初中抛物线经典练习题(含详细答案)

合集下载

初中数学二次函数应用题型分类——抛物线形物体问题6(附答案)

初中数学二次函数应用题型分类——抛物线形物体问题6(附答案)

初中数学二次函数应用题型分类——抛物线形物体问题6(附答案)1.发射一枚炮弹,经x 秒后的高度为y 公尺,且时间与高度关系为y=ax 2+bx ,若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的?( ) A .第8秒B .第10秒C .第12秒D .第15秒2.定点投篮是同学们喜爱的体育项目之一,某位同学投出篮球的飞行路线可以看作是抛物线的一部分,篮球飞行的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系2y ax bx c =++(a≠0).下表记录了该同学将篮球投出后的x 与y 的三组数据,根据上述函数模型和数据,可推断出篮球飞行到最高点时,水平距离为( ) x (单位:m) 024y (单位:m) 2.253.453.05 A .1.5mB .2mC .2.5mD .3m3.向空中发射一枚炮弹,第x 秒时的高度为y 米,且高度与时间的关系为2(0)y ax bx c a =++≠,若此炮弹在第6秒与第17秒时的高度相等,则在下列时间中炮弹所在高度最高的是( ) A .第8秒B .第10秒C .第12秒D .第15秒4.在学校运动会上,一位运动员掷铅球,铅球的高()ym 与水平距离()x m 之间的函数关系式为20.2 1.6 1.8y x x =-++,则此运动员的成绩是( ) A .10mB .4mC .5mD .9m5.一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下面函数关系式:h =-5(t -1)2+6,则小球距离地面的最大高度是( ) A .1米B .5米C .6米D .7米6.如图,铅球的出手点C 距地面1米,出手后的运动路线是抛物线,出手后4秒钟达到最大高度3米,则铅球运行路线的解析式为( )A .h=﹣316t 2B .y=﹣316t 2+t C .h=﹣18t 2+t+1 D .h=-13t 2+2t+1 7.教练对小明推铅球的录像进行技术分析,发现某次铅球行进高度y(m)与水平距离x(m)之间的关系为y=-112(x-4)2+3,由此可知小明这次的推铅球成绩是( )A .3mB .4mC .8mD .10m8.从地面竖直向上抛出一小球,小球的高度y(米)与小球运动的时间x(秒)之间的关系式为()2y ax bx c a 0.=++≠若小球在第7秒与第14秒时的高度相同,则在下列时间中小球所在高度最高的是( ) A .第8秒B .第10秒C .第12秒D .第15秒9.如图所示的是跳水运动员10m 跳台跳水的运动轨迹,运动员从10m 高A 处的跳台上跳出,运动轨迹成抛物线状(抛物线所在平面与跳台墙面垂直).若运动员的最高点M 离墙1m ,离水面403m ,则运动员落水点B 离墙的距离OB 是( )A .2mB .3mC .4mD .5m10.为了响应“足球进校国”的目标,兴义市某学校开展了多场足球比赛在某场比赛中,一个足球被从地面向上踢出,它距地面的高度h (m )可以用公式h =﹣5t 2+v 0t 表示,其中t (s )表示足球被踢出后经过的时间,v 0(m /s )是足球被踢出时的速度,如果要求足球的最大高度达到20m ,那么足球被踢出时的速度应该达到( ) A .5m /sB .10m /sC .20m /sD .40m /s11.黄冈中学是百年名校,百年校庆上的焰火晚会令很多人记忆犹新.有一种焰火升高高度为h (m )与飞行时间t (s )的关系式是252012h t t =-++,若这种焰火在点燃升空后到最高处引爆,则从点火到引爆所需时间为__________s . 12.小明推铅球,铅球行进高度y (m )与水平距离x (m )之间的关系为y=﹣21(4)12x -+3,则小明推铅球的成绩是 m .13.一名男生推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是21251233y x x =-++,则铅球推出的距离是______.此时铅球行进高度是______.14.对于向上抛的物体,在没有空气阻力的条件下,有这样的关系式:h =vt ﹣12gt 2,其中h 是上升高度,v 是初速,g 是重力加速度(为方便起见,本题目中g 取10m /s 2),t 是抛出后所经历的时间.如果将物体以v =25m /s 的速度向上抛,当t =_____s 时,物体上升到距离最高点11.25m 处?15.从地面竖直向上抛出一小球,小球的高度h (米)与小球的运动时间t (秒)之间的关系式是()230506h t tt =-≤≤,若抛出小球1秒钟后再抛出同样的第二个小球.则第二个小球抛出______秒时,两个小球在空中的高度相同.16.一运动员推铅球,铅球经过的路线为如图所示的抛物线,点(4,3)为该抛物线的顶点,则该抛物线所对应的函数式为_____.17.足球从地面踢出后,在空中飞行时离地面的高度()h m 与运动时间()t s 的关系可近似地表示为29.8h t t =-+,则该足球在空中飞行的时间为__________s .18.从地面竖直向上抛出一小球,小球的高度h (米)与小球运动时间t (秒)的关系式是h =30t ﹣5t 2,小球运动中的最大高度是_____米. 19.校运会上,一名男生推铅球,出手点A 距地面53m ,出手后的运动路线是抛物线,当铅球运行的水平距离是4m 时,达到最大高度3m ,那么该名男生推铅球的成绩是_____m .20.烟花厂为国庆70周年庆祝晚会特别设计制作一种新型礼炮,这种礼炮的升空高h (m )与飞行时间t (s )的关系式是252012h t t =++,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要时间为________.21.在一场足球比赛中,一球员从球门正前方10米处起脚射门,当球飞行的水平距离为6米时达到最高点,此时球高为3米.(1)如图建立直角坐标系,当球飞行的路线为一抛物线时,求此抛物线的解析式. (2)已知球门高为2.44米,问此球能否射中球门(不计其它情况).22.某广场有一个小型喷泉,水流从垂直于地面的水管OA 喷出,OA 长为1.5米.水流在各个方向上沿形状相同的抛物线路径落到地面上,某方向上抛物线路径的形状如图所示,落点B 到O 的距离为3米.建立平面直角坐标系,水流喷出的高度y (米)与水平距离x (米)之间近似满足函数关系20)y ax x c a =++≠((1)求y 与x 之间的函数关系式; (2)求水流喷出的最大高度.23.在某场足球比赛中,球员甲在球门正前方点O 处起脚射门,在不受阻挡的情况下,足球沿如图所示的抛物线飞向球门中心线,当足球飞行的水平距离为2 m 时,高度为5m 3,落地点A 距O 点12 m .已知点O 距球门9 m ,球门的横梁高为2.44 m . (1)飞行的足球能否射入球门?通过计算说明理由;(2)若守门员乙站在球门正前方2 m 处,他跳起时能摸到的最大高度为2.52 m ,他能阻止此次射门吗?并写明理由.24.从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是2305h t t =-(06t ≤≤).求小球运动时间是多少时,小球最高?小球运动中的最大高度是多少?25.如图,一位篮球运动员在离篮圈水平距离4m 处跳起投篮,球运行的高度y (m )与运行的水平距离x (m )满足解析式2y ax x c =++,当球运行的水平距离为1.5m 时,球离地面高度为3.3m ,球在空中达到最大高度后,准确落入篮圈内.已知篮圈中心离地面距离为3.05m .(1)当球运行的水平距离为多少时,达到最大高度?最大高度为多少?(2)若该运动员身高1.8m ,这次跳投时,球在他头顶上方0.25m 处出手,问球出手时,他跳离地面多高?26.如图所示,以40/m s 的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线.如果不考虑空气阻力,球的飞行高度h (单位:m )与飞行时间t (单位:s )之间具有关系式.2205h t t =-(0)t ≥解答以下问题:(1)球的飞行高度能否达到15m ?如能,需要飞行多少时间? (2)球飞行到最高点时的高度是多少m ?27.一球从地面抛出的运动路线呈抛物线,如图.当球离抛出地的水平距离为30m 时,达到最大高度10m .(1)问:球被抛出多远?并求出该抛物线的解析式. (2)当球的高度为509m 时,球离抛出地的水平距离是多少?28.某次足球比赛,队员甲在前场给队友乙掷界外球.如图所示:已知两人相距8米,足球出手时的高度为2.4米,运行的路线是抛物线,当足球运行的水平距离为2米时,足球达到最大高度4米.请你根据图中所建坐标系,求出抛物线的表达式.29.小明将小球沿与地面成一定角度的方向击出,在不考虑空气阻力的条件下,小球的飞行高度y(m)与它的飞行时间x(s)满足二次函数关系,y 与x 的几组对应值如下表所示:x(s) 0 0.5 1 1.5 2 …y(m) 0 8.75 15 18.75 20 …(Ⅰ)求y关于x的函数解析式(不要求写x的取值范围);(Ⅱ)问:小球的飞行高度能否达到22m?请说明理由.30.运动员将小球沿与地面成一定角度的方向击出,在不考虑空气阻力的条件下,小球的飞行高度h(m)与它的飞行时间t(s)满足二次函数关系,t与h的几组对应值如下表所示.t(s)0 0.5 1 1.5 2 …h(m)0 8.75 15 18.75 20 …(1)求h与t之间的函数关系式(不要求写t的取值范围);(2)求小球飞行3s时的高度;(3)问:小球的飞行高度能否达到22m?请说明理由.参考答案1.B 【解析】 【分析】根据题意,x=7时与x=14时y 值相等,因此得出关于a 与b 的关系式,最后代入到2bx a=-中求出x 的值进一步判断即可. 【详解】 由题意得:当x=7时,y=49a +7b , 当x=14时,y=196a +14b , ∵高度相等, ∴49a +7b=196a +14b , ∴b=-21a ,∵抛物线对称轴为:2b x a=-, 即:10.5x =,根据抛物线的对称性以及开口方向, ∴当10.5x =时,y 最大, ∵10与10.5相差最小, ∴四个选项中,第10秒最高, 故选:B. 【点睛】本题主要考查了抛物线的性质,熟练掌握相关概念是解题关键. 2.C 【解析】 【分析】用待定系数法可求二次函数的表达式,从而可得出答案. 【详解】将(0,2.25),(2,3.45),(4,3.05)代入2y ax bx c =++中得2.25423.45164 3.05c a b c a b c =⎧⎪++=⎨⎪++=⎩ 解得 2.250.21c a b =⎧⎪=-⎨⎪=⎩∴220.2 2.250.25( 2.5) 3.5y xx x =-++=--+∵0.250-< ∴当 2.5x =时,max 3.5y =故选C 【点睛】本题主要考查待定系数法求二次函数的解析式及二次函数的最大值,掌握二次函数的图象和性质是解题的关键. 3.C 【解析】 【分析】根据二次函数图像的对称性,求出对称轴,即可得到答案. 【详解】解:根据题意,炮弹在第6秒与第17秒时的高度相等, ∴抛物线的对称轴为:61711.52x +==秒, ∵第12秒距离对称轴最近,∴上述时间中,第12秒时炮弹高度最高; 故选:C. 【点睛】本题考查了二次函数的性质和对称性,解题的关键是掌握二次函数的对称性进行解题. 4.D 【解析】 【分析】根据铅球落地时,高度y =0,把实际问题可理解为当y =0时,即20.2 1.6 1.80y x x =-++=,求x 的值即可.在实际问题中,注意负值舍去.【详解】解:由题意知,当y =0时,20.2 1.6 1.80x x -++=, 整理,得:2890x x --=, 解得:1219x x =-=,,由于负值不符合题意,故该运动员的成绩是9m , 故答案选:D . 【点睛】本题考查二次函数的实际应用,搞清楚铅球落地时,即y =0,测量运动员成绩,也就是求x 的值,借助二次函数解决实际问题. 5.C 【解析】试题解析:∵高度h 和飞行时间t 满足函数关系式:h=-5(t-1)2+6, ∴当t=1时,小球距离地面高度最大, ∴h=-5×(1-1)2+6=6米, 故选C .考点:二次函数的应用. 6.C 【解析】 【分析】根据题意,抛物线的顶点坐标是(4,3),把抛物线经过的点(0,1),代入二次函数的顶点坐标式列出方程,解出系数则可. 【详解】根据题意,设二次函数的表达式为()243h a t =-+,抛物线过(0,1),即代入二次函数解得18a =-,这个二次函数的表达式为()221143188h t t t =--+=-++,故C 选项是正确答案. 【点睛】本题考查了用待定系数法利用顶点坐标式求函数的方法,掌握方程的解法等知识是解决本题的关键. 7.D【解析】 【分析】求出铅球落地时的水平距离,将y=0代入函数关系式,求出x 的值即可得到成绩. 【详解】由题意得,当y=0时,21(4)3=012--+x , 解得:110x =,22x =-(舍去) 故选D. 【点睛】本题考查二次函数的应用,理解当铅球高度为0时,x 的值即为铅球飞行的距离,是解决本题的关键. 8.B 【解析】 【分析】根据题意可以求得该函数的对称轴,然后根据二次函数具有对称性,离对称轴越近,对应的y 值越大,即可解答本题. 【详解】由题意可得:当x 7142+==10.5时,y 取得最大值. ∵二次函数具有对称性,离对称轴越近,对应的y 值越大,∴ t =10时,y 取得最大值. 故选B . 【点睛】本题考查了二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答. 9.B 【解析】 【分析】由题意可得到抛物线的顶点坐标(1,403),因此可设抛物线顶点式()24013=-+y a x ,抛物线与y 轴的交点为A (0,10),代入顶点式可求出抛物线,再求出抛物线与x 轴的交点,即可求出OB.