原子核物理及核辐射探测学第一章-第三章习题参考答案
原子核物理(修订版)习题解答 卢希庭

R12
2mpU1 eB12
对4He: R12 meHBe(U22 偏2 转同样的轨道)
则
B2
mHeU 2 其B12中 2mpU1
U1 1.3106V U2 2.6106V
B1 0.6T故可解得 B2 1.2T
1.4 解:原子核半径
1
R r0 A 3
其中:
故可得:
4 2
H的e 半径
14077A的g 半径
ln 2 T1/ 2
m M
NA
则235U的半衰期为:
T1/ 2
ln 2 N A M
1 A/m
0.693 6.0221023mol1
1
235g
80.0Bq
2.221016 s 7.0108 a
mg
即235U的半衰期为7.0 108 a
2.7
解:当该核素β放射性强度Iβ随时间的变化是 a 衰变与β衰变共同作用的结果
2
R
RB
其中 U=1000 V R=0.182 m B=0.1 T
故可解得: v 1.099105 m / s
2qU
由 m v可2 解得
m 2.6531026kg
离子质量数 A m 16 1u
1.3 解:由 1 mv2 qU和
2
mv2 qvB R
对质子: mp eR12B12 / 2U1
I
2 mR2
5 则质子的能量为 P I
又因为原子的磁矩为
3 2
2 2
Rd 2 R sin 2
R sin
2
4
3
R 2
由 4 R2 ,e 则
5 3e 12m
g
p
e 2m
原子核物理实验方法课后习题(问题详解)

第一章习题1. 设测量样品的平均计数率是5计数/s,使用泊松分布公式确定在任1s 得到计数小于或等于2个的概率。
解:051525(,)!5(0;5)0.00670!5(0;5)0.03371!5(0;5)0.08422!NNr r r r NP N N e N P e P e P e ----=⋅=⋅==⋅==⋅= 在1秒小于或等于2的概率为:(0;5)(1;5)(2;5)0.00670.03370.08420.1246r r r P P P ++=++=2. 假如某时间的真计数值为100个计数,求得到计数为104个的概率,并求出计数值落在90-104围的概率。
解:高斯分布公式2222)(22)(2121)(σπσπm n mm n ee mn P ----==1002==σm ===----2222)104(22)(2121)104(σπσπm mm n ee mP将数据化为标准正态分布变量11010090)90(-=-=x 4.010100104)104(=-=x查表x=1,3413.0)(=Φx ,x=0.4,1554.0)(=Φx 计数值落在90-104围的概率为0.49673. 本底计数率是500±20min -1,样品计数率是750±20min -1,求净计数率与误差。
解:tn=σ 本底测量的时间为:min 25205002===bb b n t σ 样品测量时间为:min 35207002===ss s n t σ 样品净计数率为:1min 200500700-=-=-=bb s s t nt n n 净计数率误差为:1min 640-==+=+=b s bb s s t nt n σσσ此测量的净计数率为:1min 6200-±4. 测样品8min 得平均计数率25min -1,测本底4min 得平均计数率18min -1,求样品净计数率与误差。
原子物理学习题

原子物理学习题第一章 原子的核式结构1.选择题:(1)原子半径的数量级是:A .10-10cm; B.10-8m C. 10-10m D.10-13m(2)原子核式结构模型的提出是根据α粒子散射实验中A. 绝大多数α粒子散射角接近180︒B.α粒子只偏2︒~3︒C. 以小角散射为主也存在大角散射D. 以大角散射为主也存在小角散射(3)进行卢瑟福理论实验验证时发现小角散射与实验不符这说明:A. 原子不一定存在核式结构B. 散射物太厚C. 卢瑟福理论是错误的D. 小角散射时一次散射理论不成立(4)用相同能量的α粒子束和质子束分别与金箔正碰,测量金原子核半径的上限. 问用质子束所得结果是用α粒子束所得结果的几倍?A. 1/4 B . 1/2 C . 1 D. 2(5)动能E K =40keV 的α粒子对心接近Pb(z=82)核而产生散射,则最小距离为(m ):A.5.91010-⨯B.3.01210-⨯C.5.9⨯10-12D.5.9⨯10-14(6)如果用相同动能的质子和氘核同金箔产生散射,那么用质子作为入射粒子测得的金原子半径上限是用氘核子作为入射粒子测得的金原子半径上限的几倍?A.2B.1/2C.1 D .4(7)在金箔引起的α粒子散射实验中,每10000个对准金箔的α粒子中发现有4个粒子被散射到角度大于5°的范围内.