xy2=xy(x+y)
探究新知
分解因式的要求:
1.分解的结果最后是积的形式;
2.每个因式必须是整式,且每个因式的次数都必须低
于多项式的次数;
3.必须分解到每个因式不能再分解为止
随堂练习
A.6
B.2017
C.2016
D.2015
随堂练习
5.若x2+3x+m=(x+1)(x+2),则m的值为( B )
A.1
B.2
C.3
D.4
6. 一个多项式分解因式的结果是(b3+2)(2-b3),那么
这个多项式是( B )
A.b6-4
B.4-b6
C.b6+4
D.-b6-4
随堂练习
7. (3a-y)(3a+y)是下列哪一个多项式因式分解的结果( C )
(2)2a3b2c+4ab3c-abc
=abc·2a2b+abc·4b2-abc·1
=abc (2a2b+4b2-1)
随堂练习
9.将下列各式分解因式
因式分解 北师大版数学八年级下册期末复习

(选做题)1.观察下列各式:3²-1²=8×1, 5²-3²=8×2,7²-5²=8×3,……,探索以上式子的规律, 试写出第n个等式,并运用所学的数学知识说明你所写 式子的正确性.
解:规律:(2n+1)²-(2n-1)²=8n 验证: (2n+1)²-(2n-1)²
1、整式乘法与分解因式的概念易混 2、分解因式要彻底
3.(x 5)(x 3)是多项式x2 px 15分解因式的结果, 则5. p的值是 8 .
6.多项式 a(a x)(x b) ab(a x)(b x) 的公因式是( B )
A.-a B. a(a x)(x b) C. a(a x) D. a(x a)
7.若 mx 2 kx 9 (2x 3)2 ,则m,k的值分别是( C )
=3a(a+2b)
(2)原式=[(x²-5)+1]² (3)原式=(x²+y²)²-4(x²+y²)+4
=(x²-4)²
=[(x²+y²)-2]²
=[(x+2)(x-2)]²
=(x²+y²-2)²
=(x+2)²(x-2)²
2.已知:a,b,c是△ABC的三边长,且满足
a2b a2c b3 b2c 0 ,试判断三角形的形状.
2.下列各式中:①x2﹣6x+9; ②25a2+10a﹣1; ③x2﹣4x+4; ④a2+a+ .其中能用完全平方公式
因式分解的个数为( C )
A.1
B.2
C.3
D.4
3.因式分解(1)a²-4a-b²+4=_(_a_-_2_+_b_)_(_a_-_2_-_b)
北师大版八年级数学下册专题复习思维特训(十二) 因式分解——十字相乘法

思维特训(十二)因式分解——十字相乘法方法点津·十字相乘法(1)对于二次三项式ax2+bx+c,将a和c分别分解成两个因数的乘积,a=a1·a2 , c=c1·c2,且满足b=a1c2+a2c1ax2+bx+c=(a1x+c1)(a2x+c2).(2)二次三项式x2+px+q的分解:p=a+b,q=ab x2+px+q=(x+a)(x+b).(3)理解:把x2+px+q分解因式时,如果常数项q是正数,那么把它分解成两个同号的因数,它们的符号与一次项系数p的符号相同;如果常数项q是负数,那么把它分解成两个异号的因数,其中绝对值较大的因数与一次项系数p的符号相同,对于分解的两个因数,还要看它们的和是不是等于一次项系数p.典题精练·1.分解因式:x2+3x+2.分析:(+1)×(+2)=+2常数项(+1)+(+2)=+3一次项系数解:x2+3x+2=(x+1)(x+2).按以上方法分解因式:x2+14x+48.2.在对多项式进行因式分解时,有一种方法叫“十字相乘法”.如分解二次三项式:2x2+5x-7,具体步骤:①首先把二次项的系数2分解为两个因数的积,即2=2×1,把常数项-7也分解为两个因数的积,即-7=-1×7;②按图12-TX-1所示的方式书写,采用交叉相乘再相加的方法,使之结果恰好等于一次项的系数5,即2×(-1)+1×7=5.图12-TX-1③这样,就可以按图12-TX-1中虚线所指,对2x2+5x-7进行因式分解了,即2x2+5x-7=(2x+7)(x-1).请你仔细体会上述方法,并利用此法对下列二次三项式进行因式分解:(1)x2+4x+3;(2)2x2+3x-20.3.阅读下面的材料并完成填空:因为(x+a)(x+b)=x2+(a+b)x+ab,所以,对于二次项系数为1的二次三项式x2+px +q的因式分解,就是把常数项q分解成两个数的积且使这两数的和等于p,即如果有a,b 两数满足ab=q,a+b=p,则有x2+px+q=(x+a)(x+b).如分解因式:x2+5x+6.解:因为2×3=6,2+3=5,所以x2+5x+6=(x+2)(x+3).再如分解因式:x2-5x-6.解:因为-6×1=-6,-6+1=-5,所以x2-5x-6=(x-6)(x+1).阅读完上述文字后,你能完成下面的题目吗?试试看!因式分解:(1)x2+7x+12;(2)x2-7x+12;(3)x2+4x-12;(4)x2-x-12.4.“十字相乘法”能把二次三项式分解因式,对于形如ax2+bxy+cy2的关于x,y的二次三项式,关键是把x2项的系数a分解成两个因数a1,a2的积,即a=a1·a2,把y2项的系数c分解成两个因数c1,c2的积,即c=c1·c2,并使a1·c2+a2·c1正好等于xy项的系数b,那么可以直接写出结果:ax2+bxy+cy2=(a1x+c1y)(a2x+c2y).例:分解因式:x2-2xy-8y2.解:如图12-TX-2①,其中1=1×1,-8=(-4)×2,而-2=1×2+1×(-4),∴x2-2xy-8y2=(x-4y)(x+2y).而对于形如ax2+bxy+cy2+dx+ey+f的关于x,y的二元二次式也可以用十字相乘法来分解,如图12-TX-2②,将a分解成m,n的乘积作为一列,c分解成p,q的乘积作为第二列,f分解成j,k的乘积作为第三列.若mq+np=b,p k+q j=e,m k+n j=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k).