解:由题意,设抛物线解析式为()24013=-+y a x ,代入A (0,10)得, 10=()240013-+a ,解得10=3-a , 所以抛物线解析式为()21040133=--+y x , 当y=0时,()210401=033--+x , 解得1=1-x ,2=3x .因为B 点在x 轴正半轴,故B 点坐标为(3,0)所以OB=3,选B.【点睛】本题考查了待定系数法求二次函数解析式,并运用抛物线的性质解决实际问题,根据题意设出合适的解析式是解题的关键.10.C【解析】【分析】因为-5<0,抛物线开口向下,有最大值,根据顶点坐标公式表示函数的最大值,根据题目对最大值的要求,求待定系数v 0.【详解】解:h=-5t 2+v 0•t ,其对称轴为t=010V , 当t=010V 时,h 最大=-5×(010V )2+v 0•010V =20, 解得:v 0=20,v 0=-20(不合题意舍去),故选C .【点睛】本题考查的是二次函数的应用,关键是利用当对称轴为t=-010V 时h 将取到最大值. 11.4根据关系式可知焰火的运行轨迹是一个开口向下的抛物线,已知焰火在升到最高时引爆,即到达抛物线的顶点时引爆,顶点横坐标就是从点火到引爆所需时间.则t=1205-⨯-=4s , 故答案为4.12.10【解析】【分析】根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x 的值即可.【详解】解:令函数式y=﹣21(4)12x -+3中,y=0, 0=﹣21(4)12x -+3, 解得x 1=10,x 2=﹣2(舍去).即铅球推出的距离是10m .故答案为10.考点:二次函数的应用.13.10m 0m【解析】【分析】铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x 的值.【详解】 解:令函数式21251233y x x =-++中,y=0, 即212501233x x -++=, 解得x 1=10,x 2=−2(舍去),即铅球推出的距离是10m,此时铅球行进高度是0m.故答案为10m;0m..【点睛】本题考查了二次函数的应用以及函数式中自变量与函数表达的实际意义,需要结合题意取函数值为0,进而得出自变量的值是解题关键.14.0.5或4.5 【解析】【分析】根据关系式:h=vt﹣12gt2,列出一元二次方程求解.【详解】解:根据题意,可得出的方程为:11.25=25t﹣5t2,∴t2﹣5t+2.25=0.解得:t1=0.5,t2=4.5.故答案为:0.5或4.5.【点睛】本题考查的知识点是一元二次方程的实际应用,根据所给关系式直接代入数据,解方程即可,此题属于基础题目,易于掌握.15.2.5【解析】【分析】根据题意和二次函数的性质,可以得到第二个小球抛出多少秒时,两个小球在空中的高度相同.【详解】解:∵h=30t-5t2=-5(t-3)2+45,∴该函数的对称轴是直线t=3,∵抛出小球1秒钟后再抛出同样的第二个小球,两个小球在空中的高度相同,∴第二个小球抛出3-0.5=2.5秒时,两个小球在空中的高度相同,故答案为:2.5.【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.16.y=-132(x﹣4)2+3【解析】【分析】根据二次函数的顶点式即可求出抛物线的解析式.解:根据题意,得设抛物线对应的函数式为y =a (x ﹣4)2+3把点(0,52)代入得: 16a+3=52解得a =﹣132, ∴抛物线对应的函数式为y =﹣132(x ﹣4)2+3 故答案为:y =﹣132(x ﹣4)2+3. 【点睛】 本题考查了用待定系数法利用顶点坐标式求函数的方法,同时还考查了方程的解法等知识,难度不大.17.9.8【解析】【分析】求当t=0时函数值,即与x 轴的两个交点,两个交点之间的距离即足球在空中飞行的时间.【详解】解:当t=0时,29.80t t -+=(9.8)0t t --=解得:120;9.8t t ==∴足球在空中的飞行时间为9.8s故答案为:9.8【点睛】本题考查二次函数的实际应用,利用数形结合思想球解题,求抛物线与x 轴的交点是本题的解题关键18.45【解析】首先理解题意,先把实际问题转化成数学问题后,知道解此题就是求出h =30t ﹣5t 2的顶点坐标即可.【详解】解:h =﹣5t 2+30t=﹣5(t 2﹣6t +9)+45=﹣5(t ﹣3)2+45,∵a =﹣5<0,∴图象的开口向下,有最大值,当t =3时,h 最大值=45.故答案为:45.【点睛】本题考查了二次函数的应用,解此题的关键是把实际问题转化成数学问题,利用二次函数的性质就能求出结果.19.10【解析】【分析】把(0,53)代入y=a (x-4)2+3,求出a 的值即可,再求出抛物线与x 轴的交点即可解决问题;【详解】设二次函数的解析式为y=a (x-4)2+3,把(0,53)代入y=a (x-4)2+3, 解得,a=-112, 则二次函数的解析式为:y=-112(x-4)2+3=-22531312x x ++; 令y=0得到:-22531312x x ++=0, 解得,x 1=-2(舍去),x 2=10,则铅球推出的距离为10m .故答案为10.【点睛】此题考查二次函数的实际应用,熟练掌握待定系数法求函数解析式是解题关键.20.4s【解析】【分析】把二次函数的一般式写成顶点式,找出顶点坐标,即可知道多长时间后得到最高点.【详解】 解:252012h t t =++ =52-(t-4)2+41, ∵52-<0, ∴这个二次函数图象开口向下,∴当t=4时,升到最高点,∴从点火升空到引爆需要的时间为4s .故答案为:4s .【点睛】本题考查了二次函数解析式的相互转化,以及二次函数的性质,二次函数的表达式有三种形式,一般式,顶点式,交点式.要求最高(低)点,或者最大(小)值,需要先写成顶点式.烟花厂为国庆70周年庆祝晚会特别设计制作一种新型礼炮,这种礼炮的升空高h (m )与飞行时间t (s )的关系式是h=t2+20t+1252012h t t =++,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要时间为21.(1)y =﹣112(x ﹣4)2+3;(2)能射中球门. 【解析】【分析】(1)根据条件可以得到抛物线的顶点坐标是(4,3),利用待定系数法即可求得函数的解析式;(2)求出当x =0时,抛物线的函数值,与2.44米进行比较即可判断.【详解】(1)抛物线的顶点坐标是(4,3),设抛物线的解析式是:y =a (x ﹣4)2+3,把(10,0)代入得36a+3=0,解得a =-112, 则抛物线是y =﹣112(x ﹣4)2+3; (2)当x =0时,y =-112×16+3=3﹣43=53<2.44米. 故能射中球门.【点睛】本题考查了待定系数法求二次函数的解析式,以及二次函数的应用,正确求得解析式是关键.22.(1)213.22y x x =-++(2)水流喷出的最大高度为2米 【解析】【分析】(1)建立平面直角坐标系,待定系数法解题,(2)求出顶点坐标即可.【详解】解:(1)由题意可得,抛物线经过(0,1.5)和(3,0), 1.5930c a c =⎧⎨⨯++=⎩解得:a=-0.5,c=1.5,即函数表达式为y=21322x x -++. (2)解:221311+2.222y x x x =-++=--() ∴当x=1时,y 取得最大值,此时y=2.答:水流喷出的最大高度为2米.本题考查了二次函数的解析式的求法,顶点坐标的应用,中等难度,建立平面直角坐标系是解题关键.23.(1)能射入球门.理由见解析;(2)不能阻止.理由见解析.【解析】【分析】(1)设抛物线解析式为()20y ax bx c a =++≠,将()5212,03⎛⎫ ⎪⎝⎭,,代入求解析式,再将9x =代入即可判断;(2)根据“守门员乙站在球门正前方2m 处”可知此时x=7,将其代入解析式即可判断.【详解】解:(1)能射入球门.设抛物线解析式为()20y ax bx c a =++≠ 将()5212,03⎛⎫ ⎪⎝⎭,,代入求解可得: 抛物线解析式为2112y x x =-+ 当9x =时,2712y =- ∵27 2.4412<, ∴能射入球门.(2)不能阻止.∵守门员乙站在球门正前方2 m 处,∴7x =当7x =时,3512y =∵35 2.5212>, ∴不能阻止.【点睛】本题考查的是待定系数法求二次函数解析式,能够求出抛物线解析式是解题的关键. 24.小球运动3秒时,最大高度是45m .【分析】首先将二次函数转换成顶点式,然后即可求出自变量和函数值的最大值.【详解】2305h t t =-25(3)45t =--+06t ≤≤∴当3t =时,h 最大45=.答:小球运动3秒时,小球最高,最大高度是45m .【点睛】此题主要考查二次函数的性质,熟练掌握,即可解题.25.(1)当球运行的水平距离为2.5m 时,达到最大高度为3.5m ;(2)球出手时,他跳离地面0.2m .【解析】【分析】(1)根据待定系数法,即可求解;(2)令0x =时,则 2.25y =,进而即可求出答案.【详解】(1)依题意得:抛物线2y ax x c =++经过点(1.5,3.3)和(4,3.05),∴221.5 1.5 3.344 3.05a c a c ⎧⨯++=⎨⨯++=⎩,解得:0.22.25a c =-⎧⎨=⎩, ∴220.2 2.250.2( 2.5) 3.5y x x x =-++=--+,∴当球运行的水平距离为2.5m 时,达到最大高度为3.5m ;(2)∵0x =时, 2.25y =,∴2.250.25 1.80.2--=m ,即球出手时,他跳离地面0.2m .【点睛】本题主要考查二次函数的实际应用,掌握二次函数的图象和性质,是解题的关键.26.(1)能,1或3;(2)20m【解析】【分析】(1)当h=15米时,15=20t-5t 2,解方程即可解答;(2)求出当2205h t t =-的最大值即可.【详解】解;(1)解方程:215205t t =-2430t t -+=,解得:121,3t t ==,需要飞行1s 或3s ;(2)222055(t 2)20h t t =-=--+,当2t =时,h 取最大值20,∴球飞行的最大高度是20m .【点睛】本题主要考查了二次函数与一元二次方程的关系,根据题意建立方程是解决问题的关键. 27.(1)球被抛出60m ,该抛物线的解析式为y =﹣190x 2+23x ;(2)球离抛出地的水平距离是10m 或50m .【解析】【分析】(1)根据已知条件设抛物线顶点式解析式即可求解;(2)根据(1)中求得的解析式,把球的高度为509m 代入,即可求出球离抛出地的水平距离.【详解】解:(1)根据题意,得设抛物线的解析式为2(30)10y a x =-+,把(0,0)代入得190a =-.所以抛物线解析式为22112(30)1090903y x x x =--+=+. 当0y =时,10x =,260x =.或者:因为抛物线对称轴为30x =,所以抛物线与x 轴的交点为(0,0),(60,0)答:球被抛出60m .该抛物线的解析式为212903y x x =-+. (2)当509y =时,2501(30)10990x =--+,解得150x =,210x =. 答:球离抛出地的水平距离是10m 或50m .【点睛】本题考查了二次函数的应用,要恰当地把实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决问题.28.y = -0.4x 2+4【解析】【分析】根据题意设抛物线的表达式为y=ax 2+4 (0a ≠),代入(-2,2.4),即可求出a .【详解】解:设y=ax 2+4 (0a ≠)∵ 图象经过(-2,2.4)∴ 4a+4=2.4a= -0.4∴ 表达式为y= -0.4x 2+4【点睛】本题考查了二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型.29.(Ⅰ) y =﹣5x 2+20x ;(Ⅱ)小球的飞行高度不能达到22m ,理由见解析.【解析】【分析】(Ⅰ)设y 与x 之间的函数关系式为y =ax 2+bx(a≠0),然后再根据表格代入x =1时,y =15;x =2时,y =20可得关于a 、b 的方程组,再解即可得到a 、b 的值,进而可得函数解析式; (Ⅱ)把函数解析式写成顶点式的形式可得小球飞行的最大高度,进而可得答案.【详解】(Ⅰ)∵x=0时,y=0,∴设y与x之间的函数关系式为y=ax2+bx(a≠0),∵x=1时,y=15;x=2时,y=20,∴15 4220 a ba b+=⎧⎨+=⎩,解得520ab=-⎧⎨=⎩,∴y与x之间的函数关系式为y=﹣5x2+20x;(Ⅱ)由(Ⅰ)得:y=﹣5x2+20x=﹣5(x﹣2)2+20,∴小球飞行的最大高度为20m,∵22>20,∴小球的飞行高度不能达到22m.【点睛】本题主要考查了二次函数的实际应用,熟练掌握相关方法是解题关键.30.(1)h=﹣5t2+20t;(2)小球飞行3s时的高度为15米;(3)小球的飞行高度不能达到22m.【解析】【分析】(1)设h与t之间的函数关系式为h=at2+bt(a≠0),然后再根据表格代入t=1时,h=15;t=2时,h=20可得关于a、b的方程组,再解即可得到a、b的值,进而可得函数解析式;(2)根据函数解析式,代入t=3可得h的值;(3)把函数解析式写成顶点式的形式可得小球飞行的最大高度,进而可得答案.【详解】解:(1)∵t=0时,h=0,∴设h与t之间的函数关系式为h=at2+bt(a≠0),∵t=1时,h=15;t=2时,h=20,∴a15{4220ba b+=+=,解得5 {20ab=-=,∴h与t之间的函数关系式为h=﹣5t2+20t;(2)小球飞行3秒时,t=3(s),此时h=﹣5×32+20×3=15(m).答:小球飞行3s时的高度为15米;(3)∵h=﹣5t2+20t=﹣5(t﹣2)2+20,∴小球飞行的最大高度为20m,∵22>20,∴小球的飞行高度不能达到22m.【点睛】此题主要考查了二次函数的应用,关键是掌握待定系数法求函数解析式,掌握配方法化顶点解析式.。