若金箔的厚度增加到4倍,那么被散射的α粒子会有多少?A. 16B..8C.4D.2(8)在同一α粒子源和散射靶的条件下观察到α粒子被散射在90°和60°角方向上单位立体角内的粒子数之比为:A .4:1 B.2:2 C.1:4 D.1:8(9)在α粒子散射实验中,若把α粒子换成质子,要想得到α粒子相同的角分布,在散射物不变条件下则必须使:A.质子的速度与α粒子的相同; B .质子的能量与α粒子的相同;C .质子的速度是α粒子的一半;D .质子的能量是α粒子的一半(a)不辐射可见光的物体;(b)不辐射任何光线的物体;(c)不能反射可见光的物体;(d)不能反射任何光线的物体;(e)开有小孔空腔.3.计算题:(1)当一束能量为4.8Mev 的α粒子垂直入射到厚度为4.0×10-5cm 的金箔上时探测器沿20°方向上每秒记录到2.0×104个α粒子试求:①仅改变探测器安置方位,沿60°方向每秒可记录到多少个α粒子?②若α粒子能量减少一半,则沿20°方向每秒可测得多少个α粒子?③α粒子能量仍为4.8MeV,而将金箔换成厚度的铝箔,则沿20°方向每秒可记录到多少个α粒子?(ρ金=19.3g/cm 3 ρ铅=27g /cm 3;A 金=179 ,A 铝=27,Z 金=79 Z 铝=13)(2)试证明:α粒子散射中α粒子与原子核对心碰撞时两者之间的最小距离是散射角为900时相对应的瞄准距离的两倍.(3)10Mev 的质子射到铜箔片上,已知铜的Z=29, 试求质子散射角为900时的瞄准距离b 和最接近于核的距离r m .(4)动能为5.0MeV 的α粒子被金核散射,试问当瞄准距离分别为1fm 和10fm 时,散射角各为多大?(5)假设金核半径为7.0fm ,试问:入设质子需要多大能量,才能在对头碰撞时刚好到达金核表面?(6)在α粒子散射实验中,如果用银箔代替金箔,二者厚度相同,那么在同样的偏转方向,同样的角度间隔内,散射的α粒子数将减小为原来的几分之几?银的密度为10.6公斤/分米3,原子量为108;金的密度为19.3公斤/分米3,原子量197。
《原子物理学》第一章习题解答

第一章习题解答1-1 速度为v 的非相对论α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角为104- rad 。
证:α粒子在实验系及在质心系下的关系有:ααc c v v v +=由此可得:⎩⎨⎧+=+=c c c L c c c L v v v v v v θθθθααααcos cos cos cos ①由②解得:uC CL +=θθθcos sin tan 其中u=αc c v v ②()c e v m m v m +=αα0 0v m m m v ec +=∴αα③∵ ce c c e v v v v v -=-=ααα,与坐标系的选择无关∴ce c v v v -=α0 ④又 ∵ 0=+ce e v m v m αα∴0v m m v ece α-= 代入④式,可得:0v m m m v e ec αα+=由此可以得到:ec m m v v αα=代入②式中,可以得到: rad m m m m ec ec L 410cos sin tan -≈≤+=ααθθθ 证毕。
1-2 (1)动能为5.00Mev 的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大?(2)如果金箔厚1.0µm ,则上述入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射例子的百分之几? 解:(1)由库仑散射公式可得:b =2a cot 2θ=21E e Z Z 02214πεcot 2θ=21⨯E Z Z 21⨯24πεe cot 4π =21⨯5792⨯⨯1.44⨯1=22.752 fm(2)在大于90°的情况下,相对粒子数为:⎰N dN '=nt(E Z Z 421⨯24πεe )2⎰Ω2sin4θd =t N M A A ρ(E Z Z 421⨯024πεe )2θθθπππd ⎰242sinsin 2=9.4⨯105-1-3 试问:4.5Mev 的α粒子与金核对心碰撞的最小距离是多少?若把金核改为7Li 核,则结果如何?解:α粒子与金核对心碰撞时金核可看作静止,由此可得到最小距离为:r m =a=E e Z Z 02214πε=E Z Z 21⨯24πεe =1.44⨯105-⨯5792⨯≈50.56 fmα粒子与7Li 核对心碰撞时,我们可以在质心系下考虑,此时α粒子与金核相对于质心的和动量为零,质心系能量为各粒子相对于质心的动能之和,因此有:221v E C μ==mr e Z Z 02214πε+0=L Li Li E m m m +α其中L E =21mv 2为入射粒子实验室动能,由此可以得到m r =024πεe LE Z Z 21Li Lim m m +α=3.02 fm1-4 (1)假定金核的半径为7.0fm 试问:入射质子需要多少能量,才能在对头碰撞时刚好到达金核的表面?