图12-TX-2例:分解因式:x2+2xy-3y2+3x+y+2.解:如图12-TX-2③,其中1=1×1,-3=(-1)×3,2=1×2,而2=1×3+1×(-1),1=(-1)×2+3×1,3=1×2+1×1,∴x2+2xy-3y2+3x+y+2=(x-y+1)(x+3y+2).请同学们通过阅读上述材料,完成下列问题:(1)分解因式:①6x2-17xy+12y2=__________;②2x2-xy-6y2+2x+17y-12=__________;③x2-xy-6y2+2x-6y=__________.(2)若关于x,y的二元二次式x2+7xy-18y2-5x+my-24可以分解成两个一次因式的积,求m的值.5.分解因式:(1)5x2-17x+6;(2)20x2-43xy+14y2;(3)(m2-2m-3)x2-(m+5)x-2;(4)(x2-5x+4)(x2-x-2)-72.详解详析1.解:x2+14x+48=(x+6)(x+8).2.解:(1)x2+4x+3=(x+3)(x+1).(2)2x2+3x-20=(x+4)(2x-5).3.解:(1)x2+7x+12=(x+3)(x+4).(2)x2-7x+12=(x-3)(x-4).(3)x2+4x-12=(x+6)(x-2).(4)x2-x-12=(x-4)(x+3).4.解:(1)①(3x-4y)(2x-3y)②(x-2y+3)(2x+3y-4)③(x-3y)(x+2y+2)(2)如图:m=3×9+(-8)×(-2)=43,或m=9×(-8)+3×(-2)=-78.5.解:(1)5x2-17x+6=(5x-2)(x-3).(2)20x2-43xy+14y2=(4x-7y)(5x-2y).(3)(m2-2m-3)x2-(m+5)x-2=(m-3)(m+1)x2-(m+5)x-2=[(m-3)x-2][(m+1)x+1].(4)(x2-5x+4)(x2-x-2)-72=(x-4)(x-1)(x-2)(x+1)-72=[(x-4)(x+1)][(x-1)(x-2)]-72=(x2-3x-4)(x2-3x+2)-72.设x2-3x=t,则(t-4)(t+2)-72=t2-2t-80=(t-10)(t+8)=(x2-3x-10)(x2-3x+8)=(x-5)(x+2)(x2-3x+8).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 因式分解导学案(复习课)
班别:________姓名__________
【学习目标】 1.复习因式分解的的定义及因式分解的基本方法。
2.通过复习,使学生熟练运用因式分解的基本方法。
3.通过复习,培养学生观察、分析和创新能力。
重点:能正确运用因式分解的基本方法。
难点:根据实际情况,灵活运用因式分解的基本方法。
一、知识回顾:
第四章学习了什么内容?
二、训练案1:
1. 下列从左到右的变形,属于因式分解的是( )
(A) 221(2)1x x x x -+=-+
(B) b bx x b +=+)1( (C)b a b a 42822∙=
(D))2)(2(42-+=-x x x
2. 一个多项式分解因式的结果是)123(2+--y x x ,则这个多项式是( )
(A )x xy x 2462+- (B )x xy x 2462++-
(C )x xy x 2462-+- (D )xy x 462+-
三、训练案2:
1. 下列多项式中,能用提公因式法分解因式的是( )
(A)b a 22- (B) a a 22+ (C) 22b a + (D) 122+-ab a
2. 分解222246ac c ab bc a +-的因式时,应提取公因式( )
(A )abc (B )2a (C )2b (D )2ac
3. 多项式a a 242+各项的公因式是 .
4. 多项式23)(6)(3b a b a x ---各项的公因式是______________.
5.把下列各式因式分解:
x x 155)1(2- ab ab ab 3612)2(23-+- 23)(6)(9)3(a b b b a -+-
四、训练案3:
1.下列各式不能用平方差公式因式分解的是( )
(A )22b a -- (B )22y x +- (C )1162-x (D )222)(25b a n m +-
2. 下列各式能用完全平方公式因式分解的是( )
(A )22y xy x +- (B )122--x x (C )4
1212+-a a (D )1442++x x
3. 因式分解: 42-x = .
4. 因式分解:122+-a a = .
五、训练案4:
1.把下列多项式进行因式分解:
33)1(2-a x x x 12123)3(23-+-
4)(4))(3(2++-+b a b a 2224)1)(4(x x -+
六、检测案5:(每小题10分,共100分)
1.下列各式由左边到右边的变形中,是因式分解的是( ) (A) )1(1a
b a ab +=+ (B) )(b a m bm am +=+ (C) xy x y x 3262∙= (D)
1)2(122+-=+-x x x x
2.下列因式分解够完整的一题是( )
(A) 4x-2xy=x(4-2y) (B) )2(336322b a x x bx x a -=+-
(C) )14)(14(142-+=-x x x (D) 6(x -2)+x(2-x)=(x -2)(6-x)
3.因式分解:xy x +2= .
4. 因式分解a a 223-= .
5. 因式分解3632+-x x = .
6.当1,2017
=-=b a a 时,代数式ab a -2的值是 .
7.把下列各式因式分解:
22205)1(b a - 322)2(a a a -+- )()()3(x y y y x x -+-
8.已知 2,5==+ab b a ,求 32232
121ab b a b a ++的值.。