初三利润抛物线试题大全及解析

初三利润抛物线试题大全及解析

初三利润抛物线试题大全及解析
抛物线问题
如图,在平面直角坐标系中,抛物线与轴交于两点,与轴交于点,且.
(1)求抛物线的解析式;
(2)已知点,点为线段上一动点,延长交抛物线于点,连结.
①当四边形面积为9,求点的坐标;
②设,求的最大值.
试题答案
(1)y=x2﹣x﹣4;(2)①点H的坐标为(2,﹣4)或(,﹣);②m的最大值为.
利润问题
某商店经营一种文具,已知成批购进时的单价是20元.调查发现销售单价是30元时,月销售量是230件,而销售单价每上涨1
元,月销售量就减少10件,且每件文具售价不能高于40元,设每件文具的销售单价上涨了x元时(x为正整数),月销售利润为y 元.
(1)求y与x的函数关系式;
(2)每件文具的售价定为多少元时,月销售利润为2520元?
(3)每件文具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?
试题答案
(1)y=-10x2+130x+2300,自变量x的取值范围是:0<x≤10且x为正整数;
(2)每件文具的售价定为32元时,月销售利润恰为2520元.
(3)每件文具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.。

初三数学抛物线练习题

初三数学抛物线练习题

初三数学抛物线练习题1. 某投掷运动员在水平地面上向上抛出一个球,其运动轨迹为抛物线。

已知抛物线的顶点为 (-2, 4),球的最高点为 (0, 6)。

(1) 求抛物线的方程。

解析:设抛物线的方程为 y = ax^2 + bx + c。

由顶点坐标得到 a:4 = a*(-2)^2 + b*(-2) + c4 = 4a - 2b + c由最高点坐标得到 c:6 = a*0^2 + b*0 + c6 = c代入 c 的值,得到:4 = 4a - 2b + 6整理方程,得到:4a - 2b = -2(2) 求球的运动方程。

解析:球的运动方程为 y = -4x^2 + bx + 6。

由最高点坐标得到 b:6 = -4*0^2 + 0*b + 66 = b球的运动方程为 y = -4x^2 + 6x + 6。

2. 已知某抛物线的焦点为 F(-3, 2),直径 MN 的中点为 A(3, -1)。

(1) 求抛物线的方程。

解析:设抛物线的方程为 y = ax^2 + bx + c。

由焦点信息得到 a:2 = a*(-3)^2 + b*(-3) + c2 = 9a - 3b + c由中点信息得到 c:-1 = a*(3)^2 + b*(3) + c-1 = 9a + 3b + c由焦准等距性质得到 b:b = 2*(-3)代入 a、b 的值,得到:2 = 9a + 6-1 = 9a - 6解方程组,得到 a = 1/3,b = -6/3,c = -1/3。

抛物线的方程为 y = (1/3)x^2 - 2x - (1/3)。

(2) 求焦点 F 到直线 MN 的距离。

解析:直线 MN 的斜率为:k = (-1 - 2)/(3 - (-3)) = -3/6 = -1/2直线 MN 的方程为:y = (-1/2)x + m将 A 的坐标代入直线方程,得到 m:-1 = (-1/2)*3 + mm = -5/2直线 MN 的方程为 y = (-1/2)x - 5/2。

初中数学二次函数应用题型分类——抛物线形物体问题8(附答案)

初中数学二次函数应用题型分类——抛物线形物体问题8(附答案)
A.0.71sB.0.70sC.0.63sD.0.36s
4.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)间的关系为 ,由此可知铅球推出的距离是()
A.2mB.8mC.10mD.12
5.如图,小明在某次投篮中,球的运动路线是抛物线y=﹣0.2x2+3.5的一部分,若命中篮圈中心,则他与篮圈底的距离l是()
13.体育测试时,初三一名学生推铅球,已知铅球所经过的路线为抛物线 的一部分,该同学的成绩是________.
14.铅球行进高度y(m)与水平距离x(m)之间的关系为y=﹣ x2+ x+ ,铅球推出后最大高度是_____m,铅球落地时的水平距离是______m.
15.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是 ,则小球从抛出到落地所用的时间是______ s.
(2)网球在斜坡的落点 的垂直高度.
参考答案
1.B
【解析】
【分析】
礼炮到最高点爆炸,那么所需时间为t= ,代入相应数据才能正确解答.
【详解】
解:当礼炮到达最高点时,即为抛物线的顶点,此时t= ,故选:B.
【点睛】
考查二次函数的应用;判断出所求时间为二次函数的顶点坐标的横坐标的值是解决本题的关键.
2.A
(1)小球飞行时间是多少时,小球最高?最大高度是多少?
(2)小球飞行时间t在什么范围时,飞行高度不低于15m?
26.以40m/s的速度将小球沿与地面成约45°角的方向击出,小球的飞行路线是一条抛物线,我们不考虑空气阻力,小球的飞行高度h(单位:米)与飞行时间t(单位:s)之间具有函数关系h=20t-5t2.
3.D

中考数学抛物线难题解析(含答案)

中考数学抛物线难题解析(含答案)

如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c 经过A,B两点,抛物线的顶点为D.(1)求b,c的值;(2)点E是直角三角形ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标;(3)在(2)的条件下:①求以点E、B、F、D为顶点的四边形的面积;②在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,说明理由.在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限抛物线上一动点,点M的横坐标为m,△AMB的面积为S、求S关于m的函数关系式,并求出S的最大值.(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.(4)补充:在(3)的条件下,点P、Q、B、O为顶点的四边形能否成为梯形,若能,求出相应Q的坐标。

41直角坐标系XOY中,将直线y=kx沿y轴下移3个单位长度后恰好经点B(-3,0)及y 轴上的C点。

若抛物y=-x2+bx+c与x轴交于A点B点,(点A在点B的右侧),且过点C 。

(1)求直线BC及抛物线解析式(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求p点坐标如图,已知抛物线y=x2+bx+c与x轴交于A,B两点(A点在B点左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC交抛物线对称轴交于点D.(1)求抛物线的函数表达式;(2)求直线BC的函数表达式;(3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P,Q两点,且点P在第三象限.①当线段PQ=3AB/4时,求tan∠CED的值;②当以点C,D,E为顶点的三角形是直角三角形时,请直接写出点P的坐标.温馨提示:考生可以根据第(3)问的题意,在图中补出图形,以便作答.第25题图第25题备用图直角坐标系XOY中,半径2√5的⊙C与x轴交于A(-1,0),B(3,0)且点C在X轴上方。