(2)若金核改为铝核,使质子在对头碰撞时刚好到达铝核表面,那么,入射质子的能量应为多少?设铝核半径为4.0fm. 解:仍然在质心系下考虑粒子的运动,由1-3题可知:EC =mr e Z Z 02214πε(1)对金核可视为静止,实验系动能与质心系动能相等,由此得到 E=16.25Mev(2)对铝核,E=1.44⨯Al Al p m m m +⨯413=4.85Mev1-5 动能为1.0Mev 的窄质子束垂直地射在质量厚度为1.5mg/cm 2的金箔上,计数器纪录以60°角散射的质子,计数器圆形输入孔的面积为1.5cm ²,离金箔散射区的距离为10cm ,输入孔对着且垂直于射到它上面的质子。
原子核物理课后习题答案[1]1
![原子核物理课后习题答案[1]1](https://img.taocdn.com/s3/m/a98e0411866fb84ae55c8d07.png)
1-2、用均匀磁场质谱仪,测量某一单电荷正离子,先在电势差为1000V的电场中加速。
然后在0.1T的磁场中偏转,测得离子轨道的半径为0.182m。
试求:(1)离子速度(2)离子质量(3)离子质量数1313132122.16. C C C (,)[(,1)(,)] =(,1)()(,)(,)[(1,1)()(,)] n n p S Z A M Z A m M Z A c Z A n Z A S Z A M Z A M H M Z A c =-+-∆-+∆-∆=--+-从核中取出一个中子或质子,各需多少能量,试解释两者有很大差别的原因。
解:从核中取出一个中子或质子需要的能量即的最后一个中子或质子的结合能由1131312 =(1,1)()(,)(6,13) 3.028.071 3.1257.966 MeV (6,13)13.3697.289 3.12517.533 MeVC 7.966 MeV 17.533 MeV C C n p Z A H Z A S S ∆--+∆-∆=+-==+-=∴从核中取出一个中子或质子需要的能量分别为和由于是奇偶核,从中取出一个中子变为,为偶偶核而从中取出一个质子12B >变为,为奇奇核,由于有稳定性规律:偶偶核>奇偶核奇奇核所以两者能量有较大的差别2.20.任何递次衰变系列,在时间足够长以后,将按什么规律衰变?对于任何递次衰变系列,不管各放射体的衰变常量之间的相互关系如何,其中必有一最小者,即半衰期最长者,则在时间足够长以后,整个衰变系列只剩下半衰期最长的及其后面的放射体,它们均按最长半衰期的简单指数规律衰减。
2.21.为什么在三个天然放射系中没有见到β+放射性和EC 放射性?由于只有β稳定线右下部的核素即缺中子核素具有β+放射性和EC 放射性。
而三大天然放射系的母体都是具有β稳定性的核,有α放射性,α衰变后质子数和中子数都减少2,而具有β稳定性核素的中质比随着质量数增加而增加,因而三大天然放射系中的核素不会有缺中子核,因而在三个天然放射系中没有见到β+放射性和EC 放射性。
原子核物理实验方法课后习题答案解析

第一章习题1. 设测量样品的平均计数率是5计数/s,使用泊松分布公式确定在任1s 内得到计数小于或等于2个的概率。
解:051525(,)!5(0;5)0.00670!5(0;5)0.03371!5(0;5)0.08422!NN r r r r NP N N e N P e P e P e ----=⋅=⋅==⋅==⋅= 在1秒内小于或等于2的概率为:(0;5)(1;5)(2;5)0.00670.03370.08420.1246r r r P P P ++=++=2. 若某时间内的真计数值为100个计数,求得到计数为104个的概率,并求出计数值落在90-104范围内的概率。
解:高斯分布公式2222)(22)(2121)(σπσπm n mm n ee mn P ----==1002==σm===----2222)104(22)(2121)104(σπσπm mm n ee mP将数据化为标准正态分布变量11010090)90(-=-=x 4.010100104)104(=-=x查表x=1,3413.0)(=Φx ,x=0.4,1554.0)(=Φx 计数值落在90-104范围内的概率为0.49673. 本底计数率是500±20min -1,样品计数率是750±20min -1,求净计数率及误差。
解:tn=σ 本底测量的时间为:min 25205002===bb b n t σ 样品测量时间为:min 35207002===ss s n t σ 样品净计数率为:1min 200500700-=-=-=bb s s t nt n n 净计数率误差为:1min 640-==+=+=b s bb s s t nt n σσσ此测量的净计数率为:1min 6200-±4. 测样品8min 得平均计数率25min -1,测本底4min 得平均计数率18min -1,求样品净计数率及误差。
原子物理学第三章题解

m=
p=
p=
1 1 1 E 2 − m02 c4 = ( Ek + m0 c2 )2 − m02 c4 = c c c
kh da
课 后
λ= λc = h hc hc = = m0c m0c 2 E 0 hc E0 hc
( E 2 − E 20 )
1 1 1 E 2 − m02 c4 = ( Ek + m0 c 2 ) 2 − m0 2 c 4 = Ek ( Ek + 2m0 c 2 ) c c c
整理后得:
答 案
(4)
w.
8
网
x>a ,
V ( x) = V0
薛定 谔 方 程 为 :
则 (6) 式 可 改 为 : uctgu = −v
w.
u 和 v 还必须满足下列关系式: (8)
2b
为: N
2
∫e
0
−2
2a
dx ∫ e
−∞
−2
dy ∫ e
−∞
+∞
−2
z
2c
dz
ww
= N 2 4abc − (e −1 − 1) =
(3) 粒子的
−2
[
]
1 1 (1 − ) 2 e
+c −2Fra biblioteky ∈ (−b, b), z ∈ ( −c, c) 区域内的几率为:
y z
2c
N
2
∫
+∞
x
−∞
e
2a
dx∫ e
w.
λ=
掠射角(入射束与布喇格面之间的夹角)为 30°,试求这些热中子的能
nλ=d sinθ
ww
原子物理学第三章习题解答

第三章习题解答3-1 电子的能量分别为10eV 、100eV 和1 000eV 时,试计算其相应的德布罗意波长。
解:根据公式hp λ==10eV 、100eV 、1 000eV得1240eV λ=⋅因此有:(1)当110,0.39K E eV nm λ===时 (2)当1100,0.123K E eV nm λ===时 (3)当11000,0.039K E eV nm λ===时3-2设光子和电子的波长均为0.4nm ,试问(1)光子的动量与电子的动量之比是多少?(2)光子的动能与电子的动能之比是多少?解:由题意知Q 光子的动量h p λ= , 光子的能量cE h hνλ==电子的动量 h p λ= , 电子的能量2e E m c =∴(1)121p p = (2)126212400.0610.40.40.40.51110e e E h hc eV nm E m c m c eV nm⋅====⨯⨯⋅ 3-3若一个电子的动能等于它的静止能量,试求:(1)该电子的速度为多大?(2)其相应的德布罗意波长是多少?解:(1)相对论给出运动物体的动能为:20()k E m m c =-,而现在题设条件给出20k E m c =故有2200()m c m m c ∴=-由此推得02m m ===2230.8664v v c c ∴=⇒==(2)0hp c λ==Q0.0014nm λ∴===3-4把热中子窄束射到晶体上,由布喇格衍射图样可以求得热中子的能量。
若晶体的两相邻布喇格面间距为0.18,一级布喇格掠射角(入射束与布喇格面之间的夹角)为30度,试求这些热中子的能量。
解:根据布喇格晶体散射公式: 2sin 20.18sin300.18d nm λθ==⨯⨯=o 而热中子的能量较低,其德布罗意波长可用下式表示:h p λ==()222220.02522k hc h E eV m mc λλ=== 3-5电子显微镜中所用加速电压一般都很高,电子被加速后的速度很大,因而必须考虑相对论修正。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 习题答案1-1 当电子的速度为18105.2-⨯ms 时,它的动能和总能量各为多少?答:总能量()MeV ....c vc m m c E e 924003521511012222=⎪⎭⎫ ⎝⎛-=-==;动能()MeV c vc m T e 413.011122=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--= 1-2.将α粒子的速度加速至光速的0.95时,α粒子的质量为多少?答:α粒子的静止质量()()()u M m M m e 0026.44940.9314,244,224,20=∆+=≈-= α粒子的质量g u m m 2322010128.28186.1295.010026.41-⨯==-=-=βα1-4 kg 1的水从C 00升高到C 0100,质量增加了多少? 答:kg 1的水从C 00升高到C 0100需做功为J t cm E 510184.41001184.4⨯=⨯⨯=∆=∆。
()kg c E m 1228521065.4100.310184.4-⨯=⨯⨯=∆=∆1-5 已知:()();054325239;050786238239238u .U M u .U M ==()()u .U M;u .U M045582236043944235236235==试计算U-239,U-236最后一个中子的结合能。