初中数学二次函数应用题型分类——抛物线形物体问题7(附答案)

初中数学二次函数应用题型分类——抛物线形物体问题7(附答案)
23.有座抛物线形拱桥(如图),正常水位时桥下河面宽 ,河面距拱顶 ,为了保证过往船只顺利航行,桥下水面的宽度不得小于 .
(1)求出如图所示坐标系中的抛物线的解析式;
(2)求水面在正常水位基础上上涨多少米时,就会影响过往船只航行?
24.如图所示的是水面一桥拱的示意图,它的形状类似于抛物线,在正常水位时,该桥下水面宽度为20米,拱顶距离正常水面4米,建立平面直角坐标系如图所示,求抛物线的解析式.
17.悬索桥,又名吊桥,指的是以通过索塔悬挂并锚固于两岸(或桥两端)的缆索(或钢链)作为上部结构主要承重构件的桥梁.其缆索几何形状一般近似于抛物线.从缆索垂下许多吊杆(吊杆垂直于桥面),把桥面吊住.某悬索桥(如图1),是连接两个地区的重要通道.图2是该悬索桥的示意图.小明在游览该大桥时,被这座雄伟壮观的大桥所吸引.他通过查找资料了解到此桥的相关信息:这座桥的缆索(即图2中桥上方的曲线)的形状近似于抛物线,两端的索塔在桥面以上部分高度相同,即AB=CD,两个索塔均与桥面垂直.主桥AC的长为600 m,引桥CE的长为124 m.缆索最低处的吊杆MN长为3 m,桥面上与点M相距100 m处的吊杆PQ长为13 m.若将缆索的形状视为抛物线,请你根据小明获得的信息,建立适当的平面直角坐标系,求出索塔顶端D与锚点E的距离.
29.如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线最高点D到墙面OB的水平距离为6m时,隧道最高点D距离地面10m.
(1)求该抛物线的函数关系式;
(2)一辆货运汽车载一长方体集装箱后宽为4m,高为6m,如果隧道内设双向行车道,那么这辆货车能否安全通过?
(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?

中考压轴题——抛物线平行四边形(含详细答案分析)

中考压轴题——抛物线平行四边形(含详细答案分析)

中考总复习抛物线之平行四边形题型1.如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A、B、C三点的坐标和抛物线的对称轴;(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m;①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?②设△BCF的面积为S,求S与m的函数关系式.2.已知抛物线经过A(2,0).设顶点为点P,与x轴的另一交点为点B.(1)求b的值,求出点P、点B的坐标;(2)如图,在直线y=x上是否存在点D,使四边形OPBD为平行四边形?若存在,求出点D的坐标;若不存在,请说明理由;(3)在x轴下方的抛物线上是否存在点M,使△AMP≌△AMB?如果存在,试举例验证你的猜想;如果不存在,试说明理由.3.如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状;(3)在直线l上是否存在一点P,使以点P、A、B、D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.4.已知抛物线y=﹣mx2+4x+2m与x轴交于点A(α,0),B(β,0),且=﹣2,(1)求抛物线的解析式.(2)抛物线的对称轴为l,与y轴的交点为C,顶点为D,点C关于l的对称点为E,是否存在x轴上的点M,y轴上的点N,使四边形DNME的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由.(3)若点P在抛物线上,点Q在x轴上,当以点D、E、P、Q为顶点的四边形是平行四边形时,求点P的坐标.5.已知抛物线y=﹣x2﹣2x+a(a≠0)与y轴相交于A点,顶点为M,直线y=x﹣a分别与x轴、y轴相交于B,C两点,并且与直线MA相交于N点.(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M,A的坐标;(2)将△NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连接CD,求a的值及△PCD的面积;(3)在抛物线y=﹣x2﹣2x+a(a>0)上是否存在点P,使得以P,A,C,N为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.6.边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接CD,点E 在第一象限,且DE⊥DC,DE=DC.以直线AB为对称轴的抛物线过C,E两点.(1)求抛物线的解析式;(2)点P从点C出发,沿射线CB每秒1个单位长度的速度运动,运动时间为t秒.过点P作PF⊥CD于点F,当t为何值时,以点P,F,D为顶点的三角形与△COD相似?(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.7.如图,边长为1的正方形ABCD一边AD在x负半轴上,直线l:y=x+2经过点B(x,1)与x轴,y轴分别交于点H,F,抛物线y=﹣x2+bx+c.(1)求A,D两点的坐标及抛物线经过A,D两点时的解析式;(2)当抛物线的顶点E(m,n)在直线l上运动时,连接EA,ED,试求△EAD的面积S与m之间的函数解析式,并写出m的取值范围;(3)设抛物线与y轴交于G点,当顶点E在直线l上运动时,以A,C,E,G为顶点的四边形能否成为平行四边形?若能,求出E点坐标;若不能,请说明理由.8.已知抛物线:(1)求抛物线y1的顶点坐标.(2)将抛物线y1向右平移2个单位,再向上平移1个单位,得到抛物线y2,求抛物线y2的解析式.(3)如图,抛物线y2的顶点为P,x轴上有一动点M,在y1、y2这两条抛物线上是否存在点N,使O(原点)、P、M、N四点构成以OP为一边的平行四边形?若存在,求出N点的坐标;若不存在,请说明理由.9.如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点.(1)求AD的长及抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO 以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t 为何值时,以P、Q、C为顶点的三角形与△ADE相似?(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.10.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)设点M(3,m),求使MN+MD的值最小时m的值;(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.11.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣3).(1)求该抛物线的解析式及顶点M坐标;(2)求△BCM面积与△ABC面积的比;(3)若P是x轴上一个动点,过P作射线PQ∥AC交抛物线于点Q,随着P点的运动,在抛物线上是否存在这样的点Q,使以A,P,Q,C为顶点的四边形为平行四边形?若存在,请求出Q点坐标;若不存在,请说明理由.12.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.13.如图,抛物线y=x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C;(1)求该抛物线的解析式;(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.14.如图,直线y=2x+2与x轴交于点A,与y轴交于点B,把△AOB沿y轴翻折,点A落到点C,过点B 的抛物线y=﹣x2+bx+c与直线BC交于点D(3,﹣4).(1)求直线BD和抛物线的解析式;(2)在第一象限内的抛物线上,是否存在一点M,作MN垂直于x轴,垂足为点N,使得以M、O、N为顶点的三角形与△BOC相似?若存在,求出点M的坐标;若不存在,请说明理由;(3)在直线BD上方的抛物线上有一动点P,过点P作PH垂直于x轴,交直线BD于点H,当四边形BOHP 是平行四边形时,试求动点P的坐标.15.综合与探究:如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,A、C两点的坐标分别为(4,0),(﹣2,3),抛物线W经过O、A、C三点,D是抛物线W的顶点.(1)求抛物线W的解析式及顶点D的坐标;(2)将抛物线W和▱OABC一起先向右平移4个单位后,再向下平移m(0<m<3)个单位,得到抛物线W′和▱O′A′B′C′,在向下平移的过程中,设▱O′A′B′C′与▱OABC的重叠部分的面积为S,试探究:当m为何值时S有最大值,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,设此时抛物线W′的顶点为F,若点M是x轴上的动点,点N是抛物线W′上的动点,试判断是否存在这样的点M和点N,使得以D、F、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.16.如图,抛物线与x轴交于点A(﹣5,0)和点B(3,0).与y轴交于点C(0,5).有一宽度为1,长度足够的矩形(阴影部分)沿x轴方向平移,与y轴平行的一组对边交抛物线于点P和Q,交直线AC于点M和N.交x轴于点E和F.(1)求抛物线的解析式;(2)当点M和N都在线段AC上时,连接MF,如果sin∠AMF=,求点Q的坐标;(3)在矩形的平移过程中,当以点P,Q,M,N为顶点的四边形是平行四边形时,求点M的坐标.17.如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.1.解:(1)A(﹣1,0),B(3,0),C(0,3).抛物线的对称轴是:直线x=1.(2)①设直线BC的函数关系式为:y=kx+b.把B(3,0),C(0,3)分别代入得:解得:.所以直线BC的函数关系式为:y=﹣x+3.当x=1时,y=﹣1+3=2,∴E(1,2).当x=m时,y=﹣m+3,∴P(m,﹣m+3).在y=﹣x2+2x+3中,当x=1时,y=4.∴D(1,4)当x=m时,y=﹣m2+2m+3,∴F(m,﹣m2+2m+3)∴线段DE=4﹣2=2,线段PF=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m∵PF∥DE,∴当PF=ED时,四边形PEDF为平行四边形.由﹣m2+3m=2,解得:m1=2,m2=1(不合题意,舍去).因此,当m=2时,四边形PEDF为平行四边形.②设直线PF与x轴交于点M,由B(3,0),O(0,0),可得:OB=OM+MB=3.∵S=S△BPF+S△CPF即S=PF•BM+PF•OM=PF•(BM+OM)=PF•OB.∴S=×3(﹣m2+3m)=﹣m2+m(0≤m≤3).方法二:(3)∵B(3,0),C(0,3),D(1,4),∴,∴,∵∠DEC=∠COB=90°,∴△DEC∽△COB,∴∠DCE=∠CBO,∴∠DCE+∠OCB=90°,∴DC⊥BC,∴△BCD的外接圆圆心M为BD中点,∴M X==2,M Y==2,∴△BCD的外接圆圆心M(2,2).2.(2012•东营)已知抛物线经过A(2,0).设顶点为点P,与x轴的另一交点为点B.(1)求b的值,求出点P、点B的坐标;(2)如图,在直线y=x上是否存在点D,使四边形OPBD为平行四边形?若存在,求出点D的坐标;若不存在,请说明理由;(3)在x轴下方的抛物线上是否存在点M,使△AMP≌△AMB?如果存在,试举例验证你的猜想;如果不存在,试说明理由.【解答】解:(1)由于抛物线经过A(2,0),所以,解得.所以抛物线的解析式为,①将①式配方,得,所以顶点P的坐标为(4,﹣2),令y=0,得,解得x1=2,x2=6.所以点B的坐标是(6,0).(2)在直线y=x上存在点D,使四边形OPBD为平行四边形.理由如下:设直线PB的解析式为y=kx+b,把B(6,0),P(4,﹣2)分别代入,得,解得,所以直线PB的解析式为.又因为直线OD的解析式为,所以直线PB∥OD.设直线OP的解析式为y=mx,把P(4,﹣2)代入,得,解得.如果OP∥BD,那么四边形OPBD为平行四边形.设直线BD的解析式为,将B(6,0)代入,得0=,所以所以直线BD的解析式为,解方程组,得,同样还存在第二种情况,如图所示,D′点和D关于原点对称,因此D′的坐标为(﹣2,﹣2),所以D点的坐标为(2,2)或(﹣2,﹣2).(3)符合条件的点M存在.验证如下:过点P作x轴的垂线,垂足为C,则PC=2,AC=2,由勾股定理,可得AP=4,PB=4,又AB=4,所以△APB是等边三角形,只要作∠PAB的平分线交抛物线于M点,连接PM,BM,由于AM=AM,∠PAM=∠BAM,AB=AP,可得△AMP≌△AMB.因此即存在这样的点M,使△AMP≌△AMB.方法二:(4)过点G作x轴垂线,垂足为H,∵⊙G为△OBD的外接圆,∴点G在线段OH的垂直平分线上,且GO=GD,∵B(6,0),∴l GH:x=3,设G点坐标为(3,m),O(0,0),D(2,2),∴(3﹣0)2+(m﹣0)2=(3﹣2)2+(m﹣2)2,∴m=,∴G点的坐标为(3,).3.(2012•宜宾)如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状;(3)在直线l上是否存在一点P,使以点P、A、B、D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.【解答】方法一:解:(1)∵顶点A的横坐标为x=﹣=1,且顶点A在y=x﹣5上,∴当x=1时,y=1﹣5=﹣4,∴A(1,﹣4).(2)△ABD是直角三角形.将A(1,﹣4)代入y=x2﹣2x+c,可得,1﹣2+c=﹣4,∴c=﹣3,∴y=x2﹣2x﹣3,∴B(0,﹣3)当y=0时,x2﹣2x﹣3=0,x1=﹣1,x2=3∴C(﹣1,0),D(3,0),BD2=OB2+OD2=18,AB2=(4﹣3)2+12=2,AD2=(3﹣1)2+42=20,BD2+AB2=AD2,∴∠ABD=90°,即△ABD是直角三角形.(3)存在.由题意知:直线y=x﹣5交y轴于点E(0,﹣5),交x轴于点F(5,0)∴OE=OF=5,又∵OB=OD=3∴△OEF与△OBD都是等腰直角三角形∴BD∥l,即PA∥BD则构成平行四边形只能是PADB或PABD,如图,过点P作y轴的垂线,过点A作x轴的垂线交过P且平行于x轴的直线于点G.设P(x1,x1﹣5),则G(1,x1﹣5)则PG=|1﹣x1|,AG=|5﹣x1﹣4|=|1﹣x1|PA=BD=3由勾股定理得:(1﹣x1)2+(1﹣x1)2=18,x12﹣2x1﹣8=0,x1=﹣2或4∴P(﹣2,﹣7)或P(4,﹣1),存在点P(﹣2,﹣7)或P(4,﹣1)使以点A、B、D、P为顶点的四边形是平行四边形.方法二:(1)略.(2)把A(1,﹣4)代入y=x2﹣2x+c,得c=3,∴y=x2﹣2x+3=(x﹣3)(x+1),∴D(3,0),B(0,﹣3),A(1,﹣4),K BD==1,K AB==﹣1,∴K BD•K AB=﹣1,∴AB⊥BD,即△ABD为直角三角形.(3)略.(4)∵,解得:x1=1(舍),x2=2,∴G(2,﹣3),∵A(1,﹣4),B(0,﹣3),D(3,0),∴GA==,BD==3,AB==,∴S△BDG==4.4.(2015•德州)已知抛物线y=﹣mx2+4x+2m与x轴交于点A(α,0),B(β,0),且=﹣2,(1)求抛物线的解析式.(2)抛物线的对称轴为l,与y轴的交点为C,顶点为D,点C关于l的对称点为E,是否存在x轴上的点M,y轴上的点N,使四边形DNME的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由.(3)若点P在抛物线上,点Q在x轴上,当以点D、E、P、Q为顶点的四边形是平行四边形时,求点P的坐标.【解答】解:(1)由题意可得:α,β是方程﹣mx2+4x+2m=0的两根,由根与系数的关系可得,α+β=,αβ=﹣2,∵=﹣2,∴=﹣2,即=﹣2,解得:m=1,故抛物线解析式为:y=﹣x2+4x+2;(2)存在x轴上的点M,y轴上的点N,使得四边形DNME的周长最小,∵y=﹣x2+4x+2=﹣(x﹣2)2+6,∴抛物线的对称轴l为x=2,顶点D的坐标为:(2,6),又∵抛物线与y轴交点C的坐标为:(0,2),点E与点C关于l对称,∴E点坐标为:(4,2),作点D关于y轴的对称点D′,点E关于x轴的对称点E′,则D′的坐标为;(﹣2,6),E′坐标为:(4,﹣2),连接D′E′,交x轴于M,交y轴于N,此时,四边形DNME的周长最小为:D′E′+DE,如图1所示:延长E′E,′D交于一点F,在Rt△D′E′F中,D′F=6,E′F=8,则D′E′===10,设对称轴l与CE交于点G,在Rt△DGE中,DG=4,EG=2,∴DE===2,∴四边形DNME的周长最小值为:10+2;(3)如图2,P为抛物线上的点,过点P作PH⊥x轴,垂足为H,若以点D、E、P、Q为顶点的四边形为平行四边形,则△PHQ≌△DGE,∴PH=DG=4,∴|y|=4,∴当y=4时,﹣x2+4x+2=4,解得:x1=2+,x2=2﹣,当y=﹣4时,﹣x2+4x+2=﹣4,解得:x3=2+,x4=2﹣,故P点的坐标为;(2﹣,4),(2+,4),(2﹣,﹣4),(2+,﹣4).5.(2015•绵阳)已知抛物线y=﹣x2﹣2x+a(a≠0)与y轴相交于A点,顶点为M,直线y=x﹣a分别与x轴、y轴相交于B,C两点,并且与直线MA相交于N点.(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M,A的坐标;(2)将△NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连接CD,求a的值及△PCD的面积;(3)在抛物线y=﹣x2﹣2x+a(a>0)上是否存在点P,使得以P,A,C,N为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.【解答】解:(1)由题意得,,整理得2x2+5x﹣4a=0.∵△=25+32a>0,解得a>﹣.∵a≠0,∴a>﹣且a≠0.令x=0,得y=a,∴A(0,a).由y=﹣(x+1)2+1+a得,M(﹣1,1+a).(2)设直线MA的解析式为y=kx+b(k≠0),∵A(0,a),M(﹣1,1+a),∴,解得,∴直线MA的解析式为y=﹣x+a,联立得,,解得,∴N(,﹣).∵点P是点N关于y轴的对称点,∴P(﹣,﹣).代入y=﹣x2﹣2x+a得,﹣=﹣a2+a+a,解得a=或a=0(舍去).∴A(0,),C(0,﹣),M(﹣1,),|AC|=,∴S△PCD=S△PAC﹣S△ADC=|AC|•|x p|﹣|AC|•|x0|=••(3﹣1)=;(3)①当点P在y轴左侧时,∵四边形APCN是平行四边形,∴AC与PN互相平分,N(,﹣),∴P(﹣,);代入y=﹣x2﹣2x+a得,=﹣a2+a+a,解得a=,∴P1(﹣,).②当点P在y轴右侧时,∵四边形ACPN是平行四边形,∴NP∥AC且NP=AC,∵N(,﹣),A(0,a),C(0,﹣a),∴P(,﹣).代入y=﹣x2﹣2x+a得,﹣=﹣a2﹣a+a,解得a=,∴P2(,﹣).综上所述,当点P1(﹣,)和P2(,﹣)时,A、C、P、N能构成平行四边形.6.(2015•湖北)边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接CD,点E在第一象限,且DE⊥DC,DE=DC.以直线AB为对称轴的抛物线过C,E两点.(1)求抛物线的解析式;(2)点P从点C出发,沿射线CB每秒1个单位长度的速度运动,运动时间为t秒.过点P作PF⊥CD于点F,当t为何值时,以点P,F,D为顶点的三角形与△COD相似?(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.【解答】解:(1)方法一:过点E作EG⊥x轴于G点.∵四边形OABC是边长为2的正方形,D是OA的中点,∴OA=OC=2,OD=1,∠AOC=∠DGE=90°.∵∠CDE=90°,∴∠ODC+∠GDE=90°.∵∠ODC+∠OCD=90°,∴∠OCD=∠GDE.在△OCD和△GED中,∴△ODC≌△GED (AAS),∴EG=OD=1,DG=OC=2.∴点E的坐标为(3,1).∵抛物线的对称轴为直线AB即直线x=2,∴可设抛物线的解析式为y=a(x﹣2)2+k,将C、E点的坐标代入解析式,得.解得,抛物线的解析式为y=(x﹣2)2+;方法二:过点E作EG⊥x轴于G点.DE⊥DC⇒∠CDO+∠EDH=90°,EG⊥x轴⇒∠DEH+∠EDH=90°,∴∠CDO=∠DEH,DC=DE,∴△ODC≌△GED⇒DG=OC=2,EG=OD=1,∴E(3,1),∴9a+3b+2=0,∵﹣=2,抛物线的解析式为y=(x﹣2)2+;(2)方法一:①若△DFP∽△COD,则∠PDF=∠DCO,∴PD∥OC,∴∠PDO=∠OCP=∠AOC=90°,∴四边形PDOC是矩形,∴PC=OD=1,∴t=1;②若△PFD∽△COD,则∠DPF=∠DCO,=.