答:最后一个中子的结合能()()()[]MeV .uc .c ,M m ,M ,B n n 774845126023992238922399222==⋅-+=()()()[]MeV .uc .c ,M m ,M ,B n n 54556007027023692235922369222==⋅-+=也可用书中的质量剩余()A ,Z ∆:()()()()MeV ....,n ,,B n 806457250071830747239922389223992=-+=∆-∆+∆=()()()()MeV ....,n ,,B n 545644242071891640236922359223692=-+=∆-∆+∆=其差别是由于数据的新旧和给出的精度不同而引起的。
1-6 求C 136和N 137核库仑能之差。
答:C 136和N 137核库仑能之差为()()⎥⎦⎤⎢⎣⎡⨯---⋅=∆31011220211453A r Z Z Z Z e E C πε ()⎥⎥⎦⎤⎢⎢⎣⎡⨯⨯⨯-⨯⨯⨯⨯⋅=---311512219131051566710858410602153...π MeV .J .935210696413=⨯=-1-8利用结合能半经验公式,计算U U 239236,最后一个中子的结合能,并与1-5式的结果进行比较。
答:()P sym C S V B A Z A a AZ a Aa A a A Z B +⎪⎭⎫⎝⎛----=--12312322,最后一个中子的结合能()()()[]2,1,,c A Z M m A Z M A Z S n n -+-=()()()()[]()()A Z B A Z B c m Z A ZM m m Z A ZM n n n ,1.1,111,12+--⋅---+--+=()()1,,--=A Z B A Z B对U 236,144,236,92===N A Z 代入结合能半经验公式,得到()-⨯⨯-⨯-⨯=-123223692714.023633.18236835.15236,92B21122362.1123692223680.92--⨯+⨯⎪⎭⎫⎝⎛-⨯=15.835*236-18.33*38.1892-0.714*922*0.1618-92.80*676*236-1+11.2*0.065=1794.1577MeV()-⨯⨯-⨯-⨯=-3123223592714.023533.18235835.15235,92B1223592223580.92-⨯⎪⎭⎫⎝⎛-⨯=15.835*235-18.33*38.0813-0.714*8464*0.1620-92.80*650.25*235-1=1787.4012MeVS n (92,236)=1794.1577-1787.4012=6.756MeV 对U 239,147,239,92===N A Z ,()()()238.92239,92239,92B B S n -=()-⨯⨯-⨯-⨯=-3123223992714.023933.18239835.15239,92B1223692223980.92-⨯⎪⎭⎫⎝⎛-⨯=15.835*239-18.33*38.5122-0.714*8464*0.1611-92.80*756.35*239-1=1811.3823MeV()-⨯⨯-⨯-⨯=-3123223892714.023833.18238835.15238,92B21122382.1123592223880.92--⨯+⨯⎪⎭⎫⎝⎛-⨯=15.835*238-18.33*38.4047-0.714*8464*0.1614-92.80*729*238-1+11.2*0.0648=1805.8608MeVS n (92,239)=1811.3823-1805.8608=5.5124MeV 1-9 利用结合能半经验公式计算U Ce Ag Cu 23914010764,,,核的质量,并把计算值与下列实验值相比较,说明质量公式的应用范围。
()u Cu M 929756.6364=;()u Ag M905091.106107=; ()u Ce M905484.139140=;()u U M050786.238238=;答:所求的核的质量应为相应的原子质量,已知为()()A ,Z M X MA=。