∴∠PCF=90°﹣∠DCO=90﹣∠DPF=∠PDF.∴PC=PD,∴DF=CD.∵CD2=OD2+OC2=22+12=5,∴CD=,∴DF=.∵=,∴PC=PD=×=,t=,综上所述:t=1或t=时,以点P,F,D为顶点的三角形与△COD相似;方法二:过点F作x轴的垂线,分别交BC,OA于G,H,PF⊥CD⇒∠PFG+∠DFH=90°,GH⊥OA⇒∠FDH+∠DFH=90°,∴∠PFG=∠FDH⇒△PFG∽△FDH⇒,∵PF⊥CD⇒K PF×K CD=﹣1,∴l CD:y=﹣2x+2,∴F(m,﹣2m+2),P(t,2),∴,∴m=,∴F(,﹣),∴=,∴以P,F,D为顶点的三角形与△COD相似,①,∴,∴t=,②,∴,∴t=1,综上所述:t=1或t=时,以点P,F,D为顶点的三角形与△COD相似;方法三:若以P,F,D为顶点的三角形与△COD相似,则∠OCD=∠PDF或∠ODC=∠PDF,①∠OCD=∠PDF⇒PD∥OC,∴CP=OD=1,∴t=1,②∠ODC=∠PDF,作OO′⊥CD交CD于H,∴K OO′×K CD=﹣1,∴l CD:y=﹣2x+2,∴H(m,﹣2m+2),∴﹣2×=﹣1,∴m=,∴H(,),∵H为OO′中点,∴O′(,),∴l O′D:y=,令y=2,∴x=,即P(,2),∴t=.(3)存在,四边形MDEN是平行四边形时,M1(2,1),N1(4,2);四边形MNDE是平行四边形时,M2(2,3),N2(0,2);四边形NDME是平行四边形时,M3(2,),N3(2,).7.(2015•广安)如图,边长为1的正方形ABCD一边AD在x负半轴上,直线l:y=x+2经过点B(x,1)与x轴,y轴分别交于点H,F,抛物线y=﹣x2+bx+c.(1)求A,D两点的坐标及抛物线经过A,D两点时的解析式;(2)当抛物线的顶点E(m,n)在直线l上运动时,连接EA,ED,试求△EAD的面积S与m之间的函数解析式,并写出m的取值范围;(3)设抛物线与y轴交于G点,当顶点E在直线l上运动时,以A,C,E,G为顶点的四边形能否成为平行四边形?若能,求出E点坐标;若不能,请说明理由.【解答】解:(1)∵直线l:y=x+2经过点B(x,1),∴1=x+2,解得x=﹣2,∴B(﹣2,1),∴A(﹣2,0),D(﹣3,0),∵抛物线经过A,D两点,∴,解得,∴抛物线经过A,D两点时的解析式为y=﹣x2﹣5x﹣6;(2)∵点E(m,n)在直线l上,∴n=m+2,∴S=×1×[±(m+2)]=±(m+1),即S=m+1(m>﹣4)或S=﹣m﹣1(m<﹣4);(3)如图,若以A,C,E,G为顶点的四边形能成为平行四边形,则AC=EG,AC∥EG,作EH∥y轴交过G点平行于x轴的直线相交于H,则EH⊥GH,△EHG≌△CDA,∴GH=AD=1,∴E的横坐标为±1,∵点E在直线l上,∴y=×(﹣1)+2=,或y=×1+2=当AC为对角线时,有E和G的横坐标之和等于A和C的横坐标之和,故可求得E(﹣5,﹣1/2)∴E(﹣1,);(1,)或(﹣5,﹣1/2);由于E为抛物线的顶点,G为抛物线与y轴的交点,故将其坐标代入y=﹣x2+bx+c,检验可知当E取(1,)或(﹣5,﹣1/2)时,与此时的A、C、E构成平行四边形的G点并不是y轴与抛物线的交点,与前提相矛盾;综上,满足题意的E的坐标为(﹣1,).8.(2012秋•义乌市校级期中)已知抛物线:(1)求抛物线y1的顶点坐标.(2)将抛物线y1向右平移2个单位,再向上平移1个单位,得到抛物线y2,求抛物线y2的解析式.(3)如图,抛物线y2的顶点为P,x轴上有一动点M,在y1、y2这两条抛物线上是否存在点N,使O(原点)、P、M、N四点构成以OP为一边的平行四边形?若存在,求出N点的坐标;若不存在,请说明理由.【解答】解:(1)依题意把抛物线:y1=﹣x2+2x=﹣(x2﹣4x)=﹣[(x﹣2)2﹣4]=﹣(x﹣2)2+2,故抛物线y1的顶点坐标为:(2,2);(2)∵抛物线y1向右平移2个单位,再向上平移1个单位,得到y2=﹣(x﹣4)2+3,整理得y2=﹣x2+4x﹣5;(3)符合条件的N点存在.如图:作PA⊥x轴于点A,NB⊥x轴于点B,∴∠PAO=∠MBN=90°,若四边形OPMN为符合条件的平行四边形,则OP∥MN,且OP=MN,∴∠POA=∠BMN,在△POA和△NMB中∴△POA≌△NMB(AAS),∴PA=BN,∵点P的坐标为(4,3),∴NB=PA=3,∵点N在抛物线y1、y2上,且P点为y1、y2的最高点∴符合条件的N点只能在x轴下方,①点N在抛物线y1上,则有:﹣x2+2x=﹣3解得:x1=2﹣,x2=2+,②点N在抛物线y2上,则有:﹣(x﹣4)2+3=﹣3解得:x3=4﹣2或x4=4+2故符合条件的N点有四个:N1(2﹣,﹣3),N2(4﹣2,﹣3),N3(2+,﹣3),N4(4+2,﹣3).9.(2012•襄阳)如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B 落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c 经过O,D,C三点.(1)求AD的长及抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO 以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t 为何值时,以P、Q、C为顶点的三角形与△ADE相似?(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.【解答】方法一:解:(1)∵四边形ABCO为矩形,∴∠OAB=∠AOC=∠B=90°,AB=CO=8,AO=BC=10.由题意,△BDC≌△EDC.∴∠B=∠DEC=90°,EC=BC=10,ED=BD.由勾股定理易得EO=6.∴AE=10﹣6=4,设AD=x,则BD=ED=8﹣x,由勾股定理,得x2+42=(8﹣x)2,解得,x=3,∴AD=3.∵抛物线y=ax2+bx+c过点D(3,10),C(8,0),O(0,0)∴,解得∴抛物线的解析式为:y=﹣x2+x.(2)∵∠DEA+∠OEC=90°,∠OCE+∠OEC=90°,∴∠DEA=∠OCE,由(1)可得AD=3,AE=4,DE=5.而CQ=t,EP=2t,∴PC=10﹣2t.当∠PQC=∠DAE=90°,△ADE∽△QPC,∴=,即=,解得t=.当∠QPC=∠DAE=90°,△ADE∽△PQC,∴=,即=,解得t=.∴当t=或时,以P、Q、C为顶点的三角形与△ADE相似.(3)假设存在符合条件的M、N点,分两种情况讨论:①EC为平行四边形的对角线,由于抛物线的对称轴经过EC中点,若四边形MENC是平行四边形,那么M点必为抛物线顶点;则:M(4,);而平行四边形的对角线互相平分,那么线段MN必被EC中点(4,3)平分,则N(4,﹣);②EC为平行四边形的边,则EC MN,设N(4,m),则M(4﹣8,m+6)或M(4+8,m﹣6);将M(﹣4,m+6)代入抛物线的解析式中,得:m=﹣38,此时N(4,﹣38)、M(﹣4,﹣32);将M(12,m﹣6)代入抛物线的解析式中,得:m=﹣26,此时N(4,﹣26)、M(12,﹣32);综上,存在符合条件的M、N点,且它们的坐标为:①M1(﹣4,﹣32),N1(4,﹣38);②M2(12,﹣32),N2(4,﹣26);③M3(4,),N3(4,﹣).方法二:(1)略.(2)∵E(0,6),C(8,0),∴l EC:y=﹣x+6,∵,EP=2t,∴P x=t,∴P(t,﹣t+6),Q(8﹣t,0),∵△PQC∽△ADE,且∠ECO=∠AED,∴PQ⊥OC或PQ⊥PC.当PQ⊥OC时,Px=Qx,即t=8﹣t,∴t1=,当PQ⊥PC时,K PQ•K PC=﹣1,∴t2=.(3)M,N,C,E为顶点的四边形是平行四边形.设N(4,t),C(8,0),E(0,6),∴,∴M1(4,6﹣t),同理M2(﹣4,t+6),M3(12,t﹣6),∴﹣t,∴t=﹣,﹣×(﹣4)2+(﹣4)=t+6,∴t=﹣38,﹣×122+×12=t﹣6,∴t=﹣26,综上,存在符合条件的M、N点,且它们的坐标为:①M1(4,),N1(4,﹣);②M2(12,﹣32),N2(4,﹣26);③M3(﹣4,﹣32),N3(4,﹣38).10.(2012•恩施州)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)设点M(3,m),求使MN+MD的值最小时m的值;(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.【解答】解:(1)由抛物线y=﹣x2+bx+c过点A(﹣1,0)及C(2,3)得,,解得,故抛物线为y=﹣x2+2x+3又设直线为y=kx+n过点A(﹣1,0)及C(2,3)得,解得故直线AC为y=x+1;(2)如图1,作N点关于直线x=3的对称点N′,则N′(6,3),由(1)得D(1,4),故直线DN′的函数关系式为y=﹣x+,当M(3,m)在直线DN′上时,MN+MD的值最小,则m=﹣×=;(3)由(1)、(2)得D(1,4),B(1,2),∵点E在直线AC上,设E(x,x+1),①如图2,当点E在线段AC上时,点F在点E上方,则F(x,x+3),∵F在抛物线上,∴x+3=﹣x2+2x+3,解得,x=0或x=1(舍去)∴E(0,1);②当点E在线段AC(或CA)延长线上时,点F在点E下方,则F(x,x﹣1)由F在抛物线上∴x﹣1=﹣x2+2x+3解得x=或x=∴E(,)或(,)综上,满足条件的点E的坐标为(0,1)、(,)或(,);(4)方法一:如图3,过点P作PQ⊥x轴交AC于点Q,交x轴于点H;过点C作CG⊥x轴于点G,设Q (x,x+1),则P(x,﹣x2+2x+3)∴PQ=(﹣x2+2x+3)﹣(x+1)=﹣x2+x+2又∵S△APC=S△APQ+S△CPQ=PQ•AG=(﹣x2+x+2)×3=﹣(x﹣)2+∴面积的最大值为.方法二:过点P作PQ⊥x轴交AC于点Q,交x轴于点H;过点C作CG⊥x轴于点G,如图3,设Q(x,x+1),则P(x,﹣x2+2x+3)又∵S△APC=S△APH+S直角梯形PHGC﹣S△AGC=(x+1)(﹣x2+2x+3)+(﹣x2+2x+3+3)(2﹣x)﹣×3×3=﹣x2+x+3=﹣(x﹣)2+∴△APC的面积的最大值为.11.(2014•赤峰)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣3).(1)求该抛物线的解析式及顶点M坐标;(2)求△BCM面积与△ABC面积的比;(3)若P是x轴上一个动点,过P作射线PQ∥AC交抛物线于点Q,随着P点的运动,在抛物线上是否存在这样的点Q,使以A,P,Q,C为顶点的四边形为平行四边形?若存在,请求出Q点坐标;若不存在,请说明理由.【解答】方法一:解:(1)设抛物线解析式为y=a(x+1)(x﹣3),∵抛物线过点(0,﹣3),∴﹣3=a(0+1)(0﹣3),∴a=1,∴抛物线解析式为y=(x+1)(x﹣3)=x2﹣2x﹣3,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴M(1,﹣4).(2)如图1,连接BC、BM、CM,作MD⊥x轴于D,∵S△BCM=S梯形OCMD+S△BMD﹣S△BOC=•(3+4)•1+•2×4﹣•3•3=+﹣=3S△ABC=•AB•OC=•4•3=6,∴S△BCM:S△ABC=3:6=1:2.(3)存在,理由如下:①如图2,当Q在x轴下方时,作QE⊥x轴于E,∵四边形ACQP为平行四边形,∴PQ平行且相等AC,∴△PEQ≌△AOC,∴EQ=OC=3,∴﹣3=x2﹣2x﹣3,解得x=2或x=0(与C点重合,舍去),∴Q(2,﹣3).②如图3,当Q在x轴上方时,作QF⊥x轴于F,∵四边形ACPQ为平行四边形,∴QP平行且相等AC,∴△PFQ≌△AOC,∴FQ=OC=3,∴3=x2﹣2x﹣3,解得x=1+或x=1﹣,∴Q(1+,3)或(1﹣,3).综上所述,Q点为(2,﹣3)或(1+,3)或(1﹣,3)方法二:(1)略.(2)连接BC、BM、CM,作MD⊥x轴于D,交BC于H,∵B(3,0),C(0,﹣3),∴l BC:y=x﹣3,当x=1时,y=﹣2,∴H(1,﹣2)∴S△BCM=(3﹣0)(﹣2+4)=3,∵S△ABC=AB×OC=×3×4=6,∴S△BCM:S△ABC=3:6=1:2,(3)∵PQ∥AC,∴当PQ=AC时,A、P、Q、C为顶点的四边形为平行四边形,即|Q Y|=|C Y|,设Q(t,t2﹣2t﹣3),∴|t2﹣2t﹣3|=3,①t2﹣2t﹣3=3,解得:t1=1+,t2=1﹣,②t2﹣2t﹣3=﹣3,解得:t1=0(舍),t2=2,综上所述,Q点为(2,﹣3)或(1+,3)或(1﹣,3).12.(2014•潍坊)如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.【解答】方法一:解:(1)∵抛物线y=ax2+bx+c(a≠0)过点C(0,4),∴c=4 ①.∵对称轴x=﹣=1,∴b=﹣2a ②.∵抛物线过点A(﹣2,0),∴0=4a﹣2b+c ③,由①②③解得,a=﹣,b=1,c=4,∴抛物线的解析式为y=﹣x2+x+4;(2)假设存在满足条件的点F,如图所示,连结BF、CF、OF,过点F作FH⊥x轴于点H,FG⊥y轴于点G.设点F的坐标为(t,﹣t2+t+4),其中0<t<4,则FH=﹣t2+t+4,FG=t,∴S△OBF=OB•FH=×4×(﹣t2+t+4)=﹣t2+2t+8,S△OFC=OC•FG=×4×t=2t,∴S四边形ABFC=S△AOC+S△OBF+S△OFC=4﹣t2+2t+8+2t=﹣t2+4t+12.令﹣t2+4t+12=17,即t2﹣4t+5=0,则△=(﹣4)2﹣4×5=﹣4<0,∴方程t2﹣4t+5=0无解,故不存在满足条件的点F;(3)设直线BC的解析式为y=kx+n(k≠0),∵B(4,0),C(0,4),∴,解得,∴直线BC的解析式为y=﹣x+4.由y=﹣x2+x+4=﹣(x﹣1)2+,∴顶点D(1,),又点E在直线BC上,则点E(1,3),于是DE=﹣3=.若以D、E、P、Q为顶点的四边形是平行四边形,因为DE∥PQ,只须DE=PQ,设点P的坐标是(m,﹣m+4),则点Q的坐标是(m,﹣m2+m+4).①当0<m<4时,PQ=(﹣m2+m+4)﹣(﹣m+4)=﹣m2+2m,由﹣m2+2m=,解得:m=1或3.当m=1时,线段PQ与DE重合,m=1舍去,∴m=3,P1(3,1).②当m<0或m>4时,PQ=(﹣m+4)﹣(﹣m2+m+4)=m2﹣2m,由m2﹣2m=,解得m=2±,经检验适合题意,此时P2(2+,2﹣),P3(2﹣,2+).综上所述,满足题意的点P有三个,分别是P1(3,1),P2(2+,2﹣),P3(2﹣,2+).方法二:(1)略.(2)∵B(4,0),C(0,4),∴l BC:y=﹣x+4,过F点作x轴垂线,交BC于H,设F(t,﹣t2+t+4),∴H(t,﹣t+4),∵S四边形ABFC=S△ABC+S△BCF=17,∴(4+2)×4+(﹣t2+t+4+t﹣4)×4=17,∴t2﹣4t+5=0,∴△=(﹣4)2﹣4×5<0,∴方程t2﹣4t+5=0无解,故不存在满足条件的点F.(3)∵DE∥PQ,∴当DE=PQ时,以D、E、P、Q为顶点的四边形是平行四边形,∵y=﹣x2+x+4,∴D(1,),∵l BC:y=﹣x+4,∴E(1,3),∴DE=﹣3=,设点F的坐标是(m,﹣m+4),则点Q的坐标是(m,﹣m2+m+4),∴|﹣m+4+m2﹣m﹣4|=,∴m2﹣2m=或m2﹣2m=﹣,∴m=1,m=3,m=2+,m=2﹣,经检验,当m=1时,线段PQ与DE重合,故舍去.∴P1(3,1),P2(2+,2﹣),P3(2﹣,2+).13.(2014•济宁)如图,抛物线y=x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C;(1)求该抛物线的解析式;(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.【解答】方法一:解:(1)∵y=x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,∴,解得.∴抛物线的解析式为y=x2﹣x﹣.(2)如答图所示,过点A′作A′E⊥x轴于E,AA′与OC交于点D,∵点C在直线y=2x上,∴C(5,10)∵点A和A′关于直线y=2x对称,∴OC⊥AA′,A′D=AD.∵OA=5,AC=10,∴OC===.∵S△OAC=OC•AD=OA•AC,∴AD=.∴AA′=,在Rt△A′EA和Rt△OAC中,∵∠A′AE+∠A′AC=90°,∠ACD+∠A′AC=90°,∴∠A′AE=∠ACD.又∵∠A′EA=∠OAC=90°,∴Rt△A′EA∽Rt△OAC.∴,即.∴A′E=4,AE=8.∴OE=AE﹣OA=3.∴点A′的坐标为(﹣3,4),当x=﹣3时,y=×(﹣3)2+3﹣=4.所以,点A′在该抛物线上.(3)存在.理由:设直线CA′的解析式为y=kx+b,则,解得∴直线CA′的解析式为y=x+设点P的坐标为(x,x2﹣x﹣),则点M为(x,x+).∵PM∥AC,∴要使四边形PACM是平行四边形,只需PM=AC.又点M在点P的上方,∴(x+)﹣(x2﹣x﹣)=10.解得x1=2,x2=5(不合题意,舍去)当x=2时,y=﹣.∴当点P运动到(2,﹣)时,四边形PACM是平行四边形.方法二:(1)略.(2)设AA′与直线OC的交点为H,∵点A,点A′关于直线OC:y=2x对称,∴AA′⊥OC,K OC•K AA′=﹣1,∵K OC=2,∴K AA′=﹣,∵A(5,0),∴l AA′:y=﹣x+,l OC:y=2x,∴H(1,2),∵H为AA′的中点,∴⇒,∴A′X=﹣3,A′Y=4,∴A′(﹣3,4),当x=﹣3时,y=×(﹣3)2+3﹣=4,∴点A在抛物线上.(3)∵PM∥AC,要使四边形PACM是平行四边形,只需PM=AC,∵直线AC⊥x轴,∴C x=A x,∵A(5,0),∴C x=5,∵l OC:y=2x,∴C Y=10,∴C(5,10),∵A′(﹣3,4),∴l CA′:y=x+,∵M在线段CA′上,点M在点P的上方,∴设M(t,),∴P(t,t2﹣t﹣),∴﹣(t2﹣t﹣)=10,∴t1=2,t2=5(舍),∴P(2,﹣).14.(2014•东营)如图,直线y=2x+2与x轴交于点A,与y轴交于点B,把△AOB沿y轴翻折,点A落到点C,过点B的抛物线y=﹣x2+bx+c与直线BC交于点D(3,﹣4).(1)求直线BD和抛物线的解析式;(2)在第一象限内的抛物线上,是否存在一点M,作MN垂直于x轴,垂足为点N,使得以M、O、N为顶点的三角形与△BOC相似?若存在,求出点M的坐标;若不存在,请说明理由;(3)在直线BD上方的抛物线上有一动点P,过点P作PH垂直于x轴,交直线BD于点H,当四边形BOHP 是平行四边形时,试求动点P的坐标.。