原子核结合能的半经验公式:()[]MeV B A Z A a AZ a Aa A a A ,Z B P sym C S V +⎪⎭⎫⎝⎛----=--1231222其中MeV .a ,MeV .a ,MeV .a ,MeV .a sym C S V 809271403301883515==== ;⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-=--奇奇核核奇偶偶核2/12/10A a A A aB PP P 由结合能进而求核质量()A ,Z m 和()A ,Z M :()()()A Z B m Z A m Z A Z m n p ,,--+⨯=, ()()e Zm A ,Z m A ,Z M +=对Cu 64:2964==Z ,A ,为奇奇核,()-⨯⨯-⨯-⨯=-312326429714064331864835156429...,B21126421164292648092--⨯-⨯⎪⎭⎫⎝⎛-⨯..259645205915555uc .MeV .==()()642935296429,B m m ,m n p -+=()u (596452)00086649213500727646129-⨯+⨯= u .91783563=()()4105848529917835632964296429-⨯⨯+=+=..m ,m ,M eu .93374463=对Ag 107:47107==Z ,A ,为奇A 核,()29794460348491210747uc .MeV .,B == (计算过程从略)()u .,m 88243910610747=()u .,M 9082710610747=。
对Ce 140:58140==Z ,A ,为偶偶核,()225133491611116514058uc .MeV .,B == ()u .,m 88122313914058=()u .,M 91304013914058=。
对U 238:92238==Z ,A ,为偶偶核,()293890210759180623892uc .MeV .,B == ()u .,m 99561023723892=()u .,M 04607923810747=。
说明适用范围是很广的,尤其对中、重核符合很好。
但对很轻的核及某些N 或Z 为幻数的核,实验值与计算值差别较大。
1-11 质子、中子和电子的自旋都为21,以7147N 为例证明原子核不可能由电子-质子组成,但可以由质子-中子组成。
由核素表可查得:7147N 的核自旋1=I ,服从玻色统计;若由电子-质子组成,则原子核由A 个质子和Z A -个电子组成。
由于质子和电子都是费米子,则质量数为A 电荷数为Z 的原子核有Z A -2个费米子。
如果Z 为偶数,则Z A -2为偶数,于是该核为玻色子;如果Z 为奇数,则Z A -2为奇数,于是该核为费米子;对7147N 核,该核由14质子和7个电子组成,应为费米子,服从费米统计,与实验不符。
而由质子-中子组成,则由7个中子和7个质子组成,总核子数为偶数,其合成可以是整数,服从玻色统计。
第二章 原子核的放射性2.1经多少半衰期以后,放射性核素的活度可以减少至原来的3%,1%,0.5%,0.01%? 答:()()1693.00lnT A t A t ⋅-= 分别为=t 5.0621T ;=t 6.621T ;=t 10.021T ;=t 13.321T 。
2.2 已知半衰期分别为d 26.14,a 5730,a 910468.4⨯,求其衰变常数。
(以s 为单位) 答:s 711062.5-⨯=λ;s 1221084.3-⨯=λ;s 1831092.4-⨯=λ;2.3 放射性核素平均寿命τ的含义是什么?已知21T 求τ。
答:平均寿命为样品所有核的平均寿命()()2144110T N tdtt N .===⎰∝λλτ经过τ时间,剩下的核数目约为原来的37%. 2.4 由衰变曲线求λ和21T 。
应该用方格纸或半对数坐标纸,最好用后者,得到:14211003.2min;57--⨯==s T λ2.6 人体内含%18的C 和%2.0%的K 。
已知天然条件下C C 1214与的原子数之比为12102.1,C 14的573021=T 年;K 40的天然丰度为%0118.0,其半衰期a T 9211026.1⨯=。
求体重为Kg 75的人体内的总放射性活度。
据活度定义为 ()()t N t A λ=由于放射性核素处于平衡状态,不随时间而变化K K C C N N A 40401414λλ+=9889001112100236102118010576060243655730693023124.......⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=+102.3910023.61018.1002.0105.760243651026.1693.023149⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯-Ci .Bq ...μ2130108471076410083333=⨯=⨯+⨯=2-7 已知Sr 90按下式衰变:Zr Y Sr ha 9064,901.28,90−−→−−−−→−--ββ(稳定)试计算纯Sr 90放置多常时间,其放射性活度刚好与Y 90的相等。