专题九 解析几何第二十八讲 抛物线(含答案)

专题九  解析几何第二十八讲  抛物线(含答案)

专题 解析几何第二十八讲 抛物线2019年1.(2019全国II 理8)若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A .2B .3C .4D .82.(2019北京理18(1))已知抛物线2:2C x py =-经过点(2,-1).求抛物线C 的方程及其准线方程;3.(2019全国I 理19)已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P . (1)若4AF BF +=,求l 的方程;(2)若3AP PB =uu u r uu r,求AB .4. (2019全国III 理21)已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.2010-2018年一、选择题1.(2018全国卷Ⅰ)设抛物线C :24=y x 的焦点为F ,过点(2,0)-且斜率为23的直线与C 交于M ,N 两点,则⋅FM FN = A .5B .6C .7D .82.(2017新课标Ⅰ)已知F 为抛物线C :24y x =的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则||||AB DE +的最小值为A .16B .14C .12D .103.(2016年四川)设O 为坐标原点,P 是以F 为焦点的抛物线22(0)y px p =>上任意一点,M 是线段PF 上的点,且PM =2MF ,则直线OM 的斜率的最大值为A B .23C .2D .1 4.(2016年全国I)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E两点.已知||AB =||DE =C 的焦点到准线的距离为 A .2 B .4 C .6 D .85.(2015浙江)如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点,,A B C ,其中点,A B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是A .11BF AF -- B .2211BF AF -- C .11BF AF ++ D .2211BF AF ++6.(2015四川)设直线l 与抛物线24y x =相交于,A B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是 A .()13, B .()14, C .()23, D .()24,7.(2014新课标1)已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ =,则||QF = A .72 B .52C .3D .2 8.(2014新课标2)设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30°的直线交C 于,A B 两点,O 为坐标原点,则△OAB 的面积为( )A B C .6332 D .949.(2014辽宁)已知点(2,3)A -在抛物线C :22y px =的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A .12 B .23 C .34 D .4310.(2013新课标1)O 为坐标原点,F 为抛物线2:C y =的焦点,P 为C 上一点,若||PF =POF ∆的面积为( )A .2B .C .D .411.(2013江西)已知点()2,0A ,抛物线2:4C x y =的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,则||:||FM MN =A .B .1:2C .1:D .1:312.(2012新课标)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于A 、B 两点,34||=AB ,则C 的实轴长为 A 、2B 、22C 、4D 、813.(2012山东)已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为A .2x y =B .2x y =C .28x y =D .216x y = 14.(2011新课标)已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,||12AB =,P 为C 的准线上一点,则ABP ∆的面积为A .18B .24C .36D .48 二、填空题15.(2018全国卷Ⅲ)已知点(1,1)M -和抛物线C :24y x =,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB ∠=,则k =______.16.(2017新课标Ⅱ)已知F 是抛物线C :28y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则||FN = .17.(2015陕西)若抛物线22(0)y px p =>的准线经过双曲线221x y -=的一个焦点,则p =18.(2014湖南)如图4,正方形ABCD DEFG 和正方形的边长分别为,()a b a b <,原点O 为AD 的中点,抛物线22(0)y px p =>经过,bC F a=两点,则 .19.(2013北京)若抛物线22y px =的焦点坐标为(1,0),则p = ,准线方程为 . 20.(2012陕西)右图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽 米.21.(2010浙江)设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B在抛物线上,则B 到该抛物线准线的距离为_____________. 三、解答题22.(2018北京)已知抛物线C :22y px =经过点(1,2)P .过点(0,1)Q 的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N .(1)求直线l 的斜率的取值范围;(2)设O 为原点,QM QO λ=,QN QO μ=,求证:11λμ+为定值.23.(2018全国卷Ⅱ)设抛物线24=:C y x 的焦点为F ,过F 且斜率为(0)>k k 的直线l与C 交于A ,B 两点,||8=AB .(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.24.(2018浙江)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :24y x =上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆2214y x +=(0x <)上的动点,求PAB ∆面积的取值范围. 25.(2017新课标Ⅲ)已知抛物线C :22y x =,过点(2,0)的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆. (1)证明:坐标原点O 在圆M 上;(2)设圆M 过点(4,2)P -,求直线l 与圆M 的方程.26.(2017浙江)如图,已知抛物线2x y =.点11(,)24A -,39(,)24B ,抛物线上的点(,)P x y 13()22x -<<,过点B 作直线AP 的垂线,垂足为Q .x(Ⅰ)求直线AP 斜率的取值范围;(Ⅱ)求||||PA PQ ⋅的最大值.27.(2017北京)已知抛物线C :22y px =过点(1,1)P .过点1(0,)2作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点.(Ⅰ)求抛物线C 的方程,并求其焦点坐标和准线方程; (Ⅱ)求证:A 为线段BM 的中点.28.(2016年全国III)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线1l ,2l 分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(Ⅱ)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.29.(2015新课标1)在直角坐标系xoy 中,曲线C :24x y =与直线y kx a =+(0)a >交与M ,N 两点,(Ⅰ)当0k =时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由. 30.(2014山东)已知抛物线)>0(2:2p px y C =的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有FA FD =,当点A 的横坐标为3时,ADF ∆为正三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中抛物线经典练习题(含详细答案)初中数学抛物线经典试题集锦,编著者为黄勇权。

以下为题目和解答。

第一组题型】1、已知二次函数$y=x^2+bx+c$过点$A(2,0)$,$C(0,-8)$1)求此二次函数的解析式;2)在抛物线上存在一点$p$使$\triangle ABP$的面积为15,请直接写出$p$点的坐标。

解:第一问】因为函数$y=x^2+bx+c$过点$A(2,0)$,$C(0,-8)$,分别将$x=2$,$y=0$代入$y=x^2+bx+c$,得$0=4+2b+c$-----①。

将$x=0$,$y=-8$代入$y=x^2+bx+c$,得$-8=c$-------------②。

将②代入①,解得:$b=2$--------------------------------------③。

此时,将②③代入$y=x^2+bx+c$,所以二次函数的解析式为$y=x^2+2x-8$。

第二问】因为$A$、$B$两点在$x$轴上,令$x^2+2x-8=0$,解得:$x_1=2$,$x_2=-4$。

所以$|AB|=|x_1-x_2|=|2-(-4)|=6$。

又$\triangle ABP$的面积为15,所以$|y_p|\cdot 6=30$,即$|y_p|=5$。

故$p$点的纵坐标为5或-5,即$p(2,5)$或$p(2,-5)$。

2、在平面直角坐标系$xOy$中,抛物线$y=2x^2+mx+n$经过点$A(5,B)$,$B(2,-6)$。

1)求抛物线的表达式及对称轴;2)设点$B$关于原点的对称点为$C$,写出过$A$、$C$两点直线的表达式。

解:第一问】因为抛物线$y=2x^2+mx+n$经过点$A(5,B)$,$B(2,-6)$,分别将$x=5$,$y=B$代入$y=2x^2+mx+n$,得$B=50+5m+n$-----①。

将$x=2$,$y=-6$代入$y=2x^2+mx+n$,得$-6=8+2m+n$-------------②。

将②代入①,解得:$m=-4$,$n=-4$。

此时,抛物线的表达式为$y=2x^2-4x-4$。

对称轴为$x=-\frac{m}{2}=2$。

第二问】因为点$B$关于原点的对称点为$C(-2,6)$,所以直线$AC$的斜率为$\frac{6-B}{-2-5}=-\frac{2}{3}$,即直线$AC$的表达式为$y-B=\frac{2}{3}(x-5)$。

直线$BC$的斜率为$\frac{6-(-6)}{-2-2}=3$,即直线$BC$的表达式为$y+6=3(x-2)$。

3、在平面直角坐标系$xOy$中,已知抛物线的顶点$C(2,4)$,并在$x$轴上截得的长度为6.1)写出抛物线与$x$轴交点$A$、$B$的坐标;2)求该抛物线的表达式;3)写出抛物线与$y$轴交点$P$的坐标。

解:第一问】因为已知抛物线在$x$轴上截得的长度为6,所以抛物线与$x$轴的交点为$A(-1,0)$,$B(5,0)$。

第二问】因为抛物线的顶点为$C(2,4)$,所以抛物线的对称轴为$x=2$。

设抛物线的表达式为$y=ax^2+bx+c$,则由$A(-1,0)$,$B(5,0)$,$C(2,4)$可列出方程组:begin{cases}a-b+c=0\\25a+5b+c=0\\4a+2b+c=4\end{cases}$$解得:$a=-1$,$b=2$,$c=1$。

此时,抛物线的表达式为$y=-x^2+2x+1$。

第三问】抛物线与$y$轴的交点为$(0,c)=(0,1)$。

4、直线的解析式为$y=2x+4$,交$x$轴于点$A$,交$y$轴于点$B$,若以$A$为顶点,且开口向下作抛物线,交直线$AB$于点$D$,交$y$轴负半轴于点$C$。

1)若$\triangle ABC$的面积为20,求此时抛物线的解析式;2)若$\triangle BDO$的面积为8,求此时抛物线的解析式。

解:1)设抛物线的顶点为$V$,则$V$在直线$y=2x+4$上。

设$V$的坐标为$(x_0,y_0)$,则直线$AV$的表达式为$y-0=\frac{y_0-0}{x_0-2}(x-2)$。

将直线$AV$与直线$y=2x+4$相交,解得$x_0=-\frac{4}{3}$,$y_0=\frac{20}{3}$。

此时,抛物线的顶点为$V(-\frac{4}{3},\frac{20}{3})$。

因为以$A$为顶点,且开口向下作抛物线,所以抛物线的解析式为$y=a(x+\frac{4}{3})^2+\frac{20}{3}$。

将$x=0$,$y=-4$代入该式,解得$a=-3$。

此时,抛物线的解析式为$y=-3(x+\frac{4}{3})^2+\frac{20}{3}$。

2)设抛物线的解析式为$y=ax^2+2x+4$,则$D$点坐标为$(x_D,2x_D+4)$。

将$D$点坐标代入抛物线的解析式,解得$x_D=-\frac{2}{3}$。

设抛物线的顶点为$V(x_0,y_0)$,则直线$AV$的表达式为$y-2x-4=\frac{y_0-2x_0-4}{x_0-\frac{2}{3}}(x-\frac{2}{3})$。

将直线$AV$与直线$y=ax^2+2x+4$相交,解得$x_0=-\frac{7}{3}$,$y_0=-\frac{61}{3}$。

此时,抛物线的顶点为$V(-\frac{7}{3},-\frac{61}{3})$。

因为以$A$为顶点,且开口向下作抛物线,所以抛物线的解析式为$y=a(x+\frac{7}{3})^2-\frac{61}{3}$。

将$x=0$,$y=-4$代入该式,解得$a=-1$。

此时,抛物线的解析式为$y=-(x+\frac{7}{3})^2-\frac{61}{3}$。

所以,A、B两点的坐标分别为(-2,0)和(6,0)第二问】因为抛物线的顶点C为(2,4),对称轴是x=2。

所以,抛物线的表达式为:y=a(x-2)²+4又因为抛物线与x轴交点A、B的坐标为(-2,0)和(6,0)。

所以,a=-116第三问】因为抛物线与y轴交点P的横坐标为0。

所以,将x=0代入抛物线的表达式,得:y=4-2a所以,抛物线与y轴交点P的坐标为(0,4-2a)D点坐标为(-4,-4)。

以点A(-2,0)为顶点,可以设抛物线表达式为y=a(x+2)²。

将点D代入得到-4=a(-4+2)²,解得a=-1.因此,抛物线表达式为y=-(x+2)²。

5、已知方程x²+2mx+m²+3m-2=0有两个实数根x1和x2,求x1(x2+x1)+x2²的最小值。

解:方程有两个实数根,因此判别式Δ=(2m)²-4(m²+3m-2)≥0,化简得m≤3/2.根据韦达定理,x1+x2=-2m,x1x2=m²+3m-2.将其代入x1(x2+x1)+x2²得到3m²-3m+2,化简后得到3[(m-1/2)²+7/12],因此最小值为7/4.6、在平面直角坐标系中,已知两定点A(-5,0)和B(3,0),抛物线过A、B,顶点为C,解析式为y=ax²+bx-30(a≠0)。

点P(m,n)在抛物线上。

1) 求抛物线的解析式和顶点C的坐标。

2) 若四边形APBC为梯形,求点P的坐标。

解:(1) 由于抛物线过A(-5,0)和B(3,0),因此抛物线的对称轴为x=-1.顶点C在对称轴上,因此C的横坐标为-1.将A代入抛物线方程得到-30=a(-5+1)²-4b,将B代入得到-30=a(3+1)²+4b,解得a=2,b=-5.因此,抛物线的解析式为y=2x²-5x-30,顶点C的坐标为(-1,-32)。

2) 四边形APBC为梯形,因此AP平行于BC。

由于抛物线对称轴为x=-1,因此AP的方程为x=m-1.将P代入抛物线方程得到n=2(m-1)²-5(m-1)-30.由于AP平行于BC,因此AP 的斜率等于BC的斜率,即2(m-1)=2,解得m=2.将m代入n 的方程得到n=-28.因此,P的坐标为(1,-28)。

7、已知抛物线y=4x²+bx+c与x轴相交于点A和B(2,0),与y轴相交于点C(0,-6)。

1) 求出抛物线的解析式和点A的坐标。

2) 设D为抛物线的顶点,点P(t,y)在抛物线上,且t>2.若△BDP与△CDP的面积相等,求点P的坐标。

解:(1) 抛物线与x轴相交于点A和B(2,0),因此抛物线的对称轴为x=1.由对称性可知,点C的纵坐标为抛物线的顶点的纵坐标,因此c=-6.将B代入抛物线方程得到4(2)²+2b-6=0,解得b=-8.因此,抛物线的解析式为y=4x²-8x-6,点A的坐标为(1,2)。

2) 设顶点D的横坐标为k,则k=1.由于△BDP与△CDP 的面积相等,因此BP/PC=BD/DC,即BP/(t-k)=2/(6-y),解得y=5t/2-20.因此,点P的坐标为(t,5t/2-20)。

8、在xoy直角坐标系中,点C(2,-3)关于x轴对称的点为A,关于原点对称的点为B,抛物线过A、B两点,且点D(3,19)在抛物线上。

求抛物线的解析式。

解:点C关于x轴对称的点为A,因此A的纵坐标为-(-3)=3.点C关于原点对称的点为B,因此B的坐标为(-2,3)。

由于抛物线过A、B两点,因此抛物线的对称轴为直线y=0.设抛物线的解析式为y=ax²+bx,将A、B、D代入抛物线方程得到以下三个方程:a(2)²+b(2)=3a(-2)²+b(-2)=3a(3)²+b(3)=19解得a=2,b=-1.因此,抛物线的解析式为y=2x²-x。

由K3=k4,得8=n=8m+40,即m=-5或m=7.将m=-5或m=7代入n=8m+40中,得n=0或n=106.因为P(m,n)在抛物线y=2x²+4x-30上,所以将x=m,y=n代入y=2x²+4x-30中,得n=2m²+4m-30.将n=8m+40和n=2m²+4m-30相等,解得m=7或m=-5.将m=7代入n=8m+40中,得n=106;将m=-5代入n=8m+40中,得n=0.因此,当AP∥CB时,P的坐标为(7,106)。

已知抛物线y=x²+x-6与x轴相交于A(-4,0),与y轴相交于C(0,-6)和B(2,0)。

1)将y=x²+x-6变形为y=(x-2)(x+3),得到抛物线的解析式和A点的坐标。

相关文档
最新文档